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Abstract—Due to their pedagogical advantages, large final projects in information visualization courses have become standard practice.
Students take on a client—real or simulated—a dataset, and a vague set of goals to create a complete visualization or visual analytics product.
Unfortunately, many projects suffer from ambiguous goals, over or under-constrained client expectations, and data constraints that have
students spending their time on non-visualization problems (e.g., data cleaning). These are important skills, but are often secondary course
objectives, and unforeseen problems can majorly hinder students. We created an alternative for our information visualization course: Roboviz,
a real-time game for students to play by building a visualization-focused interface. By designing the game mechanics around four different
data types, the project allows students to create a wide array of interactive visualizations. Student teams play against their classmates with the
objective to collect the most (good) robots. The flexibility of the strategies encourages variability, a range of approaches, and solving wicked
design constraints. We describe the construction of this game and report on student projects over two years. We further show how the game

mechanics can be extended or adapted to other game-based projects.

Index Terms—pedagogy, final project, game interfaces

1 INTRODUCTION

A hallmark of most modern information visualization courses is the
final or course project. At many institutions these are intensive, group-
based efforts that represent a significant portion of the course grade.
Projects can be client—, student—, or instructor—driven. Ultimately, these
are intended to challenge students to apply the theory and methods they
learned to more realistic scenarios. Thus, the projects themselves serve
as a learning experience that can both teach new skills and reify abstract
content. Projects also serve as a learning assessment and enable an
instructor to determine if high-level learning objectives have been met
(e.g., an ability to construct a visualization system from end-to-end).

Projects are common across many of the syllabii we observed
(e.g., Berkeley’s INFO247, UW’s CSE512 and INFO474, Stanford’s
CS448B, Georgia Tech’s CS 7450, UMD’s CS734 Utah’s CS6964,
Harvard’s CS171, UBC’s CPSC 547, MIT’s 6.894, Calgary’s CPSC
683, and many others). However, just as visualization is a wicked de-
sign problem, so too is visualization pedagogy. Thus, while the course
‘project’ is ubiquitous, instructors vary aspects of the projects in re-
sponse to their learning objectives, philosophies (e.g., project realism),
practical constraints (e.g., student skill level and course duration), and
ultimately whether they serve an assessment function. Variations in the
projects may include whether they are group or individual, the duration
of the project, different milestones, differences in intermediate peer
and faculty feedback, whether projects come from a theme or specific
datasets, whether the projects have external clients, and so on. There
are no inherently bad assignment designs. Most have evolved to fit the
specific situation in which they are embedded. Our own course utilized
a variant of this assignment type for a number of years (open-ended,
potentially client-driven, group project).

A challenge for our course has been that open-ended projects can
be problematic in that students end-up working on ‘visualization adja-
cent’ problems (e.g., collecting or cleaning data, working with under-
specified client goals, etc.). It is important to learn to deal with these
problems as they often come up in real-world scenarios. However,
through some mix of bad luck or choices students may not focus on
learning the ‘right’ things thus leading to poor learning and assess-
ment outcomes in time-restricted situations. That is, students spend
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excessive amounts of time on what the instructor considers adjacent
problems rather than on good design or evaluation of what should be
the main focus of the course: the visualizations. Because of varying
constraints in data and tasks, students had unequal opportunities to
design and build encodings and interactions (e.g., some datasets may
have a network component and others do not). Additionally, we have
found that in many situations students are unable to adequately de-
fine the visualization tasks for their projects. Students highlight vague
exploratory systems tasks that do not map to real problems and are
un-assessable, both for the student and instructors [1]. With the move
to online learning with COVID-19, we took the opportunity to both
streamline our project assignment and address these concerns.

Specifically, we switched to Roboviz, a novel game-based project
activity. Student teams build interactive visualizations to use as a game
interface to compete against other teams (the goal is to acquire robots
on a mining planet). We designed the mechanics of the game to have
(a) concrete objectives with various trade-offs, (b) a wide range of game
strategies that encourage the creation of multiple encodings, (c) projects
that can be evaluated both by the students (during game play) and by
the instructional team. We provide a dynamic dataset that can either
direct students to specific ‘optimal’ designs or ensure that no optimal
strategy/design exist. Our high-level task (win the game!) can be broken
down to many well-motivated and assessable sub-tasks. Student grades
are only very weakly tied to game performance (through extra-credit)
and are judged through design and implementation criteria. Roboviz
was designed for flexibility around learning goals. For example, we
have offered a ‘communicative’ variant akin to a sports visualization for
game watchers rather than players [29]. Roboviz was inspired by other

‘game’ based capstone projects. These include MIT’s famous 2.007,

where students design a robot to play a competitive ‘game’ against
other teams in the course (e.g., to collect as many balls as possible).
Similarly, MIT’s Software Engineering course 6.170 for many years
included a project where students designed an anti-chess game to play
against other students (the object was to lose).

In Roboviz, students are transported to an imagined planet and re-
cruit robot miners to work for them. Robots have different levels of
productivity, and the objective is to recruit the most positively produc-
tive robots by the end of the ten minute match. Over the course of the
game, participants are “fed” pieces of data of multiple types at different
stages of the match—time series, hierarchies, networks, multivariate,
etc. Student teams are challenged to create a dashboard for live game
play to compete against another team. An effective student dashboard
enables certain “analyst” tasks, specifically enabling strategies around
data collection or predicting certain outcomes.

In this paper, we expand on the specifics of Roboviz and reflect on
its use over two semesters (over 21 teams and nearly 100 students). We



find, for example, that teams generate a diverse set of data encodings.
We also identify limitations introduced by the game mechanics on the
types of projects created. We reflect on how the game can be modified
to address this and other pedagogical objectives. We observe that
student enjoyment of the project has seemingly improved with Robobiz
(unlike past years, students did not need course staff to resolve issues
with clients or team disputes). Finally, we reflect on the properties of
Roboviz that can lead to alternative games. We hope that this approach
will be used to create a wide array of game-based projects that can be
used and shared across courses. A video introduction to Roboviz and
student materials are available at http://roboviz.games/viz2 1/l

2 ReLatep Work

Various efforts have identified the goals [15] and broad curriculum
for information visualization courses [16,23]. Modern visualization
courses have settled on a largely consistent set of learning objec-
tives [16,25,30,31,40,47]. An example includes: “An understanding
of key visualization techniques and theory ... Exposure to a number of
common data domains and corresponding analysis tasks . .. [and] Prac-
tical experience building and evaluating visualization systems...” [54].
Courses will often cover theoretical aspects (e.g., perception, design,
data), specific approaches (e.g., network visualization, text visualiza-
tion, geospatial, uncertainty, etc.) and for practical practice, often
feature some kind of project(s). The specific topics covered in any
given course will naturally vary based on the student populations (scale
and type, e.g., [21]), prior knowledge, faculty interests, and course
limits (e.g., how long the course is).

Though the topics are relatively consistent, instructors have intro-
duced numerous innovations for active learning and projects. These
range from ideation on post-it notes [50], critique [36], spec-driven
workshops [24], and data physicalization [58]. Multiple Panels
(e.g., [25]) and Workshops (e.g., the Pedagogy of Data Visualization
Workshops at VIS’16 and *17 and IEEE VIS Workshop on Data Vis
Activities at VIS’20 and °21) as well as dedicated channels (e.g., the
#topic-teaching channel for the Data Visualization Society) have all
offered innovative approaches to teaching information visualization.
Despite this innovation, a mainstay of most University visualization
courses (both graduate and undergraduate) involves some kind of final
project (e.g., [9]). Project-Based Learning (extensively summarized
in [37]) is an established educational technique which is used broadly
in engineering courses [19,22], including those on visualization.

A full discussion of experiential learning and its various off-shoots
(problem-based learning, project-based learning, constructivist learning,
inquiry-based learning, etc.) are well outside the scope of this paper.
However, we note that a key limitation of many of these pedagogical
approaches is that when taken to the extreme they embrace a kind of
‘minimally guided instruction’ [32]. Despite their popularity [22], such
projects often overemphasize a focus on the methods and process of
creating a disciplinary artifact (e.g., interface), but with insufficient
engagement with the theories and principles of the discipline that are
needed when learning the field. Thus, while open ended projects may
reflect the nature of the practice of visualization, they may not provide
the structure that leads to learning in novice students. This problem
has been recognized in HCI-projects specifically [44]. Open-ended
projects can not guarantee that all students learn the same things in
the process of building the project nor can realistically assess whether
learning objectives are achieved. For example, a team that only has
access to small temporal data may not encounter either the challenge or
opportunity to use certain interaction or encoding approaches. A team
that cannot get good engagement from their client may not be able to
iterate on designs or evaluate their ideas.

Success with open projects often come down to luck. Was the
team lucky enough to get a good, clean, rich dataset with good clients
and a clear problem definition? Failures may become apparent way
too late for some teams and instructors. The results are projects that
are incomplete, too simplistic (i.e., do not demonstrate broad compe-
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tencies), or ill-suited to any task—potentially because the client has
none [1]. Many HCI and visualization assignment designs attempt to
manage project risks. For example, some elect to change from student—
to faculty-selected projects where the instructor selects the team or
project [17,51]. This improves the odds that students can produce
projects. However, real data remains problematic in that it is often
hyper-constrained and may represent a limited challenge to students
and assessment opportunity for the instructor. Other instructors attempt
to manage specific project risks by adopting techniques to enforce
more rigid design processes [8, 44], attempting to increase motiva-
tion (e.g., through service-learning projects [6] or leveraging public
competitions/awards [46]), or using simulated clients or users [34].

We view Roboviz as a tool to significantly reduce the risks of open-
ended projects while still maintaining many of their features. The
instructor can limit the range of visualization-adjacent tasks (defined
as they wish), control the tasks, data, clients, users, etc. While this
comes at some cost of realism, it also provides fine grained control
over learning and assessment. Our use of Roboviz is motivated by our
goals of: (1) introducing concrete tasks [1]; (2) offering wicked design
challenges; (3) pushing students to focus on visualization rather than
related tasks; and (4) supporting the evaluation of student work. This
last is often under-appreciated in assignment design. Many information
visualization projects, both in and out of the classroom, are difficult
to assess [42]. Our belief is that student projects should be easily
assessable both by the students and course staff.

Roboviz shares in the idea of using simulated data for projects [5].
However, Roboviz goes a step further by simulating not only the data,
but also the tasks. In total, our assignment mechanics are not only
designed to encourage variability in design, but also serve to assess
overall student learning in the course: everything from implementation
to theory.

2.1 Competitive Projects in Engineering

It is important to note that while Roboviz is a game, our course is
not “gamified” in the traditional sense [4,27]. While utilizing game
mechanics in the design of a course or around specific lessons is po-
tentially an effective approach, this is orthogonal to our work. Rather,
Roboviz was designed along the lines of competitive engineering cap-
stone projects (e.g., MIT’s 2.007 and 6.170 courses). The idea of
creating a game as a project is certainly not new. Many first projects
in computer science involve coding up a game. These are viewed as
fun for students and have well defined rules, making implementation
achievable and assessable. Competitive projects have been found to be
effective for engineering education [12,20,55] and have evolved into
global phenomena (e.g., the FIRST robotics competition). Experiences
with engineering projects where competition was an option demon-
strate more successful projects among those who chose to compete [28].
The use of Kaggle competitions in Machine Learning or Data Mining
courses have a similar flavor. However, Kaggle competitions are often
motivated by real world datasets. A related approach in visualization
education is the use of VAST competition datasets in education [57].
There are other datasets that have been similarly used in competitions,
including by the visualization community [43]. These competitions are
focused (e.g., phylogenetic data) and narrowly constructed. The results
are often novel visualization types, with a focus on a single encoding.
Unlike these efforts, Roboviz data is purposefully synthetic. It provides
both the opportunity and motivation to build many different kinds of
visualizations across many different data types and tasks.

We note one related project idea devised at the Blekinge Institute
of Technology in the context of a broader game-development curricu-
lum [53]. The particular visualization course was entirely connected to
game development with a final project that involved visualizing game
data. However, these leveraged existing games rather than a game
specifically created for the course.

2.2 Game and Sports Visualizations

An additional appeal of a game-driven project is that students have
significant examples and literature on which to draw. The visualization
literature for games (e.g., [3,7,56]), sports (e.g., [18,29,41]), and the
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combination (e.g., [11]) offer interesting starting points. However, we
purposefully avoided the use of any specific existing game as inspiration
for Roboviz. In part, this was a natural outcome of our design goals
(varying strategies, data types, etc.). However, this also ensure that
students aren’t able to simply copy existing solutions.

3 Course CoNTEXT

We briefly describe the context in which our course is run. While it is
similar to other courses, there are a number of pedagogical and practical
factors that impact our student’s approach to the Roboviz game. Our
course is a medium-sized (50-80 students), graduate-level information
visualization course (S1649). Programming experience is required, but
this may range from two semesters to many years (e.g., those with
computer science undergrad degrees).

Our semester runs over 14-15 weeks. The first 7 weeks of the course
are focused on ‘first-principles’: introduction to visualization, data mod-
els, perception, design, communication, evaluation, and interactivity.
The remaining weeks target specific data types: multidimensional, tem-
poral, hierarchical, network, geovisualization, and text. These topics
align with the data types that are used for different strategies within the
game project. A complete week-by-week learning objectives document
is available as supplemental information.

The course is taught in a flipped-classroom style. Students watch
videos ranging from 45 minutes to an hour before attending a ‘lec-
ture’ session. Students annotate both the flipped videos and required
readings. The 1.5 hour lecture session is taught through an active
learning style. Students are put into randomly-assigned mini-groups
to discuss questions around the week’s topic before returning for a
full-class discussion. A second 1.5 hour session during the week is
focused on ‘labs’— either programming for the first 5-6 weeks of the
course (Tableau, Altair, and Streamlit in the 2020 & 2021 iterations),
or design work through the VizItCards format [24]. By the end of the
lab sessions students could build and deploy a range of interactive visu-
alizations using Altair. We emphasize these features as we explicitly
create many opportunities for students to meet each other and work in
different groups before committing to a final project team. Additionally,
the students develop significant expertise in group design.

A mid-semester individual project is focused on a communicative
visualization exercise. In Fall 2020, the project was based on an article
explaining why Norway does well in the Winter Olympics. The Fall
2021 variant was around an article about quality of life in a rural US
county relative to the rest of the country.

The final project in the course has always been designed to allow
students to apply all their learning to the construction of a new vi-
sualization system. With Roboviz we set our learning objectives as
having students: 1) apply good design practice to generate and contrast
design alternatives; 2) document and justify design decisions based
on visualization theory; 3) implement functional and usable visualiza-
tion systems; 4) select and utilize appropriate encodings for a range
of data types and design tasks; 5) implement appropriate interaction
techniques in visualizations; 6) apply good design to produce aesthetic
visualizations. Note that our emphasis is on visualization concepts
and implementation. These objectives are mirrored by the rubric (see
Section 5.3 and supplement). Ideally, a good Roboviz project should
not only demonstrate the achievement of the learning goals above but
also many of the other learning objectives of the course. For example,
they will be able to determine if a small multiples display is warranted
and what interaction techniques (e.g., linked scrubbing, highlighting,
etc.) are most suitable given the design goals.

4 TuHe Rosoviz GAME

The Roboviz game was designed to encourage students to build many
different visualizations that can be used to either play or describe
a game. Teams must figure out a game play strategy based on the
game mechanics and build a visualization dashboard. Games are si-
multaneously played by two teams or one team against a simulated
opponent. The complete description of the game and rules is available
athttp://roboviz.games/viz21/ and in our supplement.
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Fig. 1. Screenshots for three versions of the scatterplot + line chart visualiza-
tion for the time series data. Chart A is a basic scatterplot and line chart, with
a straight line of best fit. Chart B uses a polynomial regression to smooth
out the lines and better predict what the value might be. Chart C includes
data from the robot’s family tree to increase the predictive power of the line
by having more data.

The high level mechanics of the game are to collect as many “points”
(productive robots, in our case) within a 10 minute match. At the
simplest level, a team will guess a value that the robot is thinking of
before the expiration (sometime within the 10 minute match). A more
accurate guess of the robot’s random number will usually get you the
robot. However, not all robots are productive, meaning that some will
lower a team’s overall score. To add complexity, some unproductive
robots are valuable for other reasons, leading to multiple strategies on
which robots to try to collect. Additionally, teams can ask for additional
streams of data that can help them decide on which robots to try to
collect and what numbers to guess. As we describe below, teams are
gradually fed a little bit of this information (e.g., some timeseries data,
some multivariate data) at each time step of the game. This temporal
structure was used to better reflect many analytical scenarios. That is,
decisions and analyses are often temporally evolving. Even in static
datasets, one analytical choice may lead to the next.

As is hopefully apparent, there are many viable strategies. The
game was designed that even with a full team playing, it would be
difficult to simultaneously track everything for an optimal strategy or
build a visualization for every strategy and case. Teams must design
their visualizations to support specific strategies and are thus forced to
tackle our first key learning objective—applying good design practice to
generate and contrast alternatives. This is verified by evaluating their
design process documentation.

The robot information comes in a variety of formats and cor-
respond to different strategic mechanics: temporal, multivari-
ate/multidimensional, network, and hierarchical. Each piece of in-
formation corresponds to one strategy. Roboviz is designed in a way
that no particular strategy can dominate over the other. Teams must
use at least two types of data—and corresponding visualizations to ef-
fectively play—as well as adding interactive elements to support their
use. The game mechanics encourage this diversity of visualization and
interactivity as it is impossible to play effectively without these ele-
ments. By varying the way the underlying randomization happens, we
can also ensure that the combination of strategies needs to be different
between matches. Thus, to be super effective, a team should try to build
interactive visualizations to support all the strategies.

The benefit of this mechanic is that it incentivizes teams to build
visualizations corresponding to the many types covered in class. The
goal for each team’s ‘system’ is understood, but teams can be highly
creative in building the game playing dashboard. The complete rules
of the Roboviz game and a video walkthrough are available at http:
//roboviz.games/viz21/. Here, we briefly describe key features of
the game mechanics, and implementation details.

4.1 Basic Rules

Teams are told that they have landed on a Planet X421ZZ and have
10 minutes to recruit 100 robots. The robot “miners”—which collect
planetary resources—have evolved from those previously abandoned
on the planet. Some robots are productive, some not. Thus, not all
robots are worth trying to recruit, and unproductive robots will count
against a team’s final score. Game time units, called XTUs (Planet
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X Time Units), are six seconds. This gives us 100 XTUs per match,
for a total of 10 minutes. Teams are explicitly told that they cannot
automate any part of the game play. The team, or player, must make
strategic decisions by studying their visualizations. Teams are given
two datasets at the start of the game (the social network and the family
tree) and gradually receive data points (temporal ‘friendship game’
data and quantitative/categorical ‘parts data’) throughout the game (see
Section 4.6).

4.2 Robot Friendship Game

The main mechanism for recruiting robots is through the Robot Friend-
ship Game. Students are told that the robots have a pseudo-random
number generator, and that they will join their team if they can guess
closest to the ‘number they are thinking of.” Each robot has a random
‘expiration’ time for which the team needs to guess by (see the horizon-
tal red line in Figure 1 (B) as an example). Internally, for each robot,
we generate a pseudo-random time series (a 47 order polynomial with
random coefficients in the current instance) for all 100 time units for
the game (see the thin blue line in Figure 1 (B) as an example). The
teams have a number of ways to get information about values along
each robot’s time series that allow a team to make an educated guess
about the value at expiration date.

For example, Pushwalker Botson (robot ID 87-all robots have a
name and ID), would like a guess by 60 XTUs after the game starts
(360 seconds in). The true answer for that time point is 92. If team A
can guess or predict this value more accurately than team B, Pushwalker
will join team A. Because new information is constantly being delivered
up to the deadline, guesses/bets can be updated up to that point. For
strategic reasons, it is also possible to bet —1 to indicate that the team
doesn’t want the robot. More specifically: (1) if both teams guess -1,
the robot powers down and no one gets the robot, (2) if your guess is
closest to the correct answer and the other team is not within 10 of the
correct answer, you will get the robot, (3) if both teams are within 10
of the correct answer, the robot will decide who to join by using the
social network strategy (described below).

4.3 The Social Network

The students are told that the robots have evolved their own social
network which they use to help decide which team to join. If both
teams are close to a robot’s true answer in the friendship game (or
there’s a tie), the robot will look to their social network to help them
decide. In the current implementation, the social network is generated
as a powerlaw graph (specifically [26]). In the basic implementation,
each of the 100 robots are placed randomly in this graph. The entire
network is provided to teams at the start of a match.

When deciding between two close bets, a robot will consider those
immediate neighbors that have already joined one of the two teams.
They will take the weighted average of the neighbor based on degree (a
more “popular” robot will have more weight). This additional mechanic
encourages visualization of the network data and consideration of which
robots to prioritize. Two example visualizations of this data from an
actual interface are captured in Figure 2 (D,E).

4.4 Robot Productivity

In our game, robots are not equally productive and productivity is
a function of their parts. Students are told that robots consist of 10
parts/features that they should care about. The first 7 are quantitative
features (e.g., 7.3 or -92) and the last 3 are nominal/categorical (e.g.,
Alpha, Beta, Gamma). Some robots may even have negative productiv-
ity. Recruiting a bad robot will hurt the team’s overall performance and
counts against their score. This creates an incentive to determine both
the relationship between productivity and a part (do they help or hurt)
and what parts a robot has.

Specifically, we pre-generate a linear combination of the various
variables to produce the final productivity (ranging from -100 to 100).
At random, some variables are determined to be highly correlated.
Strategically, teams would like to learn which parts are predictive of
positive or negative productivity robots. In the implementation of our
game so far, we have set the average productivity of all the robots to be

greater than 0. Because of this, there is some advantage to collecting as
many robots as possible.

4.5 The Family Tree

As a final level of data complexity we also introduce a hierarchical data
structure. Teams are told that in mimicking human societies, one robot,
long ago, decided that it wanted to “evolve.” Over time, old robots
built newer ones and a family tree emerged (teams are given this data
at the start). Internally, this tree is produced by randomly grouping
sets of 2-4 robots and assigning them a ‘parent’ (this is a fake internal
node that isn’t one of the 100 robots). Robots assigned to a group are
removed from consideration and replaced by their parent node. The
cycle continues until there only one ‘ancestor’ robot remains. This
process ensures that the 100 robots in play are only in the leaf nodes. A
visualization of one such structure is in Figure 2(F)). The hierarchical
structure connects back to the robot guessing game. Related robots
will have similar time series to each other. By knowing where robots
sit in this family tree, it’s possible to make a better guess if we know
things about ‘sibling’ or ‘cousin’ robots. It is also possible to use the
hierarchical visualization to target certain well-populated ‘sub-trees’
for additional data. Strategically, a visualization can help recognize
these robots.

4.6 The Hacker

Some dataset pieces are provided to the teams at the start of the match:
the robot names and ids, the social network, the family tree, and each
robot’s deadline for the guessing game. Once a robot has ‘expired,’
teams are also given its productivity value. All other information is
gradually provided in a pseudo-random fashion by the ‘hacker.

Students are told that the hacker is an agent that has broken into the
robots’ databases and is slowly leaking information to the team (each
team has their own hacker). Each time unit (6 seconds), the hacker can
provide values from the robot’s random number generator (e.g., the
light sensor for robot 5 at time 40 was 9) and part values (e.g., robot
54’s Astrogation Buffer Length is 23). The hacker delivers 10 data
points at each step (5 each from the time series and parts data). Of
course, this is simply sampling from the various pre-generated data
frames. Teams can ask the hacker for information about specific robots
or specific parts. This allows them to build models strategically (e.g.,
productivity predictions or friendship game expectations for unexpired
robots, or for building productivity models for all robots). The server
will bias the produced ‘hacked’ data during game play towards those
robots or parts. Teams may continuously update their requests, but only
get new information every 6 seconds.

4.7 Match Construction

All the data for a match is pre-generated. A script produces all the
necessary match files which are then loaded to the server for a given
match. No two matches will be the same. To develop their team
visualizations, students are provided with a few practice match files, a
simulated competitor (including code), and a simple server to handle
the match. The simulated player has all of the match data files, so it is
omniscient. However, it makes random guesses for the friendship game
within some range around the true answer. In theory, it should be easy
to beat but presents a useful starting opponent for teams to test their
ideas and develop a game strategy. Teams can extend the simulated
player to be more challenging (i.e., it can be less error prone).

During a match, the game play is recorded by the game server. This
includes all data requested by each team, the data provided by the
server, the robot ‘joining’ behavior (and reasons why). This log allows
us to study (or visualize) completed matches in full detail.

4.8 Client APIs and Simulators

In addition to the server and simulated player, students are also provided
with client APIs written in Python and in Javascript. Additionally,
we provide documentation for the JSON-based API for those teams
not working with one of those two systems. The client APIs allow
teams to log onto the match, collect ‘public’ data (e.g., the network,
hierarchies, current robot commitments, etc.). Additionally, the client
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Fig. 2. Sample visualizations produced by students teams. The top three (A, B, C) were different ways to visualize the correlations between specific parts
and productivity (treating these as independent). The bottom are example visualizations of the network and hierarchical data from one team’s dashboard (at
the end of the match). The team would study a visualization of the social network with robots color encoded based on in-degree (D). When they noticed a
robot about to expire they would pull up a detailed view (E) to study its neighbors. Visualization F is a visualization of the robot family tree for the match (this

was from a simulated game so all robots were claimed by one team).

allows teams to issue requests to the hacker or bids for the robots.
We provide students with examples written in Python and Javascript
that demonstrate how different interfaces can be built with the APIs.
All students in the course are experienced with Altair/Vega-Lite and
with Streamlit. As we discuss below, most of the interfaces are built
using these tools. We also provided reference to more specialized
visualization libraries that were not previously covered (e.g., nx_altair
for network visualization). We make no particular constraints here on
how the systems are to be implemented. To get students started, we
have created a video walkthrough for both the game and the use of the
API to generate simple visualizations. We found this useful as some
students are less familiar with API-based programming. The video is
available at https://www.youtube.com/watch?v=xNdjV2cWj7U.

5 Courste ResuLts

We have had the opportunity to run the complete Roboviz project during
the Fall’20 and Fall’21 semesters. Due to COVID-19 restrictions, the
course was entirely online in Fall’20 and in a hybrid format in Fall’21.
However, in both semesters we ran the Roboviz competitions online.

5.1 Assignment Details

Students were given four weeks at the end of the semester to develop
their dashboards and strategies before the final product was due. We
suggested groups of 3-5 students as this allowed each member to tackle
a different encoding type, was consistent with our other courses, and is
generally viewed as best practice (e.g., [38,51]). As an accommodation
for COVID-remote learning we allowed for individuals or two-member
teams to participate (we had one individual participant in Fall’20 and a
two-person team in Fall’21). Students were prompted to find a good
mix of skills when selecting teams and most students had interacted in
earlier small-group activities in our flipped environment. In the first
implementation of this project, teams were allowed to either focus on a
communicative role (e.g., presenting post-game analysis) or a player
(i.e., analyst) interface. Of the 11 Fall’20 teams, six chose to build
the player tool. In the second iteration in Fall’21, we discontinued the
communicative option and all ten teams developed game play inter-

faces. This was done to encourage every student to experience one
communicative project (achieved through the mid-semester individual
activity) and one more focused on analysis/exploration. Courses that do
not have this balance could certainly retain both options for Roboviz.

Teams could build their system using whatever tool they preferred.
The bulk utilized Streamlit, two used a standard Jupyter Notebook,
and two teams used Tableau. Students largely utilized Altair as the
basis for visualizations (followed by matplotlib, Seaborn, Pyvis, and a
smattering of other libraries). We asked all students to run the VizItCard
workshop [24] to rapidly iterate over a solution space. Students had
experience with this format from past labs. Teams who were focused on
a communicative project were instructed to craft a set of communicative
learning objectives [2].

Because of the hybrid teaching environment, some teams were dis-
tributed internationally. To support these students, we offered the option
to either play against other teams during large sessions or to make an
appointment with the course staff and play against a simulated player.
By Fall’21, most students remained on campus and 8 out of 10 chose
to play in a bracket-style tournament. We scheduled two sessions, each
about an hour and a half long, with three matches in each session.

For students who participated in the communicative variant (F’20),
we provided trace logs of a few simulated matches (as no games had
been run at the time). All groups were asked to create a video presenta-
tion of 10 minutes or less describing their project. They were instructed
to describe their goals, early designs, ultimate decisions and offer a
walk through of their implementation. Students submitted this video
report as well as all code. We used the video report format in part to
reduce student burden given COVID-related changes. However, we
have found that overall this is a positive change and worth retaining.
Students demonstrate their project and describe design decisions in
sufficient detail for course staff to understand and assess the work.

Students had a number of approaches to both development and game
play. Tournaments and matches were conducted over Zoom. Each team
was given a breakout room to coordinate through. The ‘main’ room
displayed a running score card. Observers were allowed to enter the
game rooms to watch teams. One team physically co-located to play, but
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most teams played remotely. The bulk of teams utilized multiple people
to play for their team simultaneously. Given the significant stream of
data—far more than one person could likely handle, even with the best
interface—this was strategically advantageous. We observed significant
variation across teams in collaborative designs and play. Roles varied
across teams where some had multiple people focusing on different
robots whereas others had different tasks (e.g., one inputting guesses
or hacker requests with others analyzing data). Teams collaborated
through digital coordination (e.g., chat) but also simply speaking to
each other. Some shared one visualization in the Zoom window, but
most utilized local dashboards for each person. Retrospectively, it’s
not clear to us that any one strategy was dominant. However, we were
encouraged by all the variations in play.

5.2 Visualizations created

With respect to design, the Roboviz game involves four data sets (time
series, multivariate, network, and hierarchy). Figure 3 summarizes all
the observed visualizations, interactivity elements and technologies
used by our teams. We required groups to choose at least two datasets
to visualize. We found that 12 (out of 21) groups chose to visualize
three datasets, 4 groups chose to visualize two datasets, and 4 groups
chose to visualize all four datasets. In addition to the datasets about the
robots, 4 analytic teams also chose to visualize a game tracker, which
included metadata about who was winning the game, their productivity
scores, or which teams won which robots. For obvious reasons, all 5
communication-focused teams visualized a version of a game tracker.

Time series Fifteen (out of 16) analytic teams visualized the time
series data. This is unsurprising because the main task was to figure
out the robot’s random number for the friendship game — and the
only way to do this was to look at the time series data. All teams that
visualized this data used a scatterplot, with most (13) of those teams
also using a line chart overlaid onto the scatterplot (see Figure 1 for
examples). Although there was much uniformity with the types of
charts for this dataset, the details of the charts, and thus the utility
of the chart, varied by team. Some common design features of these
charts were a polynomial line of best fit and a vertical line indicating
the robot’s expiration time. Some of the best versions of these graphs
used small multiples to show several robots at once, automatically
filtered the robots to only show the next 5 robots that are ‘expiring,” and
annotated the best guess for the random number on the graph. Some
of the least effective versions only had scatterplots or required manual
(de)selection of robots from a drop down list.

Network. Fifteen teams visualized the robots’ social network.
Teams that recruited popular robots could be more likely to also re-
cruit their friends as well. The most common visualization type for
this data set was a node-link network diagram. These visualizations
commonly used color, size, annotations, and/or tooltips to encode pop-
ularity. Teams also incorporated information on which team won the
robot and the robot’s expiration time to improve the usability of the
visualization. Some teams chose to visualize the entire social network
at once, while others only visualized a subset at a time. Some of the
best versions of this graph were linked to other graphs, automatically
highlighting the robot of interest to be found easily. Less effective
versions were crowded, labeled poorly or not at all, and were difficult
to navigate.

However, some teams opted for another type of social network
visualization, citing usability for their game play strategy. For example,
Team TO03_21 created a bar chart of the 15 most popular robots (in
the social network sense), sorted in descending order. In their video
documentation, they explained, “We translated the idea of doing a
network graph into a bar graph of just showing who has the most
relationships. Instead of having to parse through a network, we can
Jjust simply go after those with the highest network (popularity).” This
choice and subsequent explanation reflect a deeper deliberation of how
they were using the visualization and how their encoding choices could
optimize their decisions.

Multivariate. The multivariate data featuring productivity factors
was the third most popular dataset to visualize, with 14 teams choosing
this data set. Though not essential, productivity was a key factor in what

makes a robot worth bringing onto your team. Most teams (12) chose to
use a scatterplot, and most teams (11) used more than one visualization
to show this data. The other common visualization types were heat
maps, bar charts, and boxplots. A common implementation was for
teams to create small multiples of scatterplots for the quantitative robot
parts and a second type of visualization to show the productivity of the
nominal robot parts (see Figure 2(A) and (C)). Some ways that teams
went above and beyond were to graph a line on top of the scatterplot
showing the correlation. Some teams skipped the scatterplot entirely
and just graphed the correlation values onto a heatmap (see Figure 2(B)).
Ineffective pitfalls were that some teams had the same y-axis for all of
the robot parts, but some have ranges from 0 to 100 and others have
ranges of 0 to 1, leaving the small ranges unreadable.

Although we asked teams not to automate their solutions, teams
were still allowed to calculate different models for display. One unique
team (TO1_21) used visualizations to estimate the relationship between
different robot parts and productivity. Through an interactive interface,
they fed that relationship back into their program and used it to ap-
proximate the equation from the game that decided productivity. They
used this to predict the productivity of the robots that were not yet
declared for. This was a very successful method and was one of the
more creative approaches we have seen to this game.

Hierarchical. Twelve teams visualized the robots’ family tree hi-
erarchical data. Most of these visualizations were tree networks. In
combination with the hierarchical data, some teams also encoded pro-
ductivity or which team won the robot. Like the social network data,
some teams only visualized a subset of the family tree, centered on
a specific robot of interest. The most useful implementations of the
family tree data was incorporating it with other datasets. For example,
some of the time series scatterplot+line graphs automatically included
the robot of interests’ nearest family members as well (see Figure 1(C)).
The robots’ random number generators were similar to their siblings
and parents, so including that data give the teams more information to
help them more accurately make a guess.

Game Tracker. Four analytical teams and five communicative teams
created visualizations to show game progress. A common represen-
tation was a line chart with different colored lines representing the
productivity of both teams. Another way to represent the game score
was either a bar chart or a stacked bar chart. As opposed to more elab-
orate setups, some teams simply had a time tracker at the top to keep
them on schedule. Even for teams that did not have a dedicated game
tracker, encoding which team was winning which robots in conjunction
with some of the other datasets could also serve as a tracker.

These visualizations provided real-time tracking of who was winning
the game. This served both a functional role (seeing if a strategy was
working) and made the game more fun to watch and play. For the
communicative teams, game tracking was an essential element, giving
an overview of how the game progressed over time.

Interactivity. The assignment specified that the students needed to
include interactivity in their dashboard. They were evaluated on how
well they implemented interactivity and if it improved the usability of
their visualizations. We analyzed the interactivity that the teams used
based on the categories in this paper [59]: Abstract/Elaborate, Select,
Explore, Reconfigure, Encode, and Connect.

The most common interactivity used was a hover tooltip (Ab-
stract/Elaborate) — this was used by every team (except for one team
that did not use any interactivity). Often, the hover tooltip provided
robot ids, more details, or specific data values on demand. The hover
tooltip is also the easiest to add in Altair (and most other libraries).
The second most common use of interactivity (14 teams) was to filter
the data and show something conditionally. Teams used a variety of
interaction methods to filter to see only a specific robot or a specific
robot part. This was important, as they had to make decisions about
one robot at a time, and there were 100 robots— too many to visualize
all at once. The third most common use of interactivity was to select
and mark something as interesting. Teams used selection to highlight
robots of interest to make them easier to see across several graphs.
Infrequently used forms of interaction were Explore (some teams used
a pan feature) or Reconfigure (changing facets, sorting tables). Two
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Fig. 3. The different visualization, interaction types, and underlying technologies observed across all participating teams.

types of interactivity ((Re)encode and Connect) were not observed.

In addition to these types of interactivity, we also saw a few imple-
mentations of interactivity that did not fit into these categories. For
example, the productivity prediction mentioned previously was a unique
way to integrate interactivity into the system. Additionally, some teams
had features in their dashboard to input information about what data
they wanted from the hacker. These were interactive features, but they
were specific to playing the game and not necessarily directly related
to a visualization. Finally, two teams used a time slider to manually
slide the game time elapsed. This worked well in the communicative
dashboard, where this enhanced the post-game analysis to see the game
in stages as it progressed. However, it resulted as mostly a superfluous
addition to the analytical dashboard, as it did not help the team play
more effectively. A complete, and somewhat sophisticated dashboard,
is displayed in Figure 4.

5.3 Rubric

We retained roughly the same grading rubric for the two semesters. We
briefly summarize the one used in F’21. This rubric is clearly biased to
our learning objectives and can be modified to emphasize other goals.
Students were able to see the rubric through our learning CMS (Canvas).
The project counted for 25% of the overall course grade.

Teams were given a score of up to 10 points: up to 1 point for a good
VizltCard presentation (essentially demonstrating the consideration of
alternative designs and specified goals); 2 points for functionality (how
much of the solution worked); 3 points for design (overall execution of
good visualization principles and usability); 1 point for interactivity fea-
tures; 1 point for aesthetics; and 2 points for a good video presentation
(with justification of choices, etc.). Teams winning the tournament or
their round were given a small bonus (up to 5% of the project or 1.25%
of the course). In the 2021 variant of the course, all teams received full
points for the VizItCard activity and functionality (all projects worked).
While most teams correctly implemented interactive features, roughly
a quarter only received 50% for the interactivity element. These teams
either overly-emphasized static charts or did not provide useful interac-
tions that furthered their design. A slightly smaller fraction (21% of
the class) received deductions (10%-20% off) for their design. This

happened in cases where poor encodings were used and not argued for.
A small subset (10% of the class) only received 50% for their aesthetic
choices. In these cases the visualizations, while functional, appeared
‘rough’ with vestigial elements. Most video reports received full scores.
These distributions serve as valuable feedback to us, as instructors, in
adding targeted training and activities for future years. We note that
these results lend support to both individual students and programmatic
achievement of our learning objectives for Roboviz (Section 3).

In addition to the rubric, we use an anonymous peer-assessment
instrument. We use this for edge cases as well as for student recommen-
dation letters. Each student is asked to allocated $5000 bonus ‘dollars’
among their team members (including themselves) and to explain their
allocation. Most teams produced a fairly equal distribution of dollars.
Students in our program are familiar with collaborative work and know
how to equitably divide and complete tasks. Our use of multiple game
strategies also supported a more equal division of labor.

6 Discussion

In our analysis of student work we observe significant coverage of the
topics covered in the course. That is, we see that students are success-
fully able to apply their learning in an integrated way. The final visual
products (summarized in Figure 3) are ‘cross-cutting.” Roboviz allows
students to implement different kinds of visualizations, interactions,
and to consider a holistic ‘solution’. Our experience validates that both
the intrinsic and extrinsic motivations in this project design help lead
students to functional products that are well-motivated. The assessment
of the value of any particular design decision is clear: does it help our
team win or not?

Roboviz represents one possible type of game-centered project ex-
perience. There is certainly a cost to developing and debugging the
infrastructure needed to run a project of this type. Thus, it would likely
be difficult to create a new game every semester. Ideally, the game
itself can be extended and enhanced in subtle ways. We attempted to
do so with Roboviz by connecting strategies to different data types.
In theory, we could add a stream of text (e.g., the robot’s poetry can
hint at their productivity) or geographical positions can be linked to
the random-number generator for the guessing game. We encourage
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Fig. 4. An example dashboard screen for one team. The annotations in the figure were created by the student team for their video presentation. In this case,
the running dashboard was displayed on one screen and allowed one student to view and control game play. Team Productivity Chart: This was a game
tracker bar chart that compared Team 1’s score to Team 2’s score. This also has interactivity for inputting robot ids for the hacker. Robot Bar Chart: This is
also a game tracker which shows how many robots are expiring at what times and who has won those robots. Friendship Game: These are line charts +
scatterplots with data from the hacker showing the robots’ pseudo-random number generator time series. Network Chart: These node-link diagrams show
the robot’s closest family members and their friends. Parts & Productivity: This section includes small multiples of scatterplots for the quantitative variables
(top 7) and categorical variables (bottom 3). Both have summary lines or bars to indicate the correlation or averages over all the data. Interactive features
include extensive tooltips on all the figures, dynamic lines on hover in the time series, and various search/filter features to focus on specific robots.

others to extend and remix the game design with ‘expansion packs’ to
offer additional variants. Additionally, we would like to see novel game
concepts emerge with different strategic designs. Below, we reflect on
some of the motivations for creating Roboviz, how the game can be
used in the context of a course with diverse student interests, issues of
strategy and complexity and, ultimately, a reflection on fun.

6.1 Open-Ended Projects

There is some benefit to instructors in using open-ended projects as
it makes the initial steps of the project easier (i.e., we can provide
very limited guidance). For instructors in research-focused settings,
student projects can also occasionally lead to publications. However,
the downside of this approach is that it becomes difficult to guide a
large number of groups through the different challenges they encounter
as the project progresses [9]. Perhaps more critically, it is difficult to
create a well-developed rubric to assess student learning in the context
of open-ended projects. Having run both types of projects in our course,
we have found Roboviz to be the preferable option both for students
and for the teaching staff.

That said, some students have a specific vision when taking the
course. To support these students, we have allowed teams to propose
alternatives. Only two groups—one team in 2020 and one individual
in 2021-took us up on this offer. As long as handling the additional
workload is possible, we believe this to be a reasonable accommodation.

6.2 Strategies and Diversity

Working in teams is challenging in the best of times. With the transition
to online teaching, and with students spread throughout the world,

we sought to further reduce the dependencies on team coordination.

The initial version of Roboviz was designed so that different team

members could tackle different sub-strategies, and thus visualizations.

That is, one team member could work on network visualizations and
another on hierarchical. These created ‘natural’ partitions in the overall
design. Teams only had to find a way of coordinating the bets and
hacker requests and could otherwise function independently in both
implementation and during game play. Because of the speed in which
the game moves, there was some incentive to having multiple people
monitoring different aspects of the dashboard.

While this encouraged a diversity of visualizations, the mechanics
neither compelled nor particularly incentivized the creation of novel
encodings. Thus, very few teams combined different data types into
one visualization nor defined particularly novel interactions (beyond
standard brush-over connectivity or linked filtering).

One possible adaptation is to reward teams who come up with more
novel encodings (e.g., through extra credit). Alternatively, one can
compel the creation of combined visualizations by making it a project
requirement. Currently, teams are told to cover at least two of the sub-
strategies with the implication that these are done through two distinct
visualizations. However, an instructor could specify that at least one
the visualizations must combine two data types. The disadvantages of
this approach are that (a) this may not be strategically beneficial (i.e.,
a combined encoding might be worse than two partitioned visualiza-
tions); and (b) the incentives for production of the solution become
misaligned (i.e., the students are creating the solution because it’s a
requirement, not because it helps them play). Additional changes to
the game mechanics might be needed to ensure that novel, combined
encodings are both possible and interesting for the students to pursue.

6.3 Implementation Challenges

Live tournament play is fun but also presents some technical difficulties.
Some issues also emerge due to misunderstanding of the game play.
For technical difficulties, many teams had problems with connecting to
a live remote server, rather than their local test environment. Depending
on how quickly students can debug these issues, additional scaffolding
such as a video walkthrough or pre-tournament test sessions or office
hours are important. Another option we have considered is to allow the
tournament to work over a longer period. This would allow students
to update their strategies after testing them in actual game play. Unfor-
tunately, this requires more time allocated for the project and would
likely require removing other valuable assignments.

We found that there are a number of negative side effects to providing
complex game rules. While the rules were explicitly designed to ensure
different strategies—and therefore visualizations—we noticed that some
students developed wrong models of the rules. For example, one
team thought that the family tree showed robots with similar part
structure (and therefore, productivity). This was not the case in our



implementation. These misunderstandings provide an opportunity to
add new features (e.g., robots from a given family should have similar
parts). However, they also point to the need for careful presentation
of the rules and debugging of student understandings. One adjustment
for the future is to have an early meeting with teams to check their
understanding of the system and rules.

Finally, we found that some teams pushed the ‘no automation’ rule.
That is, teams were not supposed to automate the game. They were
supposed to create visualizations to help them make guesses, then
manually put the guesses into the interface. However, many of our
students are trained in statistics, data science, or machine learning.
Their natural inclination is to model the data computationally rather
than trying to build good visualizations. While emphasizing the no
automation rule can be helpful, we have also begun to create more
varied match configurations. These make it difficult to utilize one
modelling strategy (e.g., the time series data doesn’t fit a standard
polynomial or high productivity robots can expire in a biased way—
either late or early in the game). By varying the possible matches,
teams may become more incentivized to make sure the human player is
a more prominent decision maker.

As described earlier, we have elected to implement Roboviz as a
real-time game as it simulates many analytical tasks where decisions
and analyses vary over time. However, it should be possible to modify
Roboviz to work on a data ‘snapshot’ where the data is static. For
example, teams can formulate their best bets and submit them within a
certain time limit. This removes certain time pressures on a team but
also removes some flexibility for the ‘game designer’. A temporally
adaptive system may enable more variations as strategies need to be
changed over time.

6.4 On Fun and Games

Whether gamified or game-centered, Roboviz was built on the idea
that games can be motivational as they gratify self-determination or
‘Player Needs for Self Satisfaction (PENS)’ [45]. In this model, games
are found to be satisfying when they engage the sense of ‘competence,
autonomy, and relatedness.” Roboviz evokes this by allowing teams to
craft the tools necessary to achieve competence (simultaneously in the
game as well as in the visualization discipline), autonomy (in the abil-
ity to control the outcome—teams are building for their own use), and
relatedness (teams are collaborating and connecting both within and
between teams). The idea that competitive or competitive/cooperative
structures in motivating learning can be effective is certainly not new
(e.g., [52]). That is not to say that that competitive structures are not
problematic [33]. Extrinsic and intrinsic motivations interact in poten-
tially negative ways. Deadlines, competitions, directives, and so on can
all reduce intrinsic motivation and thus impact learning [48]. Clearly
we cannot eliminate all directives, deadlines and even competition
from a classroom. However, by disentangling successful game-play
in Roboviz from the ultimate grade and encouraging effective intra-
group cooperation [13] we hope to reduce these negative characteristics.
Work with younger students also demonstrates that mixed cooperative-
competitive games (e.g., the Teams-Games-Tournaments structure [14])
are better than individually competitive or purely cooperative learn-
ing [39]. We have worked to ensure the game is inclusive (e.g., by
reducing the impact of game play on the grade). However, it is hard to
conclude if we were successful given the relatively small population of
students. We strongly believe in the importance of continued analysis
of the inclusiveness of different project types.

As a final note on games, we acknowledge that it is difficult to
create a game that provides ‘nudges’ towards certain kinds of designs,
provides an opportunity for actual assessment, and is simultaneously
‘fun.” These potential tradeoffs are familiar to anyone working in
gamification or gamified education [10]. While we were inspired
by traditional game design principles [49], these were secondary to
educational concerns. A hallmark of good game design is iteration
through play-testing and updates. As such, future work can attempt to
increase the quality of the game itself. This can include better themes,
better visual elements (e.g., a ‘game board’ that isn’t just a score sheet),
better balance between strategies, and additional variation that can

enhance repeated game play. In our current implementation of Roboviz,
luck has very little impact on the student’s final grade. In some sense,
the team’s game strategy does not necessarily have a huge impact on
the grade either. We view this as a positive as it incentivizes good
design above all else. However, these aspects (e.g., luck, strategy) can
be further emphasized or de-emphasized through other mechanics. For
example, having more of the grade based on game performance or
using round-robin style playoffs instead of tournament. In part, our
goal was to make Roboviz flexible to these other objectives. We hope
that others consider the use of game-based projects for visualization
courses and develop alternative games.

6.5 Context and Limitations

One of the benefits of our broader program is that many of the topics
that we consider visualization adjacent are covered in other courses. For
example, data cleaning and client engagement are covered in specific
courses that are largely prerequisites to our class. Programs that do not
have this type of overall curricular structure may have different learning
objectives than ours (e.g., students will be able to clean data for use in
visualization systems; or students will be able to scope a project with
their clients). It may be possible to modify the game structure of this
course to emphasize these other learning objectives. For example, one
could introduce noisy data or poorly document APIs. To simulate a
client-driven experience common in many HCI courses (e.g., [35]) one
could recruit a set of game players external to the course who would
need to use the interface to play.

While these modifications are possible we acknowledge that a more
traditional open-ended projects may be more suitable here. With
Roboviz, our goal has been to emphasize the design and implemen-
tation of effective and usable visualization systems. This comes with
some cost to ‘realism’ but provides an alternative strategy that focuses
on a subset of infovis concepts.

Our course also has the benefit of running over a 14-15-week
semester. Students have already been instructed in how to implement
visualization systems and the theory, data type, and encodings that
are useful for the project have been covered before the students being
building. For example, we cover geovisualization and text visualiza-
tion in the last few weeks of the course—data types that are not part of
the Roboviz game (network/hierarchical data is covered just as they
receive the assignment). Shorter courses or ones that do not cover set
of topics, in the same order, may benefit from modifying the mechanics
of Roboviz and including a different set of data.

As far as we are aware, Roboviz is the first project of this type.
Our hope is that other variations may develop so that the visualization
pedagogy community can identify a broad set of guidelines (e.g., [12])
for the use and implementation of game-based projects.

7 ConcLusioN

In this paper we reflect on our creation and use of Roboviz, a game-
based project for information visualization courses. Roboviz was de-
signed to address limitations in traditional projects. The game was
designed to (a) deliver clean data with clear goals, (b) challenge and mo-
tivate students (intrinsically and extrinsically) to use their learning and
skills, and (c) provides a clear assessment framework for both students
and course staff. Our experience with the project over two semesters
has been a very positive one. Pedagogically, we believe projects like
Roboviz has numerous advantages and hope to see other instructors use
the materials or develop their own game-centered projects.
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