Deep learning-based non-invasive skin virtual histology using reflectance confocal microscopy

Jingxi Li#,1,2,3, Jason Garfinkel#,4, Xiaoran Zhang1, Di Wu5, Yijie Zhang1,2,3, Kevin de Haan1,2,3, Hongda Wang1,2,3, Tairan Liu1,2,3, Bijie Bai1,2,3, Yair Rivenson1,2,3, Gennady Rubinstein4, Philip O. Scumpia*,6,7, Aydogan Ozcan*,1,2,3,8

1Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.
2Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.
3California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA.
4Dermatology and Laser Centre, Studio City, CA, 91604, USA.
5Computer Science Department, University of California, Los Angeles, CA, 90095, USA.
6Division of Dermatology, University of California, Los Angeles, CA, 90095, USA.
7Department of Dermatology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
8Department of Surgery, University of California, Los Angeles, CA, 90095, USA.

#These authors contributed equally to the work

*Address Correspondence to:
Aydogan Ozcan, PhD, email; ozcan@ucla.edu
Philip Scumpia, MD PhD, email; pscumpia@mednet.ucla.edu

300-word abstract

Introduction:

An invasive biopsy followed by histological staining is the gold standard for traditional pathological identification of skin cancers, which requires a long processing time and often results in undesired biopsies and scarring. Reflectance confocal microscopy (RCM) can provide biopsy-free in vivo images of skin structure with a cellular-level resolution for skin disease evaluation; however, the RCM images are grayscale, miss nuclear features and have a low correlation with pathology, which requires specialized training for interpretation. Here, we report a deep learning-
based method for performing non-invasive virtual skin histology using \textit{in vivo}, label-free RCM images.

Approach:

We trained a convolutional neural network (CNN) using \textit{ex vivo} RCM images of excised unstained tissue as inputs and RCM images of the same tissue stained with acetic acid as ground truth so that \textit{in vivo} RCM images of unstained skin can be rapidly transformed into virtually acetic acid-stained tissue images with nuclear contrast revealed. Following that, a second CNN is trained to transform these acetic acid virtual staining results into hematoxylin and eosin-like images.

Results:

We demonstrated that this framework is applicable to different conditions, including normal skin, basal cell carcinoma, and melanocytic nevi with pigmented melanocytes, as well as images of different skin layers, including epidermis, dermal-epidermal junction, and superficial dermis. We validated the success of our \textit{ex vivo} acetic acid virtual staining results by quantifying the nuclear prediction performance and the nuclear morphological characteristics, which presented a good match with those calculated based on the actual acetic acid-stained ground truth images. Our \textit{in vivo} virtual staining results were also compared to histochemically stained counterparts excised from the same tissue, showing histological features similar to traditional H&E histology. This method of virtual skin histology may be transformative for rapid diagnosis of malignant skin neoplasms and reduce invasive skin biopsies.