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Abstract—This paper proposes a home energy management
system (HEMS) while considering the residential occupant’s
clothing integrated thermal comfort and electrical vehicles (EV)
state-of-charge (SOC) concern. An adaptive dynamic program-
ming (ADP) based HEMS model is proposed to optimally
determine the setpoints of heating, ventilation, air conditioning
(HVAC), the donning/doffing decisions for the clothing conditions
and charging/discharging of EV while taking into account the
uncertainties in outside temperature and EV arrival SOC. We use
model predictive control (MPC) to simulate a multi-day energy
management of a residential house equipped with the proposed
HEMS. The proposed HEMS is compared with a baseline case
without the HEMS. The simulation results show that a 47.5% of
energy cost saving can be achieved by the proposed HEMS while
maintaining satisfactory occupant thermal comfort and negligible
EV SOC concerns.

I. INTRODUCTION

In the US, around 100 million single-family homes consume
36% of the total electricity and cause the peak system load,
especially on hot summer days [1]. The Home Energy Man-
agement System (HEMS) is one of the most promising tools to
conserve electricity cost while in the presence of the internet of
things (IoT), smart appliances, smart meters, wireless sensors,
and energy storage. Various studies show that it is imperative
to include the occupant’s thermal comfort in the HEMS
[2]-[4]. However, existing studies merely consider thermal
comfort through the predicted mean vote (PMV) and neglect
other behaviors of the residential occupants. For example, the
occupant’s clothing actions can significantly affect occupant
thermal comfort by changing the occupant’s body thermal
insulation directly. Most recently, Liu et al. [5] proposed a
novel HEMS that yields the best occupant’s clothing decisions,
i.e., donning and doffing, in tandem with optimal heating,
ventilation, and air conditioning (HVAC) thermostat schedules.
Their simulation results show a significant electricity cost
savings can be accomplished, particularly on hot summer days.

Meanwhile, the transportation industry, including both com-
mercial and residential sectors, is experiencing one of the
greatest technology transitions towards electrical vehicles
(EVs) [6]. By 2030, EV sales are estimated to be more
than 10% of the US new-vehicle market share in a medium
growth scenario [7]. EVs, as the home energy storage, will
play an important role in shaping future electricity demand
and providing vehicle-to-home (V2H) services. As EVs may
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Fig. 1: Tllustration of proposed HEMS concept.

become the major (only) transportation for a household and
even for a sustained community, the expected EV state of
charge (SOC) would be another serious concern for residential
occupants [8]-[10]. In [8], the authors incorporated dynamic
driver’s behaviors into the EV charging model and proposed
a stochastic game approach to address the renewable energy
uncertainty. Reference [9] introduces a time anxiety concept
to address the uncertain events in the charging duration and a
game theory-based approach to solve the optimal EV charging
problem. Yan et al. [10] proposed a new index to measure
driving anxiety that to characterize the driver’s discomfort on
the driving range and uncertain events which are changed by
the driving experience quantitatively. However, little work has
been done thus far to study the complex interactions between
EV and HVAC while taking into account the occupant’s
clothing behaviors and EV-related concerns.

This paper tries to fill this gap by investigating the
optimal coordination of HVAC and EV while considering
the residential occupant’s clothing behaviors, EV SOC con-
cerns, and PMV-based thermal comforts. By extending our
prior work [11], a stochastic adaptive dynamic programming
(ADP) model is developed to optimally determine the set-
points of HVAC, occupant’s clothing decisions, and the EV’s
charge/discharge schedule with uncertain outside temperature
and EV’s arrival SOC. Nonconvex models of thermal discom-
fort, EV SOC concerns, and clothing behaviors are embedded
in the ADP-HEMS model.

II. PROBLEM FORMULATION
A. ADP-HEMS Formulation

The scheme of the proposed HEMS, shown in Fig. 1, is a
typical optimization problem modeled as a Markov Decision

Authorized licensed use limited to: Kansas State University. Downloaded on February 24,2023 at 15:44:09 UTC from |IEEE Xplore. Restrictions apply.



Process (MDP) to minimize the occupant’s utility function
while considering various constrains. In this paper, we focus
on three types of controllable variables, i.e., i = {H,C,E}.
We use the indoor temperature s, the level of clothing
insulation s¢, and the SOC of EV s’ to represent the variable
state at time t. The associated actions for those variables are
HVAC input power a/?, clothing decision af, i.e., donning
and doffing, and EV charging/discharging power a’. We use
positive af values to denote charging actions and negative
values for discharging actions. In addition, uncertainty is taken
into account such as the outside temperature is ﬂ?UT, and
the EV arrival SOC ﬂf‘oc. Arithmetically, we use set tuple
{st,at,u: } to simply depict state, action, and uncertainty of
proposed HEMS:

{St7at7at} = {(3?75?5 SE)7 (a‘?aa?vaf)a (atOUTa{l?OC)}

The primary function of HEMS is to find the optimal actions
a; for minimizing the expected weighted sum of the objective
function O; over the entire look-ahead horizon:

T
a: :argn;in E{Z Ot(St,at,ﬂt)} (1)
k t=1

where O; is a function of state s;, action a; and uncertainty
s, which is defined as follows:

Oy(styap,tiy) = TE - Dy (8¢, ap, @) + 75 - Co (84, ae,U) (2)

where the objective function is composed of two components:
1) a discomfort function D; and 2) an energy cost function
Cyi. In (2), parameters 7° and 7C are respectively weighted
coefficients associated with the discomfort and the energy cost.
The occupant discomfort function D; is defined as:

Dt (8t7at7at) :ﬁPMV . |PMV(St)‘ + ﬁSOC . E‘/tconce’l“n

T BC A Clo][g)enalty + BBat . Batfenalty

3)
where PMV,, EVgoneern  CloP* % = BaiPem®™ are the
occupant’s thermal comfort, EV SOC concern, penalties
on frequent clothing adjustments, and penalties on frequent
switches between charge and discharge, respectively; parame-
ters BEMV | pSOC | 3C and B are the corresponding coef-
ficients. Additionally, |[PMV (s;)] is expressed in an absolute
value format since the most comfortable thermal state for the
occupant is when PMV = 0. The energy cost function C; is
defined as: C; (s¢, ay, iiy) = c; p& At, where parameters p$ is
the power exchange in kW between the grid and the house, ¢,
is the electricity price in $/kW paid by the occupant, and At
in hr is the time interval resolution. Note that a positive pS*
denotes the action to purchase power from the utility and a
negative p$ for selling power back to the utility (using ToU as
selling price). The power balance equation for the residential
home is expressed as: p§* = all + af, Vt.

B. Occupant’s Comfort Model

1) Thermal Comfort: Here, we adopt a simplified PMV
model from [12]:
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PMV(s;) :a(stc) . stH + b(stc) . Pa(sf, rhy) — c(stc),

4
ty <t <ts @

where a(s), b(s¢) and c(s¢) are associated coefficients,

which are relevant to the clothing insulation of the occupant
and can be obtained under different clothing insulation levels
[12]; rhy is the relative humidity; ¢,, and ¢4 are the occupant’s
times of waking up and going to bed, respectively. In general,
the PMV is only considered when the occupant is active
at home, excluding the sleeping time. We use the desired
sleeping temperature instead of the PMV model to validate
the performance of the HEMS during the occupant’s sleeping
time. As seen, this model is only dependent on the indoor air
temperature and water vapor pressure Pa(si', 7h;) in kPa. The
water vapor pressure function is defined:

Pa(sf,7h,) =
rhy - 0.61121 - 6(18.678—3151/23445)~(s§/(257.14+s?) ®)
2) Clothing Behavior Model: The thermal insulation of-
fered by the occupant’s clothing state is called clothing insu-
lation, which is quantified by the unit of clo. One unit of clo
equates to 0.155 Kxm?/W, indicating the amount of clothing
needed by a sedentary person to maintain thermal comfort
in an environment with 21 °C of air temperature, 50% of
relative humidity, and 0.1 m/s of airspeed [13]. We defined
the clothing insulation as three ranges i.e., Clo 1, Clo 2 and
Clo 3, which are from 0.25 to 0.50, 0.51 to 1.00, and 1.01 to
1.65, respectively. More details can be obtained from previous
work [5].

s¥ =5 +al vt >1 (6)

st < sy <57Vt (7

af <af <ag,Vt (8)
CloP" M — oS . af ||Vt > 1 ©)

Here, we incorporate the occupant clothing states and
actions in the proposed HEMS model. The clothing state
transition of the occupant is expressed in (6). The upper and
lower bounds on the clothing state and actions are modeled
in (7) and (8). a penalty on clothing changing behavior in
consecutive time periods as modeled in (9). It is worth men-
tioning that the proposed HEMS model optimally determines
the recommended clothing adjustment, if any, to the occupant
through a smartphone application or a speaker in a smart
home hub (e.g., Amazon Echo). The occupant decides whether
to follow the clothing adjustment recommendation or simply
ignore it. Then, the feedback will be sent to the HEMS
controller (see Fig. 1), in which the occupant’s clothing state
is updated. The above setting is widely available in today’s
smart home environment [1].
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3) EV Model with the Occupant’s SOC Concern: Due to the
inaccurate estimation of the EVs driving range, unforeseeable
traffic conditions, and potential earlier-than-expected departure
time, an EV driver is typically fearful of completely depleting
the EV battery before reaching the destination. Here, we define
a term, namely the SOC concern, to represent the occupant’s
concern caused by all these factors. The SOC concern can be
viewed as a reflection of the occupant’s behavior proneness
for charging the EV when it is parked at home. Therefore,
a mathematical model is formulated here to describe the
occupant’s EV SOC concern as follows:

E‘/;concern — max (SOCte — StE, 0) e <t <ty (10)

The SOCY is the occupant’s expected SOC during the charg-
ing as follows:

kl (eka(tfta)/(tdfta) — 1)
e~k —1

where t, and ¢y are the EV arriving time and departing time,

respectively; k; and ko are the shape parameters which can

be established based on insights of the occupant’s driving

behavior, the occupant’s sensitivity to electricity price and the
tolerance to the SOC concern [10].

S0CE = ta<t<ts (1)

E_E

stE=(1—AE)sE_1+UC‘§, torl<t<ty (12
st < 5P <EP vt (13)

af <af <al vt (14)

Bat?*" " — max (—(af_l -al), 0) (15)

Constraint (12) shows the state transition of an EV when it
is parked at home. A® in (12) captures its SOC loss caused by
self-discharging when transitioning from one state to the next
[14]; n® represents the EV charge/discharge efficiency, which
may differ between charge and discharge actions made by the
HEMS. Constraints (13) and (14) indicate that the EV state
and action (i.e., charging and discharging) must lie within its
recommended SOC and power limits. Equation (15) defines
a penalty to prevent frequently switching between charging
and discharging of the EV battery since the frequent switches
would reduce the lifetime of the EV battery [15]. Note that the
EV model with the occupant’s EV SOC concern in (10)-(15)
are non-linear and non-convex, which is naturally suited for the
MDP-based solution rather than using linearization techniques.

C. HVAC Model

A first-order thermodynamic model is used to describe
the evolution of the room temperature as a function of the
previous state, the power consumed by the HVAC as well as
the outdoor temperature. Since the 1R1C model is a first-order
linear model and its coefficients can be accurately estimated
based on historical data, it is widely used in the HVAC
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optimization, scheduling, and energy management [1], [3],
[5], [11], [16], [17]. The thermal dynamic equation and other
HVAC constraints are listed as follows:

s = ARMGH  JHgH 4 AOUTZOUT vy (16)
s < s <FLVE (17)
af <ai' <@, vt (18)

Equation (16) shows the state transition of the room tem-
perature for a prescribed mode, i.e., cooling. Note that in this
HEMS model, the HVAC efficiency is embedded in the HVAC
related coefficients v!' and 'yil. These coefficients, together
with other thermal coefficients, i.e., *yRM and VOUT, can be
obtained by using a polynomial fitting based on historical data.
Also, the control action, afl , is computed in units of thermal
energy added or removed. This control can be straightfor-
wardly adapted to corresponding thermostat settings. Equa-
tions (17)—(18) indicate that the states and actions have to
lie within the specified bounds set either by the occupants.
The ADP is approached by an effective combination of Sobol
sampling backward induction and a K-D tree nearest neighbor
techniques for the value function approximation to improve
computational performance. The detailed solution procedure
of the ADP can be found in our prior work [5], [11].

III. NUMERICAL RESULTS

We simulate the proposed ADP-HEMS within a MPC
framework in Matlab. The proposed HEMS formulation is
coded on the Dynamic Programming for Adaptive Modeling
and Optimization toolkit developed by National Renewable
Energy Laboratory [18]. The proof-of-the-concept evaluation
is based on the proposed formulation. This paper focuses
on proposing a novel HEMS mathematical formulation and
thereby building a novel simulator that considers all the newly
introduced factors (i.e., clothing behaviors + EV SOC con-
cerns) is out of the scope of this paper. The HVAC parameters
in Equation (16) were obtained from data of a residential house
located in Hillsboro, Oregon [16], [17], and the EV parameters
can be found in [19], [20]. The operational temperature range
of an HVAC is from 18°C to 30°C, and the EV SOC range
is 20% to 100%.

TABLE I: THE CLOTHING CONDITION AND EV EVENT

Time range Clothing conditions 8
[10 pm, 6 am] Sleeping with Clo 1 22°C
Time range EV behavior 0 9C¢
[8 am, 6 pm] | Not at home both Days 1 & 3 | 30%
[7 pm, 9 pm] Not at home Day 2 10%

We consider a 54-hour simulation for a single family
consisting of a young couple, one works from home and the
other drives to work. We create a scenario for the occupant’s
driving and sleeping schedules as shown in Table I for the co-
simulation. In Table I, the EV is not at home between 8 am to
6 pm with an estimated 30% SOC consumption for the first
day, and not at home from 7 pm to 9 pm with an estimated
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Fig. 3: Baseline EV simulation.

9.7% SOC consumption for the second day. We use Pacific
Gas & Electric (PG&E) ToU electricity rate, i.e., EToU-E6,
which a base prices $0.244/kWh, shoulder prices $0.32/kWh,
and peak prices $0.436/kWh, respectively.

A. Baseline Simulation

A baseline case is proposed that includes 1) using a fixed
setpoint for a thermostat during both sleeping time and active
time and 2) charging the EV instantly upon arrival home with
no discharging. Therefore, the baseline case is designed to
represent typical decisions a household makes with an EV and
no optimization. Fig. 2 shows the simulation results for the
HVAC in the baseline. The white, light red and dark red areas
show base, shoulder, and peak prices, respectively, and two
slashed areas represent the occupant’s EV driving schedules
when the EV is not at home. As shown in Fig. 2, the main goal
of the baseline is to maintain the room temperature around
the desired value, i.e., 22 °C during sleeping time, 24°C'
otherwise. The HVAC acts similarly on both Days 1 and 2.

Fig. 3 displays the baseline EV simulation results. As
seen, on both days, the EV is charged at the maximum
charging power as soon as it reaches home. The resulting
charging schedule brings up the EV SOC as soon as possible,
representing the quickest way to relieve the EV SOC concern.
However, the schedule overlaps with the peak and shoulder
price in some hours.

B. Proposed HEMS Simulation

In this case, the proposed HEMS is simulated within the
same MPC framework as in the baseline. Fig. 4 and 5 show the
simulation results for the HVAC and the occupant’s clothing
actions by the proposed HEMS, respectively. It is seen in Fig.
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4 that between midnight to 4 pm on Day 1, the HVAC is idle.
At 6 am on Day 1, a donning action is recommended by the
proposed HEMS immediately after the occupant wakes up.
As the outside temperature increases, the room temperature
climbs up to 24 °C. Then, the proposed HEMS recommends
a doffing action instead of turning on HVAC to save energy
costs. The HVAC remains idle until 4 pm, and subsequently,
several cooling actions happen from 4 pm to 7 pm when the
temperature is slowly climbing to 26.7 °C. These cooling
actions are small due to the peak price for balancing energy
cost saving and thermal comfort. Immediately following those
small cooling actions, one 3 kW HVAC input power at 8 pm
takes place at the shoulder price (i.e., delayed cooling when
the price decreases) to ensure the room temperature can be
cooled to the desired temperature for sleeping. On Day 2, the
proposed HEMS suggests a donning action at 6 am, which
is similar to that on Day 1. As the temperature increases to
24 °C at noon on Day 2, a doffing action is proposed by the
HEMS. The remaining cooling actions scheduled are similar
to those on Day 1.

Fig. 6 shows the EV simulation results by the proposed
HEMS. In Fig. 6, the EV is discharged in the first two hours on
Day 1 when the actual SOC is greater than the expected SOC
for making a profit. Notice that according to Equation (10), the
EV SOC concern exists only at times when the expected SOC
is greater than the actual SOC. The expected SOC increases
when the EV approaches the departure time, i.e., 8§ am on
Day 1; thereby, a series of charging actions are presented to
charge the EV SOC to 98.5% at departure to minimize the
SOC concern. After the driving event on Day 1, the EV returns
home with around 62% SOC. Then, a few discharging actions
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Fig. 6: EV simulation results with the proposed HEMS
TABLE II: COMPARATIVE RESULTS

Baseline

Avg. PMV - 0.06
Avg. EV Concern 0%
Tot. Energy Cost $25.9

Proposed HEMS

[0.2,0.3]
[0.4%,1.2%]
[$10.9, $13.6]

are implemented when the EV is parked at home at peak hours
to sell the electricity, thus earning a profit. A clustering of
charging actions is scheduled during the night between Day 1
and Day 2 once the peak price and shoulder price are passing
to minimize the SOC concern. Two discharging actions are
proposed at 6 pm (peak price), 9 pm (shoulder price) on Day
2, and from 10 pm to 1 am on Day 3 to make a profit.

Table II compares the average PMYV, average EV SOC
concern and total energy cost over the scheduling horizon
between the baseline and the proposed HEMS. In Table II,
the Sobol sampling is applied to sample state, action and
uncertainty space [11] for 10 times, and therefore a range is
given for the proposed HEMS. As seen, the proposed HEMS
shows a higher average PMV and average EV SOC concern.
However, the maximum average EV SOC concern of 1.2%
and the maximum average PMV of 0.3 are still quite small,
both of which are within acceptable and comfortable ranges,
indicating the occupant is still quite thermally comfortable and
has little EV SOC concern. The most prominent difference lies
in total energy costs. As seen, the proposed HEMS reduces the
energy cost from $25.9 in the baseline to the maximum total
energy cost of $13.6 in the proposed simulation, which is a
47.5% increase in the electricity cost saving.

IV. CONCLUSION

This paper proposes a stochastic HEMS model that accounts
for the occupants’ thermal comfort, clothing behaviors and
EV’s SOC concerns. This model optimally determines the
setpoints of HVAC, occupant’s clothing decisions and the EV’s
charge/discharge schedule. Comparative simulations between
the proposed HEMS and a baseline case are conducted and
the simulation results demonstrate that the electricity cost can
be dramatically saved by using the V2H services while a
high level of the occupant’s comfort and expectations are still
retained. In addition, the occupant’s clothing behaviors can
provide the HEMS with an additional dimension of decisions,
which, in turn, enhances the flexibility of the HVAC and leads
to better utilization of the house thermal storage. The proposed
HEMS model is built for a residential home with one occupant
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and one EV. However, this model can be straightforwardly
extended to include multiple occupants and EVs for more
building types. This will be investigated in the future work We
will also develop a novel and complex simulator that combines
some existing tools (e.g., EnergyPlus+GridLAB-D) for more
accurate evaluation of this formulation.
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