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We investigated the transportation accessibility of special needs Received 20 September 2022
populations to Special Needs Shelters (SpNS) by incorporating  Accepted 19 December 2022
storm surge modeling into hurricane shelter planning in Panama

City, a medium-sized city located close to the landfall location of 'S‘tf)‘r':sou':m‘_ accessibiliy:
Hurricane Michael. The storm surge model validated for special neggs hotiars
Hurricane Michael was used to predict the coastal inundation.  prricane evacuation
Using this model, A Geographical Information Systems (GIS)-

based optimization methodology was developed for evaluating

the accessibility to special needs shelters and repurposing

existing regular hurricane shelters for special needs populations.

With the proposed optimization approach, the average travel

time per person-trip decreased from 28.5 minutes to 7.4 minutes

after repurposing one regular shelter and to 4.3 minutes when

three regular shelters converted to SpNS. Emergency plans can

be improved by the proposed methodology, which can estimate

the inundation zones by storm surge modeling and allocate the

emerging shelter demand by accessibility analysis and location

modeling.

1. Introduction

Hurricane Michael, which made landfall on October 10, 2018, near the City of Mexico
Beach, Gulf County, Florida (Beven, Berg, and Hagen 2019), was the first Category 5 hur-
ricane ever to hit the Florida Panhandle since 1992 (Chen and Ji 2021; Pathak, Zhang,
and Ganapati 2020). It can serve as a good reference for hurricane mitigation and
response planning for similar hurricanes affecting the Florida Panhandle in the future
(Yang et al. 2022). Hurricane Michael caused 74 deaths, including 59 in the US, and
approximately $25.6 billion in total damages (Beven, Berg, and Hagen 2019), making
itself the eighth-most cost Atlantic hurricane in the US. The damages were primarily
due to high winds and storm surge inundation, with watermarks above National
Flood Insurance Program (NFIP) VE zone (ie. highest risk in the 100-year floodplain)
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(Vijayan et al. 2021). It had maximum sustained winds of 161 mph and a peak storm
surge inundation of 9 to 14 feet from Mexico Beach to Indian Pass, respectively. Approxi-
mately 375,000 Florida residents along the border of Bay and Gulf counties were warned
to evacuate the Florida Panhandle region (Associated Press 2018).Vulnerable commu-
nities in the impacted area had additional challenges since very few state roadways
were available for them to reach safety (Fries et al. 2011). These roadways were under
high flood risk, making evacuations less timely and difficult.

Evacuation decisions by emergency managers are often affected by hurricane track
forecasting provided by the National Hurricane Center. Hurricane tracks are forecasted
within the envelope of the hurricane cone. The entire track of the tropical cyclone can be
expected to remain within the cone about 60 to 70 percent of the time. Although Hurri-
cane Michael landed in the city of Mexico Beach with a relatively low population density
shown in Figure 1(b), there was a high possibility for the hurricane to hit Panama City
because it is located near the center of the hurricane cone. A direct hit on this medium-
size city would have made evacuation planning and response very challenging, especially
for those populations with special needs.

Special needs shelters (SpNS) have been utilized by the State of Florida according to
the State of Florida 2022 Statewide Emergency Shelter Plan’ (2022), in whole or in
part, designated under Chapter 252 and section 381.0303, Florida Statutes. On the con-
trary to regular shelters that serve the existing general population, SpNS require more
space per person (60 sq-ft per victim instead of the 20 sq-ft used for regular shelter
spaces), medical assistance from care givers, medical equipment, and standby back-up
electric power supporting the air-conditioning. These space requirements are the mini-
mums recommended by the Florida Division, Department of Health and partner
agencies for SpNS. They are to minimize deterioration of pre-event levels of health.
According to the Statewide Emergency Shelter Plan, ‘a statewide deficit of SpNS spaces
continues to exist and must rely on either use of local facilities not recognized as
meeting minimum hurricane safety criteria or transport to host shelters outside risk
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Figure 1. (a) Hurricane Michael: hurricane cone (white area) forecasted by National Hurricane Center,
and (b) Bay County and Panama City are near the center of the hurricane cone for possible landing
showing high density population density in Panama City area.
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areas.” Similarly, there is only one SpNS that serves the whole county, including Panama
City (Figure 3(b)), and this clearly indicates the need to study the accessibility of this
shelter as well as the possibility of investigating other solutions to address this SpNS
demand in the coastal areas.

With a focus on this critical problem, the contribution of this study is the integration
of storm surge modeling with accessibility and location optimization analyses. This
would serve as an effective tool for local and state agencies towards efficient and reliable
emergency evacuation planning for hurricane response. Hurricane Michael was selected
as a case study where we study the impact of the hurricane if it shifted to make landfall in
Panama City, which was clearly within the hurricane cone (Figure 1). A validated storm
surge model was applied to predict the coastal inundation. This was followed by a GIS-
based accessibility and optimization methodology developed to analyze the accessibility
of vulnerable populations such as older adults to SpNS. The methodology proposed in
this study can provide a guidance to support SpNS planning throughout the Florida Pan-
handle as well as the entire state of Florida.

2. Literature review

Early in 2010, Svensson (2010) realized that the number of people with disabilities would
increase significantly due to the aging population growth. The study applied a GIS model
to provide information on the spatial distribution of accessibility and the possibility of
independent travel for impaired population in eight Swedish cities. Similarly, another
study (Burns 2022) found out that, a Hurricane Michael-impacted area in northwest
Florida, where people without vehicles had over 28% combined representation of the
total population, was found to be one of the most vulnerable locations to hurricanes in
Florida due to the weaker emergency preparedness and evacuation plans than other
locations in the state (Ulak et al. 2018; Unal and Uslu 2016). This makes it more important
and urgent to focus our research on Panama City, which is the largest city in this area.

Although hurricane shelters are planned to be safe destinations for evacuees (Coul-
bourne 2002), providing transportation-based accessibility to such emergency facilities
has been a critical concern due to extremely destructive wind and flooding impacts of
hurricanes (Sanusi et al. 2020). This is more challenging for special needs populations,
including elderly (Marcelin et al. 2016), and people with disabilities (Horner et al.
2018). The State of Florida has specifically designed Special Needs Shelters (SpNS)
which provide medical and assistive services, being specialized compared to the
regular shelters that just accommodate general populations (FDEM 2020). However,
during a large-scale evacuation, these shelters in Florida are limited or located far
from special needs populations and any extra time needed in ensuring their accessibility
to SpNS would be confounding (Horner et al. 2018; Hua et al. 2015).

Former studies have developed effective strategies to help explore the accessibility of
communities using Geographical Information Systems (GIS)-based tools by evaluating
existing roadway network in conjunction with the spatial distributions of those popu-
lations and important facilities including healthcare facilities (Ulak et al. 2017; Islam
and Aktar 2011), supermarkets (Niedzielski and Kucharski 2019), libraries (Ghorbanza-
deh et al. 2020), shelters (Zhu et al. 2018), and mental health facilities (Ghorbanzadeh
et al. 2020). For instance, the spatial accessibility of census block groups in different
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ages to mental health facilities was measured in Florida (Ghorbanzadeh et al. 2020),
showing that several vulnerable population groups including aging residents, had
lower accessibility to critical facilities than other population groups. Other relevant
GIS-based accessibility analyses include combining probabilistic vulnerability models
to study the spatial accessibility of goods and health services during hurricanes (Balome-
nos et al. 2020), evaluating the accessibility to emergency response facilities (police
stations, fire stations, and hospitals) during hurricanes in Tallahassee, Florida (Kocatepe
et al. 2019), and utilizing two-step floating catchment area method (Zhou et al. 2021; Li
and Wang 2022; Zhu et al. 2018). Ghorbanzadeh et al. (2021) offers another possibility of
using storm surge models along the southeast Florida to determine inundation zones and
identify roadways with high inundation risk that would make them inaccessible, which
are used in evacuation modeling. However, this study did not focus on SpNS planning
using optimization analysis.

In addition to the accessibility, the optimal location of the service facilities has been a
significant concern for decision makers. In the literature, discrete location choice models
were commonly used to select facility locations by choosing a subset of locations from a
finite set of available sites (Marin and Pelegrin 2019), and the p-median model is a
generic version of those models originally formulated by (Farhan and Murray 2008).
The p-median model was used as a spatial optimization technique, with various large-
scale implementations in different fields such as urban planning by land-use planning
(Hua et al. 2015), public health by sensor location selection for water quality (Berry
et al. 2006), healthcare by maternal hospital location (Baray and Cliquet 2013), and
public services by school allocation (Ndiaye, Ndiaye, and Ly 2012). In particular,
within the emergency service systems, p-median models were widely employed to
solve location problems such as the determination of fire station locations (Serra and
Marianov 1998), ambulance locations (Dzator and Dzator 2012), healthcare centers
(Jia et al. 2014), medical service locations (Jia, Ordéfiez, and Dessouky 2007), backup
service levels for emergency service systems (Karatas and Yakici 2019), and shelter
locations (Bayram, Tansel, and Yaman 2015; Na Ayudhya 2020; Horner et al. 2018; Koca-
tepe et al. 2018). Objective functions of these p-median models usually search for the
minimum total cost while assigning populations to a subset of the candidate shelters
in the affected region. Therefore, those models could be used to decide on optimal
shelter location given the traffic characteristics and population demand.

To the authors’ knowledge, there has not been a study integrating storm surge modeling
with GIS-based accessibility and optimization to address the critical need of serving the SpNS
demand. The focus has been on Panama City, Florida, where one SpNS is located to the
northwest of the city, and there are no other SpNS in the vicinity of the city. We have
also chosen to focus on older adults as our target group as this represents perhaps one of
the most challenging cohorts to accommodate during emergendcies such as hurricanes.

3. Study area and validated storm surge model
3.1. Study area: Panama City, Florida

We aimed to assess the possible impacts of Hurricane Michael if it had directly hit
Panama City, Bay County, Florida (Figure 2) rather than Mexico Beach. Panama City
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Figure 2. Study area.

has a population of 36,880, and Bay County contains approximately 182,482 people
(American Community Survey 2018). The region is heavily dominated by tourism,
especially during spring break. 26% of the elderly live alone in the region, and approxi-
mately 3% live in nursing homes, group charters, and assisted facilities (Bureau 2022;
FDOT 2021; NEFRC 2021). This demographic distribution makes the problem very chal-
lenging since the accessibility of these populations to shelters becomes very critical.

Different datasets, including US census block groups, the roadway network, and shel-
ters, were utilized in this study to conduct the accessibility and optimization analysis.
Population block group information referred to 2014-2018 American Community
Survey (ACS) Census estimates (Bureau 2022). The shelter dataset (NEFRC 2021) and
the transportation network (FDOT 2018) were gathered from state official websites.

The major group of evacuees in this study considered as special needs is 65 years and
over population. We note the challenge of the identification of SpNS demand due to the
fact that we do not have actual evacuation data, if it were obtained, would represent exact
information for the number of vehicles on roadways. In the absence of that information,
basic census data reflective of the 65+ population seems to be a reasonable proxy and
approach for this type of analysis, since older populations’ health conditions can poten-
tially deteriorate faster than other population groups during hurricanes due to their
access and functional needs, and therefore they may require SpNS (Ozguven et al.
2016). This is particularly important for Panama City, where 65+ population percentage
is higher than the nationwide and the county-wide, as shown in Table 1 (American Com-
munity Survey 2018).

Based on the developed hypothetical inundation scenario of storm surge modeling
analysis for Panama City, we focused on 20 US Census block groups selected in
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Table 1. American community surveys (ACS) 5-year population estimates data (2018).

Estimates
Region Total population 65+ Population 65+ Population %
United States 322,903,030 49,238,581 15.2%
Bay County, Florida 182,482 30,160 16.5%
Panama City, Florida 36,880 6,807 18.5%

Figure 3(c). For traffic data, there were two Telemetered Traffic Monitoring Site (TTMS)
locations (FDOT 2022) where the Florida Department of Transportation collected real-
time data on traffic volumes during Hurricane Michael evacuation. These TTMS
locations are shown in Figure 3(b) as TTMS 460192 and TTMS 460315. The accessibility
level of census block groups to the existing SpNS during the Hurricane Michael evacua-
tion in 2018 was evaluated based on this data. Please note that the only special needs
shelter available is located to the north of Panama City, shown in the top left corner
of Figure 3(a), while regular shelters in the region are in closer proximity coastal
residents.
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Figure 3. (a) Roadway network and shelters, (b) Selected census block groups and traffic sensor
locations, and (c) 65+ population for the selected census block groups.
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3.2. Storm surge model validated for Hurricane Michael

The Advanced Circulation (ADCIRC) model (Blain et al. 1994) was used to simulate the
storm surge due to Hurricane Michael. ADCIRC produces reliable results while simulat-
ing coastal storm surges, as shown by the number of studies worldwide (Vijayan et al.
2021; Yin et al. 2017). It simulates water levels and velocities by solving the coupled
equations of depth-integrated Generalized Wave-Continuity Equation (GWCE) and
two-dimensional depth-integrated (2DDI) momentum equations. The circulation
model (ADCIRC) was previously validated by numerical simulation of the storm surge
and tides for the observed hurricane track during Hurricane Michael in 2018 (Vijayan
et al. 2021) (Figure 4(a)). The hydrodynamic model was forced with tidal constituents
at the ocean boundary and wind forcing on the surface. Results indicate that both
Holland 1980 and Holland 2010 wind parametrizations produced reasonable accuracy
in predicting maximum water level in Mexico Beach, with an error between 1% and 3.7%.

The peak storm surge is above FEMA’s 100-year flood risk elevation (Figure 4(b)).
Compared to the observed peak water level of 474 m in Mexico Beach, Holland
1980 wind model with a radius of 64-knot wind speed for parameter estimation
results in the lowest error of 1%. However, wind fields away from the hurricane wall
using a radius of 64-knot wind speed for parameter estimation are generally weaker
than those using a radius of 34-knot wind speed. As a result, comparing 17 watermark
observations along the coast and hourly measurements at NOAA gage in Apalachicola,
Holland 2010 wind model using a radius of 34-knot wind speed for parameter esti-
mation shows the minimum average error and root-mean-square error, indicating
that Holland 2010 wind model more reasonably describes the wind field outside of
the hurricane eyewall.

4. Methodology

This study integrated storm surge modeling with accessibility analysis and optimiz-
ation models applied to Panama City during a hypothetical Hurricane Michael land-
fall. Figure 5 shows a conceptual flowchart of the methodology. The steps of the
methodology are discussed in the following subsections, including the following: (a)
inundation areas are delineated after the storm surge simulation, (b) affected census

a) g b, e
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Figure 4. Validated storm surge model for the case study of Hurricane Michael (Vijayan et al. 2021): (a)
spatial distribution of storm surge, and (b) time series of storm surge at Mexico Beach.
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Figure 5. Flowchart of the study methodology.

block groups and roadways are identified based on these inundation areas, (c) esti-
mated evacuation travel times to the SpNS before the optimization are calculated,
and (d) most suitable regular shelters are selected for repurposing via optimization

with new evacuation time outputs.

4.1. Storm surge modeling for coastal inundation in Panama City

Based on the hurricane forecasting cone as shown in Figure 1, and the coastal population
density within the hurricane cone, all the data within the submerged area were selected as
the basis for the study. Since the ADCIRC model is based on a mesh calculation, mesh
accuracy was considered. Each cell in the grid was classified as either submerged or
unsubmerged according to a specific elevation value. The area adjacent to the flooded
area has created a destructive depth. Note that Panama City has accuracy values
ranging from 100 meters to 120 meters. The maximum precision value of each model
was selected as the additional buffer of the flooded area to ensure the accuracy of evacua-
tion, so the number of evacuation elements was not omitted.
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4.2. Estimated evacuation time to SpNS before optimization

In Figure 3(a,b), available and impacted roadways, shelters, and evacuated census block
groups are presented combined with the inundation zones. We assumed that shelters
intersecting with inundation zone would not be functional since they could not
provide safety due to hurricane impacts such as raised water elevation, and high wind.
To conduct the accessibility analysis, census block group centroids and shelter locations
were considered origins and destinations, respectively. Next, the congested travel time on
each roadway segment in the transportation network were obtained via the FSUMTS
model built-in CUBE transportation demand modeling software (Ozguven et al. 2016).

In the GIS literature, the main research methodology to find out the shortest-path
analysis is the closest facility analysis designed with the Dijkstra algorithm (Xie et al.
n.d.). Closest facility solver of the ArcGIS Network Analyst tool adapts the Dijkstra algor-
ithm to calculate the shortest path between the origin nodes and defined destinations.
Impedance (cost) is the parameter inputted as edge weights in the network, representing
the weight to decide the order of shortest path generation. In this paper, congested travel
time per roadway was considered as the impedance (cost) of the accessibility model.

It is important to emphasize that there was not an actual evacuation traffic for Hurri-
cane Michael’s direct landfall in Panama City since it hit Mexico Beach. Therefore, after
the closest facility analysis, we estimated the ‘actual” average travel time per route by
applying the Bureau of Public Roads (BPR) function (1) (Tan, Yang, and Zhang 2017)
based on the data collected from two TTMS cameras deployed by FDOT: TTMS
460315 at the start of US 231 south of Panama City, and TTMS 460192 at the junction
of SR 20 and US 231. They retrieved historical hourly continuous counts on the evacua-
tion corridor leading to the single available SpNS in the region.

Vi B
t=1 x [1+a(a)] (1)

t; — the free flow travel time on a roadway section (min), , - the coefficients with widely
recommended values of a=0.15, =4, v; — the vehicle flow on a roadway section
recorded by two TTMS cameras, C; - the actual capacity of a roadway section.

Note that this is just a static estimation of the evacuation traffic that would have
occurred if Hurricane Michael hit Panama City. We assumed that #; was shortest
travel time calculated by Closest Facility Analysis from each census block group to the
only one SpNS. v; contained all evacuation vehicles including people drove to SpNS,
which restored the actual congestion of the roadways and led BPR function results
reach the fast exponential growth interval. When considering roadway capacity, since
most roadways used in our scenarios were county roadways, we assume there was no
contraflow nor closure when evacuation happened 3 days before hurricane landed.

Calculation of travel time from origins (census block groups) to destination (SpNS)
has 4 steps:

» Step 1 Gather travel time and roadway capacity data (FDOT 2018) providing #; and C
per roadway section.
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*» Step 2 Collect hourly continuous traffic data recorded by two TTMS cameras from Oct
7 to Oct 9 in 2018 before Hurricane Michael’s landfall.

» Step 3 Identify the vehicle flow rate v from the first two steps.

» Step 4 Apply the function (1) to calculate travel time per roadway section and sum
them for the whole evacuation route.

4.3. Optimized and repurposed regular shelters as SpNS

For this purpose, a selection algorithm should be applied to evacuate the impacted
populations and allocate them to shelters. There are alternative locations, such as
regular shelters, and the most suitable ones should be selected. Therefore, rather
than coverage models, median models are more appropriate for the defined
problem. The p-median model was proposed for this setting, one of the typical
models used to solve facility location problems. Accordingly, among the alternative
supply points, p facilities were selected to minimize the overall cost of serving all
the demand points (Daskin 2013), where each demand point must be served, and
exactly a single supplier should provide this service for each demand point. The
following notation was used to formulate this generic problem for our shelter
repurposing problem:
Sets and parameters:

N: set of demand points (census block groups)
S : set of supply points (regular shelters)
p: the number of regular shelters to be repurposed as SpNS
cij: travel time between census block group i and shelter j
D;: 65 + population at census block group i

Decision variables:

- I 1 if block group i is served by shelter j
0

otherwise

- _ ] 1 if shelter j is selected to be repurposed as SpNS
70 otherwise

Depending on the above notation, the following formulation is used for the p-median
problem:

Minimize Y Y " Djcijx; (2)

iEN jES
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Subject to:
Zx,-j =1ViEN (3)
JES
D yi=p (4)
JES
iEN
x E{0,1}ViEN,VjES (6)
yE 1V ES (7)

Accordingly, the objective function (2) minimizes the demand weighted travel costs
(congested travel time in this setting) between the census block groups and the shelter
locations. Constraint (3) imposes that each block group i must exactly be assigned to
one shelter j. Constraint (4) ensures that exactly p shelters are selected from the set S
to be repurposed as SpNS. Constraint (5) associates the decision variables and guarantees
that if a block group is assigned to a shelter, that shelter is selected. Constraints (6) and
(7) are the integrality constraints. The resulting p regular shelters were chosen to be
repurposed as SpNS, which minimized overall special needs population-weighted
travel time. Moreover, as p was defined as a predetermined parameter for the
problem, solutions for varying p values gave essential information for the decision-
making process as a sensitivity analysis.

5. Results and discussions

5.1. Modeling coastal inundation in Panama City under Hurricane Michael
condition

The calibrated ADCIRC model (Huang et al. 2021) was used to simulate wind field and
storm surge inundation areas in Panama City. For the proposed case study (Figure 6(a,
b)), the maximum storm surge induced by the hurricane is approximately 5 m to 6 m
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Figure 6. (a) Hurricane wind field, and (b) storm surge when hurricane lands at Panama City.
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along the coast of Panama City Beach, which would inundate a substantial portion of
Panama City Beach. Due to the protection of a barrier island and the location inside
St Andrews Bay, the storm surge in Panama City was lower than on other coasts,
ranging from 2 m to 5 m depending on the location. It decreased to about 4 m along
the coast in Mexico Beach. The strong hurricane forced evacuations in Mexico Beach
where people majorly headed north to safety (Pathak, Zhang, and Ganapati 2020).
Results shown in Figure 6 reflected that northward evacuations were urgent, which
paved the impacted area and population estimations that would be required to evacuate
before the hurricane’s landfall.

5.2. Accessibility to SpNS for Panama City under Hurricane Michael condition

We estimated travel times from impacted coastal census block groups to the only existing
SpNS by applying the historical traffic flow recorded by two TTMS (460192 and 460315)
in Panama City when Hurricane Michael’s landfall was on Mexico Beach in 2018. We
derived the time for each selected 20 census block groups evacuated to the SpNS as
shown in Table 2. Although these still-accessible evacuation routes are about half an
hour away under daily and normal conditions, with the addition of intensive evacuation
traffic, the travel time can reach to at least 4 hours or more.

Based on Figure 3(b) and Table 2, during hurricane Michael in 2018, there was signifi-
cant congestion on the main roadways US Route 231 and State Road 77, for people evac-
uating towards north where the only existing SpNS is located. According to the FDOT
records, from the early morning of October 7 to October 8, 2018, the number of vehicles
on the US 231 reached to 285 vehicles at every hour where TTMS 460192 was located at
the junction of the southern end of the roadway in Panama City, causing significant

Table 2. Estimated travel times to the existing SpNS in Panama City when Hurricane Michael landed
near Mexico Beach, Florida.

Census block group no. 65+ Population Original travel time®
0] (p) (ti/minute)
1 168 16.9
118 19.6
3 554 20.9
4 369 22.1
5 446 26.7
6 658 31.1
7 239 31.7
8 209 32.1
9 110 32.0
10 143 325
11 489 30.7
12 511 294
13 269 30.1
14 221 29.5
15 127 30.0
16 248 30.0
17 339 30.5
18 239 32.6
19 115 343
20 169 35.8

*The estimated travel times for all census block groups on 10/7/2018 and 10/9/2018 were greater than 180 minutes; and
on 10/8/2018 they were greater than 240 minutes.
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traffic. This traffic led to more than 3 hours of travel time on October 7 and October 9,
and more than 4 hours on October 8. This is critical since US 231 was the major evacua-
tion route for Panama City, and people had to use this roadway to get out of the impacted
area. Bridges that connected Panama City to the west were also inaccessible since the con-
necting roadway sections heading to them were flooded due to storm surge. Thus, US 231
was the only option for evacuation. This roadway also led to SR 77 and Interstate 10.

If Hurricane Michael hit Panama City directly, the traffic should be even higher than
the ones presented in Table 2. Increased travel time can be especially problematic to
special needs populations since they would need to reach the SpNS as soon as possible.
The situation will be dire for these population groups since the only existing SpNS is
located far away in the northwest of Panama City. For this reason, it would be a viable
alternative to repurpose closer regular shelters as SpNS and make those shelters available
for the coastal populations in the region.

5.3. Shelter selection for Panama City depending on the accessibility analysis

Since the scenario was based on storm surge impact, coastal areas of Panama City were
impacted more than inland locations, which also included downtown Panama City.
Figure 7 shows those shelters closest to the population blocks affected by the increase
in water level due to storm surge. We considered evacuating those areas with high
flood risk through the available roadways to the open hurricane shelters. Thus, storm
surge analysis informed us of the areas that were inundated and needed to be evacuated.
These evacuations would have happened before the hurricane hit the land based on the
evacuation orders issued by the state.

According to the inundation model simulations, three regular shelters along the coast
of Panama City were inaccessible due to rising water levels and surrounded by the storm
surge. As shown in Figure 7, they were Lucille Moore Elementary School, Merriam
Cherry Street Elementary School, and Parker Community Center. Based on the p-
median optimization model, we aimed to reduce the travel time needed to access a
special needs shelter by repurposing several regular shelters closer to the city. The pro-
posed optimization model is run per p scenario given the shelter and roadway availability
as well as the 65+ population demand for each census block group. Figure 8 shows
locations of repurposed shelters when p = 1, 2, 3, and 4. The results of optimization scen-
arios are shown in Figure 9 as well as in Table 3.

The number of shelters to be repurposed has been decided by finding the lowest
weighted travel time, average, and maximum travel times per trip needed for each 65+
person living in selected census block groups considering the regular congested travel
times. For demand weighted travel time, we multiplied the travel time per route and
the 65+ population living in the corresponding census block group. Hence, the
average travel time per 65+ person was simply the demand-weighted travel time
divided by the total of 65+ population living in the impacted areas. In Table 3, firstly,
we included results from Table 2, with the first row showing the base case without optim-
ization which can be compared to results after the optimization. Unsurprisingly, the opti-
mized demand-weighted travel time was significantly lower than the estimated case
shown in Table 2. Simultaneously, the average travel time per person-trip was decreased
from 28.53 minutes to 7.43 minutes. Since the repurposed shelters are already located
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Figure 9. Results of regular shelter selections when (a) p=1, (b) p=2, (c) p=3, and (d) p =4.

Table 3. Travel time improvements after optimization.

Base case

Average travel time

Minimum and maximum

Demand-weighted (minutes per travel time
p Selected shelters travel time person-trip) {minutes per person-trip)
0 163,792.75 2853 169 & 35.77

Optimization results
Average travel time
Demand-weighted (minutes per Maximum travel time

p Selected shelters travel time person-trip) (minutes per person-trip)
1 13 42,632.02 743 13.05
2 4 21 32,537.86 5.67 16.8
3 4 7 18 244317 4.26 6.91
4 4 7 15 18 22,781.77 3.97 6.91

Note: The total population of 65+ people in impacted areas is 5741.

closer to the city, people would not need to travel longer distances to the SpNS located in
the northwest, and each census block group needs less time to reach an SpNS than before.

Furthermore, even the Hurricane Michael did not directly hit this region, the only way
to reach the former shelter, US 231, was enormously congested and this would be direr in
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a direct hit situation. As such, the only SpNS would not be within the reach of these
people living in the impacted area. Therefore, providing available shelters within the
region by considering inundation and roadway closures, which is the purpose of this
study, would help special needs populations such as the elderly safely reach an SpNS
in a shorter amount of time.

When p was equal to 1 (ie. there is only one repurposed shelter in the region), the average
travel time per person and maximum travel time per person was 7.43 and 13.05 minutes,
respectively. The optimized maximum travel time when p = 1 was already shorter than the
minimum travel time in the original situation. Continue to find the optimal solution;
when p was 3, the average travel time per person and maximum travel time per person
was 4.26 and 6.91 minutes, respectively. Given that the average time for emergency response
is around 8 minutes (Ulak et al. 2017), this seemed reasonable. According to the result of p =
4, although the average travel time decreased, the maximum travel time stayed the same.
Comparing the weighted demand of p =3 and p =4, it decreased by 1,643.93 only, which
was reduced much more slowly than when the number of converted shelters was increased
before p = 3 as high as 8,000. Therefore, the optimization process could be terminated with 3
regular shelters being selected. This is because sheltering is also required for other segments
of the population, and repurposing additional shelters could lead to situations in which some
citizens may not find available shelters.

6. Conclusions

This paper presents a GIS-based approach utilizing a validated storm surge model
applied to predict the coastal inundation of the densely populated coastal Panama City
under a hypothetical hurricane track. Using the results of ADCIRC + SWAN storm
surge simulation, we extensively evaluate the accessibility of special needs populations
to dedicated hurricane shelters (SpNS) and propose an optimization-based methodology
that can help provide better access and shorter travel times to these shelters.

Disruptions such as flooding on roadways have a critical impact on evacuation times
and shelter siting. For Panama City, when the bridges that connect Panama City to the
north of Bay County get flooded due to Hurricane Michael, congested travel times were
very high and the elderly would have to suffer extremely high delays as shown in Table 2.
With the addition of intensive evacuation traffic, the travel time can reach to at least
4 hours or more on the only available evacuation route out of Panama City (US 231
when the bridges are closed) as shown in this study. As such, the findings show that
there is definitely a need for more SpNS, which can ease the evacuation operations.
There is undeniably a need for alternative evacuation destinations, which can help
reduce evacuation traffic congestion. Table 3 presented results that clearly indicate
how roadway disruptions have a vital effect on evacuation times and how SpNS$ optim-
ization can help alleviate this problem.

Moreover, to answer the problems mentioned in literature review, this paper can help
improve evacuation and sheltering plans focusing on special needs populations with the
following advantages:

(1) The models in this study can help provide more effective and reliable emergency eva-
cuation planning and response to hurricanes for special needs populations. As the
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hurricane forecast data is updated while it moves closer towards the landfall, we can
conduct storm surge previews, delineation of affected areas, roadway accessibility
assessments, and better evacuation and shelter planning for special needs popu-
lations including the elderly, and disabled. Governments can assist in the evacuation
of elderly people who cannot move to special needs shelters on their own due to lack
of cars and resources in the areas affected by the hurricane before landfall. Local and
state agencies could also update their emergency plans to indicate which and how
regular shelters can be repurposed for people with special needs. The proposed
methodology will help identify those possible locations based on the extensive evalu-
ation of the roadway network, hurricane conditions, and demographics.

(2) Evacuation destinations can be dynamically shifted and flexibly selected. This will
greatly improve the evacuation efficiency in those densely populated areas. Also,
2022 Statewide Emergency Shelter Plan’ (2022) states that Bay County shelters
will meet the normal standard of 20 sq-ft of floor space per occupant until 2027,
and the total shelter space in Bay County will continue to expand from 134,740
sq-ft to 136,620 sq-ft. However, there is only one SpNS located in the north of the
city, which is not easily accessible, especially to those living in the coastal areas.
This constitutes the motivation for this paper.

(3) The °‘Estimate-Situation-Optimize’ model provided in this paper provides an
effective design for evacuating specific populations and can be applied not only to
enhance the accessibility level of special needs shelters, but also to optimize other
emergency facilities after timely estimation of the impact of a disaster and existing
disruptions on the access routes. For example, evacuation stations can be deployed
in advance of a hurricane to help people who cannot drive themselves away from the
coast or move residents to nearby settlements when migration of marine pollutants
poses a substantial health risk to residents and treating pollutants from multiple pre-
placed prevention and control stations.

From a disaster management perspective, evacuations of older adults can particularly
become problematic due to (a) their potential cognitive, physical, and mental limit-
ations, including possible health/medical problems, (b) the possibility that they
cannot make quick decisions while driving under contextually and physically demand-
ing environments, and (c) their lack of familiarity with new roadways they may have to
drive on. This indicates the importance of integrated storm surge, accessibility, and
sheltering modeling. Although the methodology has been applied with a focus on 65
+ populations, it can be extended to other population groups to provide better and
more comprehensive emergency plans. The findings of the proposed model can dyna-
mically change based on the output of the storm surge modeling. For example, inland
parts of Panama City were mostly not affected based on the scenario; however, a hur-
ricane with different strengths and profiles can affect the entire city, making the
problem even more complicated.

This paper focused on the development of a methodology to identify the best regular
shelter locations to repurpose at SpNS integrating storm surge modeling with accessibil-
ity and optimization, which was the scope of this paper. In the future work, there is a
need to delve into the restrictions of facility locations identified as possible candidates
for repurposing.
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