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Abstract—During extreme weather events like hurricanes, trees1

can cause significant challenges for the local communities with2

roadway closures or power outages. Local responders must3

act quickly with information regarding the extent and severity4

of hurricane damage to better manage recovery procedures5

following natural disasters. This paper proposes an approach6

to automatically identify fallen trees on roadways using high-7

resolution satellite imagery before and after a hurricane. The8

approach detects fallen trees on roadways via a co-voting strategy9

of three different algorithms and tailored dissimilarity scores. The10

proposed method does not rely on the large manually labeled11

satellite image data, making it more practical than existing12

approaches. Our solution has been implemented and validated13

on an actual roadway closure dataset from Hurricane Michael14

in Tallahassee, Florida, in October 2018.15

Index Terms—Remote Sensing, Satellite Imagery, Tree Debris16

Detection, Post-Hurricane Assessment, Deep-learning17

I. INTRODUCTION18

Damage assessment is essential after catastrophic events like19

hurricanes, earthquakes, or tsunamis. Hurricanes, in particular,20

cause significant damages in the US, which is among the five21

countries most hit by natural disasters with an estimated cost22

of $1.75 trillion for damages from 1980 to 2019 [1].23

Aerial images are a valuable source of data for hurri-24

cane damage assessment [2]. However, flying helicopters and25

drones over damaged areas are highly prone to weather26

conditions. Moreover, their high operating costs are a burden27

on large-scale applications. In recent years, the dramatic28

drop in satellites’ launching cost and the growing number29

of satellites in orbit significantly reduced the cost of high-30

resolution satellite imagery [3]. Commercial satellite providers31

can offer high-resolution images (0.3 to 0.5 pixels/meter) with32

a daily and sub-daily revisiting frequency for most parts of the33

globe.34

The combination of coverage, frequency, and cost-efficiency35

of satellite imagery in addition to advancements in machine36

learning (ML) creates a paradigm shift for enhancing sit-37

uational awareness in infrastructure networks [4], [5]. In38

the recent literature, there are examples of using machine39
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learning for assessing impacts of tsunamis [6], earthquakes 1

[7], and floods [8] on infrastructure networks. In the event of 2

hurricanes, fallen trees are one of the most common causes 3

of damage to roadways, buildings, and electric lines. A major 4

body of literature on hurricane-induced tree failures is focused 5

on estimating tree failure probability concerning wind data ( 6

[9], [10]). Although such models are useful for better assessing 7

fallen trees’ consequences, few works have been done to 8

automatically detect fallen trees using satellite images and 9

machine learning. 10

Recently, supervised learning methods have been proposed 11

to detect roadway closures using satellite images, typically 12

by using Convolutional Neural Networks (CNNs) [11], [12], 13

[13]. The major drawback of supervised models is that they 14

rely highly on scant and expensive manually labeled data. It 15

is also crucial to have clean and noise-free labels to train such 16

models. Furthermore, supervised models, in general, are less 17

scalable, and they need to be often retrained if we want to 18

deploy them in another area, [14]. 19

Unsupervised methods usually are more viable options in 20

real-world remote sensing applications [15]. In unsupervised 21

ML image processing approaches, features are extracted au- 22

tomatically for image segmentation or change analysis [16], 23

[17]. Autoencoders (AEs) are one of the most efficient algo- 24

rithms for images feature extraction. They represent data in a 25

latent (usually smaller than the original) space preserving as 26

much relevant information as possible. 27

In this paper, we focus on detecting fallen trees that cause 28

roadway closures after hurricanes. We use high-resolution 29

satellite images taken before and after a hurricane to perform 30

change detection analysis and automatically locate areas where 31

trees have landed on the roadways. 32

The main contributions of this paper are listed as follows: 33

• From the application point of view, our proposed ap- 34

proach needs limited labeled satellite images for trees 35

in normal condition and it does not need any labeled 36

data regarding fallen trees. In practice, our approach is 37

unsupervised in relation to fallen trees. This increases the 38

robustness of the approach against noisy or faulty labels, 39

which are often acquired in satellite images and remote 40

sensing applications. Our algorithm is also more scalable 41

since it does not rely on an extensive training data set. 42

Moreover, it has a lightweight open-loop architecture for 43

fast computing time. 44

• From the methodology point of view, we propose a 45

framework consisting of three different and powerful 46

algorithms, i.e. a segmentation model, a spectral vege- 47
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tation index and Variational Autoencoders. We adapted1

and combined them to work together to overcome the2

shortage of each one of these methods to detect the fallen3

trees. This is done using tailored dissimilarity scores for4

changes in satellite images and a heuristic approach for5

thresholding.6

II. STUDY AREA7

Hurricane Michael was one of the strongest storms hitting8

the Southeast coast of the United States. It made landfall9

as an unprecedented Category 5 hurricane in the Florida10

Panhandle region with maximum sustained wind speeds of11

140 knots (161 mph) bringing catastrophic storm surge to the12

Florida State and Big Bend areas (especially Mexico Beach13

and Panama City) [18]. It hit the City of Tallahassee between14

October 10th and 11th 2018, leaving 1.2 million electricity15

customers without power in several east coasts and southern16

states. Estimated damage from Michael throughout the United17

States reached $25 billion [19]. Hurricane Michael hit the City18

of Tallahassee, Florida’s capital, on October 10th 2018. As a19

medium-sized city, Tallahassee has a population of 193,55120

as of the year 2018 [20]. We acquired two high-resolution21

satellite images on a large portion of Tallahassee (Fig. 1)22

before and after Hurricane Michael. Images are provided by23

WorldView satellites, as described in Table I.24

Fig. 1: Study area in Tallahassee (Florida) where satellite images before and
after Hurricane Michael are acquired.

TABLE I: Satellite images used in this paper

Date Channels Resolution
Pre-event image September 14 2018 RGB-NIR 0.5m/pixel
Post-event image October 13 2018 RGB-NIR 0.3m/pixel

For validation purposes, we use the dataset related to tree25

debris locations acquired from the contractual company hired26

by the City of Tallahassee to remove the debris.27

III. METHODOLOGY28

In this paper, our goal is to automatically detect fallen trees29

along roadways. Our method works with very limited training30

data and doesn’t need explicit training to recognize tree debris.31

To do so, our major assumption is that a fallen tree will exhibit32

a change that is possible to detect between satellite images33

from the same area taken before and after a hurricane. In34

literature, autoencoders have been used to extract and compare35

important features from images and perform change detection36

[21]. The fundamental challenge with autoencoders is the lack37

of control over where the features are mapped and this is 1

challenging in satellite images where feature vectors shall be 2

compared. Therefore, we used Variational Convolutional Au- 3

toencoders (VAEs) [22] to overcome this issue. Relying solely 4

on either autoencoders or variational autoencoders can be 5

problematic due to the lack of semantic information about the 6

changes. For example a passing vehicle or other environmental 7

artifacts can be detected as changes but erroneously marked 8

as tree debris. To solve the issue, we assume that a fallen tree 9

should lead also to a change in the vegetation characteristics 10

(coverage, chlorophyll index) in a particular location. There- 11

fore we add semantic vegetation-related information. Given 12

these considerations, from a practical point of view, we detect 13

tree debris along roadways in satellite images using three 14

different algorithms with their own limitations which we aim 15

to overcome using them in a collaborative framework. Our 16

selected methods are: 17

– AEs/VAEs: They are powerful feature extractors, and it is 18

possible to compare the generated features in the latent 19

space by analyzing satellite images before and after a 20

hurricane. On the other hand, they are unsupervised, and 21

they do not have semantic knowledge of the objects in 22

satellite images. 23

– NDVI: It is one of the most common indexes for detecting 24

vegetation in remote sensing applications. It uses the 25

infrared band for evaluating chlorophyll-rich vegetation. 26

However, it can’t properly distinguish grown trees from 27

other types of vegetation, for example, grass or bushes. 28

– Unet: It is a modern segmentation method that is pos- 29

sible to specifically train to recognize trees in images. 30

However, it is susceptible to shadows and occlusions. 31

We extract several patches, both from the image before the 32

hurricane (Ibfr) and from the image after the hurricane (Iaft) 33

to cover the whole roadways in the area. Based on the assump- 34

tions above, we develop three sub-models (called hereafter 35

blocks), each computing a tailored, customized dissimilarity 36

score as shown in Fig. 2. We threshold the dissimilarity score 37

histograms to flag the presence of a potential fallen tree. We 38

combine the three blocks together using a co-voting strategy 39

to overcome each block’s inherent limitations and increase 40

performances. The following subsections explain each block 41

of our proposed algorithm. 42

A. Tree Segmentation Block 43

The first block is a tree segmentation algorithm. Given an 44

RGB image I as input, the corresponding output M tree is 45

a single-channel image where trees are detected. The Tree 46

Segmentation Block is the only supervised component of our 47

proposed framework. To perform the tree segmentation task, 48

we created a labeled dataset to train the model. However, 49

it is worthwhile mentioning that the training task for tree 50

segmentation in a given area can be done just once using 51

a satellite image in normal conditions before the hurricane. 52

From a practical point of view, it saves the effort and time for 53

labeling images of fallen trees after hurricanes which would 54

be required for traditional supervised methods. 55
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Fig. 2: Overview of the proposed approach for tree debris detection. Each of the three blocks computes a tailored, customized dissimilarity score from patches
extracted before and after the hurricane. It does this using tree semantic segmentation (first block), vegetation index comparison (second block) and features
comparison (third block).

We use a U-net architecture [23] which is a very popular1

segmentation model. Initially developed to segment biomed-2

ical images, it was successfully applied to a wide range3

of applications. The architecture is composed by a cascade4

of [16, 32, 64, 128, 256] convolutional layers activated by an5

Exponential Linear Unit (Elu) function, followed by a batch6

normalization layer and a Max Polling layer, as shown in7

Fig. 2. During the up-sampling procedure, concatenations layer8

have been used to ensure better spatial localization. We use9

the U-net to segment each patch Ibfr and Iaft separately.10

Finally, to quantify a dissimilarity between the two predicted11

segmentation maps, a dissimilarity score Dtree is computed12

as the integral over the patch P of the pixel-wise difference13

between the segmentation map after the hurricane (M tree
aft )14

and the segmentation map before the hurricane (M tree
bfr ). Such15

difference is then multiplied by a Gaussian kernel K centered16

at the center of the window (Equation 1).17

Dtree =

∫∫
Patch

(
M tree

aft −M tree
bfr

)
⊗K (1)

The Gaussian kernel is a function centered at the center of the18

acquired patch. It has larger values in the middle and decaying19

values as we move towards the edges of the patch. Since the20

patch is acquired at the center of the roadway, such weighting21

function is introduced so that differences in pixel values close22

to the center of the patch are weighted more than differences23

near the edges as we are more interested in assessing the24

condition at the center of the window. From Equation (1) we25

note that the more Mbfr and Maft are similar, the lower the 1

value of Dtree is. 2

B. NDVI Difference Block 3

The second block takes advantage of the multi-spectral data 4

coming from satellites to compute the Normalized Difference 5

Vegetation Index to recognize vegetation. NDVI is a popular 6

index in remote sensing for vegetation detection and it is 7

defined as: 8

NDV I =
ρnir − ρred
ρnir + ρred

(2)

where ρred and ρnir stand for the spectral reflectance measure- 9

ments acquired in the red (visible) and near-infrared regions, 10

respectively. The reflectance measurements come directly with 11

the optical images and are provided by the satellite operator 12

as a bundle product. Green living plants look brighter in 13

the near-infrared band due to chlorophyll near-infrared high 14

reflectance. Similar to the previous block, we define a dis- 15

similarity score DNDV I as the integral over the patch of 16

the difference between NDV I computed after the hurricane 17

(NDV Iaft) and the NDV I computed before (NDV Ibfr), 18

with a multiplication with a Gaussian kernel K: 19

DNDV I =

∫∫
Patch

(
NDV Iaft −NDV Ibfr

)
⊗K (3)

C. Variational Autoencoders-based Change Detection Block 20

The third block is an unsupervised change detector that 21

computes a dissimilarity value between images before and 22
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after to detect whether a significant changes occurred. A1

direct pixel-wise comparison in the images is not optimal2

due to possibly different illumination and noise. Therefore,3

we use VAEs as deep feature extractors with a Siamese4

configuration [24]. The use of convolutional autoencoders has5

been motivated by the strong capabilities of deep learning6

methods to learn useful features in a low-dimensionality space.7

Variational autoencoders are also used to assure a well-defined8

topology of the latent space in which images are projected.9

This can be extremely irregular using standard autoencoders.10

A variational autoencoder learns to map an input x into a

distribution p(z|x). It is composed by an encoder qθ, a decoder

pφ, a sampler and a loss function. Since the encoder and the

decoder are implemented as neural networks, θ and φ are all

the trainable parameters of such networks. Mathematically it

can be formulated as:

Encoder: x → qσ(z|x) Feature space (4)

Sampler: z ∼ p(z|x) (5)

Decoder: z → pφ(x|z) = x̃ (6)

Since the distribution P (z|x) is not known, Bayesian vari-11

ational inference is used. We assume that the latent space,12

whose dimension K is chosen as hyper-parameter, follows13

a prior distribution which is assumed to be Gaussian in our14

study: z ∼ P (z) ∼ N(μk, σk), with k = 1, . . . ,K. We use15

as a loss function the sum of a reconstruction term (typical of16

standard autoencoders) with a regularization term calculated17

as the Kullback-Leibler divergence between the latent space18

distribution and the prior distribution as follows:19

L(θ, φ) = MSE(x, x̃)︸ ︷︷ ︸
Recostruction loss term

+KL
(
qθ(z|x)||p(z)

)
︸ ︷︷ ︸

Regularization term

(7)

The first term is the reconstruction loss defined as Mean20

Squared Error (MSE) between the original input and the21

reconstructed one, this term encourages the decoder to learn to22

reconstruct the data well from the feature space. The second23

term is the Kullback-Leibler (KL) divergence between the24

distribution of the latent space retrieved by the encoder qθ(z|x)25

and the prior distribution p(z). The Gaussian prior distribution26

p(z) keeps the representations z of each input sufficiently27

diverse and allows a closed-form expression for the KL diver-28

gence [22]. Using the loss function in Eq. (7), one autoencoder29

(V AE1) is trained to learn features from the images before30

while the other one (V AE2) is trained with the images after31

(see the last block of Fig. 2). Features are then extracted from32

the bottleneck layer. The two autoencoders, V AE1 and V AE2,33

have been trained with the architecture described in Table II.34

We use the same idea as the previous block to calculate a35

dissimilarity score DV AE between the two images (before36

and after the hurricane). Hence, we compute the difference37

between features extracted from V AE1 and V AE2 which38

is then evaluated using an Isolation Forest algorithm [25].39

Isolation forest is a tree-structure based unsupervised learning40

algorithm for anomaly detection, enabling isolating anomalous41

points in a dataset.42

From Table II, each input image is encoded into a vector43

μ ∈ R
K where K = 128 is the dimension of latent space.44

TABLE II: Autoencoder architecture

Encoder Decoder
Input(80,80,3) Dense(20*20*64)
Conv2D (3,3,32) + Relu Reshape(20,20,64)
MaxPooling(2) TransConv2D (3,3,64) + Relu
Conv2D (3,3,64) + Relu UpSampling(2)
MaxPooling(2) TransConv2D (3,3,32) + Relu
Flatten(20*20*64) UpSampling(2)
Dense(1024) TransConv2D (3,3,3) + Sigmoid
Dense(dim(z) = 128) Output(80,80,3)

The 3-layers architecture of our deep learning, composed 1

by Conv-Relu-BatchNormalization, with a number of filters 2

increasing by the power of 2 is a popular choice when 3

building Convolutional Networks for computer vision tasks. 4

On the other hand, the parameter K, which is the dimension 5

of the latent space, is chosen empirically. The parameter K 6

sets the amount of “compression” we are expecting from the 7

autoencoder. A value too large does not provide a good feature 8

representation in the latent space. On the other hand, a value 9

too small will destroy most of the information during the 10

encoding step. Section IV will justify our choice of the latent 11

space dimension K. 12

D. Fallen Tree Detection 13

Our proposed framework includes three blocks, including 14

tree segmentation, NDVI, and deep features comparison as 15

presented in subsections III-A, III-B, and III-C. Each block 16

computes a dissimilarity score between a pair of patches from 17

two satellite images captured before and after a hurricane. 18

We extract N patches from the images before and after 19

a hurricane to cover the roadways area. Then, we calculate 20

the dissimilarity values per each patch location i = 1, . . . , N 21

along the roadways for each block of the algorithm. Then, the 22

block’s outcome (a vector with N component) is represented in 23

a histogram. We expect the histogram to be an unimodal distri- 24

bution where one set (clear, debris-free locations) dominates 25

the histogram with respect to the secondary set (obstructed 26

locations). We used the maximum deviation method [26], 27

especially designed for unimodal histograms, to compute a 28

threshold and to divide the histogram in two parts. The 29

threshold Th is selected at the point of the histogram furthest 30

from the straight line connecting the histogram peak and the 31

tail (Fig. 3). 32

Counts

Dissimilarity values

Clear Tree debris

Fig. 3: Histogram of the dissimilarity values computed for each block from
extracted patches. We say that there is a tree debris in a location if the
corresponding dissimilarity score is greater than the threshold Th.

We also use a piece-wise linear mapping to map each dis- 33

similarity score, computed at location i = 1, . . . , N to create 34
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a probabilistic value of having a tree debris Pdebris ∈ (0, 1)1

in a location. The threshold Th calculated in the previous2

subsection corresponds to Pdebris = 0.5 as shown in Fig. 43

 Dissimilarity score 

Fig. 4: Map from the dissimilarity score to the probability of tree debris
Pdebris.

Locations with Pdebris > 0.5 will be flagged as fallen tree4

or tree debris, and clear otherwise.5

E. Co-Voting Scheme6

Since each block’s output is independent from the other7

blocks, a combination strategy can possibly increase the per-8

formances. We call Pi, i = 1, 2, 3 the tree debris probability9

coming from block 1, 2 and 3 respectively. The Pdebris is the10

overall tree debris probability. Here we present three possible11

combinations:12

• Combination 1 - Aggressive: a location is marked as tree
debris if at least one of the three blocks has Pi > 0.5.

Pdebris = (P1 > 0.5) ∨ (P2 > 0.5) ∨ (P3 > 0.5)

• Combination 2 - Moderate: a location is marked as tree
debris if at least two of the three blocks has Pi > 0.5.

Pdebris = (P1 > 0.5 ∧ P2 > 0.5)∨
(P1 > 0.5 ∧ P3 > 0.5)∨
(P2 > 0.5 ∧ P3 > 0.5)

• Combination 3 - Conservative: a location is marked as

tree debris if all the three blocks has Pi > 0.5.

Pdebris = (P1 > 0.5) ∧ (P2 > 0.5) ∧ (P3 > 0.5)

Furthermore, we can combine probabilities P1, P2, P3 to-13

gether using weights κ1, κ2, κ3 as follows:14

Pdebris = κ1P1 + κ2P2 + κ3P3 (8)

where
∑

i κi = 1 In this way it is possible to estimate15

the contribution of the three blocks to the overall detection16

performance, and determine the weight of each block for an17

optimal combined decision.18

IV. RESULTS & DISCUSSIONS19

For validation purposes, two satellite images have been20

acquired for a portion of the City of Tallahassee (Florida),21

as described in Section II. We use a 24 × 24 meters sliding22

window (corresponding to 80 × 80 pixels given the satellite23

resolution) along the roadway’s path to extract patches from24

the two different satellite images before and after the hurri- 1

cane. Patches are spatially spaced no more than 10 meters 2

along the road center lines. In this way, N = 5116 single 3

patches are extracted, covering the whole roadway network 4

in the study area. Due to the different resolution, the patches 5

extracted before the hurricane have been up-sampled to match 6

with the number of pixels of the same patches extracted after 7

the hurricane. The three blocks have been implemented as 8

described in subsections III-A, III-B and III-C. 9

The code has been implemented in Python using the sklearn 10

library for machine learning and Tensorflow/Keras for the deep 11

learning part. The testing platform is a computer equipped 12

with a 10thGen i7 CPU, 32GB of RAM and an NVIDIA 13

GeForce RTX 2080 Super as GPU. The images are encoded 14

in GeoTiff format, so all pixels can be geo-referenced and 15

precisely located in real-world coordinates. We use QGIS to 16

integrate and visualize all the data. 17

To train the tree segmentation block (see section III-A), we 18

created a labeled dataset from a part of the study area not over- 19

lapping with the locations along the roadways where we imple- 20

mented and tested our algorithm. This training dataset is made 21

of 1200 images of 160x160 pixels. The segmentation model 22

is trained using the training dataset. The Adam optimizer has 23

been used with a learning rate of 0.001 and exponential decays 24

factor of 0.9. The model, with 1,944,049 trainable parameters, 25

has been trained using binary cross-entropy as loss function. 26

Once the model is trained to effectively recognize trees, it 27

is used to segment trees along the 5116 patches extracted 28

along the roadways to compute the dissimilarity scores. It is 29

worthwhile mentioning that the model has not seen those 5116 30

patches during the training phase. 31

The variational autoencoder has been trained using the 32

same optimizer as the tree segmentation model. The loss 33

function is defined in Eq. 7. The encoder has 26,497,216 34

trainable parameters while the decoder has 3,358,659. Since 35

variational autoencoders are unsupervised models, the usual 36

training/validation split is not necessary. 37

In Table III we show the computation time needed to train 38

each single block and compute the corresponding dissimilarity 39

scores for all the locations along the roadways. 40

TABLE III: Computation time per block for training (Ttraining) and for the
calculation of dissimilarity scores (TD) for the entire study area.

Subroutine Ttraining (sec.) TD (sec.)

1: Tree Segmentation (Supervised) 135 4.2

2: NDVI (no-learning) not applicable 1.6

3: VAE (Unsupervised) 113 2.1

Patches extraction along roadways 1.73

We note that the most computationally-intensive operations 41

are the training process for the tree segmentation block and 42

the variational autoencoders block. Despite that, the entire 43

framework is able to scan and locate fallen trees across the 44

entire study area, which is ≈ 6Km2, in less than 5 minutes. 45

Fig. 5 shows visually an example of a hurricane-induced 46

vegetation change. Note that the NDVI difference and the tree 47

segmentation difference (Fig. 5e and 5h respectively) clearly 48

illustrate such changes. 49
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5: An example to show a Hurricane-induced vegetation change in a patch:
(a) RGB image sample acquired before the hurricane; (b) RGB image sample
acquired after the hurricane; (c) NDVI of the image before the hurricane;
(d) NDVI of the image after the hurricane; (e) NDVI difference; (f) tree
segmentation of the image before the hurricane; (g) tree segmentation of the
image after the hurricane; (h) Tree segmentation difference.

Fig. 6 shows an example of a reconstructed patch. With the1

proposed variational autoencoder architecture, the raw input2

RGB image (3 × 80 × 80 = 19200 pixels ) is encoded into3

only 128-values vector (dimension of the latent space), thus4

achieving a high compression rate. Nevertheless, it is possible5

to decode the patch back without losing many details, as shown6

in Fig. 6, therefore such features catch the relevant patterns in7

the initial images.

Fig. 6: Example of reconstructed patch: (left) original patch extracted after
the hurricane, (right) reconstructed patch.

8

For each patch, dissimilarity scores Dtree, DNDV I and9

DV AE are calculated and normalized into the interval (0, 1).10

To validate the algorithm, we use the geo-location of stacked11

piles of tree debris provided by the City of Tallahassee12

municipality to us, as described in Section II. The debris piles13

location on the map are not accurate in some cases. It can14

also be more than one report referring to the same fallen15

tree. To solve these issues, we spatially cluster the reported16

trees locations (using MeanShift algorithm). We introduce17

a distance threshold of d = 40 meters between the points18

reported by the City and the points detected by our algorithm19

from satellite images. The accuracy scores, True Positive (TP),20

False Positive (FP), and False Negative (FN), are calculated 1

as follows and as sketched in Fig. 7. 2

• True Positives: Number of debris detected by the algo- 3

rithm (red points) close to the ground-truth debris (stars) 4

• False Positives: Number of debris detected by the algo- 5

rithm (red points) not close to the ground-truth debris 6

(stars) 7

• False Negative: Number of ground-truth debris (stars) not 8

close to debris detected by the algorithm (red points) 9

FPTP FN

= Ground Truth = detected debris

Fig. 7: Calculation of True Positive (TP), False Positive (FP) and False
Negative (FN).

Then, we calculate the recall, precision and F1-score (har-

monic mean of recall and precision) of the model compared

with the ground truth as follows:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP

F1 =
2(Recall · Precision)

Recall + Precision

(9)

Since in our application both recall and precision are important 10

measurements, we used F1-score as a final metrics. 11

We first used Eqs. (9) to evaluate the performances of each 12

block in our approach independently. To show the effective- 13

ness of the proposed threshold Th, a sensitivity analysis is 14

performed to evaluate the effect of the threshold on recall, 15

precision and F1-score values. These scores are plotted as a 16

function of the threshold in Fig. 8. We note that such an anal- 17

ysis is only possible when having the ground-truth. In other 18

words, it is not possible to develop an algorithm to choose the 19

optimal threshold that optimizes the performances in advance. 20

We notice that the threshold we choose heuristically in the 21

subsection III-D (vertical purple line) approximates closely 22

the argmax of the F1-score. This shows the strength of our 23

threshold choice in this case. Most importantly, it is evaluated 24

a-priori based on the distribution of the dissimilarity scores. 25

Finally, we compare the different blocks as well as the 26

different combinations proposed in Section III-E. The results 27

are presented as bar plots in Fig. 9. 28

From the accuracy comparison we see that Combination 1 29

and 3 achieve the highest recall and precision respectively. 30

However, Combination 1 results in an over-estimation of 31

tree debris in the area, leading to low precision, because 32

it merges the obstructed locations detected by all the three 33

blocks. Combination 3 is too conservative and unable to detect 34

most of the tree debris resulting in high number of false 35

negatives (low recall). Combination 2 (moderate strategy) is 36

the most balanced and achieves the highest F1-score among 37
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(a) Histogram of Dtree
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(b) Histogram of DNDV I
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(c) Histogram of DV AE
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(d) Accuracy scores as a function of Thtree
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(e) Accuracy scores as a function of ThNDV I
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(f) Accuracy scores as a function of ThV AE

Fig. 8: Sensitivity Analysis: first column) Tree segmentation block, second column) NDVI block, third column) VAE block. Recall, precision and F1 curves
are plotted in blue, orange, green respectively as function of the threshold. The purple vertical line shows the threshold value we heuristically selected using
the procedure explained in subsection III-D
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Fig. 9: Recall, precision and F1-score for each single block presented and the
different combinations presented in subsection. III-E.

the three combinations. Moreover, it is possible to estimate1

the contribution of the three blocks to the overall detection2

performance, and determine the weights κ1, κ2, κ3 of each3

block for an optimal combined decision. The weighting shows4

that TREE and NDVI have a slightly better F1-score than VAE.5

Therefore, we assigned proportionally-derived values to κ1, κ26

than κ3 as: κ1 = κ2 = 0.35, κ3 = 0.3 using the F1-score as7

metrics. With such weighting combination, the performances8

are further improved by 3.6%.9

We compared our best results, with other state-of-the-art10

machine learning algorithms. Table IV shows the comparison11

results.12

We noted that our approach outperforms other state-of-13

the-art methods. Autoencoders-based algorithms are used for14

TABLE IV: Comparison between our final approach and other deep-learning
methods (Autoencoder-based, CNN-based) and machine learning methods
(features descriptors + Support Vector Machines).

Algorithm Recall Precision F1-score
Our approach 0.875 0.845 0.859
Sparse AEs [27] 0.708 0.587 0.642
Joint AEs [28] 0.841 0.668 0.744
CNN [13] 0.947 0.725 0.821
GLCM+SVM [29] 0.816 0.691 0.748
LBP+SVM [30] 0.828 0.698 0.757

change detection but they can’t effectively recognize tree 1

debris due to their fully unsupervised nature. Other machine 2

learning-based methods exploit specific descriptions, specifi- 3

cally Gray-Level Co-Occurrence Matrix (GLCM) and Local 4

Binary Patterns (LBP) to extract texture signature classified 5

then using a Support Vector Machine (SVM). However, our 6

approach outperform them by 13%. CNN achieves a higher 7

recall accuracy than our method. Nevertheless, if we compare 8

the F1-score, our model shows an improvement by 4%. It 9

is noticeable that the CNN model is supervised, thus it has 10

been trained directly with tree debris ground truth data to 11

recognize them. However, the tree debris ground truth may not 12

be available always in real-world application. Our approach 13

shows comparable performance without relying on actual 14

fallen trees data for training. Therefore it is more practical 15

in areas where such labels might not be available. 16

Finally, the framework’s output is used to automatically 17

create a map showing all the detected fallen trees within the 18

area, see Fig. 10. In case of a future hurricane, such a map can 19

be generated quickly after the hurricane hits and used by the 20
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city municipality or transportation authorities responsible for1

hurricane restoration to overview the most damaged areas. The2

satellite images provide wide area situational awareness after3

a hurricane with low cost and in a short time. Therefore, our4

proposed automated approach using satellite images is adding5

extra value to the emergency management teams on top of the6

information from traditional ground based inspections.7

Fig. 10: Example of map showing all the detected anomalies within the area
using Combination 2 in the study area. Blue stars are the reported debris
locations. Red points are the debris detected by our algorithm. The yellow
lines are the scanned roadways.

V. PRACTICAL CONSIDERATIONS FOR EMERGENCY8

MANAGEMENT TEAMS9

Satellite data has a number of advantages compared to other10

infrastructure monitoring approaches such as post hurricane11

ground-based inspection, aerial inspection with helicopters or12

drones, and direct reports from citizens.13

Our proposed satellite based framework can serve as a14

complementary source for emergency management teams in15

addition to the traditional roadway inspection approaches16

especially in rural areas, remote locations, and less populated17

regions. Depending on the extend of hurricane damages or18

the weather conditions, ground-based inspection of roadways19

may not be possible or it is limited by roadway closures.20

Helicopters and drones are also prone to weather conditions.21

Cities can get advantage of active participation of citizens22

through phone calls or recently mobile applications, called23

city dashboards, to receive report of damages or roadway24

closures. However, not all cities have mobile applications25

in operation or they face a low adoption rate among their26

citizens [31], [32]. Moreover, cellular networks and internet27

access aftermath a natural disaster may fail. Therefore, citizens28

can not provide critical information to the city government29

using mobile applications. Above all, the tremendous drop30

in satellites data costs in recent years made them more cost31

effective than aerial inspection methods, such as helicopters32

and drones especially for large areas [4].33

It is worth while mentioning that are some practical limi-34

tations in using optical satellite images. The first is the cloud35

coverage. It is not always possible to acquire a cloud-free36

image right after the event of hurricane. For example, in this 1

study the first suitable image could be acquired two days after 2

the hurricane hit. 3

Moreover, the accuracy of fallen tree detection depends on 4

ecological aspects of the target area such as the tree coverage 5

density.In our case, the city of Tallahassee in Florida is highly 6

covered with large trees such as Tupelo (Nyssa sylvatica) and 7

Red maple (Acer rubrum) with wide canopies that mostly 8

make (beautiful and tourist attractive) canopy roads. In such 9

canopy roads, it is challenging to distinguish fallen trees from 10

standing ones. Canopy roads impose a geometric limitation for 11

inferring fallen trees on the roads’ pavement. The satellite’s 12

view from the top cannot always realize that a tree is on the 13

pavement or if it is standing over the road. The figure below 14

show some views of the canopy roads in Tallahassee. However,

Fig. 11: A typical canopy road in Tallahassee. Photo courtesy of leontrees.org

15

such tangled canopy roads are limited, and their locations 16

are already known in advance by the city municipality. They 17

rely more on ground-based inspections or residents’ reports 18

for such areas. In our study, most false negatives occurred 19

in such roads that brought our accuracy to 86%. In other 20

words, the classic ground-based inspection is more critical 21

in specific geographical areas in each city where the remote 22

sensing approaches have limitations. 23

In terms of satellite data storage requirements, commercial 24

satellite image providers and data companies offer cloud-based 25

solutions to access and analyze the images in archive or on 26

demand. A typical high resolution satellite image can be up to 27

few GigaBytes. If one does not use a cloud based service, the 28

local workstations can usually handle such images for limited 29

studies or proof-of-concepts. There are a number of standard 30

formats for satellite images such as GeoTiFF, NetCDF, and 31

HDF. In this study we used GeoTiff format. A GeoTiff image 32

is a normal bitmap image that contains additional metadata 33

about the geo-locations of the pixels. In this way it is possible 34

to map each pixel into a real-world coordinate system. 35

Finally, the proposed satellite based approach for hurri- 36

cane impact study on roadways can be extended to other 37

infrastructure networks such as electricity lines, rail roads, 38

and natural gas pipelines. Specifically, the electric grid has a 39

similar topology to roadways in some parts of the world like 40

the United States where overhead power lines are laid parallel 41

to roadways. Fallen trees induce similar threats to power lines 42

and can cause power outages after hurricanes. Our approach 43

with some modification can be used for electric grid damage 44

assessment. 45

leontrees.org
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VI. CONCLUSIONS1

This paper proposes an automated framework to detect2

fallen trees on roadways after hurricanes. We use two satellite3

images for the City of Tallahassee in Florida, acquired before4

and after Hurricane Michael in October 2018. Our proposed5

satellite-based analytical framework relies on three different6

methods integrated into an automated setting. Despite the7

challenging task from the remote sensing perspective, our8

solution leads to 0.86% accuracy in detecting fallen trees. Our9

approach is also more practical since it works with a limited10

training dataset and has a fast computing time. Our approach11

is complementary to the classic hurricane damage assessment12

practices. It provides the emergency management teams with13

a wide area of situational awareness at a lower cost and in14

a shorter time, which can be beneficial for stakeholders. A15

similar methodology can be used for other types of infras-16

tructure networks rather than roadways. Therefore, our future17

work will be toward investigating different machine learning18

algorithms and expanding our platform to other applications19

such as electricity networks.20
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