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Abstract—During extreme weather events like hurricanes, trees
can cause significant challenges for the local communities with
roadway closures or power outages. Local responders must
act quickly with information regarding the extent and severity
of hurricane damage to better manage recovery procedures
following natural disasters. This paper proposes an approach
to automatically identify fallen trees on roadways using high-
resolution satellite imagery before and after a hurricane. The
approach detects fallen trees on roadways via a co-voting strategy
of three different algorithms and tailored dissimilarity scores. The
proposed method does not rely on the large manually labeled
satellite image data, making it more practical than existing
approaches. Our solution has been implemented and validated
on an actual roadway closure dataset from Hurricane Michael
in Tallahassee, Florida, in October 2018.

Index Terms—Remote Sensing, Satellite Imagery, Tree Debris
Detection, Post-Hurricane Assessment, Deep-learning

I. INTRODUCTION

Damage assessment is essential after catastrophic events like
hurricanes, earthquakes, or tsunamis. Hurricanes, in particular,
cause significant damages in the US, which is among the five
countries most hit by natural disasters with an estimated cost
of $1.75 trillion for damages from 1980 to 2019 [1].

Aerial images are a valuable source of data for hurri-
cane damage assessment [2]. However, flying helicopters and
drones over damaged areas are highly prone to weather
conditions. Moreover, their high operating costs are a burden
on large-scale applications. In recent years, the dramatic
drop in satellites’ launching cost and the growing number
of satellites in orbit significantly reduced the cost of high-
resolution satellite imagery [3]. Commercial satellite providers
can offer high-resolution images (0.3 to 0.5 pixels/meter) with
a daily and sub-daily revisiting frequency for most parts of the
globe.

The combination of coverage, frequency, and cost-efficiency
of satellite imagery in addition to advancements in machine
learning (ML) creates a paradigm shift for enhancing sit-
uational awareness in infrastructure networks [4], [5]. In
the recent literature, there are examples of using machine
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learning for assessing impacts of tsunamis [6], earthquakes
[7], and floods [8] on infrastructure networks. In the event of
hurricanes, fallen trees are one of the most common causes
of damage to roadways, buildings, and electric lines. A major
body of literature on hurricane-induced tree failures is focused
on estimating tree failure probability concerning wind data (
[9], [10]). Although such models are useful for better assessing
fallen trees’ consequences, few works have been done to
automatically detect fallen trees using satellite images and
machine learning.

Recently, supervised learning methods have been proposed
to detect roadway closures using satellite images, typically
by using Convolutional Neural Networks (CNNs) [11], [12],
[13]. The major drawback of supervised models is that they
rely highly on scant and expensive manually labeled data. It
is also crucial to have clean and noise-free labels to train such
models. Furthermore, supervised models, in general, are less
scalable, and they need to be often retrained if we want to
deploy them in another area, [14].

Unsupervised methods usually are more viable options in
real-world remote sensing applications [15]. In unsupervised
ML image processing approaches, features are extracted au-
tomatically for image segmentation or change analysis [16],
[17]. Autoencoders (AEs) are one of the most efficient algo-
rithms for images feature extraction. They represent data in a
latent (usually smaller than the original) space preserving as
much relevant information as possible.

In this paper, we focus on detecting fallen trees that cause
roadway closures after hurricanes. We use high-resolution
satellite images taken before and after a hurricane to perform
change detection analysis and automatically locate areas where
trees have landed on the roadways.

The main contributions of this paper are listed as follows:

« From the application point of view, our proposed ap-

proach needs limited labeled satellite images for trees
in normal condition and it does not need any labeled
data regarding fallen trees. In practice, our approach is
unsupervised in relation to fallen trees. This increases the
robustness of the approach against noisy or faulty labels,
which are often acquired in satellite images and remote
sensing applications. Our algorithm is also more scalable
since it does not rely on an extensive training data set.
Moreover, it has a lightweight open-loop architecture for
fast computing time.

e From the methodology point of view, we propose a

framework consisting of three different and powerful
algorithms, i.e. a segmentation model, a spectral vege-
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tation index and Variational Autoencoders. We adapted
and combined them to work together to overcome the
shortage of each one of these methods to detect the fallen
trees. This is done using tailored dissimilarity scores for
changes in satellite images and a heuristic approach for
thresholding.

II. STUDY AREA

Hurricane Michael was one of the strongest storms hitting
the Southeast coast of the United States. It made landfall
as an unprecedented Category 5 hurricane in the Florida
Panhandle region with maximum sustained wind speeds of
140 knots (161 mph) bringing catastrophic storm surge to the
Florida State and Big Bend areas (especially Mexico Beach
and Panama City) [18]. It hit the City of Tallahassee between
October 10t" and 11** 2018, leaving 1.2 million electricity
customers without power in several east coasts and southern
states. Estimated damage from Michael throughout the United
States reached $25 billion [19]. Hurricane Michael hit the City
of Tallahassee, Florida’s capital, on October 10t 2018. As a
medium-sized city, Tallahassee has a population of 193,551
as of the year 2018 [20]. We acquired two high-resolution
satellite images on a large portion of Tallahassee (Fig. 1)
before and after Hurricane Michael. Images are provided by
WorldView satellites, as described in Table 1.

Fig. 1: Study area in Tallahassee (Florida) where satellite images before and
after Hurricane Michael are acquired.

TABLE I: Satellite images used in this paper

Date Channels  Resolution
Pre-event image | September 14 2018  RGB-NIR  0.5m/pixel
Post-event image October 13 2018 RGB-NIR  0.3m/pixel

For validation purposes, we use the dataset related to tree
debris locations acquired from the contractual company hired
by the City of Tallahassee to remove the debris.

III. METHODOLOGY

In this paper, our goal is to automatically detect fallen trees
along roadways. Our method works with very limited training
data and doesn’t need explicit training to recognize tree debris.
To do so, our major assumption is that a fallen tree will exhibit
a change that is possible to detect between satellite images
from the same area taken before and after a hurricane. In
literature, autoencoders have been used to extract and compare
important features from images and perform change detection
[21]. The fundamental challenge with autoencoders is the lack

of control over where the features are mapped and this is
challenging in satellite images where feature vectors shall be
compared. Therefore, we used Variational Convolutional Au-
toencoders (VAEs) [22] to overcome this issue. Relying solely
on either autoencoders or variational autoencoders can be
problematic due to the lack of semantic information about the
changes. For example a passing vehicle or other environmental
artifacts can be detected as changes but erroneously marked
as tree debris. To solve the issue, we assume that a fallen tree
should lead also to a change in the vegetation characteristics
(coverage, chlorophyll index) in a particular location. There-
fore we add semantic vegetation-related information. Given
these considerations, from a practical point of view, we detect
tree debris along roadways in satellite images using three
different algorithms with their own limitations which we aim
to overcome using them in a collaborative framework. Our
selected methods are:

— AESs/VAEs: They are powerful feature extractors, and it is
possible to compare the generated features in the latent
space by analyzing satellite images before and after a
hurricane. On the other hand, they are unsupervised, and
they do not have semantic knowledge of the objects in
satellite images.

— NDVTI: It is one of the most common indexes for detecting
vegetation in remote sensing applications. It uses the
infrared band for evaluating chlorophyll-rich vegetation.
However, it can’t properly distinguish grown trees from
other types of vegetation, for example, grass or bushes.

— Unet: It is a modern segmentation method that is pos-
sible to specifically train to recognize trees in images.
However, it is susceptible to shadows and occlusions.

We extract several patches, both from the image before the
hurricane (I f,) and from the image after the hurricane (I ;)
to cover the whole roadways in the area. Based on the assump-
tions above, we develop three sub-models (called hereafter
blocks), each computing a tailored, customized dissimilarity
score as shown in Fig. 2. We threshold the dissimilarity score
histograms to flag the presence of a potential fallen tree. We
combine the three blocks together using a co-voting strategy
to overcome each block’s inherent limitations and increase
performances. The following subsections explain each block
of our proposed algorithm.

A. Tree Segmentation Block

The first block is a tree segmentation algorithm. Given an
RGB image I as input, the corresponding output M?°¢ is
a single-channel image where trees are detected. The Tree
Segmentation Block is the only supervised component of our
proposed framework. To perform the tree segmentation task,
we created a labeled dataset to train the model. However,
it is worthwhile mentioning that the training task for tree
segmentation in a given area can be done just once using
a satellite image in normal conditions before the hurricane.
From a practical point of view, it saves the effort and time for
labeling images of fallen trees after hurricanes which would
be required for traditional supervised methods.
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Fig. 2: Overview of the proposed approach for tree debris detection. Each of the three blocks computes a tailored, customized dissimilarity score from patches
extracted before and after the hurricane. It does this using tree semantic segmentation (first block), vegetation index comparison (second block) and features

comparison (third block).

We use a U-net architecture [23] which is a very popular
segmentation model. Initially developed to segment biomed-
ical images, it was successfully applied to a wide range
of applications. The architecture is composed by a cascade
of [16,32,64,128,256] convolutional layers activated by an
Exponential Linear Unit (Elu) function, followed by a batch
normalization layer and a Max Polling layer, as shown in
Fig. 2. During the up-sampling procedure, concatenations layer
have been used to ensure better spatial localization. We use
the U-net to segment each patch Iy, and I,y separately.
Finally, to quantify a dissimilarity between the two predicted
segmentation maps, a dissimilarity score Dy,... is computed
as the integral over the patch P of the pixel-wise difference
between the segmentation map after the hurricane (M)
and the segmentation map before the hurricane (/, lf;fe). Such
difference is then multiplied by a Gaussian kernel K centered
at the center of the window (Equation 1).

Dt’r‘ee = // (Mé}?fe -
Patch

The Gaussian kernel is a function centered at the center of the
acquired patch. It has larger values in the middle and decaying
values as we move towards the edges of the patch. Since the
patch is acquired at the center of the roadway, such weighting
function is introduced so that differences in pixel values close
to the center of the patch are weighted more than differences
near the edges as we are more interested in assessing the
condition at the center of the window. From Equation (1) we

ek

note that the more My, and M, s, are similar, the lower the
value of Dy,ee 1S.

B. NDVI Difference Block

The second block takes advantage of the multi-spectral data
coming from satellites to compute the Normalized Difference
Vegetation Index to recognize vegetation. NDVI is a popular
index in remote sensing for vegetation detection and it is
defined as:

NDVI = Pnir — Pred
Pnir + Pred

where p,..q and p,;, stand for the spectral reflectance measure-
ments acquired in the red (visible) and near-infrared regions,
respectively. The reflectance measurements come directly with
the optical images and are provided by the satellite operator
as a bundle product. Green living plants look brighter in
the near-infrared band due to chlorophyll near-infrared high
reflectance. Similar to the previous block, we define a dis-
similarity score Dypyr as the integral over the patch of
the difference between N DV I computed after the hurricane
(NDV1,y5s) and the NDVI computed before (NDV Iyy,),
with a multiplication with a Gaussian kernel K:

Dapys = // (NDVIaft - NDVIbfT> 2K (3)
Patch

)

C. Variational Autoencoders-based Change Detection Block

The third block is an unsupervised change detector that
computes a dissimilarity value between images before and
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after to detect whether a significant changes occurred. A
direct pixel-wise comparison in the images is not optimal
due to possibly different illumination and noise. Therefore,
we use VAEs as deep feature extractors with a Siamese
configuration [24]. The use of convolutional autoencoders has
been motivated by the strong capabilities of deep learning
methods to learn useful features in a low-dimensionality space.
Variational autoencoders are also used to assure a well-defined
topology of the latent space in which images are projected.
This can be extremely irregular using standard autoencoders.

A variational autoencoder learns to map an input x into a
distribution p(z|z). It is composed by an encoder gy, a decoder
Dg, a sampler and a loss function. Since the encoder and the
decoder are implemented as neural networks, 6 and ¢ are all
the trainable parameters of such networks. Mathematically it
can be formulated as:

Encoder: x — ¢, (z|z) Feature space 4)
Sampler: z ~ p(z|z) 5)
Decoder:  z — py(z]z) = & (6)

Since the distribution P(z|z) is not known, Bayesian vari-
ational inference is used. We assume that the latent space,
whose dimension K is chosen as hyper-parameter, follows
a prior distribution which is assumed to be Gaussian in our
study: z ~ P(z) ~ N(ux,o0r), with k = 1,..., K. We use
as a loss function the sum of a reconstruction term (typical of
standard autoencoders) with a regularization term calculated
as the Kullback-Leibler divergence between the latent space
distribution and the prior distribution as follows:

L(6,¢) = MSE(w,&) +KL(qu(:lo)llp()) (D

Recostruction loss term

Regularization term

The first term is the reconstruction loss defined as Mean
Squared Error (MSE) between the original input and the
reconstructed one, this term encourages the decoder to learn to
reconstruct the data well from the feature space. The second
term is the Kullback-Leibler (KL) divergence between the
distribution of the latent space retrieved by the encoder gy (z|z)
and the prior distribution p(z). The Gaussian prior distribution
p(z) keeps the representations z of each input sufficiently
diverse and allows a closed-form expression for the KL diver-
gence [22]. Using the loss function in Eq. (7), one autoencoder
(VAE,) is trained to learn features from the images before
while the other one (V AFE») is trained with the images after
(see the last block of Fig. 2). Features are then extracted from
the bottleneck layer. The two autoencoders, VAFE; and V AFE,
have been trained with the architecture described in Table II.
We use the same idea as the previous block to calculate a
dissimilarity score Dy 4r between the two images (before
and after the hurricane). Hence, we compute the difference
between features extracted from VAFE; and VAFE,; which
is then evaluated using an Isolation Forest algorithm [25].
Isolation forest is a tree-structure based unsupervised learning
algorithm for anomaly detection, enabling isolating anomalous
points in a dataset.

From Table II, each input image is encoded into a vector
pu € RE where K = 128 is the dimension of latent space.

TABLE II: Autoencoder architecture

Encoder Decoder

Input(80,80,3) Dense(20*20%64)

Conv2D (3,3,32) + Relu | Reshape(20,20,64)
MaxPooling(2) TransConv2D (3,3,64) + Relu
Conv2D (3,3,64) + Relu | UpSampling(2)

MaxPooling(2) TransConv2D (3,3,32) + Relu
Flatten(20*20*64) UpSampling(2)

Dense(1024) TransConv2D (3,3,3) + Sigmoid
Dense(dim/(z) = 128) Output(80,80,3)

The 3-layers architecture of our deep learning, composed
by Conv-Relu-BatchNormalization, with a number of filters
increasing by the power of 2 is a popular choice when
building Convolutional Networks for computer vision tasks.
On the other hand, the parameter K, which is the dimension
of the latent space, is chosen empirically. The parameter K
sets the amount of “compression” we are expecting from the
autoencoder. A value too large does not provide a good feature
representation in the latent space. On the other hand, a value
too small will destroy most of the information during the
encoding step. Section IV will justify our choice of the latent
space dimension K.

D. Fallen Tree Detection

Our proposed framework includes three blocks, including
tree segmentation, NDVI, and deep features comparison as
presented in subsections III-A, III-B, and III-C. Each block
computes a dissimilarity score between a pair of patches from
two satellite images captured before and after a hurricane.

We extract N patches from the images before and after
a hurricane to cover the roadways area. Then, we calculate
the dissimilarity values per each patch location 7+ =1,..., N
along the roadways for each block of the algorithm. Then, the
block’s outcome (a vector with /N component) is represented in
a histogram. We expect the histogram to be an unimodal distri-
bution where one set (clear, debris-free locations) dominates
the histogram with respect to the secondary set (obstructed
locations). We used the maximum deviation method [26],
especially designed for unimodal histograms, to compute a
threshold and to divide the histogram in two parts. The
threshold T'h is selected at the point of the histogram furthest
from the straight line connecting the histogram peak and the
tail (Fig. 3).

Counts o
Clear

Tree debris N
g

L 4

>

i Dissimilarity values

0 Th

Fig. 3: Histogram of the dissimilarity values computed for each block from
extracted patches. We say that there is a tree debris in a location if the
corresponding dissimilarity score is greater than the threshold T'h.

We also use a piece-wise linear mapping to map each dis-
similarity score, computed at location 7 = 1,..., N to create
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a probabilistic value of having a tree debris Pyepris € (0,1)
in a location. The threshold T'h calculated in the previous
subsection corresponds to Pgep-is = 0.5 as shown in Fig. 4

P, debris
A

1
L .53

0.5

2

0 Th  maz(D) g
Dissimilarity score D

Fig. 4: Map from the dissimilarity score to the probability of tree debris
Pdeb’ri.w

Locations with Pjyepis > 0.5 will be flagged as fallen tree
or tree debris, and clear otherwise.

E. Co-Voting Scheme

Since each block’s output is independent from the other
blocks, a combination strategy can possibly increase the per-
formances. We call P;,7 = 1,2, 3 the tree debris probability
coming from block 1, 2 and 3 respectively. The Pgep,-is iS the
overall tree debris probability. Here we present three possible
combinations:

o Combination I - Aggressive: a location is marked as tree
debris if at least one of the three blocks has P; > 0.5.
Pyevris = (P1 > 05) V (PQ > 05) V (Pg, > 05)

e Combination 2 - Moderate: a location is marked as tree
debris if at least two of the three blocks has P; > 0.5.

Pievris = (P1 > 05N Py > 05)\/
(P1 >0.5NFP; > 05)\/
(PQ > 0.5NP3 > 05)

e Combination 3 - Conservative: a location is marked as
tree debris if all the three blocks has P; > 0.5.

Paevris = (P1 > 0.5) A (Py > 0.5) A (Ps > 0.5)

Furthermore, we can combine probabilities P, P, P35 to-
gether using weights k1, ke, k3 as follows:

Picpris = k1 P1 + ko Po + k3 P3 (8)

where ) . x; = 1 In this way it is possible to estimate
the contribution of the three blocks to the overall detection
performance, and determine the weight of each block for an
optimal combined decision.

IV. RESULTS & DISCUSSIONS

For validation purposes, two satellite images have been
acquired for a portion of the City of Tallahassee (Florida),
as described in Section II. We use a 24 x 24 meters sliding
window (corresponding to 80 x 80 pixels given the satellite
resolution) along the roadway’s path to extract patches from

the two different satellite images before and after the hurri-
cane. Patches are spatially spaced no more than 10 meters
along the road center lines. In this way, N = 5116 single
patches are extracted, covering the whole roadway network
in the study area. Due to the different resolution, the patches
extracted before the hurricane have been up-sampled to match
with the number of pixels of the same patches extracted after
the hurricane. The three blocks have been implemented as
described in subsections III-A, III-B and III-C.

The code has been implemented in Python using the sklearn
library for machine learning and Tensorflow/Keras for the deep
learning part. The testing platform is a computer equipped
with a 10t"Gen i7 CPU, 32GB of RAM and an NVIDIA
GeForce RTX 2080 Super as GPU. The images are encoded
in GeoTiff format, so all pixels can be geo-referenced and
precisely located in real-world coordinates. We use QGIS to
integrate and visualize all the data.

To train the tree segmentation block (see section III-A), we
created a labeled dataset from a part of the study area not over-
lapping with the locations along the roadways where we imple-
mented and tested our algorithm. This training dataset is made
of 1200 images of 160x160 pixels. The segmentation model
is trained using the training dataset. The Adam optimizer has
been used with a learning rate of 0.001 and exponential decays
factor of 0.9. The model, with 1,944,049 trainable parameters,
has been trained using binary cross-entropy as loss function.
Once the model is trained to effectively recognize trees, it
is used to segment trees along the 5116 patches extracted
along the roadways to compute the dissimilarity scores. It is
worthwhile mentioning that the model has not seen those 5116
patches during the training phase.

The variational autoencoder has been trained using the
same optimizer as the tree segmentation model. The loss
function is defined in Eq. 7. The encoder has 26,497,216
trainable parameters while the decoder has 3,358,659. Since
variational autoencoders are unsupervised models, the usual
training/validation split is not necessary.

In Table III we show the computation time needed to train
each single block and compute the corresponding dissimilarity
scores for all the locations along the roadways.

TABLE III: Computation time per block for training (1%yqining) and for the
calculation of dissimilarity scores (1T’p) for the entire study area.

Subroutine Tiraining (sec.) | Tp (sec.)

1: Tree Segmentation (Supervised) 135 4.2

2: NDVI (no-learning) not applicable 1.6
3: VAE (Unsupervised) 113 2.1
Patches extraction along roadways 1.73

We note that the most computationally-intensive operations
are the training process for the tree segmentation block and
the variational autoencoders block. Despite that, the entire
framework is able to scan and locate fallen trees across the
entire study area, which is ~ 6 K m2, in less than 5 minutes.

Fig. 5 shows visually an example of a hurricane-induced
vegetation change. Note that the NDVI difference and the tree
segmentation difference (Fig. 5e and 5h respectively) clearly
illustrate such changes.
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Fig. 5: An example to show a Hurricane-induced vegetation change in a patch:
(a) RGB image sample acquired before the hurricane; (b) RGB image sample
acquired after the hurricane; (c) NDVI of the image before the hurricane;
(d) NDVI of the image after the hurricane; (e) NDVI difference; (f) tree

segmentation of the image before the hurricane; (g) tree segmentation of the
image after the hurricane; (h) Tree segmentation difference.

Fig. 6 shows an example of a reconstructed patch. With the
proposed variational autoencoder architecture, the raw input
RGB image (3 x 80 x 80 = 19200 pixels ) is encoded into
only 128-values vector (dimension of the latent space), thus
achieving a high compression rate. Nevertheless, it is possible
to decode the patch back without losing many details, as shown
in Fig. 6, therefore such features catch the relevant patterns in
the initial images.

Fig. 6: Example of reconstructed patch: (left) original patch extracted after
the hurricane, (right) reconstructed patch.

For each patch, dissimilarity scores Di,.c., Dnpy and
Dy ag are calculated and normalized into the interval (0, 1).
To validate the algorithm, we use the geo-location of stacked
piles of tree debris provided by the City of Tallahassee
municipality to us, as described in Section II. The debris piles
location on the map are not accurate in some cases. It can
also be more than one report referring to the same fallen
tree. To solve these issues, we spatially cluster the reported
trees locations (using MeanShift algorithm). We introduce
a distance threshold of d = 40 meters between the points
reported by the City and the points detected by our algorithm
from satellite images. The accuracy scores, True Positive (TP),

False Positive (FP), and False Negative (FN), are calculated
as follows and as sketched in Fig. 7.

o True Positives: Number of debris detected by the algo-
rithm (red points) close to the ground-truth debris (stars)

o Fulse Positives: Number of debris detected by the algo-
rithm (red points) not close to the ground-truth debris
(stars)

o False Negative: Number of ground-truth debris (stars) not
close to debris detected by the algorithm (red points)

’ﬂ"s\ ’i&z"s\ ,f'"\\

4 W Ay 4 \ 4 \
o 4l o oed 1 Joal

\ 7 \ ’ \ S

\\-—,’ \\-—,’ \~__,’
TP FP FN

= =Ground Truth @ = detected debris
/2

Fig. 7: Calculation of True Positive (TP), False Positive (FP) and False
Negative (FN).

Then, we calculate the recall, precision and F1-score (har-
monic mean of recall and precision) of the model compared
with the ground truth as follows:

TP

Recall = m,
2(Recall - Precision)

Recall + Precision

TP

Precision = —————
recision TP+ FP

)
F1=

Since in our application both recall and precision are important
measurements, we used Fl-score as a final metrics.

We first used Eqgs. (9) to evaluate the performances of each
block in our approach independently. To show the effective-
ness of the proposed threshold T'h, a sensitivity analysis is
performed to evaluate the effect of the threshold on recall,
precision and Fl-score values. These scores are plotted as a
function of the threshold in Fig. 8. We note that such an anal-
ysis is only possible when having the ground-truth. In other
words, it is not possible to develop an algorithm to choose the
optimal threshold that optimizes the performances in advance.
We notice that the threshold we choose heuristically in the
subsection III-D (vertical purple line) approximates closely
the argmax of the Fl-score. This shows the strength of our
threshold choice in this case. Most importantly, it is evaluated
a-priori based on the distribution of the dissimilarity scores.

Finally, we compare the different blocks as well as the
different combinations proposed in Section III-E. The results
are presented as bar plots in Fig. 9.

From the accuracy comparison we see that Combination 1
and 3 achieve the highest recall and precision respectively.
However, Combination 1 results in an over-estimation of
tree debris in the area, leading to low precision, because
it merges the obstructed locations detected by all the three
blocks. Combination 3 is too conservative and unable to detect
most of the tree debris resulting in high number of false
negatives (low recall). Combination 2 (moderate strategy) is
the most balanced and achieves the highest Fl-score among
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are plotted in blue, orange, green respectively as function of the threshold. The purple vertical line shows the threshold value we heuristically selected using

the procedure explained in subsection III-D
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different combinations presented in subsection. III-E.

the three combinations. Moreover, it is possible to estimate
the contribution of the three blocks to the overall detection
performance, and determine the weights k1, ko, k3 of each
block for an optimal combined decision. The weighting shows
that TREE and NDVI have a slightly better F1-score than VAE.
Therefore, we assigned proportionally-derived values to x1, ko
than k3 as: k1 = ke = 0.35, k3 = 0.3 using the Fl-score as
metrics. With such weighting combination, the performances
are further improved by 3.6%.

We compared our best results, with other state-of-the-art
machine learning algorithms. Table IV shows the comparison
results.

We noted that our approach outperforms other state-of-
the-art methods. Autoencoders-based algorithms are used for

TABLE IV: Comparison between our final approach and other deep-learning
methods (Autoencoder-based, CNN-based) and machine learning methods
(features descriptors + Support Vector Machines).

Algorithm Recall Precision | Fl-score
Our approach 0.875 0.845 0.859
Sparse AEs [27] 0.708 0.587 0.642
Joint AEs [28] 0.841 0.668 0.744
CNN [13] 0.947 0.725 0.821
GLCM+SVM [29] | 0.816 0.691 0.748
LBP+SVM [30] 0.828 0.698 0.757

change detection but they can’t effectively recognize tree
debris due to their fully unsupervised nature. Other machine
learning-based methods exploit specific descriptions, specifi-
cally Gray-Level Co-Occurrence Matrix (GLCM) and Local
Binary Patterns (LBP) to extract texture signature classified
then using a Support Vector Machine (SVM). However, our
approach outperform them by 13%. CNN achieves a higher
recall accuracy than our method. Nevertheless, if we compare
the Fl-score, our model shows an improvement by 4%. It
is noticeable that the CNN model is supervised, thus it has
been trained directly with tree debris ground truth data to
recognize them. However, the tree debris ground truth may not
be available always in real-world application. Our approach
shows comparable performance without relying on actual
fallen trees data for training. Therefore it is more practical
in areas where such labels might not be available.

Finally, the framework’s output is used to automatically
create a map showing all the detected fallen trees within the
area, see Fig. 10. In case of a future hurricane, such a map can
be generated quickly after the hurricane hits and used by the
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city municipality or transportation authorities responsible for
hurricane restoration to overview the most damaged areas. The
satellite images provide wide area situational awareness after
a hurricane with low cost and in a short time. Therefore, our
proposed automated approach using satellite images is adding
extra value to the emergency management teams on top of the
information from traditional ground based inspections.

Fig. 10: Example of map showing all the detected anomalies within the area
using Combination 2 in the study area. Blue stars are the reported debris
locations. Red points are the debris detected by our algorithm. The yellow
lines are the scanned roadways.

V. PRACTICAL CONSIDERATIONS FOR EMERGENCY
MANAGEMENT TEAMS

Satellite data has a number of advantages compared to other
infrastructure monitoring approaches such as post hurricane
ground-based inspection, aerial inspection with helicopters or
drones, and direct reports from citizens.

Our proposed satellite based framework can serve as a
complementary source for emergency management teams in
addition to the traditional roadway inspection approaches
especially in rural areas, remote locations, and less populated
regions. Depending on the extend of hurricane damages or
the weather conditions, ground-based inspection of roadways
may not be possible or it is limited by roadway closures.
Helicopters and drones are also prone to weather conditions.
Cities can get advantage of active participation of citizens
through phone calls or recently mobile applications, called
city dashboards, to receive report of damages or roadway
closures. However, not all cities have mobile applications
in operation or they face a low adoption rate among their
citizens [31], [32]. Moreover, cellular networks and internet
access aftermath a natural disaster may fail. Therefore, citizens
can not provide critical information to the city government
using mobile applications. Above all, the tremendous drop
in satellites data costs in recent years made them more cost
effective than aerial inspection methods, such as helicopters
and drones especially for large areas [4].

It is worth while mentioning that are some practical limi-
tations in using optical satellite images. The first is the cloud
coverage. It is not always possible to acquire a cloud-free

image right after the event of hurricane. For example, in this
study the first suitable image could be acquired two days after
the hurricane hit.

Moreover, the accuracy of fallen tree detection depends on
ecological aspects of the target area such as the tree coverage
density.In our case, the city of Tallahassee in Florida is highly
covered with large trees such as Tupelo (Nyssa sylvatica) and
Red maple (Acer rubrum) with wide canopies that mostly
make (beautiful and tourist attractive) canopy roads. In such
canopy roads, it is challenging to distinguish fallen trees from
standing ones. Canopy roads impose a geometric limitation for
inferring fallen trees on the roads’ pavement. The satellite’s
view from the top cannot always realize that a tree is on the
pavement or if it is standing over the road. The figure below
show some views of the canopy roads in Tallahassee. However,

Fig. 11: A typical canopy road in Tallahassee. Photo courtesy of leontrees.org

such tangled canopy roads are limited, and their locations
are already known in advance by the city municipality. They
rely more on ground-based inspections or residents’ reports
for such areas. In our study, most false negatives occurred
in such roads that brought our accuracy to 86%. In other
words, the classic ground-based inspection is more critical
in specific geographical areas in each city where the remote
sensing approaches have limitations.

In terms of satellite data storage requirements, commercial
satellite image providers and data companies offer cloud-based
solutions to access and analyze the images in archive or on
demand. A typical high resolution satellite image can be up to
few GigaBytes. If one does not use a cloud based service, the
local workstations can usually handle such images for limited
studies or proof-of-concepts. There are a number of standard
formats for satellite images such as GeoTiFF, NetCDF, and
HDF. In this study we used GeoTiff format. A GeoTiff image
is a normal bitmap image that contains additional metadata
about the geo-locations of the pixels. In this way it is possible
to map each pixel into a real-world coordinate system.

Finally, the proposed satellite based approach for hurri-
cane impact study on roadways can be extended to other
infrastructure networks such as electricity lines, rail roads,
and natural gas pipelines. Specifically, the electric grid has a
similar topology to roadways in some parts of the world like
the United States where overhead power lines are laid parallel
to roadways. Fallen trees induce similar threats to power lines
and can cause power outages after hurricanes. Our approach
with some modification can be used for electric grid damage
assessment.
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VI. CONCLUSIONS

This paper proposes an automated framework to detect
fallen trees on roadways after hurricanes. We use two satellite
images for the City of Tallahassee in Florida, acquired before
and after Hurricane Michael in October 2018. Our proposed
satellite-based analytical framework relies on three different
methods integrated into an automated setting. Despite the
challenging task from the remote sensing perspective, our
solution leads to 0.86% accuracy in detecting fallen trees. Our
approach is also more practical since it works with a limited
training dataset and has a fast computing time. Our approach
is complementary to the classic hurricane damage assessment
practices. It provides the emergency management teams with
a wide area of situational awareness at a lower cost and in
a shorter time, which can be beneficial for stakeholders. A
similar methodology can be used for other types of infras-
tructure networks rather than roadways. Therefore, our future
work will be toward investigating different machine learning
algorithms and expanding our platform to other applications
such as electricity networks.
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