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The Su, Schrieffer, and Heeger (SSH) model, describing the soliton excitations in polyacetylene due to the
formation of antiphase domain walls (DW) from the alternating bond pattern, has served as a paradigmatic
example of one-dimensional (1D) chiral topological insulators. While the SSH model has been realized in
photonic and plasmonic systems, there have been limited analogs in three-dimensional (3D) electronic systems,
especially regarding the formation of antiphase DWs. Here, we propose that pristine bulk Bi, in which the
dimerization of (111) atomic layers renders alternating covalent and van der Waals bonding within and between
successive (111) bilayers, respectively, serves as a 3D analog of the SSH model. First, we confirm that the two
dimerized Bi structures belong to different Zak phases of 0 and π by considering the parity eigenvalues and
Wannier charge centers, while the previously reported bulk topological phases of Bi remain invariant under the
dimerization reversal. Next, we demonstrate the existence of topologically nontrivial (111) and trivial (112)
DWs in which the number of in-gap DW states (ignoring spin) is odd and even respectively, and show how this
controls the interlinking of the Zak phases of the two adjacent domains. Finally, we derive general criteria
specifying when a DW of arbitrary orientation exhibits a π Zak phase based on the flip of parity eigenvalues. An
experimental realization of dimerization reversal in Bi and the formation of DWs may be achieved via intense
femtosecond laser excitations that can alter the interatomic forces and bond lengths.
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I. INTRODUCTION

Polyacetylene (CH)x [1] is an infinite one-dimensional
(1D) carbon chain whose trans configuration has two de-
generate dimerized structures consisting of alternating double
and single bonds, which can be interchanged by sym-
metry. Interestingly, polyacetylene exhibits finite electric
conductivity even though its intrinsic band structure is in-
sulating. This can be understood in terms of the migration of
electrically-charged antiphase domain walls (DWs) be-
tween two structures (domains) with opposite dimerization
as illustrated in Figs. 1(a)–1(c). The Su-Schrieffer-Heeger
(SSH) model [2,3], introduced to describe polyacetylene,
yields a transition from a trivial to topological nontrivial
phase depending on the relative hopping amplitudes be-
tween the two distinct types of bondings, where the so-called
“winding number” undergoes a discontinuous change from 0
→  1. The winding number is closely related to the Zak
phase [4], which is quantized to be 0 or π for systems
with space inversion symmetry. Moreover, the DW in the
SSH model leads to the emergence of a boundary local-
ized zero-energy mode in the middle of the energy gap with
charge accumulation of ±e/2, analogous to the fractionally
charged excitations in quantum field theory. This midgap state
is understood as a topologically protected boundary mode
and the SSH model serves as a paradigmatic example of

topological insulator protected by a chiral (i.e., sublattice)
symmetry.

The SSH model is the simplest and one of the most impor-
tant models in describing band topology in condensed matter
physics, and has been the subject of intense investigations
such as Majorana zero mode in a finite atomic chain [5,6]
and an extension to two-dimensional (2D) systems, including
graphene [7] and four-basis- [8,9] and two-basis- [10] square-
lattice models. The latter study [10] explicitly characterized
several topological phases with distinct winding numbers
upon uniaxial strain and sublattice dimerization where zero-
energy flat bands were predicted to emerge on 1D antiphase
DW if the winding numbers (equivalently the Zak phases) of
the two facing domains are different. This is the 2D analog of
the SSH model.

In three-dimensional (3D) systems, nontrivial π Zak
phases have drawn less attention and only a few systems
have been found to exhibit them [11,12]. Sc2C, a designed
inorganic electride [13], was predicted to exhibit a π Zak
phase with consequent surface states inside its insulating band
gap [11]. Surface drum-head states of topological nodal-line
semimetals are also known to originate from the π Zak
phase [14–16], where the drum-head states are bounded by
surface-projected bulk nodal lines, in contrast to the π Zak
phase insulator. For example, Sc2C (Y2C) is a π Zak phase
insulator (topological nodal-line semimetal) where the surface
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FIG. 1. Schematic view of the SSH model and comparison with the 3D analog. (a) Antiphase DW of the SSH model where two atomic
chains with alternating weak and strong bonding are connected out of phase. [(b),(c)] Two dimerized phases (δ =  ±1) and corresponding
parity eigenvalues at the two time-reversal invariant momenta (TRIM), 0  and X , whose product determines the Zak phase (φZ =  0,π ). Dashed box
denotes the repeating unit cell where weak (strong) bonds are trimmed at the cell boundary for δ =  + 1  (δ =  −1). Red crosses indicate the (net)
Wannier charge center r̄ . [(d),(e)] Parity eigenvalues at the eight TRIM points of the 3D SSH model for the two dimerized δ =  ± 1  phases shown
on the right, with strong (weak) intra- (inter-) bilayer bonding. The shaded-vertical lines in momentum space correspond to four individual
1D SSH models in the presence of inversion and time-reversal symmetries whose Zak phase is quantized and flipped by the dimerization
reversal in analogy to the SSH model. Vertical-dashed line in (d) illustrates the closed 1D path, kz � [0, 2π ] along which the Zak phase is defined.
(f) Antiphase DW as the 3D analog of the SSH model where the Zak-phase-induced in-gap states emerge at the four interface TRIM points,
spatially localized at the central (yellow) layer.

states cover 100% (90.4%) of the surface BZ [11]. The {111}
surfaces of silicon and diamond host surface bands from the
π Zak phase [12], where each surface unit cell accumulates
one half of an electron [17] leading to half-filled metallic
surface bands. An insulating surface can be achieved only
by even-number (such as 2 ×  2) surface reconstructions that
allow an integer number of surface electrons and hence fully
filled bands [12,18]. The 3D π Zak phase systems that have
been reported so far involve no atomic displacement that can
be described as a dimerization. In this paper, we show that
each (111) atomic layer of Bi corresponds to a single site of
the 1D SSH model, and dimerization of the atomic layers in
the ground state results in 0 or π Zak phases depending on the
dimerization sign, δ =  ±1, as illustrated in Figs. 1(d) and 1(e).

The Zak phase [4] is a special form of the Berry phase
[19] and is equivalent to the electronic part of the polarization
[17,20,21],

φZ =  φB =  
2π p

, (1)

where − e  is the electron charge, c is the lattice constant of the
unit cell, and p is the dipole moment of the bulk unit cell that
can be in turn expressed in terms of the Wannier functions of
the occupied bands,

occ.

p =  −      eri. (2)
i

Here, ri is the center of ith Wannier function. In the presence
of inversion symmetry, the dipole moment is quantized such

that the Zak phase can only take on values φZ =  0 or π ,
corresponding to whether the net Wannier center r̄ = ri

is located at the center (r̄ =  0) or the boundary (r̄ =  c/2) of
the bulk unit cell, respectively [see Figs. 1(b) and 1(c)]. This
definition depends on the choice of inversion center for the
placement of the origin, which we assume to have been
decided once and for all. The origin-dependent Zak phase
has been discussed in detail by introducing the “in-
tercellular Zak phase”[22]. The Zak phase can be easily
computed from the product of the parity eigenvalues of the
occupied bands at time-reversal invariant momenta (TRIM)
[23,24] in the 1D momentum space, where φZ =  0 (π ) cor-
responds to positive (negative) product as shown in Fig. 1(b)
[Fig. 1(c)].

In 2D and 3D systems, the Zak phase can be defined on
a closed 1D path such as a periodic kz string with a fixed
in-plane momentum (kx , ky) as shown in Fig. 1(d). Under
inversion and time-reversal symmetry and in the absence of
SOC, an insulating bulk has a constant and quantized Zak
phase on such strings normal to a given surface regardless of
the specific in-plane momentum (kx , ky). This implies that a
single pair of surface-projected TRIM is enough to determine
the Zak phase of the entire surface, φZ (kx , ky ) =  φZ (0, 0) =
{0, π}. Turning on the SOC, however, allows modulation of
the Zak phase, which is no longer quantized at generic surface
momenta except at the surface TRIM. Because of the strong
SOC of Bi, we focus on the four surface TRIM where the Zak
phase is quantized to be 0 or π [see shaded lines in Figs. 1(d)
and 1(e) connecting the four pairs of TRIM].
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FIG. 2. Schematic view of the Zak phase, φZ (kx =  0, ky ) and relevant boundary states in several topological systems. Lower (upper) panels
illustrate the parity eigenvalues at TRIM points (boundary band structure). (a) 1D SSH model. Open (closed) circles denote empty (filled)
states of the zero-dimensional boundary. Nontrivial π Zak phase on the right side induces a half-filled zero mode at the Fermi level. [(b)–(e)] kx =
0 plane of the 3D momentum space and its surface (normal to z) band structure without and with SOC. Orange-solid lines (shaded areas) denote
surface (surface-projected bulk) states. (b) Nodal-line semimetal whose quantized Zak phase is π and 0 for |ky| <  |kc| and |ky| >  |kc|,
respectively. The continuous zero mode at |ky| <  |kc| forms drum-head states, connecting boundary-projected bulk nodal lines. (c) Strong
topological insulator with a surface Dirac cone, which emerges at a surface TRIM with π Zak phase. Dashed-orange lines illustrate surface
band connectivity between surface TRIM, referred to as “switch partners”. [(d),(e)] 3D π Zak phase without and with SOC, respectively. In the
presence of SOC, the Zak phase is no longer quantized except at the surface TRIM and the in-gap state splits at generic momentum k.

Figure 2 illustrates schematically the boundary states of
various topological phases and the corresponding Zak phase
configurations at the surface TRIM points. Hirayama et al.
[11] demonstrated that the surface states of the 3D π Zak
phase [Fig. 2(d)] is a full-BZ extension of the drum-head
states of a nodal-line semimetal [Fig. 2(b)]. This can be under-
stood as a continuous shift of kc →  π that accompanies a band
inversion at ky =  π and switching of the Zak phase φZ (0,π )
from 0 to π . In the presence of SOC, the degeneracy of the
bulk nodal lines is lifted and the system becomes a strong
topological insulator (STI) as shown in Fig. 2(c). Note that
the Zak phases φZ (0, 0) =  π and φZ (0,π ) =  0 do not change.
The Zak-phase-dependent surface states and the effect of SOC
are recently demonstrated in the dual-topology semimetal
Pt2HgSe3 [25,26]. In contrast to the STI phase where a ro-
bust surface state is guaranteed by the “switch partners” band
connectivity between TRIM [23,24], the surface state induced
by the π Zak phase is rather isolated in energy from the
valence and conduction bands [Fig. 2(e)]. The surface band
can be pushed into the valence or conduction bands via surface
modifications unless it is protected by a chiral (or particle-
hole) symmetry, which in turn pins the nontrivial surface state
at the Fermi level. Since the Bi p bands are well separated
from the lower energy s bands and the inter-sublattice hopping
matrix elements (σw,v in Appendix A) are dominant there is an
effective chiral symmetry, which retains the nontrivial state
within the bandgap of the Bi antiphase DW.

In this paper we propose that the α phase of bulk Bi in the
rhombohedral structure is a 3D analog of the 1D SSH sys-
tem. In Sec. II using DFT-parameterized tight-binding model

calculations we investigate the topological properties of the
two dimerized states of bulk Bi. We find that the dimeriza-
tion reversal induces parity sign flip at four TRIM (without
changing the bulk topology), which in turn induce a transition
of the Zak phase from π →  0, consistent with the emergence of
odd or even number of Wannier charge centers (WCCs) at
the cell boundary. In Sec. III A we consider two types of
(111) DWs sandwiched between two oppositely dimerized
states and show the emergence of topologically-protected DW
localized states, in contrast to the trivial DW states for the
(112) DWs discussed in Sec. III B. In Sec. III C we derive
criteria for the emergence of π and 0 Zak phases for a DW of
arbitrary orientation and identify those DW orientations that
host nontrivial DW states. Section III D discusses a plau-sible
experimental realization of the dimerization reversal in
pristine Bi and the formation of DW using intense femtosec-
ond laser excitations that can alter the interatomic forces
and energy barriers between the two dimerized states [27].
Conclusions are summarized in Sec. IV and Sec. V describes
the methodology used. Our findings suggest a novel band
engineering concept for topologically protected states using
antiphase DWs where the parity sign flip can occur without
the assistance of strong spin-orbit coupling of heavy ions.

II. BULK BI: DIMERIZATION AND TOPOLOGY

Atomic structure. The α phase of bulk Bi in the rhom-
bohedral structure (space group R3m, No. 166) is shown in
Fig. 3(a), where the conventional unit cell has a bilayer (BL)
structure with an ABC stacking sequence along the [111]
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TABLE I. Number of negative parity states n−  of the six oc-
cupied bands at the TRIM points for two dimerizations δ =  ±1,
classified under the eigenvalues of the symmetry operations σ (110),
ˆ [111], and C[110]. The origin of the parity operation is (1/2, 1/2, 1/2)
and the twofold C2 rotation axis, [110] is normal to the σ mirror
plane, (110). Only those TRIM points, which are invariant under
these symmetry operations are listed.

λ nλ σ (110) (111) (110)
3 2

δ TRIM     total     − i      + i      −π /3     π

+ 1 0 0 0 0 0 0
T 2 1 1 1 0
F 4 2 2
L 2 1 1

−1 0 0 0 0 0 0
T 4 2 2 1 2
F 4 2 2
L 4 2 2

+π /3     −π /2     +π /2

0            0            0
1            1            1

2            2
1 1

0 0 0
1 2 2

2            2
2            2

FIG. 3. (a) The primitive cell of Bi with two sublattice sites at
fractional height 1/2 ±  (1/4 +  1 )  along the [111] direction, where 1
is the Bi displacement δ =  1 / 1 0  =  ± 1  is the dimerization sign, and
1 0  is the equilibrium displacement. Top panel denotes the un-stable
undimerized state (δ =  0) and the two lower panels denote the
stable dimerized states (δ =  ±1). Dimerized Bi atomic layers,
stacked along [111], are illustrated in the conventional hexagonal
cell on the right. The inversion center O  located at the center of the
primitive cell is marked with the red dot. (b) The calculated bulk
band structure using tight-binding parameters obtained from first-
principles calculations (see Appendix A). Red (blue) lines denote the
stable dimerized (unstable undimerized) structure. Inset: Zoom-in
band structure near the T and L points showing the narrow gap and
gap-closing (marked by arrows) for the dimerized and undimerized
structures, respectively. (c) First Brillouin zone (BZ) of bulk Bi and
its projection on the (111) and (112) interface BZs.

direction consisting of three BLs. There is strong covalent
bond within each BL (intra-BL bonding), with a Bi atom
forming three σ bonds with its nearest neighbors, and weak
van der Waals bonding between two nearest-neighbor BLs
(inter-BL bonding). The intra- and inter-BL sequence of
bonds alternate along the [111] stacking direction, which is
exactly analogous to the alternating double and single bonds
in polyacetylene shown schematically in Figs. 1(b)–1(e).

Furthermore, as shown in Fig. 3(a), the intra- and inter-
BL bonds can be interchanged, resulting in two degenerate
dimerized ground states with opposite dimerization parame-
ters δ ≡  1 / 1 0  =  ±1.  Here, 1  is the displacement of the two
Bi atoms in the primitive cell along [111] [Fig. 3(a)] in units of
the lattice vector c =  |a1 +  a2 +  a3| (ai, i =1–3 are primitive
lattice vectors), and 1 0  is the equilibrium displacement. The
positively dimerized state can be obtained from the negatively
dimerized state via a translation by a half lattice vector, or vice

versa. In sharp contrast to 2D and 3D topological orders, the
Zak phase is not invariant under such a translation.

Electronic Structure. Figure 3(b) shows the tight-binding
(see Appendix A) band structure with (δ =  ±1,  red lines) and
without (δ =  0, blue lines) dimerization. The direct band gaps
at the TRIM points L and T close at δ =  0 where the parity
eigenvalues of the states near the Fermi level reverse sign by
the dimerization sign reversal, indicating band inversions at
these TRIM points.

Parity. The number of negative-parity eigenstates at the
TRIM points is listed in Table I for the two different dimer-
ization states, δ =  ±1.  The change of parity states upon
dimerization reversal is also related to the multiple choices
of inversion center. For instance, if one takes (0,0,0) (the
diagonal corner of the primitive cell) to be the inversion center
instead of (1/2, 1/2, 1/2) (the center of the primitive cell),
the parity of the state changes as if the dimerization is re-
versed. This is because a structure with reversed dimerization
is equivalent to one that is translated by half the cell diagonal.

Topological phases protected by time-reversal or crys-
talline symmetries should be independent of the choice of
inversion center as well as the sign of dimerization. Even
though there is a parity sign flip at the L and T points, we show
below that the well-known topological phases of bulk Bi are
indeed intact under dimerization reversal by calculating the
various topological indices: (i) ν for STI under time-reversal
symmetry, (ii) {ν (π ), ν (±π /3)} for higher order topological in-
sulator (HOTI) under the threefold rotational symmetry C ,
and (iii) {ν (π/2), ν (−π /2)} for crystalline topological insulator
(CTI) under the twofold rotational symmetry C2.

First, the STI Z2 phase, protected by time-reversal sym-
metry, is expressed in terms of the parity eigenvalues of the
occupied states at the TRIM points as

TRIM

ν0 = n−  mod 2, (3)
λ

=  
1

(n−  +  n−  +  3n−  +  3n− ) mod 2, (4)
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where n−  is the number of occupied states with negative parity
at the TRIM point λ. For both dimerized phases, we find ν0

=  0 corresponding to the trivial phase that is consistent with
previous reports [28,29].

Next, the HOTI phase of Bi is verified by grouping
occupied states at TRIM points into C3 symmetry sub-
space according to the rotation eigenvalues of exp(iπ ) and
exp(±iπ /3) [28]. The fact that each subspace is closed under
time-reversal symmetry allows the Z2 classification for each
subspace. Among the TRIM points, only 0  and T points are
invariant under the C3 rotation. On the other hand, for the
remaining (F ,2,3 and L1,2,3) TRIM, which are not invariant
under C3, one can construct linear combination of these three
states (which transform into each other under threefold ro-
tation; F →  F →  F →  F as well as Li) to render them C3

eigenstates (see Ref. [28] for more details). The number of
linearly combined states with negative parity for the two
subspaces are n−       =  n−  and n− =  2n−  =  0 (mod 2),
where α � {F, L}. Thus, the topological invariant for the two
subspaces are given by

ν (π ) =  
1

(n− 
π +  n−  

π +  n−  +  n− ) mod 2, (5)
µ ¶

(±π /3) − − − −

2 0 ,  3 T , 3 0 , −  3 T ,−  3

The dimerization sign reversal changes n−        and n−  by two,
while ν (π ) and ν (±π /3) do not change under modulo 2. Hence,
we confirm that the HOTI phase, ν (π ) =  ν (±π /3) =  1 is intact
under the dimerization reversal.

Finally it was predicted that bismuth is also a first-order
CTI protected by a twofold rotational symmetry C2 around
the [110] axis or its symmetric copies [011] and [101] [29].
Similarly, with the classification above, the parity states can
be divided into the C2 subspace according to the symmetry
eigenvalues of exp(iπ/2) and exp(−iπ /2). In contrast to the
HOTI classification, the C subspaces are mapped to each
other by time-reversal symmetry, indicating ν (π/2) =  ν (−π /2) .
The four TRIM points {0, T , F , L1} are invariant under C2.
The remaining states at the F ,3 and L2,3 points, which are
not invariant under C2, can be linearly combined so that
they become C eigenstates. The number of negative parity
eigenvalues n−      contributes equally to ν (π/2) and ν (−π /2) with a
weighting factor of one. Thus, the topological indices are
given by

³ ´
ν (π/2) = n−  

π +  n−  
π +  n−  

π +  n−  
π +  n−  +  n−

2 2 2 2

mod 2, (7)
³ ´

(−π /2) − − − − − −

2 0 , −  2 T ,−  2 F ,−  2 L ,−  2
F L

mod 2.                                                                        (8)

Each subspace is found to have a strong topology since
ν (π/2) =  ν (−π /2) =  5 (mod 2) and 7 (mod 2) for positive
(δ =  +1) and negative (δ =  −1) dimerizations, respectively.
Therefore, the rotational-symmetry-protected CTI phase is
well reproduced and is confirmed to be intact under the dimer-
ization reversal.

PHYSICAL REVIEW B 107, 045135 (2023)

FIG. 4. Calculated Wannier charge centers (WCCs) of hexagonal
Bi for (a) δ =  + 1  and (c) δ =  −1.  Blue (red) lines denote mirror
irreps of − i  (+i) of the mirror plane shown in (b). (d) Integrated
WCC where solid (dashed) lines correspond to δ =  + 1  (δ =  −1).

It is important to note that in contrast to the topological
phases that are invariant under dimerization sign reversal, the
Zak phase depends on the sign of dimerization (i.e., choice of
the unit cell). For example, the 0  and T points are projected at
the 0  point of the (111) surface BZ [Fig. 3(c)] where the Zak
phase at 0  is determined by the parity eigenvalues,

π 
φZ (0 ) =  

2
(n−  +  n− ) mod 2. (9)

Here, φZ (0 ) =  π and 0 for positive (δ =  +1) and negative (δ
=  −1) dimerization, respectively. Furthermore, the F and L
points are projected on the other surface TRIM point M, and the
Zak phase at M,

π 
φZ (M ) =  

2
(nF +  nL ) mod 2 (10)

is calculated to be identical to φZ (0 ) for each dimerized
state. Note that systems with a strong topological order ex-
hibit different Zak phases at the two surface TRIM points,
exp[iφZ (0) +  iφZ (M )] =  −1,  or equivalently ν0 =  1 from
Eq. (4) [23,24]. The right panels in Fig. 3(a) show the (111)
surface terminations of the two dimerized states where the
surface with low cleavage energy corresponds to the positive
dimerization with π Zak phase. Surprisingly, the nontriv-ial
phase emerges on the surface that cuts the weak bonds (δ =
+1) rather than the strong bonds (δ =  −1). This is coun-
terintuitive, especially when compared to the original 1D SSH
model.

To corroborate the parity analysis, the hybrid Wannier
charge centers (WCCs) are computed for the two dimer-
ized states in the hexagonal structure having six Bi atoms
(18 valence electrons) as shown in Fig. 4. Because of the
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inversion and time-reversal symmetries, the WCCs are
mapped to symmetric copies as ri(k) →  −ri (k ) and ri(k) →
ri (−k), respectively. For δ =  +1, there are two WCCs cross-
ing the cell boundary z/c =  ±0.5 at 0  (M), which is equal
to the negative parity difference, |n− −  n−| =  2 (|n− −  n−| =
2). Similarly, for δ =  −1, four (zero) WCCs cross the cell
boundary at 0  (M), which also agrees well with the difference
of negative parity states. The factor 2 from the spin degeneracy
can be decomposed by grouping the WCCs based on the
mirror eigenvalues ± i  on the 0-M plane (see Fig. 4). The
WCCs with mirror eigenvalues − i  and + i  are denoted by blue
and red lines, respectively. It is clearly seen that the number of
boundary-crossing WCCs in each subspace is reduced by half.
For example, a single blue line passes the boundary in Fig.
4(a). It agrees well with the mirror-symmetry-classified parity
states in Table I where the negative parity states are divided
in half (n− =  (1/2)n−) as well as their difference.
Note that the number of negative parity states only provides an
upper limit on the number of WCCs crossing the boundary,
with the exact number of crossings being determined by the
symmetry protection [30]. The net Wannier center r̄ = ri

is shown in Fig. 4(d), where the half polarization of the π Zak
phase (δ =  +1 ) is clearly seen at the two TRIM, consistent
with the parity results.

III. ANTIPHASE DOMAIN WALLS IN BI

The corresponding boundary states of the π Zak phase can
be realized on the (111) surface by appropriate choice of the
surface termination that is usually hard to control. Fortunately,
Bi is found to exhibit the π Zak phase on the low-cleavage-
energy surface. In general, however, the surface with π Zak
phase is susceptible to reconstruction and contamination [12].
Thus, instead of the bare surface, we consider antiphase
DWs across which the sign of dimerization is reversed,
δ =  ± 1  →  �1, as shown in Figs. 5 and 7. The Bi (111) DWs,
hosting the π Zak phase, is indeed the 3D analog of the 1D
SSH model. The DW is tolerant to chemical contamination
and can easily be found in a system exhibiting charge density
wave.

In order to study the DW state without the interference
from the neighbor DW, we use the interface Green’s function
method [31,32] where the central DW structure is sandwiched
between two semi-infinite pristine Bi with opposite dimeriza-
tions, as is shown in Figs. 5(b) and 5(c) for the (111) DW and
Figs. 7(c) and 7(d) for the (112) DW. The construction of the
Hamiltonian matrices is described in Appendix B. Throughout
the remaining part of the paper, the tilde (�) and bar (−)
symbols over the k-point labels denote TRIM points on the
(111) and (112) DW BZ, respectively.

A. Nontrivial (111) domain wall

DW localized states. We have considered two types of (111)
DWs shown in Figs. 5(b) and 5(c). In type-I DW (DW1 )
the semi-infinite regions below (above) the DW has δ =  −1  (δ
=  +1) dimerization. The central DW region has an inver-sion
center, denoted by the horizontal black arrow, located on an
atomic layer, which is weakly bonded with its neighboring
atomic layers along the stacking direction. In type-II DW

PHYSICAL REVIEW B 107, 045135 (2023)

FIG. 5. (a) Schematic illustration of Su-Schrieffer-Heeger (SSH)
model with two types of domain-wall (DW) interfaces. Blue rectan-
gles denotes unit cells and the orange and green spheres indicate two
sublattice sites. (b,c) Two types of Bi (111) DWs: (b) DW(111) and

(c) DW2 , as the 3D analogues of the two DWs of the SSH model
shown in (a). Hexagonal blocks with δ =  ± 1  are the conventional
cells with either of the dimerizations. The central hexagonal block
denotes the interface where the sign of dimerization flips. Inversion
symmetry is preserved in both DWs; the ion at the inversion center is
marked with arrows.

(DW(111)), the sign of dimerization is opposite and the central
layer has strong bondings in both directions. The DW(111)

and DW2 correspond to the two types of DWs of the SSH
model shown in Fig. 5(a).

The calculated DW spectral function is shown in Figs. 6(a)
and 6(b) where the DW localized states (yellow lines) emerge
inside the DW-projected bulk states (blue shade). Since in-
version symmetry is preserved at the DW, all bands including
the DW-localized yellow bands are doubly degenerate. Note
that, regarding the interface band degeneracy, the DW local-
ized states resemble Fig. 2(d) instead of Fig. 2(e) even with
strong SOC. This is due to the inversion symmetry at the DW in
a sharp contrast to the bare surface where the inversion
symmetry is always broken. The π Zak phase at 0  and M
points induces an odd number of bands inside the bandgap that
guarantees at least one band to be pinned at the Fermi level as
long as the chiral symmetry persists. We find three DW
localized states, which are buried in the bulk bands at 0 . At M,
however, the second band in the middle among them appears
inside the bandgap indicating adequate chiral symmetry at
the M point compared to 0 . As discussed in Sec. I, the π
Zak phase corresponds to half polarization resulting in e/2
modulo e surface charge per surface unit cell and half-filled
in-gap state [12] (i.e., one electron per Kramers’ pair [33]).
Integration of the spectral function at M indeed confirms the
half-filling of the in-gap state in both types of DWs. The DW
localized band, marked with asterisk in Fig. 6, which emerges
from the nontrivial state at M is half-filled and hence metallic.
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FIG. 6. (111) DW band structure calculated using the inter-face
Green’s function method for (a) DW(111), (b) DW(111), and

(c) DW(111). DW-localized states (yellow lines) emerge inside DW-
projected bulk states (blue shade). The DW localized band labeled
with an asterisk is half-filled.

The number of DW-localized states can also be interpreted
as the number of bonds truncated at the DW. On the (111) sur-
face, a single Bi ion per unit cell is exposed with three bonds,
consistent with the number of in-gap states. The number of
bonds truncated at the DW is then determined by considering
the Wannier function center, which is related to the Zak phase
[see Eqs. (1) and (2)]. It is noteworthy that, for general sys-
tems with complicated terminations and reduced symmetries,
a Green’s function approach can rigorously predict the num-
ber of surface or interface in-gap states [34] without suffering
from the ion-truncating termination [11] or lack of inversion
symmetry. The metallic origin of the DW1 can be simply
understood from its construction involving the intercalation
of a monolayer in pristine bulk Bi, which in turn introduces
three doubly degenerate bands near the Fermi level, where

PHYSICAL REVIEW B 107, 045135 (2023)

FIG. 7. Bi (112) domain wall (DW) structure: (a) Calculated
Wannier charge center (WCC) of the slab structure (δ =  +1) shown in
(c). Blue and red lines denote mirror irreps of − i  and + i ,  respec-
tively. (b) Top-down and side views of the orthogonal unit cell, where σ
denotes the mirror plane. Two types of (112) DWs: (c) DW(112) and

(d) DW(112), where the red plane denotes the DW and the blue axes
with disks at the end denote the rotation or screw axes. The central
DW region is sandwiched between two semi-infinite pristine regions
with opposite dimerization. Type-I DW, DW(112), passes through the
ions and has inversion, mirror, and twofold rotation symmetries.
Type-II DW, DW(112) has the same symmetries but with the twofold
rotation replaced with the screw operation, denoted by the dashed
curve.

the second band is half filled since the number of available
electrons is three.

The emergence of 2D Dirac cones at K points in both
DWs is unexpected and the crossing point is found to be
lifted upon breaking the DW inversion symmetry. One way to
break the inversion symmetry is to vertically translate the
monolayer of DW(111). The translation eventually leads to a

structure, equivalent to the DW2 , having a Bi trilayer that
recovers the inversion symmetry. Therefore, although the two
DW structures [Figs. 5(b) and 5(c)] represent the 3D analog of
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the SSH model, there is a general (111) DW structure without
the DW inversion symmetry that will be referred to as type-III
DW, DW(111) (see Appendix B for the DW Hamiltonian).
Figure 6(c) shows the calculated band structure of DW3

where the breakdown of inversion symmetry lifts the twofold
degeneracy of DW localized bands at generic k points except
at the surface TRIM. One significant difference of DW3

compared to the type-I and type-II DWs, is the splitting of the
Dirac crossing at K , which in turn forms three separate bands,
indicating that the Dirac cone is related to the DW inversion
symmetry rather than the π Zak phase.

B. Trivial (112) domain wall

DW structure. In this section we consider two types of
(112) DWs as shown in Figs. 7(c) and 7(d) where the dimer-
ization [111] direction lies on the DW plane. Thus, the (112)
DWs can not be directly compared with the SSH model, in
contrast to the (111) DW where its dimerization direction is
normal to the DW plane that is a natural extension of the 1D
SSH model (Fig. 1). Nevertheless, this raises the question of
the emergence of (112) DW localized states and their topo-
logical nature. In both DW types, the central DW region is
sandwiched between two semi-infinite pristine regions with
opposite dimerization, involving a rigid shift of the right semi-
infinite region relative to the left along the [111] direction by
(c/2)z, or vice versa. Detailed symmetries of the two DWs
and consequent degeneracies of the band structure are further
discussed in Appendix C.

DW Parity. Figure 3(c) shows the bulk and (112) interface
BZs, where the bulk TRIM points are projected on the follow-
ing interface TRIM points:

0, F →  0 ; F, F →  Y ; T , L →  Z; L, L →  T . (11)

The parity flip induced by the dimerization reversal occurs at
both the T and L points, which are projected on the Z and T
points of the (112) interface BZ. Since the difference in the
number of parity flips (Table I) between the two dimerized
domains is zero at 0  and Y and four at Z and T , the DW-
projected Zak phases of both domains are the same, indicating
the trivial topology of the DW states for both types of (112)
DWs, unless certain crystal symmetry separates each band
inversion. Since the mirror plane σ in Fig. 7(b) is common
in both domains and the DWs one can group the parity states
according to the mirror eigenvalues. Figure 7(a) displays the
hybrid WCCs labeled by the mirror-symmetry eigenvalues on
0  −  Z and Y −  T , which shows no evidence for nontrivial
DW state.

DW localized states and symmetry. The band structures of
the DW(112) and DW(112) are shown in Fig. 8, where eight
of spin-degenerate DW-localized bands (yellow lines) appear
inside the DW-projected bulk states (blue shade). The number
of DW localized bands is related to the number of truncated
bonds on the (112) plane, which are eight in both DWs [see
red planes in Figs. 7(c) and 7(d)]. The fact that the number
of in-gap states is even is consistent with the trivial Zak phase
determined from the product of parity eigenvalues. Because of
the complicated band dispersion and crossings of the DW lo-
calized states, we focus only on the high symmetry line Y −  T
on which the DW localized states are approximately fourfold

FIG. 8. (112) DW band structures calculated using the interface
Green’s function method for (a) DW(112) and (b) DW(112), where the
spin-degenerate DW-localized bands (yellow lines) emerge in the
DW-projected bulk bands (blue shade).

degenerate. We find no specific crystal symmetry protecting
such degeneracy. Nevertheless, an effective symmetry can be
defined which can give rise to such degeneracy in the thick
DW limit (Appendix C).

C. Arbitrary DW orientation

So far, we have considered Bi antiphase DW as a 3D analog
of the SSH model with DW orientation either perpendicular
or parallel to the dimerization direction. For the (111) DW,
the projected parity flips across the DW inducing the π Zak
phase while the Zak phase is 0 for the (112) DW. In order to
predict the general behavior of the Zak phase for different DW
orientations, we consider the possible ways of projecting the
bulk TRIM points on various DW planes. For a surface or DW
plane with Miller indices (m1, m2, m3 ), the surface/interface
normal vector is given by

G{mi} =  m1b1 +  m2b2 +  m3b3, (12)

where the bi’s are reciprocal lattice vectors and the
{mi} � Z have no common factor. A pair of bulk TRIM
points {λ{n } , λ 0 } projected at the same point of the
surface/interface BZ are always separated by G{mi}/2, that is
given by

λ{ni} =  
2

(n1b1 +  n2b2 +  n3b3), (13)

λ{ni} −  λ{ni } +  G =  
2

G{mi}, (14)
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TABLE II. List of projection of the eight bulk TRIM points λ{n },
each labeled by the set of integers (n1, n2, n3) [Eq. (13)] on a general
surface or interface plane with Miller indices (m1, m2, m3) labeled as
odd (o) or even (e) [see Eq. (15)]. Also we list the four pairs of TRIM
points, which overlap on the projected 2D BZ.

TRIM Miller indices Pair of TRIM
λ{ni } (n1, n2, n3 )           (m1, m2, m3 )

k1 (0,0,0) (e,e,e)
k2 (1,0,0) (o,e,e) {k1k2, k3k7, k4k6, k5k8}
k3 (0,1,0) (e,o,e) {k1k3, k2k7, k4k5, k6k8}
k4 (0,0,1) (e,e,o) {k1k4, k2k6, k3k5, k7k8}
k5 (0,1,1) (e,o,o) {k1k5, k6k7, k2k8, k3k4}
k6 (1,0,1) (o,e,o) {k1k6, k5k7, k2k4, k3k8}
k7 (1,1,0) (o,o,e) {k1k7, k5k6, k2k3, k4k8}
k8 (1,1,1) (o,o,o) {k1k8, k2k5, k3k6, k4k7}

where ni =  {0, 1} selects one TRIM point out of the eight and
G is an appropriate reciprocal lattice translation. The pair of
TRIM points {λ , λ  0 } satisfy the following relation:

ni =  n0 +  mi −  2|Gi| =  
¡
n0 +  mi

¢ 
mod 2. (15)

This demonstrates that the ni and n0 are identical if the Miller
index mi is even, otherwise they differ by one if mi is odd.
Using this relation, one can enumerate all possible pairs of
TRIM points, which overlap on the projected 2D BZ of an
arbitrary surface or DW, which are listed in Table II. The
(111) and (112) DWs correspond to (o,o,o) and (o,o,e) indices,
respectively. The parity sign flip of Bi induced by dimerization
reversal occurs at k2, k3, k4, and k8 points in this notation.
The antiphase DWs with Miller indices (e,e,o), (e,o,e), and
(o,e,e) are expected to have parity sign flip across the DW
giving rise to DW-localized states similar to the (111) DW or
the SSH model. The remaining (e,o,o) and (o,e,o) DWs are
expected to be trivial similar to the (112) DW. It is im-portant
to emphasize that since Table II is valid for arbitrary
reciprocal lattice vectors, bi (i =  1 −  3), it can be applied to a
general centrosymmetric system. The only information re-
quired to predict a nontrivial DW orientation is to determine
which TRIM point flips its parity product across the DW. It is
even easier for bare surfaces, where the parity eigenvalues of
the ground state are enough to predict a nontrivial surface
orientation.

D. Experimental realization of dimerization reversal
via optical pumping

There are two plausible experimental approaches to real-
ize Bi antiphase DWs. The first approach is to search for
dislocation defects in a Bi single crystal. For example, the
(112) DW would appear on the (111) surface as a half step
edge (step height of Bi monolayer, c/6) in scanning tunnel-
ing microscopy measurements. The second approach is to
induce local dimerization reversal in pristine Bi using intense
femtosecond laser-pump excitations, which have shown the
reduction of the equilibrium displacement (10 ) of Bi, referred
to as “ultrafast bond softening” [27]. More specifically, the
laser-pump promotes valence electron into the conduction
band and softens the Bi bond that agrees well with com-

PHYSICAL REVIEW B 107, 045135 (2023)

plementary density functional theory calculations [27]. The
calculations also predict a transient structural transition to
undimerized state (10  →  0) upon excitation of �2.5% of va-
lence electrons. The energy barrier between the two dimerized
ground states was found to decrease with increasing charge
excitations, thus supporting the plausibility of dimerization
reversal by excitations. Indeed, experiments confirmed that
excitations higher than 2% lead to an irreversible “damage” to
the samples suggesting that a permanent dimerization reversal
may be achieved via the laser-pump excitations [27].

IV. CONCLUSIONS

We propose that the α phase of bulk Bi is a 3D manifesta-
tion of the SSH model. We demonstrate that while the HOTI
and CTI phases of bulk Bi remain invariant under dimerization
sign reversal, the Zak phase undergoes a transition from π to
0. The (111) antiphase DW is found to host metallic DW
bands, which are topologically protected due to the difference
in polarization between the two oppositely dimerized domains
(i.e., π Zak phase), which is the 3D analog of the SSH model.
Although the (112) DW has no such polarization difference,
the DW localized states exhibit interesting behavior related to
an effective symmetry that reveals itself in thicker DWs.

Our result clearly demonstrates the nontrivial Zak phase in
3D antiphase DWs. Unlike the bare surface being vulnerable
to doping, contamination, or reconstruction, antiphase DWs
offer a relatively stable platform for the manifestation of a
nontrivial Zak phase. Furthermore, the common presence of
DWs in charge-density-wave states offers a novel venue for
investigating the potential of the nontrivial Zak phase.

V. METHODOLOGY

The tight-binding parameters are extracted from the
Wannier Hamiltonian obtained by using VASP-Wannier90
interface [35–37]. The pseudopotentials are of the projector-
augmented-wave type as implemented in VASP [38,39],
with valence configurations 6s26p3 for Bi. The exchange-
correlation functional is described by the Perdew-Burke-
Ernzerhof generalized gradient approximation (PBE) [40].
The plane-wave cut-off energy is set to 300 eV and the Bril-
louin zone sampling grid is 12 ×  12 ×12. The structure is
relaxed with a constraint of being FCC for an insulating band
gap. The twelve strongest hopping terms are then used in the
calculation together with atomic spin-orbit coupling for the p
orbitals. The spectral density of DW-localized states is cal-
culated using the interface Green’s function method [31,32]
where two semi-infinite surface Green’s functions are first
calculated for the two dimerized phases and then combined
with the central DW Hamiltonian.
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- t i j  (eV)
σw            2.101755
σv            1.692856
σ2           0.211062
πw         -0.577899
πv         -0.369039
ρw         -0.145850
ρv            0.094550
μw            0.054422
μv         -0.063276
μ0           0.007612
ν1         -0.030479
ν2         -0.014119
soc        1.354266

FIG. 9. Selected tight-binding parameters for Bi. The back-
ground square lattice illustrates the Bi plane normal to one of the
Cartesian coordinate vectors. Thick (thin) black line denotes strong
(weak) bonding after the atomic displacement (i.e., dimerization).
The hopping terms with subscripts, w and v, are lifted by the
dimerization and they are swapped by the dimerization reversal.
Terms with numerical subscripts are not affected by the dimerization
reversal.

APPENDIX A: TIGHT-BINDING PARAMETERS

Although Bi has finite direct band gap in the whole BZ, its
indirect gap between T and L points is negative causing metal-
lic band structure and difficulties in the analysis of topological
properties. For instance, the projected bulk states (blue shade
in Fig. 8) at the Z point on the (112) BZ, should be gapless
due to the negative indirect gap. In order to suppress the com-
plexity, we have constructed the tight-binding parameters in
the fcc instead of the rhombohedral cell, which in turn opens
up a gap, shown in Fig. 3(b), without affecting the topological
properties such as parities at the TRIM points.

Figure 9 shows the selected twelve hopping terms in a
dimerized cubic lattice and the amplitudes are listed in the
inset table together with that of the atomic spin-orbit coupling.
The σw,v , πw,v , and ρw,v are the nearest-neighbor hoppings
distinguished by the relative direction of the p orbitals; the σ2

is the third nearest-neighbor σ -bond like hopping term; the
ρw,v terms vanish without dimerization because of the basis
symmetry; the μw ,v ,0 and ν1,2 terms are the second nearest-
neighbor hoppings, and the ν1,2 terms do not change under
dimerization reversal unless the direction of dimeriza-tion
changes.

APPENDIX B: HAMILTONIAN OF THE DW

The hopping terms with subscripts w and v modulate in
the vicinity of the DW. The amplitude of the hopping terms is
determined via linear interpolation of the two hopping terms
by considering the distances of two basis from the DW plane.
Namely,

PHYSICAL REVIEW B 107, 045135 (2023)

w1 w2 w3 w4 w5 w6

DW1 −2 −2 −2 0 2 2
DW2             2         2         2 0      −2       −2
DW3 −2 −2 −1 1 2 2

FIG. 10. Modulation of hopping parameters across the (111)
DW. Two types of DWs are illustrated together with horizontal
planes, separated from the DW denoted as red solid line. Weight
factors used for the linear interpolation are presented in the inset table
together with the type-III DW.

ri j =  (wi +  wj +  4)/8, (B3)

where ti j is the original hopping terms of Bi (Fig. 9) and ri j

is the mixing ratio depending on the weight factor wi

representing the sign of dimerization as illustrated in Figs. 10
and 11. The DW(111) and DW(111) have 6 atomic layers along
the stacking direction with one ion per layer. The DW1 

 ̄ has
14 ions and 7 vertical planes (w1, · · · , w7) in the cell while
DW(112) has 12 ions and 6 vertical planes. In this interpolation
scheme, the weighting factors for the thinnest (112) DW are
also listed with a subscript “thin” in the inset of Fig. 11. The
results for thin DW case shown in Figs. 12(b) and 12(d) are
calculated using Hamiltonians generated with these weighting
factors.

APPENDIX C: SYMMETRY OF (112) DW

In type-I DW, DW(112) [Fig. 7(c)], where the Bi atoms lie
on the DW plane, has inversion, mirror, and twofold rotation
symmetries. The twofold rotation, C2 around the [110] di-
rection is denoted by the horizontal blue axis. On the other
hand, type-II DW, DW(112) [Fig. 7(d)], intersects the bonds
between atoms across the DW and has similar symmetries as
DW(112) except that the C2 rotation is replaced by a screw S2

symmetry involving a twofold rotation around the [110]
direction followed by a half a translation along the same axis.
Namely,

ti j =  (1 −  ri j )ti j +  ri jti j , (B1)

ti j =  (1 −  ri j )ti j +  ri jti j , (B2)

C2 : (x, y, z) →  (−x , y, −z ) � iσy , (C1)

S2 : (x, y, z) →  (−x , y +  1/2, −z ) � iσy. (C2)
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(a) (b)
Y

km

(c) (d)

w1 w2 w3 w4 w5 w6 w7

DW1 −2 −2 −1 0 1 2 2
thin −2 −2 −2 0 2 2 2

DW2 −2 −2 −1 1 2 2 -
 DWthin −2 −2 −2 2 2 2 -

FIG. 11. Modulation of hopping parameters across the (112)
DW. Two types of DWs are illustrated together with vertical planes,
separated from the DW denoted as red-solid line. Weight fac-tors
used for the linear interpolation are presented in the inset table.

Because of the DW inversion symmetry, all bands are twofold
degenerate in the whole interface BZ. The high symmetry
lines along ky (0 − Y  and Z −  T ) are invariant under the C2

operation for the DW(112) and the S2 operation for the

DW(112). In addition, the nonsymmorphic S2 symmetry for

DW2 
 ̄ guarantees a fourfold degeneracy at Y and T where ky

=  ±π  [41].
In Figs. 12(a) and 12(c) we display the zoom-in band

structure of Figs. 8(a) and 8(b) on the high symmetry line Y
−  T for both types of DWs along with the corresponding k-
resolved spectral function (blue lines) at Y . The calcula-tions
of the spectral function for DW(112) corroborate the

emergence of single peaks at Y , which are indeed fourfold
degenerate. On the other hand, such a fourfold degeneracy is
not protected by C2 symmetry for DW(112), which, however,

exhibits similar band folding at Y point, where the peaks in
Fig. 12(a) have negligible splitting. Furthermore, the high
symmetry line Y −  T appears to be fourfold degenerate in
both types of DWs, which cannot not be explained by the
crystal symmetries. This apparent fourfold degeneracy of the

¯m ¯m

FIG. 12. Zoom-in band structure (left panel) and k-resolved
spectral function (right panel) for [(a),(b)] DW(112) and [(c),(d)]

DW(112). The spectral functions at Y (blue line) and km (red line)
points are plotted in log scale. (b) and (d) are similar plots for thinner
DW width than (a) and (c), respectively, showing the splitting of the
peaks.

high symmetry line is found to be lifted as the DW thickness is
reduced, as is clearly shown by the splitting of the peaks
(denoted by red) in Figs. 12(b) and 12(d). This implies an ef-
fective symmetry, which appears to be present only for thicker
DWs.

It is worth to emphasize that the two types of DWs are
distinguished only by the position of DW plane and the
Hamiltonian difference between the two DWs becomes subtle
with increasing DW thickness. Both Hamiltonians eventually
acquire C2 and S2 symmetries in the thick DW limit. The two
symmetries are combined to an effective symmetry of the DW,
which can be expressed as

ˆ2 ˆ2 : (x, y, z) →  (x, y +  1/2, z) � −1 , (C3)

consisting of a half translation operation that allows the BZ
unfolding, ky: [−π ;+π ] →  [−2π ;+2π ] and causes band de-
generacy on the ky =  ±π  line. This emergent half-translation
symmetry naturally explains the apparent fourfold degeneracy
(i) of the high symmetry line Y −  T in both types of DWs, and
(ii) at Y in DW(112).
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