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The theory of bulk orbital magnetization has been formulated both in reciprocal space based on Berry
curvature and related quantities, and in real space in terms of the spatial average of a quantum mechanical local
marker. Here we consider a three-dimensional antiferromagnetic material having a vanishing bulk but a nonzero
surface orbital magnetization. We ask whether the surface-normal component of the surface magnetization is
well defined, and if so, how to compute it. As the physical observable corresponding to this quantity, we
identify the macroscopic current running along a hinge shared by two facets. However, the hinge current only
constrains the difference of the surface magnetizations on the adjoined facets, leaving a potential ambiguity. By
performing a symmetry analysis, we find that only crystals exhibiting a pseudoscalar symmetry admit well-
defined magnetizations at their surfaces at the classical level. We then explore the possibility of computing surface
magnetization via a coarse-graining procedure applied to a quantum local marker. We show that multiple
expressions for the local marker exist, and apply constraints to filter out potentially meaningful candidates.
Using several tight-binding models as our theoretical test bed and several potential markers, we compute surface
magnetizations for slab geometries and compare their predictions with explicit calculations of the macroscopic
hinge currents of rod geometries. We find that only a particular form of the marker consistently predicts the
correct hinge currents.
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I. INTRODUCTION

The modern theories of bulk electric polarization P and
bulk orbital magnetization M [1–7] express these quanti-
ties as Brillouin zone integrals of quantities involving Berry
connections and curvatures of ground-state Bloch functions.
However, the ground state of systems of independent electrons
may also be uniquely described by the single-particle density
matrix, also known as the ground-state projector P(r, r0). This
is a quantity that for insulating states of matter decays expo-
nentially with |r −  r0|, even for Chern insulators [8].

A natural question to ask is whether it is possible to express
P and M in terms of P(r, r0). In the case of the polarization,
while the change 1 P  can be determined by following the
change of P(r, r0) between two states connected by an adia-
batic switching process, there is no corresponding expression
for P itself, which is determined only modulo a quantum [1,2].

However, M does not suffer from any quantum of in-
determinacy, and should be expressible via the ground-state
projector. Bianco and Resta [9] demonstrated that this is, in
fact, correct. Starting from an expression for a simple 2D
crystallite of finite area, the authors demonstrated that for any
insulator, even a Chern insulator, the orbital magnetization M is
given in the thermodynamic limit by

Z
M =  

A A 
M(r )d r. (1)

Here A is the bulk unit-cell area and M (r )  is a local func-
tion, hereafter referred to as the local marker, which is
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expressed in terms of P(r, r0). For large finite samples in the
thermodynamic limit, the averaging in Eq. (1) may equiva-
lently be performed over the entire crystallite. Although M (r )
appears to play the role of magnetic dipole density, only its
macroscopic average bears any physical meaning. This is in
keeping with the fact that while microscopic charge and cur-
rent densities are well defined, microscopic dipole densities
(be it charge or orbital magnetic) are not [10].

Recent years have witnessed numerous efforts aimed
at defining and providing explicit expressions for surface-
specific analogues of bulk quantities. Examples include the
surface anomalous Hall conductivity (AHC) [11,12] and
the surface-parallel boundary electric polarization [13–17] on
the surface of a bulk insulator. To date, however, there has
been very little discussion of surface orbital magnetization
in the literature [18,19], and a complete theory of orbital
magnetization at the surface of a bulk material has yet to be
developed.

In the present paper, we explore the possibility of defining
surface orbital magnetization. By this we mean the excess
surface-normal macroscopic magnetization (magnetic mo-
ment per unit area) at the surface of a bulk material with
broken time-reversal (TR) symmetry. Our investigation is re-
stricted to antiferromagnetic systems featuring a vanishing
bulk magnetization, as this allows us to readily disentangle
surface contributions to the orbital magnetization from those
stemming from the bulk. We shall also restrict ourselves
throughout to the case of insulating surfaces of insulating
crystals, leaving aside for now any special considerations that
might arise for metallic surfaces.

The case of surface spin magnetization is much more
straightforward, as the latter can be obtained simply by
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integrating the net spin density 1 n  =  n↑ −  n↓ over the sur-
face region after an appropriate coarse graining (e.g., using
window-averaging methods). In the remainder of this paper,
therefore, we focus solely on the orbital component of the
surface magnetization. Here it is natural to expect more dif-
ficulties, since even the theory of bulk orbital magnetization
has been put on a solid footing only in relatively recent times
[3–7]. The essential problem, as in the theory of electric polar-
ization, is that the position operator is ill defined in the Bloch
representation, so that methods based on Berry connections
and curvatures are required instead. Another way to frame the
problem is to note that quantum-mechanical expressions are
available for neither the local polarization density P(r) nor
the local orbital magnetization density M(r).

Even at a classical level, another difficulty arises. Recall
that, while the bulk orbital magnetization cannot be inferred
from the local current distribution deep in the bulk, it can be
deduced with the added knowledge of the currents on its
surface facets. By analogy, one might expect that the surface
magnetization on a given facet can be inferred in a similar way
from the added knowledge of the currents flowing at the edges
of the facet. However, such a facet boundary is always a hinge
where two facets meet, with the hinge current given by the
difference between the surface magnetizations on the two ad-
joining facets. Since the hinge currents only determine surface
magnetization differences, this raises the question whether
surface orbital magnetization can be uniquely determined, or
only determined up to a constant shift in the values predicted
for all facets, even when given a perfect knowledge of all local
currents. Such a “shift freedom” is an unavoidable feature of a
classical description starting from current densities, and is
related to the fact that while the curl of M(r) is constrained by
the current distribution, its divergence is not.

With the introduction of a quantum description, the bulk
electric polarization and orbital magnetization, which were
ill determined from a classical knowledge of bulk charge and
current densities, become well defined based on a knowledge
of the bulk Bloch eigenstates (up to a quantum in the case of
the polarization). In a similar way, one might hope that an
appropriate quantum description of the surface problem would
allow for a robust prescription for computing surface orbital
magnetization from a knowledge of surface, as well as bulk,
ground-state wave functions. This is the goal of the present
paper.

In this paper, we first investigate the role of symmetry and
show that certain classes of symmetries do allow for the sur-
face magnetization to be uniquely extracted from a knowledge
of hinge currents, even at the classical level. We then turn to
the quantum problem and explore whether the use of a local
marker M(r ), such as the one proposed by Bianco and Resta,
can be adopted for the purpose of defining a surface orbital
magnetization. That is, even if the value of M (r ) at a single
point has no obvious physical meaning, we ask whether it is
possible to coarse grain and integrate such a marker over the
surface region to obtain a valid expression for the surface
orbital magnetization.

This paper is organized as follows. In Sec. II, we iden-
tify the physical observable corresponding to the presence of
a surface magnetization, namely the macroscopic current
running along a hinge shared by adjacent surface facets of a
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bulk crystal, given by the difference between the magnetiza-
tions of the two surface facets forming the hinge. We show
that within the framework of a classical theory, this single
relation is insufficient to ascribe a uniquely defined value of
magnetization to any of the facets; constraints in the form of
crystalline symmetries are required to accomplish this. In Sec.
III, we identify all the possible symmetries that lead to
unambiguous surface magnetizations. We find that this set of
symmetries is identical to the set of symmetries that quantizes
the Chern-Simons axion coupling.

In Sec. IV we introduce in greater detail the local marker
formulation of orbital magnetism, and introduce our formal-
ism for the calculation of surface magnetization and hinge
currents. The results of Sec. III and Sec. IV are later tested in
Sec. V by calculations performed on tight-binding models. We
end our paper with a discussion of our results and some spec-
ulations on their connection to the theory of orbital magnetic
quadrupole moments in Sec. VI, and summarize in Sec. VII.

II. SURFACE MAGNETIZATIONS AND HINGE CURRENTS

Consider a stand-alone 2D system such as a monolayer or
multilayer with layer-normal magnetization M�. The mag-
netization manifests itself on any edge of the system as a
macroscopic bound current of magnitude M�, with its sign
determined from the right-hand rule. At the classical level,
M� can be determined from the combined knowledge of the
microscopic current density deep in the bulk and at the edge.
Without the added knowledge of the current density at the
edge, however, M� can be determined only from a knowledge
of the quantum-mechanical bulk Bloch eigenstates.

If instead we consider the surface of a 3D bulk system
(with vanishing bulk magnetization), we would also expect
any surface-normal magnetization at the surface to manifest
itself at an edge in a similar fashion. However, in the presence
of the bulk, the objects playing the role of edges are the hinges,
i.e., the intersections of neighboring surface facets. So, while
in the case of an isolated 2D system the edge current directly
determines the magnetization M�, any current present on a
hinge only determines the difference of M� values on the
two surface facets meeting at the hinge. Hence a classical
knowledge of the microscopic current distribution in the bulk,
at the surfaces, and at the hinge is sufficient to uniquely
determine the difference of M� values across facets sharing a
hinge, but not the M� values individually. We depict this
situation schematically in Fig. 1, where it is evident that the
hinge current ILR is given by

ILR =  ML −  MR. (2)

Note that a line current may also be present at a line defect,
such as a step or domain wall [20], that separates surface
patches having the same orientation but different M� values.
We can regard these as 180 hinges, and the treatment of such
cases introduces no new difficulties. In the remainder of this
paper, we restrict the discussion to true hinges connecting
facets of different orientation. In any case, we emphasize that
the line currents in question are bound currents localized at
insulating hinges, not the chiral conductance channels that
may occur in topological systems, e.g., at the boundary of a
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FIG. 1. Schematic depicting a hinge and the surface facets that
compose it. The black arrowhead on the hinge depicts the direction of
flow for the hinge current ILR to be positive. The maroon and blue
arrows denote the surface-normal magnetization vectors MR and ML,
respectively. The hinge current is ILR =  ML −  MR.

2D quantum Hall state or on the hinges of an axion insulator
[21,22].

For the entirety of this paper, we take the hinge current to
be a physical observable, being detectable in principle by the
circulating magnetic field it creates. Combined with Eq. (2),
this assumption indicates that differences between magneti-
zations on neighboring surface facets are also observables,
in addition to being classically well defined in the sense de-
scribed earlier. However, there is no a priori reason to believe
that the individual values of facet magnetizations are either
observables or are uniquely defined in the context of classical
theory.

As mentioned in the Introduction and explicitly demon-
strated by Eq. (2), the individual values of the facet
magnetizations are defined classically only up to a common
constant shift, resulting in a shift freedom. To understand how
the shift freedom arises, consider a finite crystallite embedded
in vacuum. The crystallite’s steady-state microscopic current
density j(r) is divergenceless, and thus may be expressed as
the curl of a vector field M(r) with the interpretation of a
local magnetization density. However, M(r) has a “gauge
freedom” in that augmenting M(r) by the gradient of an
arbitrary scalar field f (r) leaves j(r) unchanged. In particular,
let f (r) be some function that is periodic with average value 1
in the interior, vanishes in the vacuum region outside, and
transitions from these behaviors over a few lattice constants at
the surface. Then at the coarse-grained level, the new M(r)
differs from the old one by what appears to be a delta-function
concentration of M� of magnitude − 1  on all surface facets.
This is precisely the shift freedom.

We must therefore understand whether, or under what
circumstances, we can resolve this ambiguity and assign a
unique M� to a given facet of the bulk. Once an unambiguous
value of magnetization is assigned to even a single facet, we
may then repeatedly employ Eq. (2) to find the magnetization
at any other facet of the 3D crystallite.

While we have focused above on the surface-normal
component of the surface orbital magnetization, an in-plane
component Mk could also be present. If so, its strength is
easily computed from a detailed knowledge of the micro-
scopic current distribution in the surface region, unlike the
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FIG. 2. Schematic depiction of a hinge formed by two surface
facets, one of which has a magnetization Msurf that is not normal to
the surface, having components M� along z and Mk along y. Mk is ob-
servable in principle by the presence of a concentration of magnetic
field By in the surface region. The hinge current is observable via
the integral M · dl around the dashed blue Amperian loop, which
remains normal to the surface while passing through the surface
region delineated by the dashed black line.

more problematic M�. In principle, Mk should be observable
by the presence of a corresponding concentration of Bk in
the surface region (since H vanishes in this geometry in the
absence of free current). When Mk is present, we can filter
out its contribution to the hinge current by constructing an
appropriate Amperian loop that is normal to both surface
facets, as depicted in Fig. 2. Integrating the magnetization
around this loop yields the bound current passing through the
loop. Since we assume the absence of free current, and since
the vacuum and bulk are free of magnetization, only the top
and side M� values contribute to the hinge current. We adopt
this as the definition of the hinge current in such situations.

III. SYMMETRIES AND SURFACE MAGNETIZATION

The goal of this section is to establish under what circum-
stances we can specify a uniquely defined magnetization on a
given surface facet of a 3D crystallite in the context of clas-
sical theory. By this, we mean whether a classical knowledge
of the microscopic current distribution in the bulk, at the sur-
faces, and at the hinges is sufficient to assign a unique value of
M� to a given surface facet. As noted in the previous section,
Eq. (2) effectively results in one equation in two unknowns,
which prevents an assignment of definite values to ML and
MR. We therefore need additional restrictions on the possible
values ML and MR may take. In this section, these restrictions
will appear in the form of symmetry-induced constraints. We
first introduce the notation we will be using to describe the
actions of the symmetry operations, and subsequently delve
into the symmetry analysis of surface magnetization.

A. Notation

Consider a surface with unit normal n. Let the outward
surface-normal component of the surface magnetization be
M� =  M · n, with units of magnetic moment per unit area.
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TABLE I. Summary of labels attached to a symmetry opera-
tion depending on whether it reverses n (R) or not (S, N ), where S
and N refer to n-symmorphic and n-nonsymmorphic operations
respectively. Superscripts “−”  and “+”  indicate whether or not the
operation reverses the sign of the outward-directed M� on a surface
with normal n, which also corresponds to whether the symmetry
operation is axion-odd or axion-even.

M�-preserving M�-reversing

n-reversing R+ R−

n-symmorphic S + S −

n-nonsymmorphic Nˆ Nˆ

With respect to this choice of n, we will focus on operations
that either preserve or reverse the direction n, as well as
those that preserve or flip the sign of M�. Operations that
flip n will be denoted by R ; the superscript “+”  or “−”
indicates that M� is preserved or flipped, respectively. We fur-
ther classify operations that preserve n as either symmorphic
or nonsymmorphic along that direction, where by the latter
term we mean operations that involve a fractional translation
along n, such as a screw or glide mirror operation. Thus, n-
symmorphic operations will be denoted S ±  (even if they
involve fractional translations in the plane normal to n), while
n-nonsymmorphic operations will be denoted N ± .

We summarize the classification of symmetries in Table I.
We note that operations labeled with a superscript “−”  are
axion-odd while those labeled with a “+”  superscript are
axion-even. By definition, an axion-odd symmetry is either a
proper spatial rotation with time reversal or an improper rota-
tion without time reversal. The significance of this distinction
will become clear in Sec. III C.

For concreteness, let n =  z. We list all the symmetry oper-
ations that fall into the categories listed above in Table II. In
our notation, E denotes the identity operation and I denotes
inversion. Cn denotes a rotation by 2π/n about the z axis (n
=  2, 3, 4, 6) while C2 is a twofold rotation about an axis in
the x-y plane. mz denotes a mirror reflection across the x-y
plane, and md is a mirror reflection across a plane containing
the z axis. Sn =  mzCn denotes an improper rotation (rotoin-
version) about the z axis. A prime indicates composition with
time reversal. Nonsymmorphic fractional translations along z
are indicated as c/2 or pc/n, where c is the vertical lattice
constant and p <  n is an integer (or half-integer in the case of
C0 ). Half lattice translations in the x-y plane are indicated

TABLE II. List of all the specific symmetry operations that be-
long to each symmetry operation type.

Type Symmetry operations

R− mz, I , S3,4,6, C
0 
, {mz|τd/2}, {C

0 
|τd/2}

Sˆ                                                                                           E
0, {E0|τd/2}, C0 , md

Nˆ {E0|c/2}, {C0 |pc/n}, {md|c/2}
R+                                                                              mz, I

0, S3,4,6, C2, {mz|τd/2}, {C2|τd/2}
S +                                                                                                                      Cn, m0

N + {Cn|pc/n}, {m0 |c/2}

FIG. 3. Schematic of a slab geometry for a bulk material with an
Rz symmetry. An additional facet of arbitrary orientation appears at
right. The Rz symmetry ensures that the magnetizations on the top
and bottom facets are equal and parallel, as indicated by the maroon
arrows. All three facet magnetizations may be found using the known
hinge currents I1 and I2, as discussed in the text.

by τd /2. In what follows, we shall often denote the screw
operation {Cn|pc/n} as just np for conciseness.

It is important to note that some of the above operations
may belong to R, S, and N operations with respect to other
directions. For example, the glide mirror {my|c/2} is both an
Nz and an Ry operation.

B. Symmetry analysis for surface magnetization

In this subsection, we explore how to exploit the symme-
try operations in the S± , R± , and N ±  classes to define an
unambiguous surface magnetization on at least one surface
facet; repeated application of Eq. (2) will subsequently help
define magnetizations for all other surface facets. The main
idea is that a given symmetry operation will relate specific
surface facets to one another, allowing us to explicitly relate
physical quantities defined on those facets. We then consider
the magnetizations M� at the surfaces, and check whether
this configuration allows for an unambiguous determination
of these M� values. We find that S− , R− , and N −  operations
allow us to define unambiguous surface magnetizations, while
for S+ , R+ , and N +  this is not possible.

As a reminder, we are focusing on n =  z for concreteness.
We first investigate the axion-odd symmetries S − , R− , and
N − , and subsequently the axion-even symmetries S + , R+ ,
and N + .

Symmetries of type S− . Suppose we find a symmetry of the
type S −  in the bulk symmetry group. We may then construct a
surface respecting this symmetry with unit normal z. Under
an S −  operation, the surface will remain invariant, but the
magnetization at the surface will be flipped. This can only
mean that the magnetization at the surface is zero.

Symmetries of type R− . If we find an R −  symmetry in the
bulk symmetry group, we may construct a finite slab in z
consistent with the identified R −  symmetry applied to the
slab as a whole. This construction will then enforce identical
magnetizations on top and bottom surfaces.

Let us introduce an arbitrary third surface facet to the slab,
as shown in Fig. 3. In the figure, the arrows normal to the
surfaces indicate the direction of the surface-normal magne-
tization in the given global Cartesian frame. The vectors are
labeled by their corresponding magnitudes; since MB <  0, the
magnitude of the bottom surface magnetization is labeled as
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FIG. 4. Symmetry constraints arising from 3m, 4m, and 6m

symmetries. Arrows indicate the directions of the surface-normal
magnetizations relative to a global Cartesian frame. A hinge cur-
rent flowing into or out of the page is shown with a cross or dot
respectively. (a) Triangular prism construction consistent with 30

symmetry. Surfaces have no magnetization. (b) Square prism con-
struction consistent with 40     symmetry. Surface magnetizations form
a two-in two-out configuration with M� =  I/2. (c) Hexagonal prism
construction consistent with 60     symmetry. Surface magnetizations
form a three-in three-out configuration with M� =  I/2.

−M B . We then also have two hinges with currents I1 and I2,
with the directions of the arrowheads on the hinges indicating
the directions of positive current flow.

Using our knowledge of these currents and the symmetry
of the bulk slab, we may then write down a system of equa-
tions

0 =  MT +  MB ,

I1 =  MT −  MF ,

I2 =  MF −  MB , (3)

that can be solved for the three facet magnetizations.
Symmetries of type N − . From Table II we see that there are

three types of operations belonging to the N −  class: the time
reversed half-translation {E0|c/2}, glide mirrors {m |c/2}, and
time reversed screw symmetries. Note that {E0|c/2} is also
a S −  operation, while {md|c/2} and {C0 |c/2} are also R −

operations. We therefore already know that we can define
unambiguous surface magnetizations in those cases. We thus
focus on the time-reversed screws with threefold, fourfold,
and sixfold rotation axes.

For these operations, we construct crystallites in the shape
of regular triangular, square, or hexagonal prisms, respec-
tively, as shown schematically in Fig. 4. Each prism is infinite
along z and is constructed to respect the corresponding screw
symmetry applied to the rod as a whole. In the case of 30 ,
symmetry dictates that each facet have vanishing magnetiza-
tion. For the 40     and 60     screws, the surface magnetizations
may be found from the currents on the prism hinges.

Symmetries of type S+ . We construct a surface as in the S −

case. Although S +  operations leave the surface invariant, they
do not flip M�. We therefore cannot extract any meaningful
information from this construction.

However, operations in this class may also relate surfaces
with normals not along z. For the case of Cn operations with
n =  3, 4, 6, we may generate the same infinite prism construc-
tions as in the N −  class of operations. However, as we see in
Fig. 5, all the hinge currents vanish, and although we know
the relative orientations of the facet magnetizations, we cannot
extract any information on their magnitudes as a result.

For the C2 as well as m0 operations, we may construct a
slab geometry as in the case of Rˆ operations, except that the

PHYSICAL REVIEW B 107, 115102 (2023)

FIG. 5. Symmetry constraints arising from 3m, 4m, and 6m sym-
metries. Conventions are the same as in Fig. 4. (a) Triangular prism
constructed using 3m symmetry. (b) Square prism constructed using
4m symmetry. (c) Hexagonal prism constructed using 6m symmetry.
In each case all facets have the same surface magnetization M�,
whose magnitude cannot be determined since hinge currents are
absent.

z-direction will be periodic, and the slab is consistent with
either the C2 or the m0 symmetry. As a result, any possible
surface magnetizations will be equal and antiparallel on the
two surfaces, as shown for the particular case of an m0 symme-
try in Fig. 6. With the introduction of an additional arbitrary
surface facet, we may attempt to solve a system of equations

0 =  ML −  MR ,

I1 =  ML −  MF ,

I2 =  MF −  MR , (4)

involving the hinge currents. However, this system is unsolv-
able.

Thus, S +  operations alone are unable to unambiguously
define surface magnetizations.

Symmetries of type N + . Being nonsymmorphic operations
in the z direction, no surface with the same unit normal will
ever be preserved by an N +  operation, so these operations
by themselves tell us nothing about magnetizations at this

FIG. 6. Schematic of a slab geometry respecting an mx sym-
metry, with the mirror plane illustrated by the thatched gray plane
bisecting the slab. An additional facet of arbitrary orientation appears
at the top. The m0     symmetry ensures that the magnetizations on the
left and right facets are equal and antiparallel. In this case the
knowledge of the hinge currents is insufficient to determine the M�

values, as discussed in the text.
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surface. Furthermore, they provide no information on surfaces
transverse to the z surface, as the arguments in Figs. 5 and 6
apply.

Symmetries of type R+ . The same arguments as presented
for the S+ and N + cases hold here as well. We therefore cannot
define surface magnetizations in this case either.

C. Discussion

Within a classical context, our symmetry analysis reveals
that we may unambiguously define magnetizations on the
surfaces only when the bulk symmetry group features S− , R− ,
or N −  operations.

In these cases, the argument proceeded via a thought ex-
periment involving the construction of a slab or rod in such a
way that the surface facets are related to each other by a
global application of the relevant bulk symmetry. The facet
magnetizations could then be determined from a knowledge
of the hinge currents in these geometries. We emphasize that,
for these bulk symmetries, the surface magnetizations are still
well defined even for configurations in which different facets
are terminated in different ways. The conclusion that M� is
well defined follows just from knowing that it is possible, in
principle, to prepare a globally symmetric slab or rod.

As it happens, the S − , R− , and N −  symmetries that allow
an unambiguous definition are precisely the ones that are
classified as axion-odd according to Table I. In other words,
these are the symmetries that reverse the sign of the Chern-
Simons axion (CSA) coupling, which describes a topological
contribution to the isotropic linear magnetoelectric coupling
of the material [12,23,24]. This is characterized by an “axion
angle” θCS that takes the form

θCS =  −  
1

²μνσ  Tr Aμ∂νAσ −  
2i

AμAνAσ     dk, (5)
BZ

where the integration is performed over the Brillouin zone
and Amn(k) =  ihumk|∂μunki is the Berry connection matrix,
with |unki being the cell-periodic part of the Bloch function of
occupied band n.

A defining feature of the CSA coupling is that it is gauge-
invariant modulo 2π under a unitary mixing of the occupied
ground-state Bloch functions. That is, if we perform the trans-
formation

occ

|ũnki = Umn(k)|umki, (6)
m

where Umn(k) is a unitary matrix, then θCS →  θCS +  2πn
where n is an integer. The operations of the type S , R , and
N −  reverse the sign of θCS; but since the coupling is defined
modulo 2π , it follows that θCS =  0 or π . Thus, the axion
angle is quantized to values of 0 or π in the presence of axion-
odd symmetries. By contrast, an axion-even symmetry
(simple rotation or time-reversed improper rotation) allows for
a generically nonzero value of θCS.

This identification of an intimate connection between the
ability to define unambiguous surface magnetizations and the
presence of a quantized axion coupling is one of the principle
contributions of this paper.

While we have been focusing on the consequences of sym-
metry in this section, this can only take us so far. Even in
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the axion-odd case where we expect a unique definition of
surface magnetization, the symmetry arguments and classical
theory do not answer the question of how, in principle, this
quantity can be obtained from a direct calculation using only
information about the surface Hamiltonian and surface elec-
tronic structure of a given surface. In the opposite case that no
axion-odd symmetry is present, the same question arises, but
now there is the additional issue of a possible shift freedom in
the definition of M�. To go beyond the symmetry arguments,
we need to develop an explicit framework for carrying out
calculations of surface orbital magnetization in the general
case. The remainder of this paper is devoted to an exploration
of the use of quantum-mechanical orbital-magnetization local
markers for the construction of such a framework.

IV. METHODS

We now turn to a discussion of the computational aspects
of surface magnetization and hinge currents. We expand on
the local marker formulation of orbital magnetization [9] and
discuss its application in computing surface magnetization.
The section is concluded with a discussion of microscopic
currents and an explanation of their relationship to the macro-
scopic hinge current.

A. Local-marker formulation

We now work in 3D, where Eq. (1) takes the form

M =  
1 

Z 
M (r )d r . (7)

V

Here V is the unit-cell volume and both M and M ( r )
have units of magnetic moment per unit volume. (Quantities
denoted as M� or Msurf will continue to be 2D surface mag-
netizations with units of magnetic moment per unit area.) We
focus initially on the single component Mz of M, dropping the z
subscript for conciseness. The local-marker formulation is a
direct result of expressing the orbital magnetization in terms
of the single particle density matrix P(r, r0). Bianco and Resta
[9] demonstrated that for bulk insulating systems at T =  0 at
the single-particle level, where P2 =  P, the magnetization M
may be written as

M =  MLC +  MIC +  MC (8)

with

MLC =  −
h̄ V 

ImTr[PxQHQyP], (9)

MIC =  
h̄V 

ImTr[QxPHPyQ], (10)

MC =  −  
h̄V 

ImTr[QxPyQ], (11)

where e <  0 is the electron charge [25], the trace is taken per
unit cell of volume V , Q =  1 −  P, H is the Hamiltonian, and
μ  is the Fermi energy. MLC, MIC, and MC correspond to the so-
called local circulation, itinerant circulation, and Chern number
contributions to the magnetization, respectively [5].

Equation (7), expressing the total M as a trace of a local
marker M (r ) over position space, is evidently satisfied by
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choosing

M (r ) =  MLC (r ) +  MIC (r ) +  MC (r ), (12)

with

MLC (r ) =  −
h̄  

Imhr|PxQHQyP|ri, (13)

MIC (r ) =  
h̄ 

Imhr|QxPHPyQ|ri,                  (14)

MC (r ) =  −
2μe

Imhr|QxPyQ|ri.                 (15)

Note that MC (r ) is directly proportional to the local Chern
marker C(r) [11,26], i.e.,

MC (r ) =  −
2

h̄
e

Imhr|QxPyQ|ri =  −  
h 

C(r), (16)

consistent with the discussion towards the end of Sec. III C.
It is important to note that due to the invariance of the trace

under cyclic permutations of operators, different expressions
for M (r )  stemming from Eq. (8) are possible. For example,
MLC (r ) in Eq. (12) could be replaced by

MLC (r ) =  −
h̄  

Imhr|HQyPxQ|ri (17)

or

MLC (r ) =  −
h̄  

Imhr|QyPxQH|ri, (18)

achieved by applying a cyclic permutation to MLC (r ) in
Eq. (13) and using the fact that Q2 =  Q. The L  and R  super-
scripts indicate that H has been moved to the “left” or “right”
respectively, and henceforth we shall refer to the marker in
Eq. (13) as M C       (C for “center”). Integrating Eq. (17) or
(18) over all space yields Eq. (9), just as integrating Eq. (13)
does. We refer to the different expressions for the local marker
as trace projections. Such an ambiguity in the local marker
may be viewed as a manifestation of the fact that microscopic
magnetic dipole densities are not well defined.

As we will see in the following subsections, there is no
such ambiguity with respect to cyclic permutation of oper-
ators for the local Chern marker C(r), which is therefore
well defined at a specific r in the context of a marker-based
theory. As a result of Eq. (16), this implies that MC (r ) has
a linear dependence on the chemical potential μ  as it is
scanned across the gap. This observation allowed Zhu et al.
[18] to introduce a uniquely defined “surface magnetic
compressibility” dM�/dμ in terms of the presence of a net
coarse-grained Chern-marker concentration at the surface. We
note in passing that the Chern marker is closely related to
the local anomalous Hall conductivity, i.e., the antisymmetric
part of the surface conductivity tensor σi j (r) =  ∂ ji(r)/∂E j

describing the first-order response of the local current density
j(r) to a homogeneous macroscopic electric field E. However,
as shown by Rauch et al. [11], the two are not identical,
since the local anomalous Hall conductivity also contains a
non-geometric or “cross-gap” term that is not captured by the
Chern marker.

In the following subsections, we discuss several physical
requirements that we impose on the markers, allowing us to
reduce the number of candidates to just a few that can be
regarded as physically acceptable.

PHYSICAL REVIEW B 107, 115102 (2023)

1. Independence of origin

We first require that the trace projections should be
independent of origin. A potential marker M[P,Q,H ] (r) may
be regarded as depending on the system-specific operators P,
Q, and H as indicated by the superscript notation. Introducing
the unitary operator T for a translation by displacement t,
and defining translated operators P =  T PT † and similarly for
Q and H , the desired independence of origin is equivalent to
asking that M[P,Q,H ] (r) =  M[P ,Q,H ] (r +  t). We accomplish
this by insisting that the markers be written in terms of the
operators

X =  PxQ, Y =  PyQ, Z =  PzQ, (19)

and their Hermitian conjugates. A combination like PrQ
transforms to PrQ =  P(r −  t)Q =  PrQ, where the last
equality follows from the fact that PQ =  0. Thus, expressions
built out of the operators in Eq. (19) will automatically
satisfy the desired independence of origin. With this notation,
Eqs. (13), (17), and (18) become

MC
C (r ) =  −

h̄  
Imhr|XHY †|ri, (20)

M L  (r) =  −
h̄  

Imhr|HY †X|ri, (21)

M R  (r) =  −
h̄  

Imhr|Y †XH|ri. (22)

Other choices such as hr|yPxQHQ|ri would not satisfy this
property. At this point, then, we have three candidates for the
LC marker, and there is a corresponding set of three choices
for the IC marker.

As for the Chern-marker contribution, similar consider-
ations imply that MC (r ) should also be written in terms
of X and Y operators. Eq. (15) then leads to M  (r) =
−(2μe/h̄ )Imhr|X †Y |ri =  (2μe/h̄ )Imhr|Y †X|ri. Further
algebra demonstrates that these expressions are identical with
MC (r ) =  (2μe/h̄ )Imhr|XY †|ri =  −(2μe/h̄ )Imhr|Y X †|ri
(see Eq. A14 of the Appendix of Ref. [11]). Thus, we are
left with a unique expression for MC (r ), as well as the local
Chern marker itself.

2. Covariance under rotations

We next insist that the markers should transform as vec-
tors under global rotations of the system. That is, given a
spatial rotation R  and its corresponding unitary operator R,
we ask that M[P,Q,H ] (r) =  R−1 M [P ,Q ,H ] (Rr ),  where P =
RPR† , etc. In particular, we insist that any candidate for the
marker z component should be invariant under rotation by an
arbitrary angle θ about z. For θ =  π /2 we have X →  Y and Y
→  −X ,  and using the general formula ImhOi =  −ImhO† i, we
find that M C       is invariant while M L      and M R      trans-form
into one another. Thus, neither M L      nor M R  satisfies
rotational invariance by itself, but at least for θ =  π /2, the
average ( M L  +  M R  )/2 does.

A more careful check confirms that this combination is
also invariant under arbitrary rotations by angle θ. We can
therefore propose two valid local-circulation markers,

MLC,z (r ) =  −
h̄  

Imhr|XHY †|ri, (23)

MLC,z (r ) =  −
2h̄  

Imhr|{H,Y †X}|ri, (24)
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where the z subscript has temporarily been restored, and the E
superscript in the second equation involving the anticommuta-
tor indicates that H is in an “external” (left or right) position.
More generally, we can define vector markers M L C  whose x
and y components have the same form as in Eqs. (23) and (24)
but with a cyclic permutation of the Cartesian indices. Since
any rotation can be written as a product of three con-secutive
rotations around Cartesian axes by Euler angles, and since our
markers have the correct rotation properties under each of
these separately, it follows that the overall rotational
properties are guaranteed. That is, the rotation of the marker is
consistent with the rotation of the system.

The same reasoning applies to the itinerant circulation
markers

M C  (r) =  
h̄ 

Imhr|X†HY |ri,                      (25)

M E  (r) =  
2h̄ 

Imhr|{H,Y X †}|ri,                  (26)

where we have reverted to dropping the z subscript. Combin-
ing with Eqs. (23) and (24), we can arrive at several suitable
expressions for the full marker in Eq. (12). If we consistently
use the center or external versions, we arrive at two choices

MC ,C (r ) =  MC
C (r ) +  M C  (r), (27)

M E , E  (r) =  ME
C (r ) +  M E  (r). (28)

We also consider a third marker involving a mixed choice,

M C , E  (r) =  MC
C (r ) +  M E  (r). (29)

We could also introduce its partner ME , C ,  but there are actu-
ally only three linearly independent markers, since it is easy to
show that M C , E  +  M E , C  =  MC , C  +  M E , E .

For the Chern marker contribution of Eqs. (15) and
(16), it is easy to see that for arbitrary rotations θ
about z we have MC (r ) =  −(2μe/h̄ )Imhr|X †Y |ri →
(2μe/h̄ )Imhr|Y †X|ri =  MC (r ). We may then define a vector
marker M C  analogously to M L C ,  and the former is found to
exhibit rotational covariance for the same reasons as the latter.

3. Transformation under H →  −H

Our third requirement is based on the following observa-
tion regarding the behavior of microscopic currents. As will
be shown later in this section, the microscopic current density
at r is given by

Z
j(r) =  

h̄
dr0(r −  r0)Im[hr0|P|rihr|H|r0i]. (30)

Under a transformation that acts to change the overall sign of
H , the occupied and unoccupied state manifolds are switched;
that is, P0 =  Q and Q0 =  P. Substituting H0 =  −H  and P0

into Eq. (30), and using the facts that Q =  1 −  P and that the
expectation value of a Hermitian operator is real, it is easy
to see that j(r) is left unchanged. Therefore, the surface
magnetizations and hinge currents must be left unchanged as
well.

When H →  −H ,  we see that X →  X †, Y →  Y †, and
Z →  Z†. It is then readily apparent that MC , C  →  MC , C  and
M E , E  →  M E , E .  However, surface magnetization from the

PHYSICAL REVIEW B 107, 115102 (2023)

M C , E  marker is not left invariant, as M C , E  →  ME , C .  We
therefore eliminate M C , E  from the list of valid markers.

We note that for the Chern marker contribution of Eqs. (15)
and (16), under such a transformation C(r) →  −C (r ), while μ
→  −μ .  Therefore MC (r ) is left invariant.

4. Magnetic quadrupole of finite systems

To conclude our list of acceptable marker properties, we
turn to a discussion of the possible role of the bulk magnetic
quadrupole moment (MQM) in a theory of surface magnetiza-
tion. Our motivation for considering the MQM stems from the
recently developed theory of boundary electric polarization
[15,16]; for a crystallite with vanishing bulk polarization,
the theory identifies the bulk electric quadrupole moment as
contributing to the electric polarization at the surface. By
analogy, it would then be unsurprising if the MQM similarly
contributed to the magnetization at a surface for systems with
zero bulk magnetization. Earlier papers have focused on de-
riving expressions for the MQM within periodic boundary
conditions [27–29], but have not discussed whether or how it
manifests itself on the boundary of a bulk.

As a theory of the bulk MQM density for an extended
system is not well established, we focus here on the case of
an ideal molecular crystal, i.e., a collection of identical
independent units, which we refer to as “molecules”, arranged
without overlap on a crystal lattice.

Classically, the MQM tensor Qi j of a single molecule is
defined in terms of its microscopic current distribution j(r) as

Z
Qi j =  

3
(r ×  j)i r j dr. (31)

This is a traceless tensor, since

Qii =  
3

(r ×  j) · r dr =  0. (32)

Its antisymmetric part is known as the toroidal moment, while
its symmetric part

Qi j =  1 (Qi j +  Q ji ), (33)

is solely responsible for the quadrupole contribution to the far
B field in the multipole expansion.

When this molecular unit is periodically repeated to gen-
erate a large but finite crystallite, the quadrupole moment
densities are defined as Q  =  Q/V and Q  =  Q/V , where V
is the unit-cell volume. One can then show that the MQM
generates a magnetization at a surface with outward normal
n given by [30]

Msurf =  Qi j n j . (34)

Repackaging the toroidal part of the MQM density as the
vector mi =  ²i jk Q jk /2, it is clear that this produces a surface
magnetization Msurf =  n ×  m that is parallel to the surface.
This part does not contribute to the surface-normal component
M�, which is just given by

M (n) =  Qi j nin j =  nT · Q  · n. (35)

We are thus free to insert either the unsymmetrized Q  or
the symmetrized Q  tensor into Eq. (35) when computing M�
values, ignoring the toroidal component [31,32].
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We will refer to the MQM tensors defined as in Eq. (31) as
current-based quadrupoles. In the special case that the current
distribution takes the form of a collection of point magnetic
dipoles mμ located at sites rμ , one can introduce an alternative
dipole-based definition

Qdip =  
X

m μ , i  rμ, j . (36)
μ

If one considers the limit that the point dipoles are constructed
from small current loops of vanishing size, it turns out that the
traceless part of Qdip is identical with Q (see Appendix C).
That is,

Qi j =  Qdip −  3δi jQdip. (37)

For a molecular crystal, the dipole formula provides a nat-ural
connection to the use of the local magnetization marker.

That is, we can calculate the MQM density of the crystal as
Z

Qdip =  
V

Mi (r ) r j d3r (38)

or

Qdip =  
V 

X
M μ , i  rμ, j , (39)

where M i (r ) and M μ , i  are the continuum and discrete mark-
ers, respectively. Therefore, in the rest of this paper, we will
focus on the dipole-based expression in Eq. (39) in the con-
text of our tight-binding calculation of the local markers. We
will then remove the trace part in order to compare with the
current-based tensor computed from Eq. (31) in the same TB
framework.

Tests of this kind will be presented in Sec. V D. Unlike
the other criteria described above in Secs. IV A 1 to IV A 3,
we do not know how to determine a priori whether a certain
marker will satisfy the present criterion of reproducing the
MQM correctly for molecular crystals. However, we will see
in Sec. V D that some choices of marker sometimes fail this
test. Thus, even if numerical in nature, these tests provide
important constraints on the appropriate choice of marker for
the computation of surface magnetization.

We note in passing that the use of the raw dipole-based
MQM, without removing the trace part, will generate different
results for the surface magnetizations M�. However, it will
shift M� equally on all facets, and therefore will still yield a
correct prediction of the hinge currents, as these only depend
on differences of M� on neighboring facets [see Eq. (2)]. In
this sense, the use of the raw dipole-based MQM in place of
the traceless one is reminiscent of the shift freedom in the
definition of M� discussed in the Introduction, here for the
case of an idealized molecular crystal.

5. Discussion

The considerations of Secs. IV A 1–IV A 3 have reduced
the list of acceptable markers to the two given in Eqs. (27)
and (28), augmented by the uniquely defined Chern-marker
contribution M  (r). The marker MC , C  of Eq. (27) is the orig-
inal one of Bianco and Resta [9], while M E , E  of Eq. (28) is a
new candidate that has not, to our knowledge, been considered
previously. We also note that there is no restriction on using a
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linear combination of MC , C  and M E , E  to write down a new
marker, as long the linear combination reproduces the bulk
magnetization M of Eq. (8). To maintain this requirement, the
(real) coefficients aCC and aE E of the linear combination must
sum to unity.

We select the particular linear combination (aCC , aE E ) =
(1/3, 2/3) to form the “linear” marker

Mlin (r ) =  1 MC,C (r ) +  2 M E , E  (r). (40)

This marker is also expressible as

Mlin (r ) =  1 MC,C (r ) +  1 M L , L ( r )  +  1 M R , R ( r ) , (41)

i.e., it is the arithmetic average of the MC ,C ,  M L , L ,  and
M R , R  markers. Such a choice might heuristically be justified
by noting that since we have no reason to prefer any one of
LCCoLCR, we choose an equally weighted average of all
three of them. For the rest of this paper, we will focus on the
markers MC , C  and M E , E  of Eqs. (27) and (28) and M l i n  of
Eq. (40) when reporting the results of numerical tests.

Having formulated our list of markers, we are faced with
several questions regarding their behavior. First, it remains to
be seen which, if any, of the markers will correctly predict the
hinge current. For each of the two surfaces forming a hinge,
identical markers will be used to compute their respective
magnetizations, which in turn will be substituted into Eq. (2)
to yield the hinge current. In such tests, it is of interest to check
whether there is a dependence on the presence of axion-odd
vs axion-even symmetries. Recall that at the level of classical
electromagnetism, only differences of the magnetizations of
surface facets sharing a hinge are generally well defined. As
an exception, when axion-odd symmetries are present, the
M� values can be determined from a knowledge of the hinge
currents. We should then like to see whether the quantum
marker-based theory is also better behaved when axion-odd
symmetries are present, and whether, in the absence of such
symmetries, the shift freedom of the classical framework reap-
pears at the quantum level. This would be signaled by the
existence of multiple markers correctly predicting the hinge
currents but differing by a constant shift for all facets.

Before attempting to answer these questions, we discuss
some technicalities of the computation of the surface magne-
tization from the local markers.

B. Surface magnetization and macroscopic averaging

Recall that we assume that the system has enough sym-
metry to force the macroscopic magnetization to vanish in the
bulk. However, this does not necessarily imply that M (r ) van-
ishes everywhere, only that its bulk unit-cell average vanishes.
In case M (r ) does vanish identically deep in the bulk, then for
any given trace projection, it is straightforward to integrate
M (r ) over one surface unit cell, with the surface-normal
integral carried deep enough into bulk and vacuum, to obtain a
corresponding macroscopic surface magnetization. If this is
not the case, however, a coarse-graining procedure is required,
as described next.

We construct an insulating slab of thickness L with the
outward normals at the top and bottom surfaces being z and
− z  respectively, and with cell-periodic boundary conditions
in x and y. The slab features the maximal symmetry allowed
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by the bulk. We assume L À  c, where c is the lattice constant in
the surface-normal direction. We define a “layer-resolved”
local marker by averaging the local marker over an in-plane
unit cell of area A at fixed z,

Z
M (z ) =  

A A 
M(x , y, z ) d x dy. (42)

Note that the total magnetization of the slab (magnetic mo-
ment per unit area) is the integral of M (z ) over the thickness of
the slab.

The macroscopic surface magnetization is determined
from the application of a smoothening procedure for the
layer-resolved marker, since simple sums of the marker may
not be convergent. We employ the sliding window average
approach to compute the surface magnetization; for details on
this method, we refer the reader to Sec. IV.A of Ref. [16]. In
numerical work, the averaging amounts to an integration of
the local marker weighted by a “ramp function” that extends
sufficiently deep in the bulk. The ramp-down function is de-
fined as

�1, if u <  0
fd (u) = 1 −  u/d , if u � [0, d] . (43)

0, if u >  d

Letting the bottom surface of the slab be located at z =  0,
we then get

Z
M� = M(z ) fc (z −  z0) dz, (44)

where the range of z integration runs from deep in the vacuum
to deep in the interior of the crystal. The result is independent
of z0 so long as it is sufficiently deep in the bulk region of the
slab.

The formalism for the calculation of a surface mag-
netization has been presented here in the context of a
continuum-space treatment. However, our numerical tests will
be performed on discrete TB models; in this setting, Eqs. (42)
and (44) are expressed as discrete sums over TB sites, where
the local markers are now defined. For further details, we refer
the reader to Appendix A.

C. Macroscopic hinge current and macroscopic averaging

A direct calculation of the macroscopic hinge current I is
necessary in order to test whether it is correctly predicted by
each of the various trace projections. The calculations will be
accomplished via a macroscopic averaging procedure analo-
gous to that of Sec. IV B, but now applied to the integration of
the microscopic current density over the appropriate hinge
region. In this section and in the rest of the paper, we label
vector operators with a hat in order to distinguish them from
ordinary vectors.

The microscopic current density j(r) is obtained from the
expectation value of the microscopic current density operator
j(r). Given a single-particle Hamiltonian H , this is given by

j(r) =  
2

(|rihr|v +  v|rihr|) (45)

where v =  (1/ih̄ )[r, H ] is the velocity operator. j(r) is then
obtained as Tr[Pj(r)], i.e., the trace of j(r) against the singe-
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FIG. 7. Insulating rod geometries utilized in computing macro-
scopic hinge currents. Each rod is cut out from the bulk, and satisfies
periodic boundary conditions along one of the three Cartesian direc-
tions. The surface magnetizations ML, MB, and ML are determined
from calculations described in Sec. IV B. The macroscopic hinge
currents IFB, IBL, and ILF that are computed in the text are indicated
by the black arrows.

particle density matrix P, so that
Z

j(r) =  
h̄

dr0(r −  r0)Im[hr0|P|rihr|H|r0i]. (46)

Our calculations of the macroscopic current are performed
on a series of insulating infinite rod geometries that retain
periodic boundary conditions along one of the three Cartesian
directions, as illustrated in Fig. 7. For concreteness, in this
subsection we focus on computing the hinge current IFB for a
rod running parallel to the x-axis, with unit-cell periodicity a.
Let the rod have width W along y and height L along z, with
W and L much larger than the cell dimensions b and c
along these respective dimensions.

In analogy with the surface magnetization, the macroscopic
current is obtained from a sliding window average performed
over the microscopic currents at the corresponding hinge,
but now in two dimensions. The appropriate weight function
w(y, z) is a product of two ramp functions in y and z, namely
w(y, z) =  fb(y −  y0) fc(z −  z0) where y0 and z0 are located
sufficiently deep within the interior of the rod. IFB is then
given by

Z a ZZ
IFB = dx dy dz jx (x, y, z)w(y, z), (47)

0

where the range of integration is over all y and z.
The currents IBL and ILF are computed analogously with

the appropriate cell parameters and Cartesian variables used in
Eq. (47). As in the previous subsection, the formalism here is
developed in the context of a continuum. In a TB formulation,
Eqs. (46) and (47) will turn into discrete sums over TB sites.
We refer the reader to Appendix B for further details.

V. NUMERICAL RESULTS

To test the results of the symmetry analysis of Sec. III
and the local marker calculation of surface magnetization,
we study three tight-binding (TB) models of spinless elec-
trons. The first model is comprised of an infinite stack of
the Haldane-model layers, while the other two models are
composed of stacks of two-dimensional (2D) square-plaquette
layers. Each model features symmetry-enforced zero bulk
magnetization and is considered at half-filling. The TB basis
orbitals are assumed to have no orbital moment of their own
and to diagonalize the position operators.
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We focus on the variation of a single parameter in the
Hamiltonian away from the special value that quantizes the
CSA coupling, and investigate how the surface magnetization
found from the various trace projections behaves as a function
of this variation. For each model, the Fermi energy is set to
zero, allowing us to neglect the Chern marker contribution to
the local magnetization marker.

We use the slab and rod geometries outlined in Secs. IV B
and IV C to compute the surface magnetizations and hinge
currents, respectively. Figure 7 illustrates the particular mag-
netizations and hinge currents that we compute. The surface
magnetizations are found from the coarse-graining procedure
described in Sec. IV B while the macroscopic hinge currents
are found from the coarse-graining procedure of Sec IV C.
Slab and rod geometries for the computation of surface mag-
netizations and hinge currents are generated by truncating the
bulk, i.e., the hoppings to vacant sites are removed while
other hoppings and site energies are unchanged. The elec-
tronic Hamiltonians for bulk, slab, and rod geometries are
constructed and solved using the PythTB code package [33].

Details of our numerical results will be given in Ap-
pendix D. For each model, however, we provide here two
tables to demonstrate the behavior of the surface magnetiza-
tion and hinge currents for the axion-odd regime, as well as a
representative axion-even setup. Each table reports the values
of MB, MF , and ML computed from the different markers.
The Tables also display the differences 1M FB , 1M BL , and
1M LF between 2D surface magnetizations at different surface
facets found from Eq. (44) using identical markers. For exam-
ple, 1M FB indicates the difference MF −  MB. These are then
compared to the appropriate directly computed hinge currents
displayed in the bottom-most rows of the Tables.

At the end of this section, we numerically address the
question of which local marker is able to reproduce the
current-based MQM for a finite system with no magnetic
moment. We perform a test on a finite cubic model, and
compare the current-based MQM tensor to the dipole-based
MQM tensors derived from the MC ,C ,  M E , E ,  and M l i n  local
markers.

A. Alternating Haldane model

The first model we study consist of half-filled Haldane-
model layers [34] placed directly on top of each other, which
are then subsequently coupled via interlayer hoppings along
the (001) direction. The interlayer hoppings couple sites on
identical sublattices, and alternate in value from one interlayer
region to the next. The intralayer parameters are chosen to be
such that if the layers were decoupled, their Chern numbers
would vanish and their orbital magnetizations would form an
up-down pattern akin to the magnetic moments of an A-type
antiferromagnet. The layers are equidistantly spaced, with two
layers per unit cell. Figures 8(a) and 8(b) provide detailed
illustrations of the lattice structure as well as the hoppings and
on-site energies of the model. In our calculations we set the
lattice vectors as a1 =  x, a2 =  1 x +      3 y, and a3 =  z.

The symmetries of this model ensure that the bulk magne-
tization is zero. In particular, there is a threefold rotation axis
C3z about the lattice sites (or honeycomb centers) as well as a
time-reversed mirror plane mz passing between the Haldane

PHYSICAL REVIEW B 107, 115102 (2023)

FIG. 8. (a) Visualization of a single Haldane layer. The different
sublattices are indicated by filled and empty circles, respectively, and
feature on-site potentials 1  and − 1 .  The nearest-neighbor hopping t1

is indicated by the double-sided solid arrow, while the complex next
nearest-neighbor hopping t2eiφ is indicated by one-sided dashed
arrows. (b) A side view of the bulk unit cell along the − x  direction
for the model of Sec V A. The vertical interlayer hoppings con-
nect identical sublattices and are indicated by solid double-sided
arrows that are labeled with the corresponding hopping amplitude.
Crimson arrows indicate the magnetizations of the layers in the de-
coupled regime. To the right are the phases of the complex intralayer
hoppings.

layers that eliminate the magnetization. Additionally, a time-
reversed mirror plane m0 bisects the honeycombs along their
main diagonals, and a twofold rotation axis C2y lies between
the layers and in the plane of the m mirror.

The quantization of the CSA coupling is controlled by
varying t0 while keeping all other parameters fixed. When t0 =
t3, the system gains a time-reversed half-translation {E0|c/2}
symmetry as well as an mz mirror plane residing in the layers;
both symmetries are axion-odd.

We adopt the parameter values 1  =  −1.5, t =  −0.1, t =
0.15, φ =  π /4, t3 =  0.1, and 0.05 6  t0 6  0.15. MB and MF are
found from slabs with six unit cells along a3 and eigh-teen
unit cells along a2, respectively. The calculation of ML

involves the construction of a supercell with lattice vectors
A1 =  a1, A2 =  −a1  +  2a2, and A3 =  a3. A slab with fifteen
cells along A1 is then constructed. For MB, MF , and ML, 20
×  20, 15 ×  15, and 5 ×  5 k-space meshes in reduced co-
ordinates are used, respectively.

The macroscopic hinge current IFB is found from an x-
extensive rod composed of twenty cells along a3 and twenty
cells along a2. The y-extensive rod employed for IBL is
composed of twenty cells along both A1 and A3, while the z-
extensive rod for ILF is composed of twenty cells each along A1

and A2. For each rod, a 1D k-space sampling of thirty points
is employed.

For t0 =  0.1 and t0 =  0.15, respectively, Tables III and IV
report the values of the surface magnetizations computed from

TABLE III. Surface magnetizations and hinge currents (in units
of 10−5e/h̄ ) for the alternating Haldane model with t0 =  0.1 (axion-
odd).

MB MF ML 1M FB 1M BL 1M LF

M C C 1.8082 0.0000 0.0000 −1.8082 1.8082 0.0000
M E E 1.8082 0.0000 0.0000 −1.8082 1.8082 0.0000
M lin 1.8082 0.0000 0.0000 −1.8082 1.8082 0.0000
Icalc                                                                                     −1.8082 1.8082 0.0000
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TABLE IV. Surface magnetizations and hinge currents (in units
of 10−5e/h̄ ) for the alternating Haldane model with t0 =  0.15 (axion-
even).
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TABLE V. Surface magnetizations and hinge currents (in units
of 10−6e/h̄ ) for the two-layer plaquette model with straight-edge
terminations and with t3 =  0.1 (axion-odd).

M�

M C C 1.7970
M E E 1.7970
M lin 1.7970
Icalc

M� M�

0.0830 0.0163
0.0830 0.0163
0.0830 0.0163

1M FB

−1.7140
−1.7140
−1.7140
−1.7140

1M BL 1M LF

1.7807 −0.0667
1.7807 −0.0667
1.7807 −0.0667
1.7807 −0.0667

M�

M C C 2.3768
M E E 2.3768
M lin 2.3768
Icalc

M� M�

0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

1M FB

−2.3768
−2.3768
−2.3768
−2.3768

1M BL 1M LF

2.3768 0.0000
2.3768 0.0000
2.3768 0.0000
2.3768 0.0000

the different markers. From the tables, we note that for a given
surface all three markers yield identical magnetizations, inde-
pendent of whether or not the system features an axion-odd
symmetry. Furthermore, the magnetizations always yield the
correct values of the hinge currents. In the axion-odd case of
t0 =  0.1, we observe that MF and ML may be understood to be
zero due to the slab constructions for their calculations
featuring the mz mirror plane. By the same token, ILF vanishes
as well, as the z-extensive rod used for its calculation also
features the same mirror symmetry.

B. Two-layer square-plaquette model

The model studied here draws inspiration from a 2D
square-plaquette model developed in Ref. [5]. As presented
there, the model consists of a nearest-neighbor TB Hamilto-
nian whose primitive cell consists of four sites labeled A–D as
shown in Fig. 9(a), with lattice vectors a1 =  x and a2 =  y. Each
of the four resulting plaquettes in the unit cell is threaded by a
magnetic flux that corresponds to endowing some of the
hopping amplitudes with an identical complex phase eiφ/2.
The moduli of all the nonzero hoppings are set to an identical
value t .

Figure 9(b) provides a detailed illustration of the model
that we study. Our model features equidistantly spaced layers
of the plaquette model stacked directly on top of one another
along the z direction. Subsequent layers are related by a time-
reversed rotation C0      about a z axis passing through the C
site, resulting in two layers per unit cell with a3 =  z forming
the third lattice vector. The on-site energies are chosen to

FIG. 9. (a) Primitive cell of the 2D square plaquette model. The
hoppings between different lattice sites, marked by solid straight
lines with arrows, are such that the total flux through the cell is an
integer multiple of 2π . (b) Two-layer plaquette model. Only A-A
and C-C interlayer hoppings are included, and each layer is related
to the one below by a C2z rotation through the C sites. (c) Four-layer
plaquette model. Same as (b), except that the rotation is now C4z

instead.

be (EA, EB , EC , ED ) =  ( 1 , − 1 , 1 , − 1 )  for all layers, con-
sistent with the rotational symmetry. Only interlayer A-A and
C-C hoppings are included, with these alternating between t
and t0 for subsequent layers. Finally, the chosen flux pattern
for the bottom layer is (8 1 , 8 2 , 8 3 , 8 4 )  =  (2φ , −φ , 0 , −φ )
and the rest of the nearest neighbors are coupled by real and
nonzero hoppings t (the modulus of the complex hoppings).
The parameter values are chosen such that the layers have a
vanishing Chern number in the decoupled limit.

This model possesses a time-reversed inversion symmetry
I0 about a point located midway between C sites on neigh-
boring layers, as well as a twofold rotation C2xy about an
axis located between layers and passing above A and C sites.
Additionally, there are m0      and m0      mirror planes that pass
through sites B and D, and A and C, respectively. There is
also a time reversed glide mirror plane {m0 |τ/2} passing in
between layers with τ  =  x +  y. These symmetries ensure that
the bulk magnetization remains zero.

The CSA coupling is tuned by keeping all parameters fixed
except t0. If t3 and t0 are equal, the model gains an axion-
odd {C |c/2} screw axis passing through the C sites. The
parameters for this model are chosen as 1  =  −0.5, t =  0.06, φ
=  π /4, t3 =  0.1, and 0.05 6  t0 6  0.15.

We will consider two distinct surface terminations in the
directions transverse to the layer stacking, and for each we
will investigate the behavior of the resulting surface mag-
netizations and hinge currents. The first surface termination
results from creating slabs along a1 and a2, and we refer to
these as the straight-edge terminations. The second type of
termination results from cutting along the a1 ±  a2 directions,
which we refer to as the zigzag termination. For our cal-
culations with this termination, we construct supercells with
lattice vectors A1 =  a1 −  a2, A2 =  a1 +  a2, and A3 =  a3, and
cut slabs along the A1 and A2 directions.

1. Two-layer plaquette model: Straight edges

In this case MB, MF , and ML are found from slabs with
eleven unit cells along a3, seven unit cells along a2, and seven
unit cells along a1, respectively. For each magnetization, a 7 ×  7
k-space mesh in reduced coordinates is used.

The macroscopic hinge current IFB is found using an x-
extensive rod composed of eleven unit cells along a3 and
seven unit cells along a2. The y-extensive rod employed for
IBL is composed of eleven unit cells along a3 and seven unit
cells along a1, while the z-extensive rod for ILF is composed of
seven unit cells along both a1 and a2. For each rod, a 1D k-
space sampling of thirty points is employed.

For t0 =  0.1 and t0 =  0.15, respectively, Tables V and VI
report the values of the surface magnetizations computed from
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xȳ

2zxy xȳ
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TABLE VI. Surface magnetizations and hinge currents (in units
of 10−6e/h̄ ) for the two-layer plaquette model with straight-edge
terminations and with t3 =  0.15 (axion-even).
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TABLE VII. Surface magnetizations and hinge currents (in units
of 10−6e/h̄ ) for the two-layer plaquette model with zigzag termina-
tions and with t3 =  0.1 (axion-odd).

M� M� M�

M C C 2.3012 0.0319 0.0319
M E E 2.2995 0.0327 0.0327
M lin 2.3001 0.0324 0.0324
Icalc

1M FB

−2.2693
−2.2668
−2.2676
−2.2676

1M BL 1M LF

2.2693 0.0000
2.2668 0.0000
2.2676 0.0000
2.2676 0.0000

M�

M C C 2.3768
M E E 2.3768
M lin 2.3768
Icalc

M� M�

0.0000 0.0000
0.0000 0.0000
0.0000 0.0000

1M FB

−2.3768
−2.3768
−2.3768
−2.3768

1M BL 1M LF

2.3768 0.0000
2.3768 0.0000
2.3768 0.0000
2.3768 0.0000

the different markers. From the tables, we see that for each
individual marker, the computed values of MF and ML are
identical, and therefore lead to a vanishing 1M LF , which also
agrees with the directly computed ILF. This may be under-
stood as a consequence of the mxȳ symmetry of the system,
which eliminates the hinge current and maps ML and MF into
each other.

For the particular case of the axion-odd regime of t0 =  0.1,
MF and ML are not just identical for all markers, but zero as
well, which can be understood as a consequence of the m0 , m0

, and {C0 |c/2} symmetries. The m0     mirror plane enforces
identical M� values on surfaces with outward unit normals −x
and −y ,  as well as on the surfaces with outward unit normals x
and y. The m0      symmetry subsequently implies that the M�

values on all four surfaces are the same, while {C0 |c/2}
ensures that M =  0.

In the axion-odd regime when t0 =  0.1, all markers yield
the same value of magnetization at a single surface. How-
ever, in the axion-even regime when t0 =  0.15, the surface
magnetizations derived from different markers do not agree,
and furthermore only the M l i n  marker correctly predicts the
hinge currents. We will soon see that among the three mark-
ers, it appears that only M l i n  consistently predicts the hinge
currents, regardless of whether the system is in the axion-odd
or axion-even regime.

2. Two-layer plaquette model: Zigzag edges

In order to describe the slabs and rods that occur when
zigzag terminations are present, we turn to using the super-
cell vectors A1, A2, and A3 described at the beginning of
the subsection. We align the x and y axes along A1 and A2

respectively. Since the bottom surface of a slab cut along A3 is
identical up to a rotation in the x-y plane to the bottom surface
of the slabs used to compute MB in the straight-edge case,
the values of MB will be left unchanged. With the rotation
of the coordinate axes, we also observe that the m0      and m0

mirrors become m0 and m0 mirrors, respectively, the C2xȳ  axis
becomes a C2x axis, and {m |τ/2} becomes {m |A2/2}.

In this case MF and ML are found from slabs with four
cells along A2 and A1, respectively. For each magnetization, a
7 ×  7 k-space mesh in reduced coordinates is used. The
macroscopic hinge current IFB is found from an x-extensive
rod composed of nine cells along A3 and nine cells along A2.
The y-extensive rod employed for IBL is composed of nine
cells along A3 and nine cells along A1, while the z-extensive
rod for ILF is composed of nine and nine cells along A1 and
A2, respectively. For each rod, a 1D k-space sampling of five
points is employed.

Tables VII and VIII demonstrate the values of the sur-
face magnetizations computed from the different markers for t0

=  0.1 and t0 =  0.15, respectively. In the axion-odd case, we
see that for a fixed surface all the markers yield identical
values of the magnetization. Furthermore, the values of MF

and ML vanish due to the m0 , m0 , and {C0 |c/2} symmetries. m0

ensures identical M� values on surfaces with outward unit
normals x and −x ,  while m does so for surfaces with
outward unit normals y and −y .  {C0 |c/2} then ensures that
these surface magnetizations are zero.

In the axion-even regime, the markers at a single surface
facet yield differing values of the magnetizations, and none
except the “lin” marker predict the hinge currents correctly.

These observations are highlighted in Fig. 10, which dis-
plays the hinge currents as a function of t0 and compares the
currents predicted using the different markers to the directly
computed hinge currents.

C. Four-layer square plaquette model

The model studied in this section employs the same un-
derlying square-plaquette layers that were used in Sec. V B
and is depicted in Fig. 9(c). Just like the model of Sec. V B,
the present model features equidistantly spaced layers of the
plaquette model stacked directly on top of one another along
the z direction, but now the adjacent layers are related by a
time-reversed rotation C0     about a z axis passing through the C
site, resulting in four layers per unit cell. The lattice vector
along the stacking direction is a3 =  z. Otherwise, the models
share the same features.

This model features a twofold rotation axis C2x between
the second and third layers in the unit cell and passing above
the C and D sites. There is also a {C2z|c/2} screw axis that
passes through the C sites. Together these symmetries elimi-
nate the bulk magnetization. If the interlayer hoppings t and t0

are equal, the model gains an additional axion-odd {C0 |c/4}
screw axis running through the C sites. All parameters except t0

are kept fixed in order to access the quantized CSA coupling

TABLE VIII. Surface magnetizations and hinge currents (in units
of 10−6e/h̄ ) for the two-layer plaquette model with zigzag termina-
tions and with t0 =  0.15 (axion-even).

MB MF ML 1M FB 1M BL 1M LF

M C C 2.3012 −0.0014 0.0650 −2.3026 2.2362 0.0664
M E E 2.2995 −0.5697 0.6350 −2.8692 1.6645 1.2047
M lin 2.3001 −0.3802 0.4450 −2.6803 1.8551 0.8252
Icalc                                                                                       −2.6803 1.8551 0.8252
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FIG. 10. Plots of the (a) IFB, (b) IBL, (c) ILF hinge currents for the two-layer square plaquette model with zigzag edges versus t0. The plots
compare the hinge current predicted from the different local markers to the directly computed hinge current. When t3 =  0.1 (axion-odd regime),
all the markers yield the correct values of the hinge currents, as indicated by the intersections of the dashed horizontal and vertical
gray lines. Generally, only the surface magnetizations found from the “lin” marker always match the directly computed hinge currents.

regime. We employ the same values of the parameters as in
Sec. V B, but here we set the on-site energy 1  =  −1.

For this model, we also study the behavior of hinge currents
and surface magnetizations for the different transverse surface
terminations.

1. Four-layer plaquette model: Straight edges

The magnetizations MB, MF , and ML are found from slabs
with six unit cells along a3, four unit cells along a2, and four
unit cells along a1, respectively. For each magnetization, a 7 ×  7
k-space mesh in reduced coordinates is used.

The macroscopic hinge current IFB is found using an x-
extensive rod composed of six unit cells along a3 and four
unit cells along a2. The y-extensive rod employed for IBL is
composed of six unit cells along a3 and four unit cells along
a1, while the z-extensive rod for ILF is composed of four
unit cells along both a1 and a2. For each rod, a 1D k-space
sampling of thirty points is employed.

For t0 =  0.1 and t0 =  0.15, respectively, Tables IX and X
report the values of the surface magnetizations computed from
the different markers. In the axion-odd regime when t0 =
0.1, all markers yield the same value for one of the surface
magnetizations, namely MB. This time, however, for both MF

and ML, the markers yield different values. Moreover, only the
“lin” marker accurately predicts the hinge currents. For each
marker, the values for MF and ML are equal and opposite,
which may be understood to be a consequence of the {C0 |c/4}
screw symmetry, see Fig. 4(b). Nevertheless, we now have a

TABLE IX. Surface magnetizations and hinge currents (in units
of 10−7e/h̄ ) for the four-layer plaquette model with straight-edge
terminations and with t3 =  0.1 (axion-odd).

case where the markers disagree, and where only one of them
correctly predicts the hinge currents.

The same is true in the axion-even regime of Table X.
Figure 11 demonstrates these facts for the prediction of the ILF

hinge current. For all the values of t0 that we used, covering
both axion-odd and axion-even regimes, only the “lin” marker
was consistent in its prediction of the current.

2. Four-layer plaquette model: Zigzag edges

As in the case of two-layer plaquette model with zigzag
terminations in Sec. V B 2, we turn to using the supercell
vectors A1 =  a1 −  a2, A2 =  a1 +  a2, and A3 =  a3 for our
calculations involving the zigzag edges of the four-layer pla-
quette model. We align the x and y axes along A1 and A2

respectively. Since the bottom surface of a slab cut along A3 is
identical up to a rotation in the x-y plane to the bottom surface
of the slabs used to compute MB in the straight-edge case,
the values of MB will be left unchanged. With the rotation of
the coordinate axes, C2x becomes C2xy. MF and ML in this case
are found from slabs with three cells along A2 and A1,
respectively. For each magnetization, a 5 ×  5 k-space mesh is
used in reduced coordinates.

The macroscopic hinge current IFB is found from an x-
extensive rod composed of four unit cells along A3 and six
unit cells along A2. The y-extensive rod employed for IBL is
composed of four unit cells along A3 and six unit cells along
A1, while the z-extensive rod for ILF is composed of six cells

TABLE X. Surface magnetizations and hinge currents (in units
of 10−7e/h̄ ) for the four-layer plaquette model with straight-edge
terminations and with t3 =  0.15 (axion-even).

M� M� M� 1M FB 1M BL 1M LF M� M� M� 1M FB 1M BL 1M LF

M C C     3.24982 0.00059 −0.00059 −3.24923 3.25040 −0.00117
M E E      3.24982 0.00066 −0.00066 −3.24915 3.25048 −0.00133
M lin      3.24982 0.00064 −0.00064 −3.24918 3.25046 −0.00128
Icalc −3.24918 3.25046 −0.00128

M C C      3.22067 0.01107 0.00912 −3.20960 3.21155 −0.00195
M E E       3.22047 0.01130 0.00910 −3.20916 3.21137 −0.00221
M lin       3.22053 0.01123 0.00911 −3.20931 3.21143 −0.00212
Icalc −3.20931 3.21143 −0.00212
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TABLE XII. Surface magnetizations and hinge currents (in units
of 10−7e/h̄ ) for the four-layer plaquette model with zigzag termina-
tions and with t3 =  0.15 (axion-even).

M�

M C C       3.22067
M E E        3.22047
M lin 3.22053
Icalc

M�

0.01023
0.01033
0.01029

M�

0.01023
0.01033
0.01029

1M FB

−3.21045
−3.21014
−3.21024
−3.21024

1M BL

3.21045
3.21014
3.21024
3.21024

1M LF

0.00000
0.00000
0.00000
0.00000

FIG. 11. Plot of the hinge current ILF as a function of t0 for the
four-layer square plaquette model with straight edges. In the axion-
odd regime when t3 =  0.1, only the “lin” marker correctly predicts
the hinge current; this is also the case even when no axion-odd
symmetry is present.

along both A1 and A2. For each rod, a 1D k-space sampling
of 5 points is employed.

Tables XI and XII report the values of the surface mag-
netizations computed from the different markers for t0 =  0.1
and t0 =  0.15, respectively. This time, in the axion-odd regime
when t0 =  0.1, we see that for any given surface facet, all
markers yield the same value of magnetization, and when
compared across facets, all accurately predict the hinge cur-
rents. The values of MF and ML vanish, which may be
understood to be a consequence of the simultaneous C2xy

and {C |c/4} symmetries. The former symmetry implies that
MF =  ML, while the latter results in both vanishing.

In the axion-even regime when t0 =  0.15, we find a result
that is more reminiscent of the straight-edge case. That is,
even for a single surface facet, the markers yield different
values of the magnetization, and the hinge currents computed
from the differences of M� values disagree with each other
when computed using different markers. They also disagree
with the direct calculation of the hinge current except for one
case, namely that of the M l i n  marker. MF and ML are found to
be identical, as the C2xy symmetry is still present in this
setup. However, only the M l i n  marker yields magnetizations
that correctly predict the hinge currents.

3. Summary

For the four-layer plaquette model, unlike the models
studied previously, we find that different markers generally
disagree on the values of M� and on their predictions for the
hinge currents. This occurs in both the axion-odd and axion-
even cases for straight-edge surface terminations, but only in
the axion-even case for zigzag surface terminations. Only the
M l i n  marker consistently predicts the correct hinge currents.

D. Local markers and magnetic quadrupole moment
of a finite system

We now return to investigate the questions posed in
Sec. IV A 4 by conducting a numerical study of a spinless
TB model of a cubic “molecule”. The system is designed to
have a symmetry that enforces a vanishing magnetic dipole
moment, but otherwise is as arbitrary as possible. In par-
ticular, it has no axion-odd symmetries. The structure, TB
site labeling, and on-site energies of the model are depicted in
Fig. 12. Additionally, the model features hoppings ti j to
nearest, second-nearest, and third-nearest neighbors, where
the subscripts indicate a hopping from TB site i to TB site j.
The hoppings are generally complex with ti j =  t� to ensure that
the Hamiltonian is Hermitian.

The Hamiltonian is chosen to obey an S0     =  mzC0      im-
proper rotation symmetry, where the m mirror plane bisects
the molecule, while the C0     axis runs through the center of the
cube. The resulting magnetic point group of the system is then
{E , S0 ,  (S0 )−1 , C2z}, where E is the identity operation and
C2z is the square of S . These symmetries ensure a vanishing
magnetic dipole moment, resulting in an origin-independent,
physically meaningful MQM for the system. The magnetic
point group also ensures that the MQM features Qxx =  Qyy

and Qxy =  −Qyx . Additionally, Qzz =  −2Qxx , as the tensor is
traceless.

TABLE XI. Surface magnetizations and hinge currents (in units
of 10−7e/h̄ ) for the four-layer plaquette model with zigzag termina-
tions and with t3 =  0.1 (axion-odd).

M�

M C C       3.24982
M E E        3.24982
M lin 3.24982
Icalc

M�

0.00000
0.00000
0.00000

M�

0.00000
0.00000
0.00000

1M FB

−3.24982
−3.24982
−3.24982
−3.24982

1M BL

3.24982
3.24982
3.24982
3.24982

1M LF

0.00000
0.00000
0.00000
0.00000 FIG. 12. Illustration of the structure, labeling, and on-site ener-

gies of the cubic molecule model discussed in Sec. V D.
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TABLE XIII. Diagonal elements of the traceless marker-based
MQMs compared to the MQM from the current-based formula. Only
the MQM derived from the M l i n  marker matches the current based
quadrupole. Entries are in units of e/h̄ .

Qxx Qyy Qzz

CC −9.9765 ×  10−3 −9.9765 ×  10−3 1.9953 ×  10−2

EE −1.2540 ×  10−2 −1.2540 ×  10−2 2.5079 ×  10−2

lin −1.1685 ×  10−2 −1.1685 ×  10−2 2.3370 ×  10−2

Curr. −1.1685 ×  10−2 −1.1685 ×  10−2 2.3370 ×  10−2

In addition to the on-site energies, the Hamiltonian is
parametrized by eight hopping parameters. The nearest-
neighbor hopping terms t1, t2, and t3 parametrize, respectively,
the hoppings

t10 =  t56 =  t32 =  t74,

t30 =  t54 =  t12 =  t76,

t40 =  t51 =  t62 =  t73.

The second nearest neighbor hopping terms t4, t5, t6, and t7
parametrize the hoppings

t20 =  t57,

t31 =  t64,

t50 =  t52 =  t72 =  t70 ,

t14 =  t16 =  t36 =  t34,

respectively. Finally, the third-nearest-neighbor hopping t8
parametrizes the hoppings t35 =  t17 =  t24 =  t06.

Generally, the hopping parameters are set to be complex,
but due to the presence of the C2z symmetry in the magnetic
point group, t4 and t5 must be real. The parameters for this
model are chosen as 1  =  −1,  t1 =  1 +  0.2i, t2 =  1 +  0.3i, t3
=  1 −  0.1i, t4 =  −0.3, t5 =  0.5, t6 =  −0.2 +  0.15i, t7 =  0.3
−  0.25i, and t8 =  0.4 +  0.6i.

We then calculate the current-based quadrupole and the
traceless dipole-based quadrupoles based on the CC, EE , and
“lin” markers. Table XIII lists the results for diagonal ele-
ments of the quadrupoles, while Table XIV lists the nonzero
off diagonal elements. We see that all feature Qxx =  Qyy =
−Qzz /2 and Qxy =  −Qyx as expected. Significantly, though,
only the M l i n  marker generates a quadrupole that matches the
current-based MQM.

TABLE XIV. Off-diagonal elements of the traceless marker-
based MQMs compared to the MQM from the current-based
formula. Only the MQM derived from the M l i n  marker matches the
current-based quadrupole. Entries are in units of e/h̄ .

Qxy Qyx

CC −6.4152 ×  10−2 6.4152 ×  10−2

EE −8.4555 ×  10−2 8.4555 ×  10−2

lin −7.7754 ×  10−2 7.7754 ×  10−2

Curr. −7.7754 ×  10−2 7.7754 ×  10−2
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VI. DISCUSSION

The results presented above help us to address the main
questions motivating this paper. First, does the introduction
of quantum mechanics in the form of a marker-based theory
provide a prescription for computing M� directly for a given
facet, in such a way that hinge currents at adjoining facets
are correctly predicted? Is this equally true in the axion-odd
and axion-even cases? Second, if multiple markers succeed in
doing so, does the quantum theory inherit the shift freedom of
the classical theory? The most simplistic scenario would be
one in which all of the physically acceptable markers
identified at the end of Sec. IV A yield identical M� values for
any given facet over all models, and correctly predict the hinge
currents where facets meet.

Focusing first on the axion-odd case, we found that our
tests were consistent with this simplistic scenario for the
alternating Haldane and two-layer square-plaquette models.
However, the four-layer square-plaquette model does show
signs of trouble. For the straight-edge surface terminations,
the magnetizations found from the MC ,C ,  M E , E ,  and M l i n

markers do not agree with each other. Furthermore, among
these, we found that only the M l i n  marker correctly predicts
the hinge current. Thus, while the physical magnetization is
uniquely defined in the axion-odd case, only the M l i n  marker
consistently gives the correct value for it in our tests.

When tuning from the axion-odd to the axion-even regime,
the same conclusion was reinforced. While all markers contin-
ued to agree with each other for the stacked Haldane model,
they disagreed in all other cases, i.e., for the two-layer square-
plaquette model and all surface terminations of the four-layer
square-plaquette model. Again, the only marker that always
reproduced the hinge currents across all models was the M l i n

marker.
The importance of the Mlin marker was also highlighted by

our numerical finding that the dipole-based traceless MQM
derived from it appears to correctly reproduce the current-
based MQM in finite systems. Thus, we provisionally identify
M lin as the best candidate for a marker-based formulation of a
theory of surface orbital magnetization.

Given the M l i n  marker’s evident connection to the MQM,
we have also explored the symmetries of our models to under-
stand whether they permit a nonzero bulk MQM. While the
question of defining an orbital MQM for a general bulk mate-
rial has received some attention [27,28], the situation appears
to remain unsettled. Assuming such a definition is possible,
however, it must respect the symmetries of the magnetic point
group.

The four-layer square-plaquette model is most informative
in this respect. Focusing first on the axion-odd case, the tensor
is diagonal with Qxx =  −Qyy nonzero and Qzz =  0 when the
coordinate axes are chosen as in Fig. 9(c) for the straight-
edge surfaces. In the zigzag-edge case, we rotated the axes
about z by −π /4, transforming the tensor such that the only
nonzero elements were Q0     =  Q0 . We found that the markers
disagreed with each other in precisely those cases in which the
corresponding diagonal MQM tensor element was nonzero,
namely for the side surfaces in the straight-edge case. Ac-
cording to Eq. (34), these were also the cases in which the
bulk MQM has the right symmetry to contribute to the surface
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magnetization. When the axion-odd symmetry was broken,
we found that all three diagonal elements were present in
the MQM for both surface terminations, and that the markers
disagreed with each other for all surfaces

For the alternating Haldane and two-layer square-plaquette
models, the symmetry of the MQM is such that it vanishes in
the axion-odd regime but acquires some diagonal elements in
the axion-even regime. For the latter model, the markers also
failed to agree in the axion-even regime.

To summarize our discussion of the numerical results,
when inspecting all three models, we found that the only
cases in which markers disagree, with only the M l i n  marker
correctly predicting the hinge currents, were those in which
diagonal elements of the MQM tensor were present. Thus,
however the bulk MQM might be defined, our results suggest
that only the M l i n  marker accurately takes into account its
contribution to surface magnetization.

Notably, our findings provide no evidence for the possible
marker shift freedom of the surface magnetizations within the
quantum-mechanical marker-based theory. In fact, since only
the M l i n  marker always yielded the correct hinge currents, we
do not have multiple marker candidates as would be be needed
to allow us to test this proposition.

We find ourselves, then, in a somewhat ambiguous po-
sition. Our empirical evidence, based on the model studies,
indicates that the original Bianco-Resta marker MC , C  is not
suitable for coarse graining to obtain the surface magnetiza-
tion. Instead, a modification of it, namely M l in , has passed
all tests and appears to be a suitable marker. Still, despite a
concerted effort to find a formal connection, we do not yet
have a fundamental understanding as to why M lin succeeds
where the others do not. It also cannot yet be ruled out that
M lin does not pass all tests in models beyond those considered
in this paper. Our paper thus raises these issues as being of
paramount importance to be addressed by future theoretical
investigations.

We now also comment in more detail on the connection
of this paper to that of Zhu et al. [18]. The authors of that
paper also introduced the notion of surface orbital magne-
tization, and similarly used the local marker formulation of
orbital magnetism to compute it. Their primary focus, as
we mentioned just before Sec. IV A 1, was to explore the
“facet magnetic compressibility” dM�/dμ that is directly
proportional to the geometric component of the surface AHC,
especially in the context of links to higher-order topology.
We agree with their conclusion that this compressibility is
uniquely determined. On the other hand, where they assumed
that the Bianco-Resta MC , C  marker could be applied to define
surface magnetization, our findings indicate that this assump-
tion was problematic. We also note that they did not explore
the issue of a possible shift freedom of the surface magnetiza-
tion.

Of course, it would be desirable to make contact with
experiment. We have argued that the hinge currents are
observable in principle via the magnetic fields they generate,
which could be observed by scanning magnetic probes. The
surface magnetization M� itself in the interior of a facet does
not produce any observable electric or magnetic potential,
and so cannot be observed directly. It is possible that opti-cal
probes, such as terahertz Kerr reflectivity, might provide
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information. However, one should keep in mind that when
symmetry allows for the presence of a surface orbital magne-
tization, it also allows for a surface spin magnetization, which
is likely to be much larger. Thus, filtering out just the orbital
component may be challenging.

Other generalizations of our present paper remain to be de-
veloped. The symmetry analysis of Sec. III was conducted in
full generality and is applicable to insulating as well as metal-
lic systems at any temperature. However, it is not immediately
clear whether it is possible to compute surface magnetization
using the local marker for T =  0. A crucial assumption going
into the construction of the local marker is the idempotency of P
[9]; in the case of finite temperature, P no longer displays this
behavior. Additionally, for metals at T =  0, even though P
remains idempotent, it is no longer exponentially localized,
with P(r, r0) featuring power law decay with |r −  r0|. It is
not immediately clear how this affects the local marker and
its subsequent coarse-grained average. In these situations, it
appears likely that a different method of computing surface
magnetization will be needed. We note, however, that prior
numerical tests performed on TB models of metals at T =  0
suggest that the local marker is able to reproduce the bulk
magnetization of Eq. (1) within open boundary conditions,
but exhibits slower convergence with sample size than in the
insulating case [35].

Additional directions to explore include the presence of
facet magnetizations for systems with bulk magnetization, as
well as for axion-odd systems with θCS =  π . It would also be
interesting to see whether a Wannier-based formulation for
surface magnetization is possible, at least in insulators. This
is particularly attractive as the theories of bulk electric
polarization, bulk orbital magnetization, and edge electric
polarization can all be developed using a Wannier-based
approach [1,2,4,5,16,17]. Finally, we mention the prospects
for a first-principles density-functional theory (DFT) imple-
mentation of the calculation of surface magnetization for
topologically trivial bulk materials. The output of any DFT
calculation may be adapted to a TB framework via Wannier
interpolation, which may be accomplished by code packages
such as Wannier90 [36]. It is important to keep in mind, how-
ever, that in our calculations of the local markers we employed
the diagonal approximation for the position operator. In the
case of a Wannier interpolation, the position operator is not
necessarily diagonal in the basis of Wannier states, and the
off-diagonal terms must be kept in mind when performing
calculations.

VII. SUMMARY

In this paper, we have explored the possibility of defin-
ing surface orbital magnetization for insulating systems that
are topologically trivial in the bulk and feature no bulk or-
bital magnetization. We have demonstrated that in a general
classical context, the knowledge of the macroscopic currents
residing on a hinge formed by two surface facets is sufficient to
determine only the difference of the magnetizations of the
two facets. The said macroscopic hinge currents are the
physical observables corresponding to the presence of surface
orbital magnetization, and this fact indicates that differences
of surface orbital magnetization are observables as well. By
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means of a symmetry analysis, we have shown that individual
values of facet magnetizations should be well defined when
the bulk symmetry group contains an axion-odd symmetry.
To develop the theory of surface magnetization in a quantum
context, we further expanded on the local marker formulation
of orbital magnetization developed by Bianco and Resta, and
introduced a set of markers satisfying a list of physically
meaningful transformation requirements. The coarse-grained
averages of these markers were then used to compute surface
magnetizations.

We tested the conclusions of our symmetry analysis and
our formalism for computing surface magnetization on a se-
ries of spinless TB models. We found that the markers do
not always agree on the value of the surface magnetization,
even in the axion-odd case where we know from symmetry
arguments that M� is well defined. Our results indicate that
only a single marker on our list, the M l i n  marker, consistently
predicts the correct hinge currents. According to the symmetry
considerations of Sec. III, in the axion-odd case we can then
conclude that it has correctly computed the unique M� values.
In the axion-even case, instead, we can no longer say that it
predicts uniquely correct M� values, only correct differences
of M� values.

We additionally tested the markers to understand whether
any of them correctly generated the current-based MQM of
Eq. (31), which we argued may contribute to surface mag-
netization. We found that only the M l i n  marker correctly
reproduced the current-based MQM when applied to a finite
system with a nontrivial MQM and vanishing magnetic dipole
moment. We also observed that when the different markers
failed to agree on the surface magnetizations for axion-odd
systems, the bulk symmetry group permitted an MQM that
could contribute to the surface magnetizations.

Overall, our study indicates that a coarse graining of the
M l i n  marker provides a suitable framework for computing
surface magnetizations. However, a formal derivation that
would explain the unique success of the M l i n  marker remains
elusive, and questions persist about the definition and role of
the bulk quadrupole tensor. Thus, while our paper establishes a
foundation for a theory of surface orbital magnetization, it
also highlights the need for further work to resolve some
important remaining questions.

Note added. A preprint by Gliozzi, Lin, and Hughes [37]
also considers, although from a different perspective, issues
related to surface orbital magnetization, hinge currents, and
bulk magnetic quadrupole moments.
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APPENDIX A: LOCAL MARKER FOR SLAB
GEOMETRIES IN THE TIGHT-BINDING

REPRESENTATION

In this Appendix, we provide further exposition on the
calculation of the local markers in the context of TB models.
For concreteness, we will focus on computing the marker for
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insulating slabs that are of sufficient finite thickness in the z
direction, but infinite in-plane, as in Sec. IV B.

The MC ,C ,  M E , E ,  and M l i n  local markers for the magne-
tization are all expressible in terms of the LC local markers of
Eqs. (20)–(22) and their IC marker analogues. In this Ap-
pendix, we restrict ourselves to a calculation of the marker of
Eq. (20), which for a TB site i is given by

MC
C (i ) =  −

h̄  
Imhi|XHY †|ii. (A1)

The calculations for all other LC and IC markers are similar,
and we will simply state the results at the end of this Ap-
pendix.

We remind the reader that in all of our models, we have set
the Fermi energy inside the band gap at zero, so that we ignore
the Chern marker contribution to the local marker. For details
on how to compute the Chern marker in the TB representation,
we refer the reader to Ref. [22].

We denote the valence (v) and conduction (c) band eigen-
states of the slab Hamiltonian as ψvk(r) and ψck(r), respec-
tively, where k =  (kx , ky ). The valence and conduction band
projectors are then written as P =  (1/Nk ) |ψvkihψvk| and
Q =  (1/Nk ) |ψckihψck|, where Nk is the number of k
points in the 2D Brillouin zone mesh. With this in mind, we
observe that

MLC (i ) =  −
h̄  

Imhi|XHY †|ii

=  −  
e 

Im hi|ψvkihψvk|x|ψcki
k               k vv0cc0

×  hψck|H|ψc0kihψc0k|y|ψv0kihψv0k|ii

=  −
N

e
h̄  

I m
X  

vv0c 

Eckψvk(i)ψ�
k(i)XvckYcv0k,

(A2)

where Enk is the eigenenergy corresponding to |ψnki, Xvck =
hψvk|x|ψcki, and Y =  hψck|y|ψvki.

In our calculations of the local markers, we do not directly
compute the matrix elements of the position operators x and y
in the energy eigenbasis; rather, we use the velocity operator
v, defined as

v =  
ih̄ 

[r, H ], (A3)

to rewrite

Xvck =  
hψvk|ih̄vx|ψcki

(A4)
ck vk

and similarly for Y †
0     .

The three LC markers are then

MLC (i ) =  −  
e 

Im Eckψvk(i)ψv0k(i)XvckYcv0k,
k     vv0c

(A5)

MLC (i ) =  − Im Eckψck(i)ψc0k(i)Xvc0kYcvk,
k     cc0v

(A6)

MLC (i ) =  −
Nk h̄  

Im 
k     cc0v 

Ec0kψck(i)ψc0k(i)Xvc0kYcvk.

(A7)
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The three IC markers are
MIC (i ) =  

Neh̄ 
Im 

k     cc0v 

Evkψck(i)ψc0k(i)XcvkYvc0k, (A8)

MIC (i ) = Im Evkψvk(i)ψv0k(i)Xcv0kYvck, (A9)
k     vv0c

MIC (i ) =  
Nkh̄ 

Im 
k     vv0c 

Ev0kψvk(i)ψv0k(i)Xcv0kYvck.

(A10)

The combinations of these markers then yield the MC ,C ,
M E , E ,  and M l i n  markers.

APPENDIX B: MICROSCOPIC TIGHT-BINDING
CURRENTS

Here, we give further details on the calculation of the
microscopic current density in the TB representation. Our
derivation in Sec. IV C was centered on continuum models,
and we briefly noted that in a TB context Eq. (46) turns into a
discrete sum over TB sites.

Due to the discrete nature of TB models, microscopic
currents are more naturally defined along straight-line paths,
which we refer to as bonds, between different TB sites, rather
than at individual TB sites. Assuming that each TB site hosts a
single orbital (the generalization to the multi-orbital case
being straightforward), the bond current between TB sites i
and j arises from the probabilities for a particle to hop from
site i to site j and vice versa. Recall from the introduction to
Sec. V that we have adopted a diagonal approximation to the
matrix elements of the position operators in the TB basis,

hi|r| ji =  riδi j , (B1)

where ri denotes the position of TB orbital i. With this approx-
imation in mind, the matrix elements of the velocity operator v
=  (1/ih̄ )[r, H ] in the TB basis are expressed as

hi|v| ji =  
ih̄ 

(ri −  r j)hi|H| ji. (B2)

Given a set of occupied states |ψni, the total current in the
system is given by

occ

J =  hψn|J|ψni (B3)
n

where J =  ev is the total current operator. Inserting resolu-
tions of the identity in terms of the TB sites on either side of J,
we get

occ

J =  e hψn|iihi|v| jih j|ψni =  e h j|P|iihi|v| ji (B4)
n       i j                                                            i j

where P is the ground-state projector. Substituting Eq. (B2),
this can be written as

J = Jhi ji (B5)
hi ji

where the sum runs over distinct pairs hi ji of sites and
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describes the total current flowing on the bond hi ji.
Since the current is assumed to flow uniformly along the

straight-line bond connecting the sites, it makes no difference
if we treat it as distributed uniformly along the length, concen-
trated at the center, or partitioned between the two end points
of the bond. We make the last choice in order to write the total
current as a sum over sites, J = i ji, where

ji =  
1 X

J h i j i . (B7)
j

We treat this as the discrete analog of Eq. (46), and we use
it in the calculations of the macroscopic hinge currents in our
TB models by performing the coarse-graining procedure of
Sec. IV C on the ji.

Finally, we note that in the case of the extended rod ge-
ometries used to find the macroscopic hinge currents in the
main text, the valence projector P is written in terms of the rod
valence eigenstates ψvk as P =  (1/Nk ) |ψvkihψvk|, where
the sum is over the Nk points of the mesh spanning the 1D
Brillouin zone. This expression for P is then substituted into
Eq. (B6).

APPENDIX C: POINT-DIPOLE-BASED MAGNETIC
QUADRUPOLE MOMENT

We now present a proof of Eq. (37) of the main text.
Consider a collection of point magnetic dipoles mμ located at
positions rμ . We will enumerate the dipoles with Greek letters
and use Latin letters to label Cartesian indices. The micro-
scopic current distribution j(r) of the collection of dipoles is

� �

j(r) =  � ×  �
X

m μ δ ( r  −  r μ )�= −
X

m μ  ×  �δ(r −  rμ ).
μ μ

(C1)
We then find that r ×  j(r) in the definition of the current-based
MQM [see Eq. (31)] is given by

(r ×  j)i =  
X

[r kmμ , k ∂ i  −  mμ,irk∂k]δ(r −  rμ ) (C2)
μ

in an implied sum notation. Substituting this expression into
Eq. (31) and integrating by parts, we find

Qi j =  
1 

Z 
dr (r ×  j)i r j

Z
=  

3 μ

dr[mμ,i∂k (rkr j ) −  mμ,k∂i(rkr j )]δ(r −  rμ )

=  
X

m μ , i r μ , j  −  
3
δi j mμ,k rμ,k =  Qdip −  

3
δi jQdip, (C3)

where we use the definition of Qdip introduced in Eq. (36).
We have thus proved Eq. (37).

APPENDIX D: NUMERICAL TB MODEL RESULTS

Jhi ji =  
h̄ 

(ri −  r j)Im[h j|P|iihi|H| ji] (B6)
Each of the TB models of Sec. V features 2D layers cou-

pled by interlayer couplings that are along the layer stacking
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direction. In going from one layer to the next, the couplings
vary between two values denoted by t3 and t0. When t3 =  t0,
the systems are found to exhibit axion-odd symmetries, and
only axion-even symmetries otherwise. In each of the models,
all parameters are kept fixed except for t0, which is used to
bring the systems into and out of the axion-odd regime. For
each model, 0.05 6  t0 6  0.15.

In the main text, we reported the values of the facet magne-
tizations M�, M�, and M� found from the CC, EE , and “lin”

PHYSICAL REVIEW B 107, 115102 (2023)

markers. Furthermore, we found the differences of facet mag-
netizations at different surfaces 1M FB , 1M BL , and 1M LF ,
and compared them to the values of the directly computed
macroscopic hinge currents. We did this for the parameter val-
ues t0 =  0.1 and 0.15. In this Appendix, we report this data for
t0 =  0.05, 0.075, and 0.125. The values of the magnetizations
and currents are subject to the same symmetry constraints in
the models’ respective axion-even regimes that are described
in the main text.

1. Alternating Haldane layers

In Tables XV, XVI, and XVII we report the values of the surface magnetizations and hinge currents for parameter values
t3 =  0.05, 0.075, and 0.125, respectively.

TABLE XV. Surface magnetizations and hinge currents (in units of 10−5e/h̄ ) for the alternating Haldane model with t0 =  0.05 (axion-even).

M�

M C C 1.8148
M E E 1.8148
M lin 1.8148
Icalc

M�

−0.0493
−0.0493
−0.0493

M�

−0.0096
−0.0096
−0.0096

1M FB 1M BL 1M LF

−1.8641 1.8244 0.0397
−1.8641 1.8244 0.0397
−1.8641 1.8244 0.0397
−1.8641 1.8244 0.0397

TABLE XVI. Surface magnetizations and hinge currents (in units of 10−5e/h̄ ) for the alternating Haldane model with t0 =  0.075
(axion-even).

M�

M C C 1.8120
M E E 1.8120
M lin 1.8120
Icalc

M�

−0.0288
−0.0288
−0.0288

M�

−0.0056
−0.0056
−0.0056

1M FB 1M BL 1M LF

−1.8408 1.8176 0.0232
−1.8408 1.8176 0.0232
−1.8408 1.8176 0.0232
−1.8408 1.8176 0.0232

TABLE XVII. Surface magnetizations and hinge currents (in units of 10−5e/h̄ ) for the alternating Haldane model with t0 =  0.125
(axion-even).

M� M�

M C C 1.8032 0.0372
M E E 1.8032 0.0372
M lin 1.8032 0.0372
Icalc

M� 1M FB

0.0073                         −1.7659
0.0073                         −1.7659
0.0073                         −1.7659

−1.7659

1M BL 1M LF

1.7959 −0.0299
1.7959 −0.0299
1.7959 −0.0299
1.7959 −0.0299

2. Two-layer plaquette model: Straight edges

In Tables XVIII, XIX, and XX we report the values of the surface magnetizations and hinge currents for parameter values
t3 =  0.05, 0.075, and 0.125, respectively.

TABLE XVIII. Surface magnetizations and hinge currents (in units of 10−6e/h̄ ) for the two-layer plaquette model with straight-edge
terminations and with t3 =  0.05 (axion-even).

M�

M C C 2.4215
M E E 2.4224
M lin 2.4221
Icalc

M�

−0.0174
−0.0179
−0.0178

M�

−0.0174
−0.0179
−0.0178

1M FB

−2.4390
−2.4403
−2.4399
−2.4399

1M BL 1M LF

2.4390 0.0000
2.4403 0.0000
2.4399 0.0000
2.4399 0.0000
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TABLE XIX. Surface magnetizations and hinge currents (in units of 10−6e/h̄ ) for the two-layer plaquette model with straight-edge
terminations and with t3 =  0.075 (axion-even).

M�

M C C 2.4030
M E E 2.4035
M lin 2.4033
Icalc

M�

−0.0103
−0.0106
−0.0105

M�

−0.0103
−0.0106
−0.0105

1M FB 1M BL 1M LF

−2.4133 2.4133 0.0000
−2.4141 2.4141 0.0000
−2.4138 2.4138 0.0000
−2.4138 2.4138 0.0000

TABLE XX. Surface magnetizations and hinge currents (in units of 10−6e/h̄ ) for the two-layer plaquette model with straight-edge
terminations and with t3 =  0.125 (axion-even).

M� M�

M C C 2.3430 0.0139
M E E 2.3422 0.0143
M lin 2.3425 0.0141
Icalc

M� 1M FB

0.0139                         −2.3291
0.0143                         −2.3280
0.0141                         −2.3284

−2.3284

1M BL 1M LF

2.3291 0.0000
2.3280 0.0000
2.3284 0.0000
2.3284 0.0000

3. Two-layer plaquette model: Zigzag edges

In Tables XXI, XXII, and XXIII we report the values of the surface magnetizations and hinge currents for parameter values
t3 =  0.05, 0.075, and 0.125, respectively.

TABLE XXI. Surface magnetizations and hinge currents (in units of 10−6e/h̄ ) for the two-layer plaquette model with zigzag terminations
and with t3 =  0.05 (axion-even).

M�

M C C 2.4215
M E E 2.4224
M lin 2.4221
Icalc

M� M�

0.0011 −0.0359
0.3247 −0.3605
0.2168 −0.2523

1M FB

−2.4204
−2.0977
−2.2053
−2.2053

1M BL 1M LF

2.4574 −0.0370
2.7829 −0.6852
2.6744 −0.4691
2.6744 −0.4691

TABLE XXII. Surface magnetizations and hinge currents (in units of 10−6e/h̄ ) for the two-layer plaquette model with zigzag terminations
and with t3 =  0.075 (axion-even).

M� M�

M C C 2.4030 0.0006
M E E 2.4035 0.1909
M lin 2.4033 0.1275
Icalc

M�

−0.0212
−0.2121
−0.1485

1M FB

−2.4024
−2.2126
−2.2758
−2.2758

1M BL 1M LF

2.4242 −0.0218
2.6156 −0.4030
2.5518 −0.2760
2.5518 −0.2760

TABLE XXIII. Surface magnetizations and hinge currents (in units of 10−6e/h̄ ) for the two-layer plaquette model with zigzag terminations
and with t3 =  0.125 (axion-even).

M�

M C C 2.3430
M E E 2.3422
M lin 2.3425
Icalc

M�

−0.0007
−0.2518
−0.1681

M� 1M FB

0.0284                         −2.3437
0.2803                         −2.5941
0.1964                         −2.5106

−2.5106

1M BL 1M LF

2.3145 0.0291
2.0619 0.5322
2.1461 0.3645
2.1461 0.3645
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4. Four-layer plaquette model: Straight edges

In Tables XXIV, XXV, and XXVI we report the values of the surface magnetizations and hinge currents for parameter values
t3 =  0.05, 0.075, and 0.125, respectively.

TABLE XXIV. Surface magnetizations and hinge currents (in units of 10−7e/h̄ ) for the four-layer plaquette model with straight-edge
terminations and with t3 =  0.05 (axion-even).

M�

M C C 3.26720
M E E 3.26732
M lin 3.26728
Icalc

M�

−0.00555
−0.00557
−0.00556

M�

−0.00627
−0.00638
−0.00635

1M FB

−3.27276
−3.27289
−3.27284
−3.27285

1M BL

3.27348
3.27371
3.27363
3.27363

1M LF

−0.00072
−0.00082
−0.00078
−0.00078

TABLE XXV. Surface magnetizations and hinge currents (in units of 10−7e/h̄ ) for the four-layer plaquette model with straight-edge
terminations and with t3 =  0.075 (axion-even).

M�

M C C 3.25997
M E E 3.26004
M lin 3.26002
Icalc

M�

−0.00301
−0.00298
−0.00299

M�

−0.00392
−0.00401
−0.00398

1M FB

−3.26298
−3.26302
−3.26301
−3.26301

1M BL

3.26388
3.26405
3.26400
3.26400

1M LF

−0.00091
−0.00103
−0.00099
−0.00099

TABLE XXVI. Surface magnetizations and hinge currents (in units of 10−7e/h̄ ) for the four-layer plaquette model with straight-edge
terminations and with t3 =  0.125 (axion-even).

M�

M C C 3.23673
M E E 3.23664
M lin 3.23667
Icalc

M�

0.00527
0.00541
0.00536

M�

0.00375
0.00369
0.00371

1M FB

−3.23146
−3.23122
−3.23130
−3.23130

1M BL

3.23298
3.23294
3.23296
3.23296

1M LF

−0.00152
−0.00172
−0.00165
−0.00165

5. Four-layer plaquette model: Zigzag edges

In Tables XXVII, XXVIII, and XXIX we report the values of the surface magnetizations and hinge currents for parameter
values t3 =  0.05, 0.075, and 0.125, respectively.

TABLE XXVII. Surface magnetizations and hinge currents (in units of 10−7e/h̄ ) for the four-layer plaquette model with zigzag termina-
tions and with t3 =  0.05 (axion-even).

M�

M C C 3.26720
M E E 3.26732
M lin 3.26728
Icalc

M�

−0.00599
−0.00605
−0.00603

M�

−0.00599
−0.00605
−0.00603

1M FB

−3.27319
−3.27337
−3.27331
−3.27331

1M BL

3.27319
3.27337
3.27331
3.27331

1M LF

0.00000
0.00000
0.00000
0.00000

TABLE XXVIII. Surface magnetizations and hinge currents (in units of 10−7e/h̄ ) for the four-layer plaquette model with zigzag
terminations and with t3 =  0.075 (axion-even).

M�

M C C 3.25997
M E E 3.26004
M lin 3.26002
Icalc

M�

−0.00351
−0.00354
−0.00353

M�

−0.00351
−0.00354
−0.00353

1M FB

−3.26347
−3.26358
−3.26355
−3.26355

1M BL

3.26347
3.26358
3.26355
3.26355

1M LF

0.00000
0.00000
0.00000
0.00000
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TABLE XXIX. Surface magnetizations and hinge currents (in units of 10−7e/h̄ ) for the four-layer plaquette model with zigzag terminations
and with t3 =  0.125 (axion-even).

M�

M C C 3.23673
M E E 3.23664
M lin 3.23667
Icalc

M�

0.00456
0.00461
0.00459

M�

0.00456
0.00461
0.00459

1M FB

−3.23217
−3.23203
−3.23207
−3.23207

1M BL

3.23217
3.23203
3.23207
3.23207

1M LF

0.00000
0.00000
0.00000
0.00000
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