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Inflation of hollow elastic structures can become unstable and exhibit a run-
away phenomenon if the tension in their walls does not rise rapidly enough
with increasing volume. Biological systems avoid such inflation instability for
reasons that remain poorly understood. This is best exemplified by the lung,
which inflates over its functional volume range without instability. The goal
of this study was to determine how the constituents of lung parenchyma deter-
mine tissue stresses that protect alveoli from instability-related overdistension
during inflation. We present an analytical model of a thick-walled alveolus
composed of wavy elastic fibres, and investigate its pressure-volume behav-
iour under large deformations. Using second-harmonic generation imaging,
we found that collagen waviness follows a beta distribution. Using this distri-
bution to fit human pressure-volume curves, we estimated collagen and elastin
effective stiffnesses to be 1247 kPa and 18.3 kPa, respectively. Furthermore, we
demonstrate that linearly elastic but wavy collagen fibres are sufficient to
achieve inflation stability within the physiological pressure range if the alveolar
thickness-to-radius ratio is greater than 0.05. Our model thus identifies the con-
straints on alveolar geometry and collagen waviness required for inflation
stability and provides a multiscale link between alveolar pressure and stresses
on fibres in healthy and diseased lungs.

1. Introduction

Mechanical stability of structures is critical for effective function and is usually
associated with problems in physics and engineering. When a physical system
is driven by external forces to the point of instability, it can suddenly transition
from one configuration to a very different one. This often occurs in a cata-
strophic manner, such as when a bridge collapses. Mechanical stability is also
critical in many biological systems that are subjected to significant stresses
due to internal pressures. Inflation instability occurs in elastic balloons when
the effective bulk modulus (the product of stiffness and volume) decreases
monotonically with increasing volume. This eventually leads to a runaway
phenomenon characterized by a negative bulk modulus. Inflation instability
was discovered by Osborne at the beginning of the twentieth century [1] in
rubber balloons. Surprisingly, however, Osborne also found that such instability
does not exist in biology; when he inflated a urinary bladder, the transmural
pressure P increased nearly exponentially with inflating volume V over the
entire volume range. Indeed, detailed mathematical analysis suggests that a
strong exponential-type nonlinearity in the stress—strain behaviour of the
balloon wall is required to avoid inflation instability [2].
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Although many studies have proposed that the mechan-
isms responsible for an exponential-type nonlinearity are
the gradual collagen fibre realignment [3-6] and the sequen-
tial straightening of initially flaccid collagen fibrils [4,7], how
these processes contribute to functional stability is not fully
understood. In the lung, such a collagen recruitment process
progressively takes over the load-bearing role from the much
less stiff elastic fibres that bear most of the stress at low
volumes [8,9]. However, neither the waviness distribution
nor the rate at which collagen becomes recruited with
increasing volume are known. Furthermore, the role of alveo-
lar wall thickness and its thinning during large deformations
associated with lung inflation has not been investigated. To
this end, we report the development of a thick-walled
sphere model containing linearly elastic elastin fibres and
wavy but linearly elastic collagen fibres embedded in the
extracellular matrix (ECM) of the wall. We provide an ana-
lytic solution for the pressure-volume behaviour of this
model during large deformations as a function of the distri-
bution of collagen waviness and the elastic stiffnesses of
elastin and collagen. In addition, we report experimental
data on collagen waviness in the alveoli, which allows us to
estimate fibre stiffnesses and stresses. The combined contri-
butions of the single wavy fibres and the thick-walled
structure manifest in attaining the requirements for inflation
stability in hollow biological structures that must bear
internal pressure.

2. Results
2.1. Model development

The final equations are summarized below, while the details
can be found in the Methods. The model considers a spheri-
cal, thick-walled alveolus (figure 1a). During isotropic
expansion, an arbitrary radius R between the inner and
outer radii (R;<R<R,) from the initial undeformed state
stretches to a radius r between the deformed inner and
outer radii (r;<r<r,) (figure 1b). Wavy collagen fibres and
non-wavy elastin fibres are embedded within the matrix of
the alveolar wall (figure 1c). In the undeformed state, no
stress exists at the level of either the elastin or collagen
fibres, and thus there is no stress in the alveolar wall. At
the onset of expansion due to an alveolar pressure (P,,) rela-
tive to the pressure outside the sphere, the elastin fibres
immediately elongate and contribute to stress, while the col-
lagen fibres initially become less wavy. Only when a collagen
fibre is fully straightened, does it contribute to the circumfer-
ential stress oy (figure 1e). Radial stress o, also builds up
within the wall and is equal to P, at the inner radius.

Let Y, and Y, represent the elastic modulus of collagen
and elastin, respectively. Defining a total fibre area fraction
as the product of fibre number and average fibre cross-
sectional area divided by the alveolar wall cross-sectional
area, 84, and &4, are the total area fractions for collagen
and elastin, respectively. We also define the effective fibre
elastic modulus as Y., =Y. 64, and Y,. =Y, 64, for collagen
and elastin, respectively.

Collagen fibre waviness (w) is defined as the fibre contour
length divided by its end-to-end distance in the undeformed
state (figure 1d). Collagen fibre minimum and maximum
waviness (i.e. when P,,=0) are denoted by w; and w,,
respectively. We assume that the waviness within a
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Figure 1. Alveolar model description. (a) A thick-walled spherical alveolus of
initial inner and outer radii R; and R., respectively. (b) As the alveolus
expands isotropically, the wall thickness decreases as the stretched inner
and outer radii r; and r,, respectively, increase. () Wavy collagen fibres
(green) and the non-wavy elastin fibres (red) embedded in a matrix
(grey) lie circumferentially within a plane slicing through the great circle
of the sphere. (d) The waviness of a collagen fibre is defined as its contour
length (/) over its end-to-end distance in the undeformed sphere. (e) As the
alveolus expands due to alveolar pressure (P,), the wavy fibres become less
wavy and, once fully straightened, they contribute together with the already
elongated elastin fibres to the circumferential stress (ogg). Note that Py, is
equal to the radial pressure (o) at r;.

population of fibres can be described by the beta probability
distribution function (p) with two shape parameters o and S:

(W —w)* (w, — w)Pf?
Bla,B)(w; — w)* P

pw) = (2.1)

where B(a, ) is the B function of two variables (a and f).

Next, we introduce the circumferential stretch ratio A =7/R,
the inner stretch ratio 4;=r;/R; and a thickness mapping par-
ameter S=R/R; that spans the distance through the septal
wall thickness such that 1 < S <R,/R; =S,.

Based on this description, accounting for mass conserva-
tion, and using the deformed area in calculating stress, the
Cauchy circumferential stress in the alveolar wall, at any
given layer, due to elastin is

Ge1S) = Yo 511, (22)

whereas that due to the wavy collagen fibres is

Te00(A,5) = B(a,B)ala + s w1 Wy — W

((a+ 1DA; — aBy),

YC(_, /\()\*wl)()\*wl)a

w <A< w, (23)
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Figure 2. Collagen waviness results. (@) An SHG example image together with fibre tracings. Yellow traced lines are drawn over the fibre length and arc length. The
former is divided by the latter to obtain the waviness of a single collagen fibre. The inset shows an enlarged section of a selected fibre. (b) Histogram and fit for all
166 measured fibres. Blue bar graph represents the experimental collagen waviness, while the red line is the fit of the beta distribution (equation (2.1)). The
adjusted coefficient of determination R? is 0.98, and « and 3 values are 1.89 and 3.60, respectively (their 95% confidence intervals are shown in brackets).
The minimum and maximum experimentally measured waviness values were 1.12 and 2.53, respectively.

and following relation (see electronic supplementary material
s Y. ﬂ O —wp) for details):
W) = BBt DS w Y(A_V> - 33 .9
((a + 1)A2 _ aBz), A 2 oy (24) Vg 1 + eXp(—(AV/VO — 3)/05)

Finally, Py, is the sum of P,y (equation (2.6)) and Py
(equation (2.8)). Thus, the final model includes eight parameters,
six related to the fibres (Y,,, Y., @, B, w1, w») and two related to
alveolar geometry (S, and V,,). For a known alveolar geometry,
the model has only six parameters—the effective elastic
modulus for elastin (Y,,) and collagen (Y,.), the minimum and
maximum waviness of collagen (w; and w,, respectively) and
the two beta distribution shape parameters (¢ and ). The
full derivation of equations (2.1)-(2.9), which also includes
equations for engineering stress, stress for uniform fibre distri-
2 J Se s2 bution, alveolar elastance, tension and collagen fibre stress

)‘_12 1(S34+ A3 — 1)1/3 90(2, 5) dS. (2:5) distribution, is given in the Methods.
1

where Ay, By, A, and B, are calculated from the Appell hyper-
geometric function of two variables (o and ) (see Model
description in Methods)

The total circumferential stress (ogy) is then the sum-
mation of the individual fibre stresses (cge(d, S) =00+
o.00)- Since there are no shear stresses within the alveolar
wall (see Methods), and applying the equations of equili-
brium, the alveolar pressure due to the collagen and elastin
fibres (P,1vs) can be written as

Palv/f =

Finally, assuming a thin-walled alveolus with initial thick-

2.2. Collagen waviness

T, th h 1 is i f .
ness T;, the stress across the wall is independent of r and Before the model can be used to simulate or model P-V

equal to the mean stress (Gy9) evaluated at the middle layer

curves, parameters of the waviness distribution need to be
which reduces equation (2.5) to the final analytical expression P

determined. Figure 2 shows an example of our second-
( A? 18— 1)2/3 harmonic generation (SHG) image obtained in bovine lung
2z -1 tissue, and the corresponding probability distribution func-

! tion for the collagen waviness. The distribution is skewed

Pa,f(Aj) = g

(3 +3(Ti/Ry) + 3(T; JR)* + (T; /Ri)3)2/3 to the right and shows a wide range of waviness values
= Too 212 -1 from 1.12 to 2.53. The beta distribution fits the data well
' 26) (R?=0.98) with parameters a=1.89 and f =3.60.
The corresponding alveolar air volume (V,,) with an 2.3. Model ﬁtting
initial value of V, is expressed as The model was able to provide good fits to human P-V curves
Ve = VoA, 2.7) (figure 3) taken from the literature [12-14]. Table 1 summarizes

the population mean values of the estimated parameters both
with and without the contribution from surface tension. The
Akaike criterion suggests that including surface tension in the
model does not improve the fit. Hence, for further analysis,
S (ON 2y(AV/V,) (2.8) we fit the model without surface tension.

The total alveolar pressure (P,,) also has a contribution
due to surface tension y [10] given by

P — s — 7
alv,s 7 Ri(AV/Vo + 1)1/3
where AV =V, — V,. We estimated y as a function of AV by 24. Sensitivity analysis
fitting a sigmoidal curve with three parameters to data col- To better understand how the model behaves, the effects of

lected by Smith & Stamenovi¢ [11], which resulted in the varying several parameters on the P-V curve are examined
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Table 1. Human P-V/ curve fitting results. R?, adjusted coefficient of determination; AlCc, Akaike criterion; s.d., standard deviation. Numbers in brackets are the [ 4 |

95% confidence intervals.

Clements et al. 1961 [13] 0.987 1645 [945-2344]
N|ewoehnereta/[14] e T e [309_2214] B
e enetal[12] R SR LRl

mean = s.d. 1419 + 164

three-parameter fit without surface tension

three-parameter

4

Yee (kPa)

fit with surface tension

Yee (kPa)

352 [475_2228.].. S

Yee (kPa)

142 [11.8-167)
1791862711
247 [16.1-33.4]

189+43

Yee (kPa)

131 [1.28-1.35]

1.28 +0.02

(Clements et al. [13] 0.988 1530 [755-2305] 13.7 [11.4-15.9] 1.32 [1.28-1.37] 81

Niewoehner et al. [14] 0.977 1071 [96—2046] 17.3 [8.1-26.5] 1.28 [1.17-1.39] 89

Verbeken et al. [12] 0.993 1139 [325-1954] 24 [15.6-32.4] 1.26 [1.17-1.34] 126

mean + s.d. 1247 + 202 183 +43 1.29+0.03
4 Note that in these simulations, pressure was used as input
and AV/V, as the output.
_____ v
3t PN e = . L -
0 e 2.5. Alveolar inflation instability
o-‘-v """""" mes An interesting feature of the P-V curve can be obtained by simu-
> ) ."v e lating equation (2.5) (and equations (2.3) and (2.4)) using volume
5 .v = as the input reaching values higher than those used in figure 3.
,: ' For the baseline parameters (table 1), the P-V curve in figure 5
1 e B * Cl.emems etal.113] exhibits inflation instability in which P,j, increases to a maxi-
L ¥ Niewoehner et al. [14] .

*®s ®  Verbeken et al. [12] mum value, then decreases when AV/V, further increases
r" oo o gparameter ft:l: Wi:ﬁouﬁurfatce tension (figure 5a). The instability, however, occurs at non-physiologi-
R ) P amfle eriw Su, ace fension ) cally high values of AV/V,,. Expressed in terms of the effective
0 0.5 1.0 1.5 2.0 bulk modulus (or specific alveolar elastance), Es=VdPy/
P, (kPa) dV,, (figure 5b), computed from equation (5.69), inflation

Figure 3. Results of fitting the three-parameter model. Fixing ¢, 8 and the
range of collagen waviness (w, —w;) using the experimental waviness
measurements, three human isolated lung deflation P-V curves were
fitted and Y, Y. and w; were estimated (table 1). The fits with and without
surface tension are almost indistinguishable.

in figure 4. Halving or doubling Y,, shifted the curve to the
left or right, respectively, though it had little effect on the
P-V curve at higher P, (figure 4a). On the other hand, Y,
affected AV/V, at high P,: once collagen fibres became
recruited, decreasing or increasing Y, halved or doubled
the slope, respectively (figure 4b). Decreasing or increasing
w; while keeping the width of the waviness distribution
(dw) constant caused collagen fibres to become recruited ear-
lier or later, respectively, allowing less or more volume
expansion before reaching the upper inflection point
(figure 4c), but there was little change in slope. Varying dw
by fixing w; but decreasing or increasing w, did not affect
the beginning location of the upper inflection point but
increased or decreased, respectively, the final slope
(figure 4d). Changing the waviness distribution towards a
left-skewed distribution had a similar effect of increasing
the slope (figure 4e). Finally, decreasing or increasing S,
had a similar effect as Y,. by mainly shifting the curve, but
these effects were still apparent at high P, (figure 4f).

instability can be partitioned into two regimes, geometric
instability (decreasing but positive bulk modulus) starting at
AV/Vy=73 and P, =5.5 kPa, and a runaway region (negative
bulk modulus) beginning at AV/V,= 43.8 and P, =10.4 kPa,
respectively (figure 5d, inset). Reductions in Y, and S, the
absence of collagen, and changes in the waviness range and
beta distribution parameters (both of which slowed collagen
recruitment) resulted in inflation instability at much lower press-
ures compared to baseline (figure 5c,d). These lower pressures
(figure 5d, inset) impinge on the physiological range (approx.
3 kPa for reduction in Y., and S,

2.6. Multiscale analysis

Beyond inflation instability, our model can be used to obtain
new insight into alveolar wall mechanics. For example, figure 6
reveals the contribution of the fibres to the circumferential and
radial stress and stiffness developed in the alveolar wall with
increasing inner stretch ratio ;. Even though elastin is modelled
as a linear material, it has a slightly nonlinear contribution to
circumferential stress and stiffness (figure 6a,d, respectively).
This is due to both geometric effects (wall thinning) in the
model that are not enough to produce a convex shaped radial
stress curve (figure 6g) as well as to stiffening behaviour
(figure 6;). On the other hand, the nonlinear contribution to cir-
cumferential stress and stiffness by collagen (figure 6b,e,
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Figure 4. Sensitivity analysis. The plots show how the P—V/ curve is affected by variations in (a) waviness across the alveolar wall, (b) outer to inner radius ratio (S,),
(c) elastin effective elastic modulus, (d) collagen effective elastic modulus, (e) waviness range and (f) waviness distribution beta shape parameters (« and f3). Per
cent differences in AV/V, from the baseline simulation are indicated next to each curve for Py, of 0.5, 1.5 and 2 kPa.

respectively) is due both to fibre recruitment and wall thinning.
In this case, we observe a convex radial stress—stretch ratio curve
due mainly to collagen recruitment, which also leads to an
increasing radial stiffness (figure 6k). The opposite contri-
butions of elastin and collagen to the total alveolar stress and
stiffness result in an initial geometric instability (but not
inflation instability because it is not followed by runaway)
followed by a strain-stiffening behaviour as collagen fibre
recruitment contributes increasingly to alveolar
(figure 6c,i) and stiffness (figure 6f,1).

While the collective elastin contribution to the alveolar wall
stress is nonlinear, individual elastin fibres across layers experi-
ence linear stretch (figure 7a) and hence stress (figure 7b) with

stress

increasing A;. The variation across the wall is attributed to the
different stretch ratios (1) within the wall. Due to its waviness,
collagen recruitment (figure 7c) leads to different stress distri-
butions at a given 4; as exemplified in figure 7.

An interesting prediction of the model is the multiscale
nature of stress spanning nearly six orders of magnitude
(figure 8). At large inflation pressures, the alveolar wall cir-
cumferential stress is almost an order of magnitude greater
than the alveolar pressure (radial stress at the inner wall).
The stress on elastin fibres is nearly two orders of magnitude
greater than the circumferential wall stress. The maximum
stress carried by the collagen fibres is approximately two
orders of magnitude greater than the elastin fibres.
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Figure 5. Inflation instability based on Cauchy stress (red solid line), reduced S, (green), reduced Y,, (green), absence of collagen (cyan), Gaussian distribution with
the same waviness range (purple) and beta distribution with altered shape parameters (pink). (a) The P-V curve displays inflation instability at AV/V,. (b) Based on
the incremental bulk modulus, inflation instability can be separated into a geometric instability regime (blue shaded region) and a runaway regime (green shaded
region). (c) Compared to the baseline, all other simulations display inflation instability at lower pressures and (d) lower bulk modulus values. Note that AV/V, was

used as input to these simulations. dw, width of the waviness distribution.

3. Discussion

In this study, we developed an analytic thick-walled model of
a single alveolus containing elastin and wavy collagen fibres
embedded in tissue matrix undergoing large deformations.
Based on a collagen waviness distribution obtained from
SHG imaging, fitting the model to three human P-V curves
allowed us to estimate the effective elastic moduli of the col-
lagen and elastin components of alveolar tissue. We first
verified the analytic results by showing that, given the
known thickness to radius ratio of the alveolar walls, stress
variation within the wall can be neglected (see electronic
supplementary material, figure S2).

Our model also provides new insight into the roles that
fibres and their recruitment play in determining bulk alveolar
mechanics, and in particular how they ensure inflation stab-
ility to protect the alveolus from overdistension. In contrast
with the traditional view that attributes alveolar inflation
stability to the nonlinear stiffness behaviour of collagen
fibres [15-17], we have demonstrated that stability can be
achieved through linearly elastic but wavy collagen fibres
that become progressively recruited into the load-bearing
role as the alveolus inflates according to a waviness distri-
bution that we observed experimentally (figure 2). The
finite thickness of the alveolar wall is an important feature
of our model because we show that inflation stability can

be compromised by a decrease in the wall thickness-to-
radius ratio as well as by a decrease in collagen fibre stiffness.
These findings imply biological effects because alveolar
strains can significantly influence the behaviour of cells
embedded alveolar septa [18,19], with possible implications
for drug treatments and mechanical ventilation strategies.

3.1. Collagen waviness

Measurements of waviness and curvature distributions [20]
have been reported for some fibrils in lung parenchyma
[21], including in vascular tissues [22]. However, to our
knowledge, there has not been any previous assessment of
collagen waviness distributions specifically within the alveo-
lar wall. The most commonly evaluated fibril measurement is
the so-called straightness parameter, defined as the end-to-
end fibre distance over the contour length. Note that straight-
ness is not exactly the reciprocal of our waviness definition
since we used the arc length along the curved alveolar wall
rather than the end-to-end distance. Rezakhaniha et al. [22]
reported that the straightness parameter has a wide and
left-skewed beta distribution («¢=4.47, f=1.76) with wavi-
ness exceeding 5. Our right-skewed beta distribution for
waviness, with the lower range of 1.12-2.53, can be shown
to be consistent with the straightness values of Rezakhaniha
et al. [22].
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Figure 6. Alveolar wall stresses (o) and stiffnesses (¥) due to the fibres as a function of the inner stretch ratio A;. Columns represent the contribution of elastin
(column 1), collagen (column 2) and their combined effect (column 3) for the circumferential wall stress (row 1), circumferential wall stiffness (row 2), radial wall
stress (row 3) and radial wall stiffness (row 4) for three different layers (solid lines) and the mean (red short-dashed line). Per cent contributions of collagen to the
total stress and stiffness are shown in the third column at specific A; values (1.2, 1.3, 1.4, 1.5, 1.6). Note that the percentage contribution is the same for both
circumferential and radial stresses. The alveolar pressure is equal to the radial stress evaluated at the inner layer. The nonlinear relationship between A; and alveolar
pressure can be observed in (). Individual layer circumferential stresses and stiffnesses were calculated analytically, while all other stress and stiffness values were

obtained numerically.

The shape of the waviness distribution (figure 2) suggests
that collagen fibres are initially recruited rapidly as the alveo-
lus inflates, but the rate decreases as inflation continues. This
is somewhat consistent with the general role of collagen fibre
recruitment, together with their low extensibility [9,23]. How-
ever, our results also imply that collagen recruitment starts at
a low circumferential strain of 0.29 corresponding to AV/V,
of 1.15 and P, of 0.3 kPa (figures 4b and 6i), as has been
documented [24]. The estimated collagen waviness range
(1.29-2.7) causes the initially recruited fibres to be stretched
by 41% at the point where all fibres have been recruited.
This is roughly double what is reported to be the maximum

strain for stiff collagen fibres [23]. Nevertheless, within the
range of fitted data (up to 1.96 kPa), not all fibres are
recruited, and the maximum extension of those recruited is
29%, which is closer to the reported value of 20% [23]. On
the other hand, elastin fibres are extended by approximately
170% of their initial lengths, which is close to their elastic
limit [23].

3.2. Parameters from fitting
The elastic modulus of collagen has been found to be
approximately100 MPa [25,26], while elastin fibres have an
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Figure 7. Single fibre analysis. (a) Due to the spherical geometry, the circumferential strain varies across alveolar wall layers, resulting in linearly varying stretch
ratios within each of the three layers (inner, middle and outer layer). (b) Elastin fibre stress as a function of A;. (c) Collagen recruitment as a function of A;.

(d) Collagen stress distribution at A; = 1.66.
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Figure 8. Multiscale stresses. The alveolar wall, elastin fibre and collagen fibre
stresses can be related to Py the alveolar pressure due to both collagen and
elastin fibres. The total circumferential stress in the alveolar wall due to the
fibres is shown by the red line. The collective elastin and collagen circumferential
stresses in the middle layer are shown in green and blue, respectively. Note that
the stress for collagen represents the maximum stress in the middle layer.

elastic moduli between 0.5 and 1 MPa [23,27,28]. Mercer &
Crapo [21] reported that volume fractions of collagen and
elastin in the human lung far from the alveolar duct are
about 0.08 and 0.05, respectively. Published images show
fibres running almost parallel to the alveolar wall, and thus
are of comparable length [21]. The area fraction can then be
estimated as being equal to the volume fraction. Using the
area fractions deduced from Mercer & Crapo [21], the effec-
tive elastic moduli (elastic modulus times area fraction) of

collagen and elastin are of the order of 10° and 10 kPa,
respectively, which are comparable to our model-based esti-
mates (table 1). Additionally, our model-based septal wall
stiffness predictions are also consistent with recent direct
AFM-based measurements [29].

3.3. Alveolar inflation stability and collagen waviness
The role of surfactant in lung deflation instability has been
extensively studied [30,31]. However, surfactant does not
play a major role in alveolar mechanics at higher lung
volumes compared to collagen fibres [32,33]. Nevertheless,
changes in surface forces and fibre mechanics together
during inflation can lead to inflation instability when surface
area and volume increase faster than pressure [34,35]. Both
deflation and inflation instability of this kind are readily
apparent from the Laplace Law

2(Ty +v)
ti !

Py = (3.1)
where Ty and y are the tension due to the fibres and surface
tension at the air-liquid interface, respectively. As the alveolus
deflates, surfactant reduces y at a faster rate than r;, which
decreases P,jy; otherwise, the decreasing r; would increase
P,y and result in smaller alveoli emptying into larger ones
leading to full collapse. This is referred to as deflation instabil-
ity. Conversely, r; increases during inflation, which decreases
P,y so that further alveolar inflation becomes progressively
easier, leading to an infinitely large volume and zero pressure
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in the limit. However, experiments clearly show that alveolar
volume at high pressures increases only very slightly with
pressure [36]. As AV/V — 0, surface tension is not zero and
the corresponding pressure approaches a constant (approx.
1 Pa). Although the model does not include a term that
would balance this pressure, the value is small and does not
influence the fitting. Surface tension has been found to increase
linearly with volume [37,38] as well as reach a saturated con-
stant value [13,39]. From equation (3.1), we conclude that the
surface tension contribution to P,y is at most proportional to
r,-z, which is less than the increase in alveolar volume,
suggesting that surface tension alone is not able to achieve
inflation stability. The contribution of surface tension to Py,
is indeed small (see electronic supplementary material,
figure S3). Therefore, Ty /r; must increase with r; faster than
AV/V,. Since the latter is a function of rf‘, we find that
Ty /ri ~ 1}, where nn > 3. When we combine the stress equation
from the collagen fibres during recruitment (equation (2.3))
with the equation for tension (see Methods), we find that the

tension from the fibres varies with r; (or A(2;, S)) as T ~ r?”:
§YRA A —wy ( A—w; >a
Tteo(Ai, S, R;) =
pook )= Bla, Pata+ D w \wp
(a+ 1A — aBy) , w; < A < w,. (32)

Since a>1, stability is ensured, which is why the P-V
curve is concave. However, after full recruitment of fibres,
this is no longer the case (Ty ~ r7) (see Methods). This may
explain why the experimental measurements showed wavi-
ness over an extended range, allowing it to act as multiple
layers of safety nets in cases of excessive inflation and thus
ensuring inflation stability. Interestingly, after full recruitment
of collagen, runaway inflation is still delayed due to the com-
bination of high collagen elastic modulus and appropriate S,
ratio. Mechanical failure (yielding) is eventually inevitable,
but it will occur at very high (non-physiological) pressures
(figure 5). Thus, stability requires a specific waviness distri-
bution that allows continuous recruitment of collagen fibres
over the physiological range of pressures.

The model predicts that the bulk modulus of the sphere
becomes negative at a critical value of stretch ratio or relative
volume change (figure 5). Negative moduli have been observed
during lung inflation and interpreted as an emergent behaviour
stemming from avalanche-like opening of many alveoli [40]. For
a single sphere, a maximum in pressure during inflation is also
called limit-point instability, which was first observed in rubber
balloons by Osborne in 1909 [1]. Theoretical analysis showed
that strain-hardening that is a characteristic property of biolo-
gical materials can eliminate the instability [2]. While many
previous studies have associated the strain-hardening behav-
iour with collagen alignment or recruitment, our study also
shows that the specific distribution of waviness pushes the
instability beyond the physiological range of pressures.

3.4. Physiological implications

Our study considers specific physiological entities (i.e. wavy
fibres) in a test of the thin-walled assumption of the famous
Laplace Law as a description of the alveolus (equation (3.1)).
The consistency between the analytically calculated pressure
using the middle layer and the numerically integrated mean
across the thickness of the alveolar wall (electronic supplemen-
tary material, figure S2) suggests that a single layer of fibres of

appropriate tensile strength can sustain the same pressures as
multiple layers. This is important because the alveolar intersti-
tium, which includes fibres as well as other components, takes
up only 56% of all the alveolar wall [41], so not every structure
across the wall maintains stress. Using a single layer also
allows us to analytically relate stresses at different scales
(figure 8). Nevertheless, a single layer may be fragile to mech-
anical failure of the alveolar wall, something that is central to
oedema formation [42] and to emphysema progression [43].
Furthermore, while R; is species dependent, S, was estimated
to be species independent (see electronic supplementary
material for details). This may have implications for why
larger alveoli are able to maintain inflation stability despite
varying alveolar size. If S, is maintained across species, then
the pressure contributed by the fibres does not depend on
alveolar geometry but on the fibre content and stiffness.

Our model analysis also allows the estimation of the sep-
arate contributions of structural (e.g. wall thickness and
waviness) and constitutive properties (e.g. elastic modulus)
to the P-V curve. It is currently not known whether parench-
ymal reorganization or abnormal fibre stiffness contributes
more to the observed physiological phenotype of a given
disease. Collagen content has been found to increase in the
ageing lung [44], while an organizational change in the par-
enchyma has been shown to play a role in both fibrosis and
emphysema [45,46]. Our model allows specific predictions
of each effect on the P-V curve.

An interesting insight into lung physiology is related to the
initial convexity (or increase in compliance) of the deflation P-V/
curve. Our simulations demonstrate that this occurs at the level
of a single alveolus (e.g. figure 5b at P <1 kPa) suggesting that
this convexity can be explained by an inability of the linearly
elastic elastin fibres alone to counteract inflation instability,
and that it is only after collagen recruitment starts to occur
that the P-V curve achieves its characteristic concavity at
higher pressures. In fact, without collagen, the lung would be
unstable at breathing pressures (cyan, figure 5c) and hence
unable to support respiration. Additionally, our waviness ima-
ging together with the modelling suggest that collagen
recruitment starts relatively early during inflation, which is in
contrast with the classical belief that collagen fibres only con-
tribute at high pressures. This finding has also been proposed
based on collagen digestion in lung tissue strips [47].

3.5. Model limitations

Our model is not without limitations. First, we do not consider
species-dependent properties because such data are not avail-
able for waviness, and surface tension does not seem to vary
between species [48]. Second, we assumed linearly elastic col-
lagen fibres. To our knowledge, stress—strain curves from
single fibres isolated from the lung have not been reported. How-
ever, a linear behaviour of isolated collagen fibrils has been
reported [49,50]. Third, the model does not include network
effects arising through alveolar interactions, and does not con-
sider changes in volume that occur in the alveolar ducts and
airways. Our basic assumption is that the relative change in
volume is the same in every alveolus, which allows us to
model the whole lung P-V curve using a single alveolus. The
effects of surface tension, however, are correctly considered at
the single alveolus scale. Although the alveolus may not be a
perfect sphere and hence the Laplace Law would not apply for
the surface tension [51-55], we found that surface tension is
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less important along the deflation limb of the P-V curve and
especially at high lung volumes. We also neglect fibre—fibre inter-
actions, which could further contribute to alveolar mechanics,
especially those involving energy dissipation [56]. However,
from images of human lung parenchyma, Matsuda et al. [53]
noted that collagen and elastin fibre bundles run parallel to
each other within the alveolar mouth without intertwining,
then they separate at different locations and run independently
from one another within the septal walls. This suggests minimal
interaction between the two fibre systems. The model also
assumes affine transformation in that the stretch ratio within
the wall thickness is transmitted to the fibres. If the deformation
is not affine, the waviness range would be overestimated. Never-
theless, the role of waviness and the conclusions we have drawn
would not change. In future work, imaging fibre waviness under
stretch could resolve this question. Finally, modelling only a
single alveolus ignores important force symmetries that exist in
a three-dimensional alveolar network in which adjacent alveoli
share a common septal wall; the outside of one wall is the
inside of the other. This may impose limitations on the possible
waviness distributions across the wall thickness. More impor-
tantly, interactions between alveoli in a network may influence
inflation stability in ways that cannot be captured by considering
a single alveolus in isolation [10,57]. In this study, we have
focused on the stability of a single alveolus, which, to our knowl-
edge, has not been examined in the light of the contribution of
collagen waviness within the alveolar walls. We found that
waviness acts as a safety net in cases of excessive inflation and
thus ensures stability, which suggests that the contribution of col-
lagen to alveolar stability may occur at lower lung volumes than
previously thought due primarily to the wide distribution of
waviness, which we treated analytically. Despite these limit-
ations, the model offers novel insight into alveolar mechanics
and inflation stability, and provides a framework for estimating
ECM stresses and strains that are vital for mechanotransduction.

4. Conclusion

Modelling the behaviour of elastin and collagen fibres inside
thick-walled alveoli under large deformation shows the
importance of invoking conservation of mass for the accurate
calculation of alveolar pressure, permits an understanding of
the contributions of the two fibre types to the P-V curve and
demonstrates the key role of collagen waviness in ensuring
P-V inflation stability. Modelling also provides estimates of
strains and stresses at the level of a single alveolus and
single fibres. The accurate estimation of these stresses is cru-
cial in a number of areas including studying the response of
cells to mechanical cues, avoiding tissue damage in venti-
lator-induced lung injury and distinguishing structural from
material changes in healthy and diseased lungs.

5. Methods

5.1. Model derivation
5.1.1. Model description

5.1.1.1. Alveolus

The model considers a thick-walled alveolus and assumes
spherical geometry. The alveolar wall is described in terms
of a spherical coordinate system with uppercase (R;<R<R,, 0<
O<2r, 0<P<2n) and lowercase (r;<r<r, 0<0<2x, 0<¢<nm)

symbols representing the undeformed and the deformed state,
respectively. The inner and outer radii are denoted by R; and R,,
which become 7; and r,, respectively, during inflation. We define a
general stretch ratio A =r/R for any radius within the thickness of
the wall, an inner stretch ratio A, =r;/R; and an outer stretch ratio
Ae=71./R,. We also introduce a thickness mapping parameter S =
R/R; to span across the alveolar thickness so that S;=1<S<R,/
R;=S,. The wall is assumed to be incompressible, homogeneous
isotropic and deforms such that angles are preserved during expan-
sion (6=0, ¢ =®). Consequently, alveolar expansion is isotropic
and homogeneous, maintaining its spherical structure as it inflates.

5.1.1.2. Wavy fibres

The wall contains wavy fibres embedded in the ECM that are
oriented in the circumferential direction. Each fibre forms a con-
tinuous loop around the wall. When the alveolus is inflated, the
wavy fibres are gradually straightened; a fibre bears no load so
long as it is wavy (flaccid), but as soon as it is stretched to the
point of becoming straight, it begins to bear load upon further
stretch. Fibres act as linear springs in parallel without any fibre—
fibre or fibre-matrix interaction. Thus, nonlinearity in the mechan-
ical behaviour of the system as a whole arises purely from the
manner in which wavy fibres become recruited with stretch.
None of the fibres is stretched at any radius R in the undeformed
state. This guarantees that there is no residual stress across the wall
before the alveolus becomes inflated above its baseline volume.
If Ny is the total number of fibres in the alveolar wall with an aver-
age cross-sectional area Ay and average elastic modulus Y}, the
fraction of the cross-section occupied by fibres in the undeformed
state of the wall is approximately J4s=NAr/27R(R,~R))
provided that the wall is thin. This assumption is supported by
experimental studies suggesting that R./R;~1.05 [58-60] (see
electronic supplementary material for details).

Next, we assume that wavy fibres are distributed across the
thickness of the wall. For a given contour length, or unstretched
length, of a fibre, denoted by Ly, we define a corresponding contour
radius as Ry = Ly/27. The waviness of a fibre at radius R is, there-
fore, wy(R) = Ls/27R = R¢/R. We also define w; and w, as the
minimum and maximum waviness at S,, respectively. The prob-
ability distribution of Ry, denoted by p{Ry, R), can be a function of
R and is defined as the probability of finding fibres with contour
radius between Ry and Ry+ dR; within the alveolar wall between
radii R and R + dR, and between angles @ and © + dO, and between
@ and @ + d® such that

” ps(R;, R) dR; dRAOAP = 1. (5.1)

Since fibre waviness is independent of angles, equation (5.1)
can be simplified as

In terms of the dimensionless parameters wy and S, the prob-
ability distribution is written as

Ilpwf (wy,S) dwy dS = 1 (5.3)

Since the range of waviness may vary across the wall, we take
this into account by using a function G,(S) such that w;G,(S) <
wr<wyGo(S). When G, =1, the waviness distribution becomes
independent of S and hence uniform throughout the wall
thickness. Alternatively, if we set G,(S) = (S.+1)/2S such
that w1 (S, +1)/25 < wp(S) < wy(Se + 1)/2S, the waviness of the
fibres will decrease with S. G, =1 allows the fibres to have con-
stant waviness but with linearly increasing fibre length across
the alveolar wall, while G,(S) = (S, + 1)/2S implies a decrease
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in waviness but uniform fibre length across the wall. Note, how-
ever, that for this specific case, the waviness of the middle layer
(S = (S, + 1)/2) is the same for the two cases.

For a given S, we shall describe the waviness within the wall
with the general beta distribution, which includes the beta func-
tion B(e, B) with its shape parameters a and S. By varying G,, it is
possible to shift the waviness range across S, while changing a
and f allows different shapes for the waviness distribution. For
instance, when a=f8=1, the beta distribution, and hence Pays
becomes uniform. With these considerations, the general form
of the waviness distribution is written as

1 (wp —wi1G)*  (wrG, — wp)® ™!

o (W, §) =
P S 1 BlayB)YasGo — wnGo) P

(5.4)

5.1.1.3. Matrix

If N,, is the total number of ECM units with average cross-
sectional area and elastic modulus of A,, and Y/, respectively, then
the fractional area of the matrix is 84, = NyAu/27Ri(R, — R)).
We assume these units are distributed throughout the tissue
according to a uniform distribution p,,(R) = 1/R, — R;.

5.1.1.4. Stresses and pressures

The following derivation is based on the model of Wuyts et al.
[61] who developed a thick-walled cylindrical model of the
aorta. However, using the beta distribution for fibre waviness,
instead of the Lorentz function in their model, we can obtain ana-
lytic expressions for the true stress and the incremental stiffness
across the thickness of an alveolus under large deformations.

5.1.2. Mass conservation

To derive the P-V curve, let us first consider a spherical shell
with its inner radius R; and thickness dR, 0<6<27 and 0<
¢ < z. By assuming incompressibility and applying the conserva-
tion of mass for a layer between R; and R = R; + dR, we obtain the
following relations

4 4
3R = RY) =2 1)), (5.5)
R=@-r+R)'"’ (5.6)
2
and dR _ ” S (5.7)

A& a5, R
dr (r3_rl3+Rl3) R

where 1 is the stretch ratio. Note that equation (5.7) is the inverse
of the deformation gradient in r. Solving equation (5.6) for r* and
dividing with R?, we can relate the general stretch ratio as a func-
tion of the internal stretch ratio (4;) to the thickness mapping
parameter (S)

S+ A -1

3 —
A (/\i/ S) = 53

(5.8)

5.1.3. Wavy fibre circumferential stress

Let us now consider how the circumferential force at radius r
arises in the deformed state. As a circumferential layer of tissue
at R is stretched, a fibre with Ry is recruited when the layer is
stretched to r=R. Further inflating the alveolus stretches the
layer and the strain on the fibre is (27r — 277Rf) / 27Ry. The corre-
sponding force (f;s) of the fibre acting perpendicular to a small
surface area element rdédr in the deformed state is the fibre
stress, given as the product of modulus, fibre strain and fibre area

YA}’—Rf_YA(/\—w]r
fof = { ff Ry fAf wy

0 otherwise

) r>Rfor/\>wf (59)

The total circumferential force due to all fibres (f;) corre-
sponding to a given waviness within a small layer of the wall
is thus given by

A—w
d(dfy) = Nypa a0y, S)YsAr (Tff) dwds.  (5.10)

The circumferential true stress in the wall is obtained by
dividing this force with the deformed area, 2mrdr = (27R?
5dS/A), derived from equations (5.6, 5.7 and 5.8). The Cauchy
stress is written as

/\—Wf

doy,p = Nipu, (wy,S) Yy As <T)

/\de ds

27R2SdS 6.11)

If we divide the right-hand side of equation (5.11) with (R, —
R;) and multiply it by Ri(S,—1)=R,—R;, we can use the fibre
area fraction to simplify equation (5.11) as follows:

_ NrAy A (A —wy
(5.12)
and
A[A— wy
doyep = & Yypu (wy, SHSe — Dg o duy. (5.13)

Replacing pu, (wy, S) with the beta distribution from equation
(5.4) gives

_ G a—1 G, — B-1 A —
doyep = & Yf)\(wf w1Go)* ™ (Wa G, — wy) ( wf)dwf.

S Bla,B) @G, — w1 G,)* P! wy
(5.14)

Finally, to simplify the integration, the following substi-
tutions for wy and 1 are applied, respectively

ZUf — ZU]GO
= 1
w wrG, — w1 G, (5.15)
and
= A= @G (5.16)

wZGn - leO .

When fibres are being recruited the stretch ratio satisfies
w1G, <A <w,G,, which is equivalent to 0 <w,; <A, and 0<4,<1,
whereas for fully recruited fibres, A >w,G,, which yields 0 <
w;<1 and 1<A4;<oo. The probability distribution function for
pf(wt) is now written as:

1

#7 a—1 o B—1
(Sg—l)B(a,B)(wt) A —w)™, (5.17)

pr(wy) =

where 0 <w; <1 for any layer S as required by the beta distri-
bution. Thus, the differential stress is given by

M(@,Gy — 01Gy) + w01 G w1 (1 — wy)P !

S B(a, B)
>(szt7 — w1 G,)dwy.  (5.18)

da'flgg = (Sf Yf

( At — Wy
w WGy — w1G,) + w1 G,
Integrating equation (5.18) over the entire range of waviness

gives the true circumferential stress due to all fibres at a given
layer S experiencing a stretch ratio A(4;, S) as

of,00(Ni, S) =

Sfo é)\ — w1 G, A —w1G, “
Bla,B)ala+1)S w1 G, wr,G, — w1 G,
((a+1)A; — aBy) for wG, < A < wG,

B (5.19)
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and

3](Yf AN — w1 GU

,5) = 4 1A — B
at,00(A;,S) Blafala i DS G, ((a+ 1Ay — aBy),
for A > w,G,
(5.20)
where
)\—ZU1G0 )\—’leg
Al =Fla1-B1;a+1; - 21
1 (D{ B/ ; o+ /wZG‘)ileO/ len )/ (5 )
A —wG, A —w1G,
B, =F L1-B1;a+2; -
1 1((1+ , Br /a+ /wZGU_leO/ w1G0 )/
(5.22)
A2=F1(a;lfﬁ,l;a+l;1,f%) (5.23)
1
and Bz:F1<a+l;1fﬁ,1;a+2;l,fwzz;wl), (5.24)
1

and F; is the Appell hypergeometric function of two variables
defined as

Iy bb ¢ x,y) Zzﬂm+nb bn e n

(5.25)

m=0 n= minle m+n
which converges when |x| <1, ly| <1. Also, note that A in these
equations is a function of 4; according to equation (5.8) and the
stresses are zero for 1 <w;Gy.

5.1.4. Engineering stress

In most experimental cases, it is the engineering stress (o,) that is
actually calculated. Hence, we can divide equation (5.10) by the
undeformed area (2zRdR) rather than the deformed area (27rdr).
Interestingly, this results in a factor of 1, where g, = /A, for the
stress equation as a consequence of the conservation of mass
(equation (5.5)).

5.1.5. Uniform distribution stress and stiffness
For the special case of a uniform distribution of waviness (a=8=1),
pris written as

1 1
nglGowsz{

Pu, (w5, S) = (5.26)

Following the same procedure as above, the true stress
simplifies to:

of,00(N;,S) =

&Yy 1A [ln( A )+w1Go_ }
w, —w,G, S | \wiG, A " (5.27)
for w1G, < A < w,G,

and

a1,00(Ai,S) =

&Yy 1 N[ (ws) @G Gy
w, —w1 Gy S () A Al

for A > w,G,. (5.28)

Differentiating equations (5.27) and (5.28) with respect to 4
provides the incremental Young’s modulus (Ef) for the
thick-walled sphere as

Y, 1A A w1 G,
Y 1Go
wy — w1 G, S [ZIn(leD) + A 1}'

for G, < A < w,G,

Efo9(A;,S) =

(5.29)

and

Sfo 1A
lG_ug |:21 (w1) +

w G w G
Ef99(X;,S) = ! 2 0},

A

for A > szD (5.30)

The engineering stress and incremental tissue stiffness (E,)
are then given by

&Yy 1A A w1G,
(Tef,gg()\us) = W, — w0y ag |:11'1 (ZU] G0> + 2 -1 s (531)
for wi;G, < A < wyG,,
Sfo 1A Wy '(U1G0 wZGO
1 (0S) = ~ % |m(22 -
oo XirS) = 2GS [“( A A (5.32)
for A > w,G,,
Sfo 11 A
—_1
efg‘,()\us) Wy — w1 Gy S n(wlcu)/ (533)
for 'CU1G <A< ZUzGo
5Y 11 w
and E,(%;,S) = - i w1 G, SIn( 2)
for A > w,G,. (5.34)

5.1.6. Circumferential extracellular matrix stress

The circumferential force generated by the ECM can be derived
similarly, but without considering waviness. Accordingly, the
force is written as

mEm (535)
Dividing by the deformed area 2zrdr, the ECM true stress is
given by
NyAwYym r—RdR
2mR, — R;) R rdr
~ NuwAuwYw (r*—1R
" 2mR,—-R)\ R

(Tm,ﬁ(-/(r/R(r)) =

(5.36)

Multiplying the numerator and denominator by R; and writ-
ing the equation as a function of A(4;, S) and S gives
A
Um,GO()\ir S) - 3mYm g ()\ - 1) (537)
Differentiating equation (5.37) with respect to A provides the
incremental Young’s modulus of the matrix

Epo0(Ai, S) = 8 Ym % [2A — 1], (5.38)
while the engineering stress and stiffness are equal to
Tepos iy S) = 8 Yo %(/\ -1 (5.39)
and
Ee, ., (Ai, S) = 8y Ym%. (5.40)

5.1.7. Total circumferential stress

The total circumferential true stress cgy and the corresponding
stiffness Egg of the tissue arise from the summed combination
of both the fibres and the matrix (6o = 609 + Om,00 , Eoo= Efe0 +
E,.60). Furthermore, the fibre equation can be split into two or
more entities (i.e. collagen and elastin) to account for fibres
with different material and waviness properties.
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Finally, the average circumferential stress across the wall at a
given 4; can be calculated as

15 70sM1;,9),9)dS + [5? oup(A(A;,9),9)dS

ogo(A) = S ,
(4

(5.41)

where S, to Sy is the interval where the fibres are being recruited
and S; to S, is the interval where the fibres are fully recruited.

5.1.8. Radial stress
The equations of equilibrium in spherical coordinates are
given by

0oy, 100 1 Qo

1
+ ;(20';'7 — Ogg — Ogg + OrpCOL 0) =0,

or r 060 rsinf 0¢
(5.42)
0ovg 100 1 80’6,}) 1
22968 1 — g4y) cOt _
or r 00 rsinf 0¢ +r[(009 T44) COL O + 30701 = 0
(5.43)
00y 10044 1 Ooge 1 B
and or r 00 rsinf 0¢ +r(2034,c0t0+30r4,)_0,
(5.44)
Due to the symmetry of the problem
0 0
96 8_¢> =0, (5.45)
090 = Tpp (5.46)
and Oro = Org- (5.47)
Thus, equations (5.42)—(5.44) reduce to
r 1
aao; + ;(20}7 — 2099 + ovg cot 0) =0, (548)
00vg | 30y o
or o 0 (5.49)
00v¢ 1
and or +;(20’9¢ C0t0+30'y¢) =0. (550)

Due again to symmetry and comparing equation (5.49)
with equation (5.50), we find that o4 =0. By employing
equation (5.6), we can write 7 as r = Ri(S? +/\? — 1)1/3, from
which dr = R;(S2/(S? + A —1)*®) dS. Using this expression
together with the relation R=R;S, equation (5.49) can be
rewritten as

80',3 Sz
3————d5=0, 5.51
a,(,+ S+ -1 (5.51)
the solution of which is given by
C
ar9(A;,S) = m, (5.52)

where C is an arbitrary constant. Since 0,¢(1;=1) =0 forany S, C =
0 and hence 6,9 = 0. Thus, the shear stresses are zero in the sphere
wall. In a similar fashion, equation (5.48) can be written as:

o0y, S2 s2
2 =2
Y S R I

1 0’99()\,‘,5). (553)

To obtain the solution, first multiply both sides by
(S + A — 1P

2
00 63, -1 2571/Soﬂ
S (S +A-1)
SZ
= Zm Ugg()\j,s), (554)

rearranging the left-hand side as the differential of the product of

two terms o,, and (S + A3 — 13

523 123 2
o, (S + A7 —=1)77] —9 5 o99(A;,S)
55 173
S+ -1

(5.55)

the final solution is obtained by integrating both sides with 05

2 5 s
2/3 J

0, (A, S) = 1
S+ -D"h (@ + A -1

5 000(A;,S) dS.
(5.56)

The mean radial stress (o,) as a function of the stretch ratio at
the inner surface is calculated as

(Trr()\i) =

1/3 2/3

[ (82 /(8% + 2 = 1)) oM, 9) ds} [ S 2/(8> + 23 —1)

S.—1

)ds

(5.57)

5.1.9. Gircumferential tension
The circumferential tension (T') at a given radius for a wavy fibre

can be calculated from the circumferential stress as:
T1,06(i,S) = 071,00(Ai,S)r = 01,99(A1,S)IAN;, S)R(R;,S) (5.58)

thus, during and after recruitment the tension can be evaluated
from equations (5.19) and (5.20), respectively:

BfoRi)tz A— w1 Go A— w1 Gg “

Tf,00(i,S,Ri) =

fao(hirS/R) Bla,@ala+1) wG, <w2Go - leo)

((a+1)A; — aBy) for w1G, < A < wyG,,
(5.59)
and
_ SfoR,‘/\z A —w G,

Tt00(Ai,S,Ri) = Blafalatl) @G (a+ 1Ay — aBy),

for A > w,G, .

(5.60)

Similarly, the tension from the ECM contribution could be
obtained from equation (5.37)

Ton,00(Ai,S,Ri) = 0,00(Ai,S)r = T, 09(Ai,S)A(A;, S)R(R;,S)

= 8, YmRiA? (A — 1). (5.61)
The total circumferential tension (Tgg) of the tissue arise from
the summed combination of both the fibres and the matrix (Tg9 =
Tto0+ Tin,00 ).
Finally, the total circumferential tension across the wall at a
given 4; and R; can be calculated as

re
Too(Ai,R;) = J o9e(A;,S) dr
ti
Se SZ
= R-J opg——————=dS. (5.62)
e o
5.1.10. Alveolar pressure, volume and elastance
The alveolar pressure (P,},) is evaluated as
Palv(/\i) = Urr(/\irs =1
2 J-Se 52
= — (1,9 dS. (5.63)
Nl op

The change in volume (AV) normalized by the initial volume
(V,) for an alveolus is

(5.64)
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The specific alveolar elastance E; is defined as

dP alv

E=VoTqy

. (5.65)

5.1.11. Analytical approximations for a thin-sphere model
Assuming the alveolus to be a thin-walled sphere, the average
circumferential stress across the wall is approximated by the
stress in the middle layer, S, = (S, +1)/2 and A,(A;,S) =
(S3 4+ A3 —1)/s3)1/3

Thus, the circumferential stress and all related quantities
such as the circumferential stiffness, alveolar pressure, specific
elastance and tension can be approximated from their respective
thick-wall equations (equations (5.41), (5.58), (5.60) and (5.61)) as

Gop = 099(Ai,Sm), (5.66)
Egp 22 Egp(A;,Sp), (5.67)
o [
Pay(Ai) = G FS” -1}, (5.68)
i
E, = Egp(A?A2S3 — )\?4)\8582) — iaﬁ)&nsgq(sg’ -1 (5.69)
Aj A, S. 52,
A
and  Tee(Ai,R)) = ToeR;A; (f Se — 1). (5.70)
1
Finally, relating pressure to tension
Too A }
Py = —— % |Zeq2 1
alv( 1) Ri)\i(()\e/)\i)sefl) |:)\12 e
Too |Ae
== 1 71
RiA; L\i Set } (571)
and

Pa(h) 2 1 [)‘“Re + 1} o Too {Q+ 1} o o TooNiRD). (5.72)

ri LAiR; i Lri i

The latter relation is consistent with the Laplace equation.
However, our formulation now relates Ty to the components
of the alveolar wall.

5.1.12. Fibre stress distribution
To find the probability distribution of the stress p,(1), we use the
identity

[PV doy| = | pu, (wy) duw|. (5.73)
Thus, we can write
Poy(A) = puy, (wf)‘j—;u;‘ (5.74)
and
YA (Yph = w1Go(oy + Y)* ' @2Goloy + Yp) — Y1) !
o) =5 Bla, B(@2Gy — w1 Go)* P (o7 + Yp)* P ’

(5.75)

where the range of fibre stress individual fibres, maximum
(0 max) and minimum (6fmin), is equal to

A —wG
(J'f,max = Yf (wliclao) and

A —wrG,
Ofmin = Y5 (%), for A > w,G, (5.76)
0
and
A —w1G,
O fmax = Yf (ﬁ) and Ofmin = 0,
for leo <A< szo. (577)

5.2. Collagen waviness

To reduce the number of parameters in data fitting, we investigated
collagen waviness in lung tissue. Fresh bovine lungs (Research 87
Inc., MA, USA) were obtained and imaged on the same day.
Tissue samples, with a length and width less than 1 cm and a thick-
ness of approximately 1 mm, were prepared using a razor blade,
and glued to a coverslip at the sides without inducing any tension
in the tissue. The coverslip was part of a three-dimensional printed
rectangular well (86 x 44 x 10 mm) that had a top opening (66 x
17.5 mm) onto which the coverslip was glued. The samples were
placed in phosphate buffer solution (PBS) at room temperature.
Before imaging, the PBS around the tissue was removed, the well
was inverted and oil was placed on the other side of the coverslip
for upright microscopy imaging. If needed, drops of PBS were
added to assure the samples remained moist.

Imaging of collagen in the bovine lung samples was accom-
plished through SHG imaging with an upright Multiphoton
Microscopy (MPM) system (Ultima Investigator, Bruker, Billerica,
MA, USA) [62]. Details of the MPM system are described in
detail elsewhere [63]. Briefly, the MPM system consisted of a fem-
tosecond laser source (Spectra Physics, Insight DS+, Santa Clara,
CA, USA) tuned to 1050 nm, which provided the excitation for
SHG imaging. A quarter wave-plate (QWP) (AQWP05M-980,
Thorlabs, Newton, NJ, USA) was placed in the illumination
path, circularly polarizing the light to sample all possible col-
lagen orientations during SHG imaging. The illumination and
SHG light paths were coupled through a 60x oil-immersion
objective (NA =1.42, working distance=0.15mm) (Olympus,
Tokyo, Japan). A photomultiplier tube (Hamamatsu Photonics,
R6357, Hamamatsu City, Japan) was used to detect the SHG
light through a 525/70 nm bandpass filter (Chroma, Bellows
Falls, VT, USA). The field of view (FOV) was 156 x 156 um,
with a sampling resolution of 0.15 pm/pixel and a pixel dwell
time between 1 and 16 ps. Z-stacks containing 10-30 slices
were collected for each FOV with a step size between 1 and
2pum. To reduce noise in z-stacks, every consecutive pair of
frames was averaged. Laser power and photomultiplier tube vol-
tage were optimized to achieve maximum signal from collagen
fibres in the bovine lung samples without damaging the samples.

The individual images of each z-stack as well as their maxi-
mum intensities were loaded into FIJI [64]. Alveolar walls were
located and zoomed into view, and the individual collagen fibres
in each wall were traced manually and fitted with a spline
(figure 2). Every bend in a tracing was marked by a minimum of
five data points. The arc length across each outlined fibre (that is,
its length neglecting the undulations due to waviness) was also
traced manually and fit with a spline. The data were exported to
MATLAB R2018b (MathWorks, CA, USA) to compute waviness
for each fibre, defined as the fibre length over the arc length.
Figure 2 shows the resulting histogram of waviness together with
its best fit beta probability distribution function (equation (2.1)).
This provides values for the shape parameter values o and S,
and allows us to specify the range of fibre waviness (w, — wy).

5.3. Data fitting

Fixing the values of ¢, f and the range w, — w; as described above
allows the model to be fit to experimental P-V curves by adjust-
ing the values of only the three remaining free parameters (Y,
Y., and w;). The model was fit to two individual healthy adult
human P-V curves published by Clements et al. [13] and Nie-
woehner et al. [14], as well as an averaged adult P-V curve by
Verbeken et al. [12]. These P-V curves were recorded from iso-
lated lungs that were first degassed, inflated to total lung
capacity (TLC) and then deflated. All deflations reached a
pressure of zero except that from Niewoehner et al. [14] which
ended slightly above zero. To estimate the initial volume (V,)
in this case, the P-V data were fitted with a sigmoidal curve
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which was then extrapolated to P =0 [65]. We digitized these P-
V relationships and performed our model fitting using the
Isqcurvefit and to obtain confidence intervals using the nlparci
functions in Matlab R2018b (MathWorks, CA, USA).

Several mechanisms contribute to the P-V curve [66]. To
minimize the influence of recruitment and alveolar wall folding,
only the deflation limb was used in the fitting. We fitted the data
with and without surface tension to explore the effect of this term
on the fibre-related parameters. We assumed homogeneity and
isotropic expansion of all alveoli. Thus, the change in alveolar
volume over the initial volume (AV/V,) for a single alveolus is
equivalent to that of the whole lung. Assuming a quasi-steady
deflation process, the pressure is homogeneous throughout the
lung. Values of 1.05 and 115.24 um were used for S, and R,
respectively, based on the literature [58-60] (see electronic sup-
plementary material, for details). The Akaike criterion [67] was
employed to select the best model. The fitting was done using
the numerical model equations.

5.4. Analytical approximation and engineering stress

After fitting the data using the numerical model, we tested our
analytical approximations against the numerical solutions. The
analytical approximation assumes uniform stress distribution
across the thickness while applying the conservation of mass.
The analytical approximations to pressure and stress closely
matched the numerical values obtained by solving the exact
equations (see electronic supplementary material, for details). Fur-
thermore, to check the range of errors introduced if alveolar wall
thinning is not considered, we compared our numerical solution
with that calculated using engineering stress, defined as the
force per undeformed area (see electronic supplementary material
for details). Since the analytical solution matched the numerical
one (electronic supplementary material, figure S2), we used the
analytical equations in all simulations, unless otherwise noted.

5.5. Sensitivity analysis

Each estimated baseline parameter was varied individually to
investigate its effect on the P-V curve. We varied the two fibre
stiffness parameters (Y., and Y,,) by £50%. S, was varied by chan-
ging T;/R; by +50%. In varying waviness parameters, the free fibre
length over the arc length was changed by +50%. For example, for
a w; = 1.29, the free fibre length beyond the arc length is 0.29. If the
value was reduced by 50% (0.145), then a new w; was assigned a
value of 1.145. In varying the waviness range dw =w, — w,, w;
was kept fixed while the free length over the arc length of w,
was changed by +50%. o and f were varied such that the beta
distribution became a Gaussian or a left-skewed distribution.
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5.6. Alveolar inflation stability

Guided by the sensitivity analysis, we investigated whether our
model exhibits inflation instability. We partition inflation instability
into two distinct physiological regimes. The first regime, which we
term geometric instability, begins when alveolar stiffness (change in
pressure with change in volume) or, equivalently, the effective incre-
mental bulk modulus (product of stiffness and alveolar volume)
starts to decrease monotonically towards zero. The second regime
manifests as a runaway phenomenon in which the stiffness and
the effective incremental bulk modulus become and stay negative.
Throughout the geometric instability regime, pressure continues
to increase with increasing volume, albeit at a decelerating rate. In
the runaway regime, volume increases rapidly while pressure
decreases towards zero. Figure 5b exemplifies and elaborates on
these definitions. We point out that in the geometric instability
regime, there is no plastic deformation of the tissues. To determine
how stability is influenced by critical parameters in the model, the
baseline P-V curve was investigated up to higher AV/V,, values
(approx. 200) along with five additional simulations using a smaller
S, ratio, lower Y., no collagen (Y, =0), larger dw and a truncated
Gaussian waviness distribution with the same waviness range.

5.7. Multiscale analysis

After demonstrating the ability of the model to replicate physiologi-
cal behaviour on a macroscopic level, we used the model to provide
estimates of microscopic stresses and stiffnesses at the alveolar wall
and individual fibre level. First, we computed the contribution of
each fibre to both the circumferential and radial alveolar wall
stress and stiffness. Then, we calculated the stresses carried by indi-
vidual fibres. This analysis provides insight into how alveolar
pressure generates radial stress throughout the septal wall.
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