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Abstract—Non-invasive brain-computer interfaces (BClIs)
provide us with the unique ability to classify the psychological
state of a person using only neurophysiological signals, such as
those captured with an electroencephalogram (EEG). With this
ability, new avenues for innovation in the field of healthcare
arise, especially as it is used for robotics. EEGNet is a novel deep
learning technique for the classification of EEG data with a
limited training set that generalizes well to a variety of BCI
paradigms, and the performance thereof can further be
improved. We propose the use of Thomson Multitaper Power
Spectral Density estimation in the EEG-BCI classification
pipeline as well as a novel convolutional neural network (CNN),
which extends EEGNet with sparse feature maps produced by
efficient regularized separable convolutions. Further, we test the
efficacy of interspersed Gaussian noise as a data augmentation
technique. To show the improvements found with this new
pipeline, we test on a widely used public EEG dataset related to
emotion classification, then perform an ablation study to
determine the most contributing factors. The accuracy on this
public dataset was 77.16%. These results show that our pipeline
improved the classification accuracy by 10.86% when compared
with the state-of-the-art.

I. INTRODUCTION

Emotion is a profound part of the human experience,
dictating our perception of the world and interactions with
those around us. The use of non-invasive Brain-Computer
Interfaces (BCIs), which provide a link between the human
and computer through electroencephalogram (EEG) signals
[1], allow for classification of emotion without regard to the
physical characteristics associated with it. This may allow for
healthcare professionals to better understand the needs of
patients living with severely debilitating disease [2] such as
locked-in syndrome, where traditional methods of emotion
classification are inadequate and largely inaccurate [3].

For people living with motor-related disabilities, assistive
technologies in the form of robotics are increasing yearly
[4]. Despite this rapid growth, the implementation of human
emotion recognition in robots has not progressed as quickly
[5, 6]. This may be due to higher accuracy requirements,
ensuring correct responses to stimulus [5], conversely
causing undue stress to the user when incorrectly applied
[7]. Even simple movements performed by the robot may
cause error through the addition of artefacts or noise [5],
further complicating accurate classification. Affective
computing, as applied to the field of robotics, opens novel
possibilities in improving quality of life for the people who
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need social support. Given that the ratio of those requiring
assistive care services to care givers is expected to grow
steadily over the first half of this century [6], emotionally
aware robotics becomes an enticing prospect.

Despite the need for advancement, the nature in which
EEG data are collected leads to exorbitant costs, effectively
constraining the size of our training datasets. Considering this,
extremely deep and complex CNNs with many parameters to
fit may be less suitable for use on the smaller datasets
associated with EEG research. Reference [8] attempts to solve
this with EEGNet, a compact CNN intended for the
classification and interpretation of a wide range of EEG-based
BCI paradigms. Furthermore, the non-stationary nature of
brainwave data [9] may lead to worse accuracy by CNNs [4].
Reference [10] attempts to improve the classification accuracy
by adding a pre-processed feature extraction method to their
pipeline and employing a modified version of EEGNet (S-
EEGNet) with an additional offset to the convolutions of the
original architecture.

EEGNet is a state-of-the-art CNN with strong feature ex-
traction that is competitive for many EEG-BCI tasks [8].
However, EEGNet does not perform as well when applied to
emotion classification on the selected dataset, with similar
average performance to classical feature extraction and
classification pairs. The Hilbert Spectrum, derived from the
Hilbert-Huang Transformation (HHT) [11], as was done in
[10] produces a robust feature set and improves the accuracy,
but in a memory-constrained contexts may not be as
appropriate  when compared to more lightweight
representations of the data. The resolution of the Hilbert
Spectrum is bounded by the number of frequency bins used,
whereas the optimal number of frequency bins increases both
with the sampling rate and length of the original data [11].

In this study, we proposed a method for improving
EEGNet based on sparse feature vectors produced by
regularized separable convolutions. We further improve
EEGNet with the use of Thomson’s multitaper method of
power spectral density (PSD) estimation, and Gaussian data
augmentation. This PSD estimation method was chosen
particularly for the reduction in signal artefacts when
compared to other common spectral estimations as was noted
in [12]. We directly compare these improvements together
against the state-of-the-art method, EEGNet and its automatic
feature extraction. Additionally, we test the efficacy of Layer-
wise Adaptive Moments optimizer for Batch training (LAMB)
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for use on smaller datasets. We also perform an ablation study
to determine the contribution of each of these components.

This paper is organized as follows. First, the introduction
is presented. Then, the related technical background is given
in the second part. The proposed method is elaborated in the
third section, and the experimental results are presented in the
fourth part. Finally, a conclusion is given in the last section.

II. RELATED WORK

EEGNet is a CNN with three convolutional layers for
feature extraction and one fully connected, dense layer for
classification [8]. The network was designed with the intent of
automatic robust feature extraction that works on a wide-range
of EEG-BCI tasks [8]. The number of filters and kernel lengths
of'the original architecture were formulated specifically for use
on 128 Hz data [8]. This architecture is illustrated in Fig. 4a.

S-EEGNet modifies the EEGNet architecture with the
addition of an offset convolution, which was achieved by using
bilinear interpolation on the input to the convolution layers
[10]. They further improved the classification accuracy of
EEGNet using HHT in their pre-processing pipeline [10].
Reference [13] was able to improve the accuracy by using an
averaging of an ensemble of EEGNet with different kernel
size inputs. Moreover, it was found that the optimal kernel
size differed based on which subject the classification was
performed on [13].

The depthwise separable convolution (separable
convolution) is a two-part convolution in which a depthwise
convolution is first performed, and then a pointwise
convolution is performed afterward. In other studies, it has
been empirically shown that the separable convolution can
produce more efficient feature maps, even if the network
contains a similar number of parameters [14, 15]. Reference
[15] applied separable convolutions to the domain of machine
translation, showing the versatility of separable convolutions.
Further, the offset convolution found in [10] is also based on
the separable convolution.

Adam is a memory-efficient optimizer [16, 17] that is still
in wide use today. LAMB is an optimizer designed to work
with large batch sizes without a degradation in performance
[18]. LAMB uses layerwise normalization, which has
similarity to that which is found in the LARS optimizer [16,
19]. This is further combined with dimensional normalization
with respect to the square root of the second moment, as is
found in the Adam optimizer [16-18].

III. PROPOSED METHOD

A. Thomson Multitaper Method of Power Spectral Density
Estimation

The PSD of a signal is an estimation of its distribution of
power in the frequency domain [20]. In this study, we use
Thomson Multitaper Method of PSD estimation (PMTM) for
its consistency and resolution of the extracted features [21].
This consistency and resolution can be attributed to the
averaging that the method utilizes [12, 21-23]. PMTM uses
Discrete Prolate Spheroidal (Slepian) sequences, first
described in [21], to decompose the signal and extract its
power concentration which is then averaged over multiple
tapers [21-23]. This method has been shown to reduce the bias
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Fig. 1 Thomson’s Multitaper Method of Power Spectral Density Estimation.

and variance of the EEG signal when applied to short segments
of data [12, 23].

PMTM, using Slepian sequences, is based around the results
of a series of eigenvalue expansion equations [20-22]. Per the
references [21, 22], the Slepian sequence is given by equation

(1):

yN-1 sin(2nw (n-m))
n(n—-m)

= A gr(n), M
kn=012,..N-1,

gr(m)

where the Slepian sequence gy, is the k™ eigenvector
corresponding to the k™ eigenvalue A, of non-increasing
order, of a given frequency band spanning [-W, W] [21, 22].

As an example of PMTM, the finished extraction from one
electrode, 128 points of data equating to 1 second, is shown in
Fig. 1. The original preprocessed data are depicted above the
feature extracted version. Note that the size of the PMTM
feature extracted data is decreased from 128 points of data to
65. This algorithm is provided by [22].

B. Regularization

Regularization attempts to reduce the probability of over-
fitting the training data by imposing penalties on the model
during the training process. In this study, we focus on L,
regularization, which penalizes the model by adding an
extra cost that is proportional to the absolute value of
each parameter [24]. In theory, the optimal solution to
minimize a cost function with added penalties is to gravitate
towards the smallest vector that solves the problem [25]. In
this case, practice follows theory, and the addition of L;
regularization decreases the probability of the model
accumulating large parameters and in fact trends towards
many parameters being equal to zero [24], producing
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distribution is approximately normal.

where w is the set of model parameters that the regularization
is to be applied to, w; Ew, 21 €[0,1), and N is the
cardinality of w. This penalty is then added to the cost
function in the loss calculation stage of training. An example
of the loss curve when fitting a regularized model is shown
in Fig. 2.

network with an additional separable convolution, batch
normalization, activation, and average pooling layers to the
architecture following the location of the separable
convolution found in EEGNet. The batch normalization
accelerates training by standardizing the inputs, whereas the
average pooling layer downsamples the feature map,
C. Gaussian Noise helping to reduce the number of parameters to fit. Further,

Gaussian noise is random statistical noise with a  we place L; regularization parameters on each of the
pI'Obability density function that is equal to the Gaussian separable convolutions. To the second separable
distribution [26]. For our purposes, this noise is centered with  convolution, only the depthwise convolution is regularized.
a mean of zero. The probability distribution, p of random  To the first and third separable convolutions, both the

variable z € R, is given by equation (3): depthwise and pointwise convolutions are regularized.
2

ezd? (3) IV. EXPERIMENTAL RESULTS

1
p(z) = —=

where o is the standard deviation of the noise, and o2 is its
variance [26]. To show that the distribution of random numbers

The model was allowed to train for 3500 epochs with
early stopping based on validation loss enabled at 25 epochs
isnormal, we set 0 = 1 and generated 10’ random numbers. unlesg otherwise .st.ated epr.i citly. The exact methods of glata
These numbers were plotted in a histogram, illustrated handling are explicitly described m.the subsequent sub§ect10n.
in Fig. 3, which shows that the distribution of the random  For all testing, we set the batch size equal to the size of
variable z is highly close to a truly normal distribution.

D. Improved EEGNet Architecture

The improved EEGNet architecture, illustrated in Fig. 4b,
is designed to capture only the most relevant features from the
PMTM feature extracted data, leading to improvements in the
generalization capabilities of the network. This is
accomplished in two main ways. Through the use of highly p—
efficient separable convolutions, and the addition of L, secntermaiton Sachlomaizzton gy |
regularization that is active during training, bringing the srableConva Activation

AveragePooling2D Dropout BatchNormalization

weights of the least relevant parameters to zero. : Ew

BatchNormalization DepthwiseConv2D BatchNormalization

AveragePooling2D Dropout SeparableConv2D

AveragePooling2D Dropout

Although our architecture is heavily based on the Areroioonain py Broas By ps Seremeee
EEGNet architecture [8], there is considerable difference i iy .o
between each. As illustrated in Fig. 4, our improved SOl
architecture shares the first and third convolutional layers ()
with EEGNet, a spatial and separable convolution. A
pointwise convolution is added to the depthwise convolution
that is found in EEGNet. We increase the depth of the

Fig. 4 The unmodified EEGNet architecture depicted in (a). The improved
EEGNet architecture depicted in (b).



the training set when testing with the LAMB optimizer and
otherwise equal to 64 and 128 when testing with the Adam
optimizer, reporting the better performing result. We used the
default hyperparameters from the original paper for all testing
on the 128 Hz data with EEGNet.

When testing with the original EEGNet with the non-
feature extracted data, we found that the Adam optimizer was
unable to converge on certain subjects. To solve this, we tested
a variety of different optimizers, finding the LAMB optimizer
to be most suitable. Using a subject that has poor
performance with EEGNet, we plot an example of this
observed abnormality in Fig. 5. The validation and training
loss of the Adam optimizer is plotted over 3500 epochs without
early-stopping and shows that, from the start of training, the
optimizer is unable to converge towards a solution and the
gradient explodes. Note that this was performed using
subsampled non-feature extracted data with the original
EEGNet.

We will present our results in a manner similar to what was
done in [10]. To evaluate the efficacy of our model, we use
accuracy, defined by the equation (4):

TP+TN

accuracy = ———————
y TP+TN+FP+TN

X 100% , @)

where TP is true positive, TN is true negative, FN is false
negative, and FP is false positive.

A. A dataset for emotion analysis using eeg signals

The dataset is A Database for Emotion Analysis Using
Physiological Signals (DEAP) [27]. This dataset contains 32
volunteers of 40 trials each, with each trial consisting of EEG
and other physiological signals recorded over the duration
of a 60 second music video extract [27]. For 22 subjects,
face recordings were also available [27]. After viewing each
extract, the participants rated their levels of arousal, valence,
and dominance using a 9-point scale [27]. These data were
originally recorded with a sampling rate of 512 Hz, with 32
EEG channels and 12 peripheral channels [27]. Participants 1-
22 were recorded in Twente, and the remaining in Geneva—the
authors note minor differences in the hardware used for each
[27].

The dataset provides a pre-processed version, which was
used. This pre-processed version rearranges the Twente EEG
channels to coincide with the ordering used in Geneva, and the
units used to measure were converted as well. The data were
then downsampled to 128 Hz, bandpass filtered from 4.00 -
45.00 Hz, and segmented into 60 second trials with a 3 second
pre-trial baseline. Our team discarded all of the channels not
corresponding to EEG signals, then removed the first 3
seconds, corresponding to 384 points of data.

Prior to testing, we produced three sets of data. The first
set was created by subsampling the data at 1 second intervals.
The remaining two sets were created by taking the PSD
estimation of the subsampled set, the first using Welch’s
method of PSD estimation (PWELCH), and the second used
PMTM. Each set was then randomized with respect to the
length of the original 40 trials.

From the subject rating data, we created a set of binary
labels for the BCI classification task of emotion recognition.
We threshold the valence data at greater than or equal to 5
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Fig. 5 The validation loss of EEGNet, using the Adam optimizer and the
original pre-processed as applied to a non-performant subject.
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as high valence and less than or equal to 5 as low valence. High
valence represents a state of pleasant emotion whereas low
valence represents a state of unpleasant emotion [28]. Each
subsample was then assigned a binary label corresponding to
the value of its original time series.

We then further threshold the subjects into two categories,
skewed and balanced. This is done by first computing the ratio
of low valence to high valence for each subject. If this ratio
was greater than or equal to 60%, or less than or equal to 40%,
we placed the subject in the skewed category, otherwise we
placed the subject in the balanced category. This is done so
that we may effectively use accuracy as the metric of efficacy
such that our results on the balanced data are not positively
affected by the skewed nature of the data. After applying this
threshold, 65.63% of subjects were non-skewed and the
remaining skewed.

We find that at approximately this threshold, we may
effectively separate only the subjects that positively affected
the results in a manner not relating to the efficacy of the model.
In the Classification Results section, we report the results of
both the skewed and balanced sets, empirically showing the
erroneous advantage produced by the skewed set of subjects.

C. Data Augmentation

Two matrices of Gaussian noise were generated. The first
matrix was of equal dimensionto the training set and the
second was of equal dimension to the validation set. To these
generated matrices, the training and validation sets were
added, respectively. Additional sets were allowed to be made
as an iterative process. No noise was added to the test set.
The augmented data were then concatenated to their
respective sets prior to training. The respective sets were then
shuffled independently to evenly intersperse the augmented
data by stacking every 60" subsample in a respective new
matrix, repeating until all subsamples and augmented data
were contained in the respective new matrices.



Table I. Accuracy on skewed data, comparing different methodologies.

Classifier Skewed Accuracy
EEGNet 81.18%
Improved EEGNet 79.06%
PMTM + SVM 86.20%

D. Classification Results

For the purpose of the binary BCI task of emotion
classification on the DEAP dataset, we compare our method
against the state-of-the-art EEGNet with its automatic feature
extraction, using LAMB as the optimizer for both. This study
makes use of classical feature extraction and classifier pairs
that are still in wide use today, namely: PSD and SVM, and
PSD and LDA. For the PSD estimation, we tested these pairs
with PMTM and PWELCH, reporting the better performing
pair.

We split the data into four even folds using four-fold cross
validation. Each fold was created with respect to the length of
the original trial, such that no two folds contain a subsample
from the same trial. For each iteration of the four-fold testing
on CNNs, 80% of the fold in question was used as the testing
set. Of the remaining data, 81.25% were used as training
set, and 18.75% as validation set. All sets were created with
respect to the length of the original trial. For the testing of
the classical pairs, each iteration of the four-fold testing uses
the same 80% of the given fold as the testing set, and the
remaining data as the training set. We first show Table I, in
which the results of testing on the skewed data are displayed.
Note that the highest skewed classification accuracies of
81.18%, 79.06%, and 86.20% were performed on data skewed
to 75.00%.

For the sake of brevity, the remainder of testing shown is
on the balanced data.The results for the binary classification
task are shown in Fig. 6 and show that the highest accuracy
on the balanced data for our improved EEGNet is 77.16%,
up from 66.30% and 67.32% with EEGNet using the original
data and PMTM respectively. These results represent an uplift
in accuracy over EEGNet of 10.48% by the improved
EEGNet pipeline.

Using the LAMB optimizer, we then perform an ablation
study to determine empirically which components of our
method contribute the most to our improved performance. The
checkmark means that the item in the header is present in the
testing and the “X” mark means that it is not. For example,
row 4 of Table II means that when using Improved EEGNet
with PMTM, No Regularization, No Gaussian Noise, the
accuracy is 63.05%. The results of this are shown in Table II
and show that the new architecture benefits greatly from the
use of both PMTM and regularization and has an additional
minor uplift from the interspersed Gaussian augmentation.

Table II. Improved EEGNet results from the ablation study, showing which
components provide the most uplift in accuracy, performed on the DEAP
dataset.

PMTM Regularization Gaussian Accuracy
X X X 48.29%
X v X 45.96%
X X v 46.23%
v X X 63.05%
v X v 67.54%
v v X 75.65%
v v v 77.16%

V. CONCLUSION

This study proposed the use of PMTM in the BCI-EEG
emotion classification pipeline, as well as a novel CNN
architecture based on EEGNet. The results of our testing show
that implementing PMTM as a feature extraction method may
have large improvements, as was seen in the high accuracy of
the SVM + PMTM combination as well as with the improved
EEGNet. As shown in the marginal gain with the original
EEGNet, some changes to an architecture that is designed to
work on data in the time domain may be required in order to
receive the most effect from using PMTM.

As shown in the ablation study in the previous section, the
improved EEGNet architecture would appear to have
difficulty working with data that is not pre-processed and
feature extracted using PMTM. This is likely due to
differences in the number of filters learned between EEGNet
and the improved EEGNet. This shows that the new model
has some limitations that should be investigated in future
work.

Although all of the classifiers shown were able to receive a
high accuracy on the skewed dataset, it should be noted that
in some instances, the skew was extreme and the results
received on this data should not be taken as a satisfactory
representation of the performance of either model. In order to
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emphasize on the skewed nature of this data, observe that on
one such subject, the distribution of labels was skewed to
75.00% and it was not uncommon for the test set to be skewed
upwards of 87.50% when producing the randomized folds.
With early-stopping enabled at 25 epochs, EEGNet often
stopped training on this subject at below 50 epochs, and with
a training accuracy of less than 60.00% in the majority of
cases. This would indicate that the model is not actually
performing well, but rather obtaining a high accuracy due to
highly imbalanced data.

The direction of our future work is largely dictated by what
is previously discussed in this section. Additionally, we look
to continue our research by implementing our pipeline on the
arousal data in the DEAP dataset as well as a larger range of
BCl-task paradigms, such as on an Error-Related-Negativity
and Steady state visually evoked potential datasets. We will
also continue our research on improving the efficacy and
robustness of the model for interacting with emotional robot
[29, 30] with other advanced optimization algorithms [31, 32].
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