
  

 

Abstract—Non-invasive brain-computer interfaces (BCIs) 
provide us with the unique ability to classify the psychological 
state of a person using only neurophysiological signals, such as 
those captured with an electroencephalogram (EEG). With this 
ability, new avenues for innovation in the field of healthcare 
arise, especially as it is used for robotics. EEGNet is a novel deep 
learning technique for the classification of EEG data with a 
limited training set that generalizes well to a variety of BCI 
paradigms, and the performance thereof can further be 
improved. We propose the use of Thomson Multitaper Power 
Spectral Density estimation in the EEG-BCI classification 
pipeline as well as a novel convolutional neural network (CNN), 
which extends EEGNet with sparse feature maps produced by 
efficient regularized separable convolutions. Further, we test the 
efficacy of interspersed Gaussian noise as a data augmentation 
technique. To show the improvements found with this new 
pipeline, we test on a widely used public EEG dataset related to 
emotion classification, then perform an ablation study to 
determine the most contributing factors. The accuracy on this 
public dataset was 77.16%. These results show that our pipeline 
improved the classification accuracy by 10.86% when compared 
with the state-of-the-art. 

I. INTRODUCTION 

Emotion is a profound part of the human experience, 
dictating our perception of the world and interactions with 
those around us. The use of non-invasive Brain-Computer 
Interfaces (BCIs), which provide a link between the human 
and computer through electroencephalogram (EEG) signals 
[1], allow for classification of emotion without regard to the 
physical characteristics associated with it. This may allow for 
healthcare professionals to better understand the needs of 
patients living with severely debilitating disease [2] such as 
locked-in syndrome, where traditional methods of emotion 
classification are inadequate and largely inaccurate [3]. 

For people living with motor-related disabilities, assistive 
technologies in the form of robotics are increasing yearly 
[4]. Despite this rapid growth, the implementation of human 
emotion recognition in robots has not progressed as quickly 
[5, 6]. This may be due to higher accuracy requirements, 
ensuring correct responses to stimulus [5], conversely 
causing undue stress to the user when incorrectly applied 
[7]. Even simple movements performed by the robot may 
cause error through the addition of artefacts or noise [5], 
further complicating accurate classification. Affective 
computing, as applied to the  field of robotics, opens novel 
possibilities in improving quality  of life for the people who 
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need social support. Given that the ratio of those requiring 
assistive care services to care givers is expected to grow 
steadily over the first half of this century [6], emotionally 
aware robotics becomes an enticing prospect. 

Despite the need for advancement, the nature in which 
EEG data are collected leads to exorbitant costs, effectively 
constraining the size of our training datasets. Considering this, 
extremely deep and complex CNNs with many parameters to 
fit may be less suitable for use on the smaller datasets 
associated with EEG research. Reference [8] attempts to solve 
this with EEGNet, a compact CNN intended for the 
classification and interpretation of a wide range of EEG-based 
BCI paradigms. Furthermore, the non-stationary nature of 
brainwave data [9] may lead to worse accuracy by CNNs [4]. 
Reference [10] attempts to improve the classification accuracy 
by adding a pre-processed feature extraction method to their 
pipeline and employing a modified version of EEGNet (S-
EEGNet) with an additional offset to the convolutions of the 
original architecture. 

EEGNet is a state-of-the-art CNN with strong feature ex- 
traction that is competitive for many EEG-BCI tasks [8]. 
However, EEGNet does not perform as well when applied to 
emotion classification on the selected dataset, with similar 
average performance to classical feature extraction and 
classification pairs. The Hilbert Spectrum, derived from the 
Hilbert-Huang Transformation (HHT) [11], as was done in 
[10] produces a robust feature set and improves the accuracy, 
but in a memory-constrained contexts may not be as 
appropriate when compared to more lightweight 
representations of the data. The resolution of the Hilbert 
Spectrum is bounded by the number of frequency bins used, 
whereas the optimal number of frequency bins increases both 
with the sampling rate and length of the original data [11]. 

In this study, we proposed a method for improving 
EEGNet based on sparse feature vectors produced by 
regularized separable convolutions. We further improve 
EEGNet with the use of Thomson’s multitaper method of 
power spectral density (PSD) estimation, and Gaussian data 
augmentation. This PSD estimation method was chosen 
particularly for the reduction in signal artefacts when 
compared to other common spectral estimations as was noted 
in [12]. We directly compare these improvements together 
against the state-of-the-art method, EEGNet and its automatic 
feature extraction. Additionally, we test the efficacy of Layer-
wise Adaptive Moments optimizer for Batch training (LAMB) 
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for use on smaller datasets. We also perform an ablation study 
to determine the contribution of each of these components.  

This paper is organized as follows. First, the introduction 
is presented. Then, the related technical background is given 
in the second part. The proposed method is elaborated in the 
third section, and the experimental results are presented in the 
fourth part. Finally, a conclusion is given in the last section. 

II. RELATED WORK 

EEGNet is a CNN with three convolutional layers for 
feature extraction and one fully connected, dense layer for 
classification [8]. The network was designed with the intent of 
automatic robust feature extraction that works on a wide-range 
of EEG-BCI tasks [8]. The number of filters and kernel lengths 
of the original architecture were formulated specifically for use 
on 128 Hz data [8]. This architecture is illustrated in Fig. 4a. 

S-EEGNet modifies the EEGNet architecture with the 
addition of an offset convolution, which was achieved by using 
bilinear interpolation on the input to the convolution layers 
[10]. They further improved the classification accuracy of 
EEGNet using HHT in their pre-processing pipeline [10]. 
Reference [13] was able to improve the accuracy by using an 
averaging of an ensemble of EEGNet with different kernel 
size inputs. Moreover, it was found that the optimal kernel 
size differed based on which subject the classification was 
performed on [13]. 

The depthwise separable convolution (separable 
convolution) is a two-part convolution in which a depthwise 
convolution is first performed, and then a pointwise 
convolution is performed afterward. In other studies, it has 
been empirically shown that the separable convolution can 
produce more efficient feature maps, even if the network 
contains a similar number of parameters [14, 15]. Reference 
[15] applied separable convolutions to the domain of machine 
translation, showing the versatility of separable convolutions. 
Further, the offset convolution found in [10] is also based on 
the separable convolution. 

Adam is a memory-efficient optimizer [16, 17] that is still 
in wide use today. LAMB is an optimizer designed to work 
with large batch sizes without a degradation in performance 
[18]. LAMB uses layerwise normalization, which has 
similarity to that which is found in the LARS optimizer [16, 
19]. This is further combined with dimensional normalization 
with respect to the square root of the second moment, as is 
found in the Adam optimizer [16-18]. 

III. PROPOSED METHOD 

A.  Thomson Multitaper Method of Power Spectral Density 
Estimation 
The PSD of a signal is an estimation of its distribution of 

power in the frequency domain [20]. In this study, we use 
Thomson Multitaper Method of PSD estimation (PMTM) for 
its consistency and resolution of the extracted features [21]. 
This consistency and resolution can be attributed to the 
averaging that the method utilizes [12, 21-23]. PMTM uses 
Discrete Prolate Spheroidal (Slepian) sequences, first 
described in [21], to decompose the signal and extract its 
power concentration which is then averaged over multiple 
tapers [21-23]. This method has been shown to reduce the bias 

 
Fig. 1 Thomson’s Multitaper Method of Power Spectral Density Estimation. 

and variance of the EEG signal when applied to short segments 
of data [12, 23].  

PMTM, using Slepian sequences, is based around the results 
of a series of eigenvalue expansion equations [20-22]. Per the 
references [21, 22], the Slepian sequence is given by equation 
(1): 

                (1) 

 

where the Slepian sequence , is the kth eigenvector 
corresponding to the kth eigenvalue , of non-increasing 
order, of a given frequency band spanning [-W, W] [21, 22]. 

As an example of PMTM, the finished extraction from one 
electrode, 128 points of data equating to 1 second, is shown in 
Fig. 1. The original preprocessed data are depicted above the 
feature extracted version. Note that the size of the PMTM 
feature extracted data is decreased from 128 points of data to 
65. This algorithm is provided by [22]. 

B. Regularization 
Regularization attempts to reduce the probability of over- 

fitting the training data by imposing penalties on the model 
during the training process. In this study, we focus on L1 
regularization, which penalizes the model by adding an 
extra cost that is proportional to the absolute value of 
each parameter [24]. In theory, the optimal solution to 
minimize a cost function with added penalties is to gravitate 
towards the smallest vector that solves the problem [25]. In 
this case, practice follows theory, and the addition of L1 
regularization decreases the probability of the model 
accumulating large parameters and in fact trends towards 
many parameters being equal to zero [24], producing  
 



  

Fig. 2 The validation curve of the regularized model decreased smoothly. 

sparsely populated feature maps. The equation for L1 
regularization is given in (2), as follows: 

,                        (2) 

where  is the set of model parameters that the regularization 
is to be applied to, , , and N is the 
cardinality of . This penalty is then added to the cost 
function in the loss calculation stage of training. An example 
of the loss curve when fitting a regularized model is shown 
in Fig. 2. 

C. Gaussian Noise 
Gaussian noise is random statistical noise with a 

probability density function that is equal to the Gaussian 
distribution [26]. For our purposes, this noise is centered with 
a mean of zero. The probability distribution, p of random 
variable , is given by equation (3): 

 ,                               (3) 

where  is the standard deviation of the noise, and  is its 
variance [26]. To show that the distribution of random numbers 
is normal, we set  and generated 107 random numbers. 
These numbers were plotted in a histogram, illustrated 
in Fig. 3, which shows that the distribution of the random 
variable  is highly close to a truly normal distribution. 

D. Improved EEGNet Architecture 

The improved EEGNet architecture, illustrated in Fig. 4b, 
is designed to capture only the most relevant features from the 
PMTM feature extracted data, leading to improvements in the 
generalization capabilities of the network. This is 
accomplished in two main ways. Through the use of highly 
efficient separable convolutions, and the addition of L1 
regularization that is active during training, bringing the 
weights of the least relevant parameters to zero. 

Although our architecture is heavily based on the 
EEGNet architecture [8], there is considerable difference 
between each. As illustrated in Fig. 4, our improved 
architecture shares the first and third convolutional layers 
with EEGNet, a spatial and separable convolution. A 
pointwise convolution is added to the depthwise convolution 
that is found in EEGNet. We increase the depth of the  

 
Fig. 3 The bell-shaped curve of Gaussian random variable  shows that its 
distribution is approximately normal. 

network with an additional separable convolution, batch 
normalization, activation, and average pooling layers to the 
architecture following the location of the separable 
convolution found in EEGNet. The batch normalization 
accelerates training by standardizing the inputs, whereas the 
average pooling layer downsamples the feature map, 
helping to reduce the number of parameters to fit. Further, 
we place L1 regularization parameters on each of the 
separable convolutions. To the second separable 
convolution, only the depthwise convolution is regularized. 
To the first and third separable convolutions, both the 
depthwise and pointwise convolutions are regularized. 

IV. EXPERIMENTAL RESULTS 

The model was allowed to train for 3500 epochs with 
early stopping based on validation loss enabled at 25 epochs 
unless otherwise stated explicitly. The exact methods of data 
handling are explicitly described in the subsequent subsection. 
For all testing, we set the batch size equal to the size of  

 
(a) 
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Fig. 4 The unmodified EEGNet architecture depicted in (a). The improved 
EEGNet architecture depicted in (b). 



  

the training set when testing with the LAMB optimizer and 
otherwise equal to 64 and 128 when testing with the Adam 
optimizer, reporting the better performing result. We used the 
default hyperparameters from the original paper for all testing 
on the 128 Hz data with EEGNet. 

When testing with the original EEGNet with the non-
feature extracted data, we found that the Adam optimizer was 
unable to converge on certain subjects. To solve this, we tested 
a variety of different optimizers, finding the LAMB optimizer 
to be most suitable. Using a subject that has poor 
performance with EEGNet, we plot an example of this 
observed abnormality in Fig. 5. The validation and training 
loss of the Adam optimizer is plotted over 3500 epochs without 
early-stopping and shows that, from the start of training, the 
optimizer is unable to converge towards a solution and the 
gradient explodes. Note that this was performed using 
subsampled non-feature extracted data with the original 
EEGNet. 

We will present our results in a manner similar to what was 
done in [10]. To evaluate the efficacy of our model, we use 
accuracy, defined by the equation (4): 

 ,                (4) 

where TP is true positive, TN is true negative, FN is false 
negative, and FP is false positive.  

A. A dataset for emotion analysis using eeg signals 
The dataset is A Database for Emotion Analysis Using 

Physiological Signals (DEAP) [27]. This dataset contains 32 
volunteers of 40 trials each, with each trial consisting of EEG 
and other physiological signals recorded over the duration 
of a 60 second music video extract [27]. For 22 subjects, 
face recordings were also available [27]. After viewing each 
extract, the participants rated their levels of arousal, valence, 
and dominance using a 9-point scale [27]. These data were 
originally recorded with a sampling rate of 512 Hz, with 32 
EEG channels and 12 peripheral channels [27]. Participants 1- 
22 were recorded in Twente, and the remaining in Geneva–the 
authors note minor differences in the hardware used for each 
[27]. 

The dataset provides a pre-processed version, which was 
used. This pre-processed version rearranges the Twente EEG 
channels  to coincide with the ordering used in Geneva, and the 
units used to measure were converted as well. The data were 
then downsampled to 128 Hz, bandpass filtered from 4.00 - 
45.00 Hz, and segmented into 60 second trials with a 3 second 
pre-trial baseline. Our team discarded all of the channels not 
corresponding to EEG signals, then removed the first 3 
seconds, corresponding to 384 points of data. 

Prior to testing, we produced three sets of data. The first 
set was created by subsampling the data at 1 second intervals. 
The remaining two sets were created by taking the PSD 
estimation of the subsampled set, the first using Welch’s 
method of PSD estimation (PWELCH), and the second used 
PMTM. Each set was then randomized with respect to the 
length of the original 40 trials. 

From the subject rating data, we created a set of binary 
labels for the BCI classification task of emotion recognition. 
We threshold the valence data at greater than or equal to 5  

 
Fig. 5 The validation loss of EEGNet, using the Adam optimizer and the 
original pre-processed as applied to a non-performant subject. 
as high valence and less than or equal to 5 as low valence. High 
valence represents a state of pleasant emotion whereas low 
valence represents a state of unpleasant emotion [28]. Each 
subsample was then assigned a binary label corresponding to 
the value of its original time series.  

We then further threshold the subjects into two categories, 
skewed and balanced. This is done by first computing the ratio 
of low valence to high valence for each subject. If this ratio 
was greater than or equal to 60%, or less than or equal to 40%, 
we placed the subject in the skewed category, otherwise we 
placed the subject in the balanced category. This is done so  
that we may effectively use accuracy as the metric of efficacy 
such that our results on the balanced data are not positively 
affected by the skewed nature of the data. After applying this 
threshold, 65.63% of subjects were non-skewed and the 
remaining skewed. 

We find that at approximately this threshold, we may 
effectively separate only  the subjects that positively affected 
the results in a manner not relating to the efficacy of the model. 
In the Classification Results section, we report the results of 
both the skewed and balanced sets, empirically showing the 
erroneous advantage produced by the skewed set of subjects. 

C. Data Augmentation 
Two matrices of Gaussian noise were generated. The first 

matrix was of equal dimension to the training set and the 
second was of equal dimension to the validation set. To these 
generated matrices, the training and validation sets were 
added, respectively. Additional sets were allowed to be made 
as an iterative process. No noise was added to the test set. 
The augmented data were then concatenated to their 
respective sets prior to training. The respective sets were then 
shuffled independently to evenly intersperse the augmented 
data by stacking every 60th subsample in a respective new 
matrix, repeating until all subsamples and augmented data 
were contained in the respective new matrices. 

 
 



  

Table I. Accuracy on skewed data, comparing different methodologies. 

Classifier Skewed Accuracy 

EEGNet 81.18% 

Improved EEGNet 79.06% 

PMTM + SVM 86.20% 

D. Classification Results 
For the purpose of the binary BCI task of emotion 

classification on the DEAP dataset, we compare our method 
against the state-of-the-art EEGNet with its automatic feature 
extraction, using LAMB as the optimizer for both. This study 
makes use of classical feature extraction and classifier pairs 
that are still in wide use today, namely: PSD and SVM, and 
PSD and LDA. For the PSD estimation, we tested these pairs 
with PMTM and PWELCH, reporting the better performing 
pair.  

We split the data into four even folds using four-fold cross 
validation. Each fold was  created with respect to the length of 
the original trial, such that no two folds contain a subsample 
from the same trial. For each iteration of the four-fold testing 
on CNNs, 80% of the fold in question was used as the testing 
set. Of the remaining data, 81.25% were used as training 
set, and 18.75% as validation set. All sets were created with 
respect to the length of the original trial. For the testing of 
the classical pairs, each iteration of the four-fold testing uses 
the same 80% of the given fold as the testing set, and the 
remaining data as the training set. We first show Table I, in 
which the results of testing on the skewed data are displayed. 
Note that the highest skewed classification accuracies of 
81.18%, 79.06%, and 86.20% were performed on data skewed 
to 75.00%. 

For the sake of brevity, the remainder of testing shown is 
on the balanced data. The results for the binary classification 
task are shown in Fig. 6 and show that the highest accuracy 
on the balanced  data for our improved EEGNet is 77.16%, 
up from 66.30%  and 67.32% with EEGNet using the original 
data and PMTM respectively. These results represent an uplift 
in accuracy over EEGNet of 10.48% by the improved 
EEGNet pipeline.  

Using the LAMB optimizer, we then perform an ablation 
study to determine empirically which components of our 
method contribute the most to our improved performance. The 
checkmark means that the item in the header is present in the 
testing and the “X” mark means that it is not. For example, 
row 4 of Table II means that when using Improved EEGNet 
with PMTM, No Regularization, No Gaussian Noise, the 
accuracy is 63.05%. The results of this are shown in Table II 
and show that the new architecture benefits greatly from the 
use of both PMTM and regularization and has an additional 
minor uplift from the interspersed Gaussian augmentation. 
 

Table II. Improved EEGNet results from the ablation study, showing which 
components provide the most uplift in accuracy, performed on the DEAP 
dataset.  

PMTM Regularization Gaussian Accuracy 

   48.29% 

   45.96% 

   46.23% 

   63.05% 

   67.54% 

   75.65% 

   77.16% 

V. CONCLUSION 
This study proposed the use of PMTM in the BCI-EEG 

emotion classification pipeline, as well as a novel CNN 
architecture based on EEGNet. The results of our testing show 
that implementing PMTM as a feature extraction method may 
have large improvements, as was seen in the high accuracy of 
the SVM + PMTM combination as well as with the improved 
EEGNet. As shown in the marginal gain with the original 
EEGNet, some changes to an architecture that is designed to 
work on data in the time domain may be required in order to 
receive the most effect from using PMTM. 

As shown in the ablation study in the previous section, the 
improved EEGNet architecture would appear to have 
difficulty working with data that is not pre-processed and 
feature extracted using PMTM. This is likely due to 
differences in the number of filters learned between EEGNet 
and the improved EEGNet. This shows that the new model  
has some limitations that should be investigated in future 
work. 

Although all of the classifiers shown were able to receive a 
high accuracy on the skewed dataset, it should be noted that 
in some instances, the skew was extreme and the results 
received on this data should not be taken as a satisfactory 
representation of the performance of either model. In order to  

Fig. 6 The highest accuracy of 77.16% and 76.61% is achieved with classifiers 
augmented with PMTM as the feature extraction method. Error bars represent 
a 95% confidence interval. 



  

emphasize on the skewed nature of this data, observe that on 
one such subject, the distribution of labels was skewed to 
75.00% and it was not uncommon for the test set to be skewed 
upwards of 87.50% when producing the randomized folds. 
With early-stopping enabled at 25 epochs, EEGNet often 
stopped training on this subject at below 50 epochs, and with 
a training accuracy of less than 60.00% in the majority of 
cases. This would indicate that the model is not actually 
performing well, but rather obtaining a high accuracy due to 
highly imbalanced data. 

The direction of our future work is largely dictated by what 
is previously discussed in this section. Additionally, we look 
to continue our research by implementing our pipeline on the 
arousal data in the DEAP dataset as well as a larger range of 
BCI-task paradigms, such as on an Error-Related-Negativity 
and Steady state visually evoked potential datasets. We will 
also continue our research on improving the efficacy and 
robustness of the model for interacting with emotional robot 
[29, 30] with other advanced optimization algorithms [31, 32].  

ACKNOWLEDGMENT 
This work was supported by the National Science 

Foundation under Grant No. 2050972. 

REFERENCES 

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, 
and T. M. Vaughan, “Brain–computer   interfaces   for 
communication   and   control,” Clinical    Neurophysiology, vol. 113, 
no. 6, pp. 767–791, 2002. 

[2] H. Huang, Q. Xie, J. Pan, Y. He, Z. Wen, R. Yu, and Y. Li, “An eeg-
based brain computer interface for emotion recognition and its 
application in patients with disorder of consciousness,” IEEE 
Transactions on Affective Computing, pp. 1–1, 2019. 

[3] N. L. Childs, W. N. Mercer, and H. W. Childs, “Accuracy of 
diagnosis of persistent vegetative state,” Neurology, vol. 43, no. 8, 
pp. 1465–1465, 1993. 

[4] M. Aljalal, S. Ibrahim, R. Djemal, and W. Ko, “Comprehensive 
review on brain-controlled mobile robots and robotic arms based on 
electroencephalography signals,” Intelligent   Service   Robotics, vol. 
13, no. 4, pp. 539–563, Oct 2020. 

[5] M. Spezialetti, G. Placidi, and   S.   Rossi, “Emotion   recognition for 
human-robot interaction: Recent advances and future perspectives,” 
Frontiers   in   robotics   and   AI,    vol.    7, pp. 532 279–532 279, 
Dec 2020, 33501307[pmid]. 

[6] R. Bemelmans, G. J. Gelderblom, P. Jonker, and L. de Witte, 
“Socially assistive robots in elderly care: A systematic review into 
effects and effectiveness,” Journal of the American Medical 
Directors Association, vol. 13, no. 2, pp. 114–120.e1, 2012. 

[7] M. Alimardani and K. Hiraki, “Passive brain-computer interfaces for 
enhanced human-robot interaction,” Frontiers in robotics and AI, vol. 
7, pp. 125–125, Oct 2020, 33501291[pmid]. 

[8] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. 
Hung, and B. J. Lance, “Eegnet: a compact convolutional neural 
network for eeg-based brain–computer interfaces,” Journal of Neural 
Engineering, vol. 15, no. 5, p. 056013, 2018. 

[9] A. Y. Kaplan, A. A. Fingelkurts, A. A. Fingelkurts, S.   V. Borisov, 
and    B.    S.    Darkhovsky, “Nonstationary    nature    of the brain 
activity as revealed by   eeg/meg:   Methodological, practical and 
conceptual challenges,” Signal Processing, vol. 85, no. 11, pp. 2190–
2212, 2005, neuronal   Coordination   in   the Brain: A Signal 
Processing Perspective.  

[10] W. Huang, Y. Xue, L. Hu, and H. Liuli, “S-eegnet: 
Electroencephalo- gram signal classification based on a separable 
convolution neural network with bilinear interpolation,” IEEE 
Access, vol. 8, pp. 131 636– 131 646, 2020. 

[11] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. 
Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The 
empirical mode decomposition and the hilbert spectrum for 
nonlinear and non-stationary time series analysis,” Proceedings of 
the Royal Society of London. Series A: Mathematical, Physical and 
Engineering Sciences, vol. 454, no. 1971, pp. 903–995, 1998.  

[12] A. Delorme, T. Sejnowski, en S. Makeig, “Enhanced detection of 
artifacts in EEG data using higher-order statistics and independent 
component analysis”, Neuroimage, vol 34, no 4, bll 1443–1449, Feb 
2007.  

[13]  Y. Zhu, Y. Li, J. Lu, and P. Li, “Eegnet with ensemble learning to 
improve the cross-session classification of ssvep based bci from ear- 
eeg,” IEEE Access, vol. 9, pp. 15 295–15 303, 2021. 

[14]  F. Chollet, “Xception: Deep learning with depthwise separable 
convolu- tions,” in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), July 2017. 

[15]  L. Kaiser, A. N. Gomez, and F. Chollet, “Depthwise separable 
convo- lutions for neural machine translation,” 2017. 

[16]  D. P. Kingma and J. Ba, “Adam: A method for stochastic 
optimization,” 2017. 

[17]  S. Ruder, “An overview of gradient descent optimization 
algorithms,” CoRR, vol. abs/1609.04747, 2016. 

[18]  Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. 
Song, J. Demmel, K. Keutzer, and C.-J. Hsieh, “Large batch 
optimization for deep learning: Training bert in 76 minutes,” 2020. 

[19] Y. You, I. Gitman, and B. Ginsburg, “Scaling SGD batch size to 32k 
for imagenet training,” CoRR, vol. abs/1708.03888, 2017.  

[20]  D. Thomson, “Spectrum estimation and harmonic analysis,” 
Proceedings of the IEEE, vol. 70, no. 9, pp. 1055–1096, 1982. 

[21]  D. Slepian, “Prolate spheroidal wave functions, fourier analysis, and 
uncertainty — v: the discrete case,” The Bell System Technical 
Journal, vol. 57, no. 5, pp. 1371–1430, 1978. 

[22] MATLAB, Signal Processing Toolbox version 9.10.0 (R2021a). 
Natick, Massachusetts: The MathWorks Inc., 2021. 

[23] M. J. Prerau, R. E. Brown, M. T. Bianchi, J. M. Ellenbogen, en P. L. 
Purdon, “Sleep Neurophysiological Dynamics Through the Lens of 
Multitaper Spectral Analysis”, Physiology, vol 32, no 1, bll 60–92, 
2017. 

[24]  A. Y. Ng, “Feature selection, L1 vs. L2 regularization, and 
rotational invariance,” in Proceedings of the Twenty-First 
International Conference on Machine Learning, ser. ICML ’04. New 
York, NY, USA: Association for Computing Machinery, 2004, p. 78. 

[25]  A.  Krogh   and J.  Hertz, “A   simple   weight   decay   can improve 
generalization,” in Advances in   Neural   Information Processing
 Systems, J. Moody, S. Hanson, and R. P. Lippmann, Eds., 
vol. 4. Morgan-Kaufmann, 1992. 

[26] A. Lyon, “Why are normal distributions normal?” The British Journal 
for the Philosophy of Science, vol. 65, no. 3, pp. 621–649, 2014. 
[Online]. Available: https://doi.org/10.1093/bjps/axs046 

[27] S. Koelstra, C. Muehl, M. Soleymani, J.-S. Lee, A. Yazdani, T. 
Ebrahimi, T. Pun, A. Nijholt, and I. Patras, “Deap: A database for 
emotion analysis; using physiological signals,” Affective Computing, 
IEEE Transactions on, vol. 3, no. 1, pp. 18–31, 2012. 

[28] V. Shuman, D. Sander, en K. Scherer, “Levels of Valence”, Frontiers 
in Psychology, vol 4, 2013. 

[29] Y. Chang, “Architecture design for performing grasp-and-lift tasks in 
brain–machine-interface-based human-in-the-loop robotic system,” 
IET Cyber-Physical Systems: Theory & Applications, vol. 4, no. 3, 
pp. 198-203, 2019. 

[30] Y. Chang and L. Sun, “EEG-based emotion recognition for 
modulating social-aware robot navigation,” the 43rd Annual 
International Conference of the IEEE Engineering in Medicine & 
Biology Society (EMBC), 2021.  

[31] H. Wang, J. Cheng, Sen Jia, Zhilang Qiu, Caiyun Shi, Lixian Zou, S. 
Su, Y. Chang, Y. Zhu, L. Ying, and D. Liang, “Accelerating MR 
imaging via deep Chambolle-Pock network,” the 41st Annual 
International Conference of the IEEE Engineering in Medicine & 
Biology Society (EMBC), 2019. 

[32] C. Shi, J. Cheng, G. Xie, S. Su, Y. Chang, H. Chen, X. Liu, H. Wang, 
and D. Liang, “Positive‐contrast susceptibility imaging based on first‐
order primal‐dual optimization,” Magnetic Resonance in Medicine, 
vol. 82, no. 3, pp. 1120-1128, 2019. 


