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A B S T R A C T   

Autonomous driving, which integrates artificial intelligence and the Internet of Things, has 
piqued the interest of both academics and industry because of its economic and societal benefits. 
Rigorous accuracy and latency requirements are important for autonomous driving safety. In 
order to achieve high computation performance in driving automation system, we propose in this 
paper a heterogeneous multicore AI accelerator (HMAI). At the same time, on the HMAI, how to 
allocate a large number of real-time tasks to different accelerators remains a notable problem that 
is worth considering. Theoretically, this problem is NP-complete, and always solved using 
heuristic-based and guided random-search-based algorithms. However, the global state of HMAI 
cannot be considered comprehensively in these algorithms, which usually leads to suboptimal 
allocations. In this paper, we propose FlexAI, a predictive and global scheduling mechanism on 
HMAI. Specifically, the proposed scheduling algorithm that is based upon deep reinforcement 
learning (RL). In order to evaluate the quality of strategies produced by RL agent and update the 
observation of the scheduling agent, two scheduling metrics are proposed: Global State Value 
(Gvalue), Matching Score (MS) which pays attention to the requirements of various tasks in 
driving automation system like emergency level. In the experimental, FlexAI achieves up to 80% 
execution time reduction and 99% resource utilization improvement compared with Min-min, 
ATA in heuristics, and genetic algorithms, simulated annealing in guided random-search-based 
algorithms, and unscheduled case.   

1. Introduction 

In the era of artificial intelligence (AI) and the Internet of Things (IoT), the autonomous vehicle industry is focused on the vertical 
application of AI and IoT. The realization of fully autonomous driving will undoubtedly bring benefits to both the economy and society. 
The autonomous driving industry is dominated by AI, combined with the traditional automotive industry, the rapid development of the 
fifth generation (5G) communications industry, and the mature technology of the electronics industry. Since rigorous accuracy and 
latency requirements are important for autonomous driving safety, current autonomous driving system should provide extreme 
computational resources. For example, the recently-debuted Full Self-Driving computer (FSD) from Tesla [1], is expected to be capable 
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of processing 2300 frames per second collected from 8 surround cameras and 12 ultrasonic sensors, which is a 21 times improvement 
over the last generation Hardware 2.5 [2,3] in terms of image processing. 

Such high demands of processing throughput need a large amount of neural network (NN)-based tasks to be processed timely in the 
autonomous driving system. However, traditional general processors can’t efficiently process large NNs developed for Autopilot due to 
the lack of computational resource. Therefore, the emerging autonomous driving computing platform is designed as ASIC (e.g. Tesla 
FSD [1] and Horizon Journey [4]), which can focus on features of neural-network-based tasks. However, building such an 
accelerator-based autonomous driving computing platform is challenging. 

On the one hand, with the increasing cameras and sensors (e.g. 2.5 billion pixels per second) generate overwhelming NN processing 
tasks, most platforms integrated one accelerator can’t meet this overwhelming processing requirements. However, a future fully 
autonomous driving vehicle (L5) expects to integrate many more cameras/sensors and demands a performance of nearly 1000 TOPS 
[5]. Therefore, single accelerators need to be expanded to multiple accelerators, which can pose several new challenges for archi
tecture design. 

On the other hand, the processing workloads exposed to modern intelligent autonomous driving SoCs present increasing hetero
geneity and further challenges the performance and energy of multiple accelerators. A future self-driving car can operate a variety of 
neural network-based tasks. Furthermore, depending on their functions, different cameras (e.g. front-facing or side-facing) can have 
differentiated stream generation rates and accuracy requirements. 

Such composite workload flows often involve running multiple NN models with distinct layer operations and sizes. This will call for 
a multiple heterogeneous accelerator architecture that requires a new form of parallelism. As advocated, the performance or efficiency 
of future computer systems will have to rely on new accelerator-level parallelism (ALP). The ALP is defined as the parallelism of 
workload components (e.g. NNs for different cameras) concurrently executing on multiple accelerators. A high ALP implies that each 
accelerator can execute a targeted computation class faster and usually with less energy. 

These observations prompt us to think about an important question: how can a driving automation computing system well-manage 
these challenging design aspects under rigorous performance and energy restrictions? In other words, to efficiently process such a large 
amount of CNN-based tasks with high variability on the complicated heterogeneous hardware substrate, effective criteria for system 
design that are tailored to driving automation should be defined, and efficient task scheduling mechanism should be explored to meet 
the criteria. Unfortunately, current computing systems for driving automation have not provided the answers for this question. 

In this work, we aim to extensively explore the above system design challenges and build a comprehensive driving automation 
framework that synergistically handles the key design aspects. First, our framework features a novel heterogeneous multi-core AI 
accelerator (HMAI) to provide the hardware substrate for the driving automation tasks with variability. We also propose the design 
principle to choose the accelerators for the HMAI. 

Second, our framework defines system design criteria to better utilize hardware resources and achieve increased throughput while 
satisfying the performance and energy restrictions. Specifically, we propose two metrics, Matching Score (MS) and Global State Value 
(Gvalue) to formalize the criteria.MS pays attention to the safety requirements of various tasks in driving automation systems, while 
Gvalue puts more weight onto the overall performance of HMAI that reflects the globality. 

Finally, our framework employs a deep reinforcement learning (RL)-based task scheduling mechanism FlexAI, to resolve the task 
mapping issue. Specifically, we show that a robust policy can be yielded by applying deep Q-network (DQN) [7]. The RL agent in 
FlexAI is predictive and global. The predictive means each policy will schedule a corresponding task immediately without considering 
the later-coming tasks. The global feature in FlexAI means it can consider the whole performance in hardware, such as resource 
utilization. 

2. Background and motivation 

Both industry [9] and academia are intensively exploring the driving automation system. The Society of Automobile Engineers 
(SAE) [10] defines six levels of driving automation from Level 0 to Level 5, where Level 5 is fully autonomous. The full automation 
system is considered as the most multidisciplinary realm that has the most promising market value and requires the most sophisticated 
technology stack [6]. The current autonomous driving system mainly relies on AI-enabled automation vehicles. To deliver a functional 
and practical driving automation system with a safety and reliability guarantee, designers should carefully analyze and optimize every 
technical detail from hardware through software [7]. In this paper, we set out to explore the design principles of hardware accelerators 
in driving automation system and corresponding task scheduling mechanisms. 

Table 1 
The camera frame rates in different researches.   

Max velocity(km/h) Frame rate(FPS) 

KITTI [18] 90 10-100 
ApolloScape [19] 30 30 
Princeton [20] 80 10 
VisLab [21] 70.9 >25 
Oxford RobotCar [22] / 11.1-16 
Comma.ai [23] / 20  
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2.1. Automated Cars Need Multi-Accelerators 

The study in compares the number of cameras integrated in different car makers’ automated vehicles [8]. According to it, we 
believe future automated vehicles will be equipped with more than 30 cameras 

The cameras and sensors on automated vehicles can generate a massive amount of data for real-time analysis. We show the 
relationship between the speed of the car and the requirements of the frame rates in Table 1, which are collected from multiple studies. 
We can observe that the required frame rate is around 20 FPS (frames per second). Note that a high frame rate is necessary for high- 
speed driving [11]. In KITTI the max frame rate for a speed of 90 km/h could be 100 FPS. In industry practice, Audi sets the camera 
frame rate in driver assistance systems as 25 FPS [12]. The Tesla Model 3 adopts 36 FPS [13]. With the much higher safety re
quirements in the fully driving automation, the camera frame rates will be greater than 40 FPS in the future. 

Since current single FPGA or ASIC-based accelerator cannot provide sufficient processing capacity to satisfy autonomous driving 
performance requirements 1200 FPS (this is calculated based on the assumption of a car with 30 cameras [13] and a generation rate of 
40 FPS for each camera), multi accelerator is needed for driving automation processing. 

3. Multi-accelerators call for heterogeneity 

According to [14], object detection (DET), object tracking (TRA), and localization (LOC) dominate the computing of the driving 
automation system. While for DET and TRA, the convolutional neural network (CNN)-based computation accounts for more than 94% 
of the execution time. Therefore, we will focus on CNN-based tasks in the driving automation computing system. Specifically, we will 
focus on three typical CNN algorithms, the YOLO [28] and SSD [15] for DET, and GOTURN [16] for TRA. 

Since YOLO and SSD show various achieved Average Precisions (AP) for different object areas. YOLO is good at small and medium 
object detection, while SSD is good at large object detection [28], [17]. Therefore, the object detection tasks in automated vehicles 
demand heterogeneous CNN models to ensure accuracy. 

Different CNN accelerator architectures can present various advantages and disadvantages for processing diverse CNN tasks. We 
characterize typical perception-related CNNs (i.e., YOLO, SSD and GOTURN) on three representative CNN accelerators (AC1, AC2, and 
AC3) based on our CNN accelerator taxonomy, which will be elaborated in Section 5.1. We notice that each accelerator has a specific 
algorithm that is good at processing, as shown in Table 2. Note that the latency is critical in driving automation system [18]. Even a 
small performance gap can cause a severe accident. For example, consider a vehicle needs to decide whether a brake is needed based on 
monitoring when there is an object 200 meters away. Though it seems that the difference between the latency of AC1 and the latency of 
AC2 is trivial (i.e., 0.0933ms for YOLO), the aggregated difference in processing time can reach 0.6 seconds if a vehicle moves 150 
meters at a speed of 100 km/h with 30 cameras in 40FPS [19]. This can cause 16 meters more break distance and will have a great 
impact on safety. Therefore, using heterogeneous accelerators has the potential to benefit the processing of various CNN-based tasks 
for video streams. Moreover, considering the driving automation system is still evolving, a heterogeneous accelerator architecture can 
better accommodate the ever-changing new algorithms and applications in this area [20]. 

4. Design challenges of driving automation system 

4.1. System design criteria 

To efficiently process such a large amount of CNN-based tasks with high variability on the complicated hardware substrate [21], 
effective criteria for system design that are tailored to driving automation should be defined [22]. Obviously the overall performance 
of the computing platform should be considered at first. Specifically, the execution time, energy consumption [23], and resource 
utilization of the platform are expected to be optimal after all tasks have been processed. 

Another indispensable criterion is the safety requirement for the task processing [24]. The computing platform needs to provide 
differentiated processing time for the object recognition or object tracking tasks from different cameras. 

For instance, the detection task of an object in front of a vehicle with a distance of 50 meters has higher priority than the object that 
is 80 meters away [25]. Therefore, we need to find a metric to describe whether the hardware platform’s processing time for tasks from 
each camera is safe. A detailed discussion of system design criteria is provided in Section 6. 

4.2. Scheduling mechanisms 

As we know, task mapping on hardware substrate is an NP-complete problem and is generally solved using heuristic or guided 
random-search-based algorithms. However, the scheduling strategies based on these algorithms fail to see the global situation of 

Table 2 
The latency of typical algorithms in various accelerators.   

AC1 latency (ms) AC2 latency (ms) AC3 latency (ms) 

SSD 12.20888 12.11143 12.20476 
YOLO 6.92883 7.54496 6.97507 
GOTURN 1.1045& 4.2073 1.0319  
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computing platform such as current resource utilization, the longest execution time among all cores, which often results in a sub
optimal allocation. An efficient task scheduling mechanism is the crux to trade-off the metrics that are defined in the system design 
criteria. We will elaborate our choice in Section 7. 

4.3. A synergistic framework 

We propose a synergistic framework for driving automation to bridge the gap between variable driving automation workloads and 
complicated hardware substrates, as shown in Fig. 1. Specifically, we first propose a CNN taxonomy and design principles for hardware 
accelerators. Based on these knowledge, we propose a novel heterogeneous multi-core AI accelerator (HMAI) to provide the hardware 
substrate for the driving automation tasks with variability. Our framework also defines the system design criteria to better utilize 
hardware resources and achieve increased throughput while satisfying the performance and energy restrictions. Specifically, we 
propose two metrics, Matching Score (MS) and Global State Value (Gvalue) to formalize the criteria. MS pays attention to the safety 
requirements of various tasks in driving automation systems, while Gvalue puts more weight onto the overall performance of HMAI 
that reflects the globality. Finally, our framework employs a deep reinforcement learning (RL)-based task scheduling mechanism 
FlexAI to meet the system design criteria. 

4.4. HMAI-A heterogeneous multicore AI platform 

In this section, we propose a heterogeneous multicore AI accelerator (HMAI) tailored to the CNN-related perception tasks in driving 
automation system. To choose the best sub- accelerators for HMAI, we firstly investigate the existing accelerator architectures for 
CNNs, and then describe the architecture of HMAI using three representative sub-accelerator architectures based on our CNN accel
erator taxonomy. 

4.5. A taxonomy for CNN accelerators 

To choose the representative sub-accelerator architectures for HMAI, we need a comprehensive understanding of existing CNN 
accelerators as shown in Fig. 2(a). We propose a taxonomy for emerging CNN accelerators with respect to data processing style, 
register allocation, and data propagation types. 

4.6. Data processing style 

In this work, we first categorize the CNN accelerators into three styles as shown in Fig. 2 (a), namely S(ingle)conv, S(pecial)Sconv 
and M(ultiple)conv according to their data processing methods. As shown in Fig. 2 (b), Sconv processes a whole 2D convolution each 
iteration. While SSconv only processes a part of 2D convolution each iteration. For Mconv, it processes multiple 2D convolutions each 
iteration. We define the data processed by the accelerator in each iteration as a basic calculation unit (a.k.a., BasicUnit). For example, 
in Fig. 2 (b), the size of filters in a BasicUnit of Mconv is F × F × Tm × Tc, the size of ifmaps is I × I × Tc, and the size of psums is O × O ×
Tm. 

4.7. Register allocation 

Fig. 2 (c) illustrates a high-level block diagram of a typical CNN accelerator. It consists of an accelerator chip and an external 
memory chip (EXMC). Processing elements (PE) array is often used as the main functional component in the accelerator chip, which 
contains multiply-accumulate unit (MAC) as computation units. The on-chip buffer (OCB) is used to store ifmaps, filters, and psums. 
We classify the CNN accelerators into two categories with respect to register type: dispersive register (DR) and concentrated register 
(CR). In DR the registers are dispersed in each PE, while in CR a centralized storage is used and never stores psums. The size 

Fig. 1. An overview of Framework in Autonomous Driving System.  
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requirements of these registers are different among accelerators. Table 3 lists different structure designs for Sconv, SSconv and Mconv. 

4.8. Data propagation types 

We further define three data propagation types for the data propagation between different PEs, Ofmaps Propagation (OP), Ifmaps 
Propagation (IP), and Multiple Propagation (MP). (1) For OP, the ifmaps are directly sent to PEs in one BasicUnit. The filters are fixed in 
the PEs in advance. The psums are accumulated during the data propagation between PEs. Upon all PEs are traversed, the ofmaps 
neuron is generated. (2) For IP, in one BasicUnit, the filters will be sent directly to the PEs. The ofmaps are fixed in PEs. The ifmaps 
propagate between PEs for reuse. (3) For MP, in one BasicUnit, there will be single or multiple types of data propagation between PEs. 
Fig. 2 (a) shows typical CNN accelerators with different data propagation types. Note that data propagation always indicates data 
transfer between PEs’ registers. If there is no register in each PE, data propagation means data transfer between PE array and CR, since 
CR is equivalent to a collection of registers in each PE. 

5. The Architecture of HMAI 

Based on our proposed CNN accelerator taxonomy, we propose a heterogeneous multicore AI accelerator (HMAI) that contains 
three representative accelerators (AC1, AC2, AC3) in an automated vehicle, as shown in Fig. 3. Each AI core has its specific archi
tecture, as shown in Fig. 4. The CPU generates a scheduling strategy based on a well-trained RL agent for incoming perception tasks 
that are collected from multiple sensors. The incoming task will be directly forwarded to the target accelerator. 

5.1. Why these accelerators? 

The HMAI is tailored to the CNN-related driving automation perception tasks. We choose to implement all data processing styles, 
the Sconv, SSconv and Mconv as described in Section 5.1. To cover all data propagation types in HMAI, we further choose to implement 
Sconv-OP, SSconv-IP and Mconv-MP based on multiple existing accelerator types as shown in Fig. 2. To cover the register allocation 
methods, we implement AC1 as Sconv-OP-DR, AC2 as SSconv-IP-CR and AC3 as Mconv-MP-CR. 

5.2. The architecture design of sub-accelerators 

As shown in Fig. 4 (a), AC1 is based on NewFlow [34]. In AC1, each ifmaps neuron only needs to be taken from the EXMC once. In 
each cycle, the same ifmaps neuron is sent to all PEs, but not every PE will generate a valid signal for this ifmaps. Different filter 
weights are fixed in different PE’s registers in advance. As to ofmaps neurons, it will be obtained after propagating to all PEs and FIFOs. 
The design of AC2 is shown in Fig. 4 (b), which is based on ShiDianNao [35]. In each cycle, the same filter weight is sent to all PEs. 
Different ifmaps neurons are read from the ifmaps register (the ifmaps register has the double buffer) to different PEs. Each PE 
computes only one output neuron each time. The design of AC3 is based on Origami [36], and it is shown in Fig. 4 (c), where its 
parameters of BasicUnit Tm = Tc. In ifmaps SRAM A1, the neurons of Tc channels are sent to ifmaps register. Then the register sends (F 
× F × Tc)-size data to the PE array. Each PE will receive (F × F)-size data, while the data in A2 will be sent to the register. For filters, 
different F × F are sent to different PEs at each cycle until all corresponding Tm-size filters are sent. In order to guarantee the pipelining, 
each PE will produce a result of matrix multiplication, and then the results in all PEs will be accumulated and sent out. 

6. System design criteria 

In this section, we propose Matching Score (MS) and Global State Value (Gvalue), to assist autonomous driving system guide the 
task execution on platforms. 

Fig. 2. (a) Quadrant Classification for CNN accelerators. (b) Data processing style. (c) Register allocation.  

Table 3 
Different structure design for AC1, AC2 and AC3.   

EXMC OCB PE Register MAC num in each PE 

Sconv & SSconv √ x CR or DR 1 
Mconv √ √ CR or DR >1  
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7. Matching score (MS) 

Like Tesla (with 8 cameras), automated vehicles normally equip with multiple surrounding cameras to receive 360 degrees of 
visibility. As the different cameras have different max distance [10], each camera has its own requirement for their response time. This 
response time means automated vehicle’s processing time for each camera’s task. Based on the different camera’s response time, we 
define their matching score (MS). Specifically, we characterize the camera’s MS under object detection and object tracking tasks. 

7.1. Matching score–Object detection 

Cameras in vehicles can be divided into three categories: forward, rear and side cameras. We first introduce the MS of forward 
cameras. When an obstacle is detected by a forward camera, this obstacle may be in one of the three states: (1) moving in the same 
direction as the vehicle, (2) standing still, and (3) moving in the opposite direction as the vehicle. Among those, the obstacle in the 
third state needs the shortest time to be detected, and we define this shortest time as the safety time of this forward camera. 

Based on the Responsibility-Sensitive Safety (RSS) safety model [37], the safety time of each camera can be derived. RSS reveals the 
relationship between safe distances and processing time of vehicles in different scenarios. When the two vehicles are driving at 
opposite directions, [37]proposes the minimal safe distance dmin between rear car c1 and front car c2 with velocities v1,v2. 

dmin =

[
v1 + v1,ρ

2
ρ +

v2
1,ρ

2amin,break,correct
+

|v2| + v2,ρ

2
ρ +

v2
2,ρ

2amin,break

]

(1) 

In Eq. (1), ρ is the processing time of c1, amax,accel is vehicle’s acceleration, v1,ρ = v1 + ρamax,accel, and v2,ρ = |v2| + ρamax,accel. amin, 

break, correct and amin,break are the breaking acceleration of c1 and c2 respectively. 
In this paper, we set dmin to the max distance of each camera. v1 and v2 are the maximum velocity allowed in different areas (the 

maximum velocity in urban areas is 60km/h, undivided-highways is 80km/h and highways is 120km/h [38]). amax,accel of c1 and c2 is 
8.382m/s2 which is the maximum acceleration of Tesla [10]. amin,break, correct and amin,break is 6.2m/s2, which is the maximum reasonably 
skilled driver’s braking acceleration [39]. Based on the above parameters, we can derive ρ, the safety time of forward cameras, so as to 
obtain the maximum response time allowed of each forward camera. 

For the rear and side cameras, their safety time can be computed through Eq. (1) like forward cameras. To be noted that: (1) 
reversing will not be considered on the highway; (2) the maximum velocity of turning is set to 50km/h [40]. In summary, different 
cameras have different safety time, thus the maximum response time allowed of different cameras are different. In this paper, we define 
the matching score (MS) to indicate the relationship between the response time and the safety time (maximum response time) of each 

Fig. 3. An overview of HMAI.  

Fig. 4. (a)AC1, (b)AC2 and (c)AC3 in HMAI.  
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camera. 
In Fig. 5(a), the horizontal axis represents the object detection tasks’ response time for each camera, and the vertical axis represents 

MS. First, we analyze the MS of the same camera in different driving scenarios. 
ST250FC − HW, ST250FC − UHW and ST250FC − UB represent the safety time of a forward camera with maximum distance 250 meters in 

HW, UHW and UB. We define [0-ST250FC − HW], [0-ST250FC − UHW] and [0-ST250FC − UB] as accepted time (ACTime) regions, while 
treating [ST250FC − HW-∞], [ST250FC − UHW-∞] and [ST250FC − UB-∞] as unaccepted time (UACTime) zones. If a response time for a task 
lies in the ACTime region, its MS grows linearly as the time increases. This is because the energy consumption of the hardware would 
reduce as the execution time increases while safety time is guaranteed in this region [41,79-81]. In the UACTime zone, the MS 
plummets to -1 due to the unacceptability of the response time. Furthermore, because the maximum velocity limit of the UB, UHW and 
HW is gradually increased, ST250FC − UB, ST250FC − UHW, and ST250FC − HW are gradually reduced accordingly. 

Next, we introduce the MS for different cameras in the same driving scenario. As shown in Figure 5(a), ST250FC − HW, ST100RC − HW 
and ST80SC − HW represent the safety time of forward camera, rear camera and side camera with a maximum distance of 250, 80 and 
100 meters respectively in HW. [0-ST250FC − HW], [0-ST100RC − HW] and [0-ST80SC − HW] are ACTime regions, while [ST250FC − HW-∞], 
[ST100RC − HW-∞] and [ST80SC − HW-∞] are UACTime zones. The trend of MS for these three cameras in ACTime and UACTime are the 
same as above. 

7.2. Matching score–Object tracking 

This section will introduce cameras’ MS when its task type is object tracking. In the Fig. 5(b), STOD and STOT is the safety time of the 
same camera when its task type is object detection (DET) and object tracking (TRA) respectively. In autonomous driving system, TRA 
follows DET to predict the trajectories of moving objects, which indicates that TRA is processed after DET for the same image. 
Therefore, STOT should not be less than STOD, and we set STOT equals to STOD here. In the Figure 5(b), [0-STOT] is ACTime, and [STOT- 
∞] is UACTime. When TRA’s response time of the current camera is in ACTime, MS is always -1, otherwise MS is 1. 

8. Global state value 

To evaluate the overall performance of HMAI, we consider energy consumption E, runtime T and resource utilization balance rate 
R Balance. R Balance means the balance of resource utilization in HMAI, thus the higher R Balance, the less idle accelerators in HMAI 
at every moment. Whenever HMAI completes processing a task, these three values change accordingly. As the energy consumption of 
HMAI is expected to be as small as possible, the shorter the running time and the better the resource utilization balance rate to be, we 
define the Global State Value as Gvalue = ( − E − T + R Balance)/3(after normalization). 

9. FlexAI-A Task scheduling engine 

In the autonomous driving system, the dynamic environment can generate a massive amount of tasks, while the hardware resources 
are limited. Thus based on the metrics in criteria, how to designate tasks to different accelerators in HMAI needs to be carefully 
designed. 

We use a real case to show the necessity of scheduling. Consider that when 30 cameras in a vehicle work once, then 30 frames will 
be generated simultaneously, thus we assume there will be 30 SSD tasks to process. We cannot just allocate the same task to its best-fit 
accelerator because this will hurt the resource utilization of HMAI and overwhelm the chosen accelerator. Therefore, future driving 
automation platform needs an efficient task scheduling mechanism to trade-off among execution time, energy consumption, resource 
utilization and matching score. 

The scheduling problem faced by HMAI is NP-complete. Conventional algorithms used to solve it can be classified into two groups, 
the heuristic-based and guided random-search-based algorithms. As for heuristic-based algorithms, proposed the Adaptive Task- 
partitioning Algorithm (ATA) to find out the scheduling policy of a task to consume as little energy as possible while guaranteeing 

Fig. 5. MS in automated vehicles.  
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the latency. The Min-min algorithm is considered as optimal; however, this algorithm can only consider the best hardware for each task 
while neglecting the global performance of HMAI. 

Genetic algorithms (GAs) and simulated annealing (SA) are the most popular and widely used techniques for task scheduling 
problems in guided random-search-based algorithms. However, a fitness equation in GA and a cost function in SA are needed to select 
the optimal strategy for current tasks, thus the global performance like resource utilization of HMAI can’t be taken into account. 

In this paper, we propose FlexAI, a learning-based task scheduler to resolve the scheduling issues in driving automation system. 
Table 4 compares our work with other algorithms with respect to the coverage of the metrics proposed in Section 6. Specifically, to 
perceive the global performance in HMAI, we will use deep reinforcement learning (RL) in FlexAI as the scheduling algorithm 
introduced in Section 7.1. In Section 7.2, we will introduce how to use scheduling metrics to get the reward in RL. 

10. How the RL agent works 

We propose a reinforcement learning (RL)-based algorithm for task scheduling on the HMAI. A RL agent can learn strategy by 
interacting with the environment without any supervision. In each episode of learning, the agent can provide decision-making policies 
according to the current environment (HMAI) and the long-term objective. This is done by receiving feedback in form of a reward from 
the environment. 

Assuming there are N CNN accelerators {H1,H2,….HN} in the HMAI, and there will be M tasks {A1,A2,….AM} coming in sequence, of 
which each is a CNN-based task like object detection based on YOLO or SSD, object tracking based on GOTURN. Then, the proposed RL 
algorithm generates scheduling strategy P = {p1,p2…pM}, each of which indicates the task Ai will be scheduled to Hj under the guidance 
of pi. When $A_{i}$ is executed, the metrics of HMAI will be updated accordingly, and the difference between the updated value and 
the previous value is denoted by reward ri, thus the corresponding reward set is {r1,r2…rM}. 

The RL agent input contains three parts when training: (1) Task-Info including three parameters: Amount: the computation amount 
when task is processed; LayerNum: the CNN layer’s number in the task; safety time: described in the Section 6.1. (2) HW-Info: the 
current information of all accelerators in the HMAI (the parameters of HW-Info will be described in Section 7.2). (3) Reward, in 
inference, there is no reward because the network doesn’t need to update. 

In this paper, we will use DQN to learn scheduling strategy from episodic job queues. [53] divided the RL algorithm into three 
categories: critic-only (e.g. DQN [54], actor-only (e.g. Policy gradient [55]) and actor-critic (e.g. DDPG [56]). When the scheduling 
strategy of a single task is generated, the critic-only algorithm can be trained once directly. However, the actor-only algorithm can only 
be trained after the scheduling strategies of all tasks in a task queue are generated. Since the number of tasks in each task queue in 
autonomous driving system is extremely large (up to 30,000 introduced in Section 8.3), to reduce training time, we will not choose 
actor-only category. Furthermore, although actor-critic can be trained in the same way as critic-only, due to its high computation 
complexity, we will choose DQN that falls into the critic-only category. 

In our method, the two networks are denoted by EvalNet D1with the parameter θ1 and TargNet D2 with the parameter θ2. EvalNet is 
used to generate the scheduling policy of the current task, while TargNet is used to update the parameters of the EvalNet. These two 
networks are consisting of two fully connected layers, and their input Si is Task-Info and HW-Info of task Ai. The output of these two 
networks is a group of Q values Qj. Qj is the cumulative value of the reward: Qj =

∑M
n=irn, which is generated after the task Ai was 

executed on the Hj. After obtaining N Q values, EvalNet or TargNet will choose Hj which attains the maximum Q value after Ai is 
executed. The choice Hjof EvalNet or TargNet is a scheduling strategy pi which guides to schedule task Ai. 

Figure 6 shows the working process of our RL scheduling agent. First, EvalNet D1 will generate scheduling strategy for the input Si, 
and use it to allocate task Ai to Hj. Then, in training, (1) HMAI in cloud uses Hj to update HW-Info, and calculates reward ri. Next, HW- 
Info will combine with Task-Info of next task Ai + 1to generate Si + 1; (2) the record (Si, Hj, ri, Si + 1) is saved in memory, and if the total 
amount of records in the memory is greater than the memory size at this time, the RL agent will use recordm -recordn to start learning. 
(3) in learning, as for recordi, EvalNet D1 will use Si to generate Qi, and TargNet D2 will use Si + 1 to generate Qi + 1. Then θ1is updated by 
minimizing the loss:L = (yi − maxD1(si|θ1))2,where yi = ri + γmaxD2(si + 1|θ2). The parameter θ2 in D2will be copied directly from D1 
every fixed time. In inference, HMAI in vehicle uses Hj to update HW-Info, and then Si + 1 is sent to the EvalNet D1 directly. 

11. The way to get reward 

In this section, we will introduce how to use scheduling metrics to get the reward in RL. Suppose that the information (Info) of Hi is 
(Ei,Ti,R Balancei,MSi), and we use Info for each accelerator in HMAI to constitute the HW-Info. After Aj is scheduled to Hi, the energy 
consumption, time, MS and resources utilization balance rate of processing Aj are denoted by ej, tj, msj and rj. Thus, for Hi, (1)Ei + =ej; 

Table 4 
The metrics of some algorithms and FlexAI.  

Metrics Heuristic   Random-search FlexAI    

EDP [50] Min-Min [44] ATA [43] W-rand [51] GA [42] SA [48]  
Time √ √ x √ √ √ √ 
Energy √ √ √ √ √ √ √ 
Resrc x x x x x x √ 
MS x √ √ x √ √ √  
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(2)Ti + =tj; (3)MSi + =msj; (4) R Balancei =
rj+R Balancei

num (num is the number of tasks has been executed in Hi,). Until now, the energy 
consumed in each accelerator is {E1,E2,….EN} respectively, the total time is {T1,T2,….TN}, the resource utilization is {R Balance1,

R Balance2, ….R BalanceN}, and the sum of the MS in each accelerator is {MS1,MS2,….MSN}. Then for HMAI, (1) E =
∑N

i=1Ei; 
(2)R Balance = 1

N
∑N

i=1R Balancei; (3)MS =
∑N

i=1MSi;(4)T = max{T1,T2,….TN}. 
Now if there are currently M − 1 tasks scheduled to HMAI, at this moment, the HMAI has E, T, R Balance, and MS. When the Mth task 

is executed, the four values will be updated to Enew Tnew, R Balancenew, and MSnew Then, after processing Mth tasks reward is given by ( −

Enew − Tnew + RBalancenew)/3 − ( − E − T + R Balance)/3 + MSnew − MS = Gvaluenew − Gvalue + MSnew − MS.

12. Evaluation 

12.1. The dynamic driving environments 

12.1.1. Parameters 
To simulate a variety of vehicle driving areas and scenarios, we define several parameters, which characterize dynamic driving 

environments. When the parameter for driving area(urban areas (UB), undivided-highways (UHW), highways (HW)) changes, the 
frequency of cameras (Camera HZ), the maximum number of turning (MaxTimes Turn) and reversing (MaxTimes Reverse), the 
longest duration of turning (MaxDuration Turn) and reversing (MaxDuration Reverse), the speed of the vehicle (Velocity), and the 
safety time of cameras (Safety Time) will all change. Moreover, when the parameter for camera function type (FC, FLSC, RLSC, FRSC, 
RRSC and RC) changes, Camera HZ and Safety Time will vary. Similarly, when the parameter for driving action (Go straight, Turn and 
Reverse) changes, Camera HZ will change also. 

12.1.2. Task Queue 
In this experiment, we use images in the KITTI object tracking 2D dataset as tasks in our task queue. This object tracking dataset 

consists of multiple sequences, and the images in each sequence are the continuous outputs for one camera in our vehicle. Based on the 
above parameters, we create different driving routes with various driving distances, and all tasks generated by the vehicle during the 
route form one task queue. In addition to the dataset that constitutes the task queue, we also specify the task amount at different time in 
this task queue. Fig. 7 illustrate an example of a task queue when a vehicle has a 160m route in UB and its velocity is 20m/s. Parameters 
such as Camera HZ, Safety Time are derived from Table 5. As mentioned in Section 2, we alternately use YOLO and SSD to process the 

Fig. 6. The work flow of the RL scheduling agent.  

Fig. 7. The task queue.  
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DET tasks for each camera, and use GOTURN to process TRA tasks, thus the task types in Fig. 7 are YOLO, SSD and GOTURN. In Fig. 7, 
S, T and R indicate three scenarios: going straight, turning and reversing, and the start time and lasting time of each scenario is 
randomly determined. 

13. Performance Analysis for HMAI 

13.1. The construction of homogeneous and heterogeneous platforms 

Based on 30 cameras and a generation rate of 40 FPS for each camera, autonomous driving system will generate 1200 frames per 
second. Since YOLO and SSD are alternately used to process the DET tasks for each camera, and GOTURN is used to process TRA tasks, 
we assume that there are 600 SSD, 600 YOLO and 1200 GOTURN should be processed per second. In Fig. 8, three homogeneous 
platforms and four heterogeneous platforms are given, which can satisfy above performance requirements. The construction principle 
of these platforms is: not only to reduce the waiting time of all tasks, but also to reduce the idle time of all accelerators in the platform 
as much as possible. 

When processing 600 SSD, 600 YOLO and 1200 GOTURN, the resource utilization of seven platforms are given in Fig. 8. We can 
find that, compared with homogeneous platforms, all heterogeneous platforms can achieve the higher resource utilization. Moreover, 
among all heterogeneous platforms, (4 AC1, 4 AC2, 3 AC3) can always achieve the highest resource utilization. Therefore, we choose to 
use it to construct our heterogeneous platform HMAI. 

13.2. Experimental methodology 

The performance and energy of HMAI is measured by the following tools. For the performance evaluation, a customized cycle- 
accurate simulator was designed and implemented to measure execution time in number of cycles. This simulator models the micro 
architectural behavior of each hardware module of our design. In addition, we use ARM1176 as the main control processor in the HMAI 
to do task scheduling. 

For measuring area and power, we implemented a Verilog version of each hardware module, then synthesized it. We used the 
Synopsys Design Compiler with the TSMC 12nm standard VT library for the synthesis, and estimated the power consumption using 
Synopsys PrimeTime PX. In addition, the design of AC1, AC2 and AC3 is based on [34] [35] [36]. And the SRAM is generated by 
Synopsys Memory Compiler and the interconnect bus is generated by Synopsys DesignWare AMBA IP. 

13.3. Baseline 

To compare HMAI with state-of-the-art work, we evaluate HMAI with NVIDIA Tesla T4 GPU, and above three homogeneous 
platforms. 

13.4. Experimental methodology 

Here, we create different driving routes for urban area (UB) with various distances from 1km to 2km, and vehicle’s velocity is set to 
60km/h. In Experimental, first, 5 task queues are constructed, and then we use HMAI including FlexAI, NVIDIA Tesla T4 and three 
homogeneous platforms to process each task queue. 

13.5. Experimental results 

Fig. 9 shows the TOPS/W of HMAI and the homogeneous platforms, normalized to Tesla T4. HMAI improves TOPS/W by 11%, 84% 
and 15% compared to three homogeneous platforms on average. The main reason is the reduction of a large number of redundancy 
computing resources. Moreover, HMAI has higher TOPS/W than Tesla T4. The reason for that is HMAI can be considered as an 
accelerator dedicated to processing perception tasks in autonomous driving, while GPU is a general processor. 

14. Performance analysis for FlexAI 

In this section, we set up experiments to compare our RL-based FlexAI with other state-of-the-art schedulers. 

Table 5 
The parameters.  

Parameter Setting Current Setting 

MaxTimes Turn 10 Turn Times 2 
MaxTimes Reverse 10 Reverse Times 1 
MaxDuration Turn 10 Turn Duration 3s, 4s 
MaxDuration Reverse 20 Reverse Duration 2s  
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14.1. Baseline 

We use Min-Min, ATA in heuristics, GA, SA in guided random search techniques, as well as the unscheduled worse case as our 
baselines. 

Fig. 8. Comparison between homogeneous and heterogeneous platforms.  

Fig. 9. Comparison between HMAI and baselines.  

Fig. 10. Loss curve of RL agent. The threshold of the y-axis is 1000.  
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14.2. The parameters for constructing task queue 

We create different driving routes for urban area (UB), undivided-highways (UHW), and highways (HW) with various distances 
from 1km to 2km, and velocity is set to 60 km/h, 80 km/h and 120 km/h, respectively. 

14.3. Training 

The DQN used in FlexAI agent includes two networks with exactly the same structure but different updating paces. Each network is 
comprised of two fully connected layers, and a softmax layer. The number of neurons of the fully connected layers are 256 and 64 with 
ReLU non-linearity. We train three RL agents for UB, UHW, and HW, respectively. Each agent is trained on the NVIDIA TITAN-XP with 
1000 episodes, and each episode includes one task queue. The learning rate for training the EvalNet is 0.01. 

14.4. Training Loss Curve 

Fig.10 shows the training loss curve of FlexAI RL agent in urban area. Each iteration represents one task, and each episode contains 
one task queue. As all object detection and object tracking tasks generated by a vehicle in a 1km - 2km route will form one task queue, 
each episode will contain up to 30,000 tasks. In Fig. 10, the loss of the second episode gradually stabilizes after 10,000 iterations, while 
in the third and fourth episodes, except for the loss of the initial 2,000 iterations, the subsequent loss gradually tends to 0. The reason 
for that is the composition of tasks in each episode are very similar, thus the network trained in prior episodes will be applicable to 
subsequent episodes. This also further illustrates that if the task types do not change, the well-trained RL agent can be used all the time 
in automated vehicles. 

14.5. Experimental methodology 

For each area, first we use well-trained agent of FlexAI and each baseline to generate the scheduling strategy for 5 task queues. Next 
we compare the metrics between FlexAI and baselines for each task queue. 

14.6. Experimental results 

The time in Fig. 11 includes three parts: (1) scheduling strategy runtime in CPU, (2) task waiting time and (3) task execution time. 
In Fig. 11(a), FlexAI can maximally reduce the time by 60%, 88%, 33%, 36% and 87% compared to ATA, GA, Min-Min, SA and worse 
case in urban area. And for the geometric mean, FlexAI decreases at most 87%. The reason for this is FlexAI can effectively reduce the 
task waiting time, and more details can be found in Section 8.4. For Min-Min, SA and ATA, they perform close to the FlexAI does since 
they consider execution time when scheduling. However, due to the fact that GA’s performance is affected by the selection of the initial 
population, its time is much large than FlexAI. To summary, FlexAI can always achieve the minimum time in three areas, and this will 
ensure the safety of autonomous driving. 

As shown in Figure 11(b), the R Balance of FlexAI has been maximally improved by 837%, 957%, 62%, 55% and 960% compared to 
ATA, GA, Min-Min, SA and worse case in urban area. As for the geometric mean in all areas, R Balance in FlexAI is always the best. This 
is because among all scheduling strategies, only FlexAI considers the balance of resource utilization. The situation of R Balance in the 
other two areas is the same as the urban area. In HMAI, by increasing R Balance, the task waiting time can be reduced, and at the same 
time it can decrease the waste of the hardware resources and improve the vehicle’s endurance. 

In Fig. 11(c), MS in FlexAI is larger than that in GA, Min-min, SA and worse case (up to 1.02, 1.12, 0.83, 1.32), however smaller 

Fig. 11. Comparison between FlexAI and baselines. UB, UHW and HW means urban areas, undivided-highways and highways. M is the geometric 
mean of 5 task queues. 
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than that in ATA in the urban area. The reason is ATA is optimized towards MS, but FlexAI needs to tradeoff among four metrics. In 
addition, except for ATA and FlexAI, the other baselines’ MS are always less than 0, which means there are many tasks in each task 
queue whose processing time are greater than the safety time. The situation of MS in the other two areas is the same as the urban area. 
In autonomous driving, higher MS represents better safety, and more discussion can be found in Section 8.4. 

Fig. 11(d) shows the comparison of energy. Although FlexAI can achieve lower energy than GA, SA and worst case in all areas, it is 
slightly higher than the others. Some reasons are as follow. First, energy-performance tradeoff is common in accelerators. Moreover, 
FlexAI needs to consider T, E, R Balance and MS at the same time, which makes tradeoff more difficult. 

15. Autonomous driving metrics 

As we mentioned in Section 6.1, since each camera in a vehicle has a corresponding safety time, each task will have its safety time 
according to the camera that generated it. In this section, we define safety time meet rate (STMRate) to describe the proportion of tasks 
in a task queue whose processing time is less than its safety time. In Fig. 12, for each task queue, the STMRate of FlexAI is basically close 
to 100%, which means the processing time of almost all tasks can ensure the driving safety. The reason for that is FlexAI considers MS 
when generating scheduling strategies, and MS indicates the relationship between the task processing time and task safety time. Here, 
since ATA is optimized towards MS, the STMRate of each task queue is also very high under ATA. 

15.1. Braking Distance 

Here, we assume that after a vehicle moves 1km, its forward camera finds there is an object 250 meters away, so it needs to take 
braking immediately. The current velocity of the vehicle is 60 km/h, and the braking deceleration is 6.2 m/s2. In Fig. 13 (a)(bar), the 
breaking distances under different schedulers are presented. 

As shown in Fig. 13 (a)(bar), except for GA, the breaking distances of other schedulers are all less than the safe distance 250 m, and 
FlexAI has the smallest breaking distance 47.08 m. Since the breaking distance is strongly related to the braking time (breaking 
distance is calculated based on the Eq. (1) in Section 6), FlexAI has the smallest breaking time, as shown in Fig.13 (a) (blue line). 

The total breaking time breakdown of each scheduler is shown in Table 6. Twait is the waiting time of the current task (the current 
task is used to detect the object that caused the braking); Tschedule represents the runtime of each scheduler; Tcompute is the processing 
time of the current task in HMAI; Tdata is the time which is used to transmit the control commands to the vehicle’s actuator through the 
Controller Area Network (CAN) bus, which is 1 ms in this vehicle [57]; Tmech is the time that mechanical components of the vehicle 
takes to start reacting, which is 19 ms. In Table 6, Twait in FlexAI is 0, while Twait is much larger than the time of other parts in other 
schedulers. Therefore, although Tschedule and Tcompute of FlexAI are not the best, the total breaking time of FlexAI is the smallest. 

Note that in our experiment, the vehicle generates a task queue from starting to braking. As shown in Figure 13 (b), R Balance in 
FlexAI is the largest. It means under FlexAI, the resource utilization in HMAI is the most balanced, thus the number of idle accelerators 
in HMAI at every moment is the least as well. For instance, if task A has the fastest execution time in the accelerator A and accelerator A 
is currently busying, FlexAI will schedule task A to other idle accelerators to reduce its waiting time, while for Min-Min, task A will be 
waiting until accelerator A changes to idle. Therefore, for FlexAI, since it has the highest R Balance, its Twait in Table 6 is the smallest. 
And under the smallest Twait, FlexAI has the smallest braking distance in Figure 13 (a)(bar). 

16. Related work 

To the best of our knowledge, an emerging line of research has found that reinforcement learning proves to be effective in solving 
scheduling problems in various domains. uses RL to make real-time decision for the scheduling problem in flying mobile edge 
computing platform, and the reward of this RL agent includes the energy consumption of all user equipment.proposes a multi-agent 
reinforcement learning approach for job scheduling in grid computing, of which the reward consists of the total execution time of all 
jobs. Uses RL to deal with the radar resource management problem when the radar assigns limited time resource to a set of tasks, and 
the reward is comprised of the number of tasks delayed or dropped. For mobile-edge computing system. 

As the rewards of the algorithms aforementioned are designed for their specific scenarios, these ad-hoc formulations cannot be used 
to solve the scheduling problem in autonomous driving. In autonomous driving systems, each CNN-based task should be handled 
separately, and the reward should take into account not only the dynamic changes of the environment (HMAI), such as current 
resource utilization, but also the total energy consumption and the longest execution time among all accelerators. Furthermore, 
whether the current strategy meets the real-time requirements of the cameras in autonomous vehicles also matters. Therefore, it is 
desirable to develop RL-based scheduling algorithms for autonomous driving. 

17. Conclusion 

By exploring the variability of workloads and performance requirements in driving automation and the heterogeneity of multi- 
accelerators, we purpose a comprehensive framework that synergistically handles the heterogeneous hardware accelerator design 
principles, system design criteria, and task scheduling mechanism. First, based on a taxonomy for emerging CNN accelerators, we 
design a heterogeneous multicore AI platform (HMAI) which adopts three typical CNN accelerator architectures. Next, by designing 
two metrics: Matching Score and Global State Value, autonomous driving system can guide the task execution on the platform. Finally, 
FlexAI-a reinforcement learning-based mechanism are proposed to generate scheduling policies in autonomous driving. 
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Fig. 12. Safe distance meet rate (STMRate).  

Fig. 13. (a)Breaking distance and total breaking time; (b) R Balance.  

Table 6 
Total breaking time breakdown.   

Twait (s) Tschedule (s) Tcompute (s) Tdata (s) Tmech (s) 

FlexAI 0 0.001 0.00754 0.001 0.019 
ATA 1.60452 5.32E-05 0.00587 0.001 0.019 
GA 5.46729 1.05E-05 0.00754 0.001 0.019 
Min-Min 0.4551 1.32E-05 0.00587 0.001 0.019 
SA 0.54428 2.68E-05 0.0067 0.001 0.019  
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