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Abstract—Autonomous driving demands accurate perception
and safe decision-making. To achieve this, automated vehicles are
typically equipped with multiple sensors (e.g., cameras, Lidar,
etc.), enabling them to exploit complementary environmental
contexts by fusing data from different sensing modalities. With
the success of Deep Convolutional Neural Network (DCNN),
the fusion between multiple DCNNs has been proved to be a
promising strategy to achieve satisfactory perception accuracy.
However, existing mainstream DCNN fusion strategies conduct
fusion by simply element-wisely adding feature maps extracted
from different modalities together at various stages, failing to
consider whether the features being fused are matched or not.
Therefore, we first propose a feature disparity metric to quantita-
tively measure the degree of feature disparity between the fusing
feature maps. Then, we propose a Fusion-filter as the Feature-
matching techniques to tackle the feature-mismatching issue. We
also propose a Layer-sharing technique in the deep layer of the
DCNN to achieve high accuracy. With the assistance of feature
disparity working as an additional loss, our proposed technologies
enable DCNN to learn corresponding feature maps with similar
characteristics and complementary visual context from different
modalities. Evaluations demonstrate that our proposed fusion
techniques can achieve higher accuracy on KITTI dataset with
less computation resources consumption.

Index Terms—Sensor Fusion, DCNN, Feature-matching, Au-
tonomous Driving

I. INTRODUCTION

The era of driving automation is coming. The safety of
an automated vehicle hinges crucially upon the accuracy of
perception. Therefore, many studies [11-[4], [7], [8] have
employed multi-modal sensors such as cameras and LiDARs
that can provide complementary sensing information to deliver
better and robust perception performance. In this paper, we
focus on the free road segmentation since it is a cornerstone
module among all autonomous driving tasks. It is a typi-
cal application that benefits from such multi-modal sensing
technology as shown in Fig.l. In this multi-modal sensor
fusion setup, both RGB images(captured from cameras) and
depth images(pre-processed from 3D point cloud collected by
LiDAR) are employed, as depicted in Fig.1 (a) and Fig.1 (b)
respectively. We can observe that the RGB and depth images
are a pair of interpretations of the same scene at the same
moment, providing an opportunity to exploit them for a better

DAC '22, July 10-14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07...$15.00
https://doi.org/10.1145/3489517.3530444

Fig. 1. The free road segmentation result by fusion. (a) RGB input image.
(b) Depth input image. (c) segmentation result. The free (drivable) road is
represented in green pixels.

perception accuracy. In contrast, employing only one sensing
modality often fails the task in some driving scenarios, for
example, using only RGB camera under unfavorable lighting
conditions such as dark night, overexposure, and etc.

Among these fusion architectures, though there is no con-
clusive evidence that one fusion method is absolutely better
than others, the middle fusion method with element-wise
summation [1]-[4] is the dominant method in recent works
as we can notice in the KITTI benchmarks [6]. The reason
is two-fold. First, the middle fusion architecture often adopts
crossing connections between network branches in all fusion
stages (ie., from shallow to deep layer), and these crossing
connections can learn characteristics from the training data,
that where and to what degree the integration should be
carried out [1], and thus providing better accuracy compared
to the early [7] and late fusions [8] architectures. Second,
fusion operations can be achieved by executing element-wise
summation between corresponding intermediate feature maps,
which is easy to be implemented.

Although it is a fact that middle fusion with element-wise
summation provide the best accuracy to date, we frustratedly
observe that existing solutions all fail to consider the intrinsic
relationship between two sets of feature maps to be fused.
Specifically, naively conducting the element-wise summation
of intermediate feature maps from multi-modal sensing data
can lead to such a scenario, where a sensor A’s feature map
A_1 that represents the feature X is fused with a sensor B’s
feature map B_1 that represents the feature Y, since A_1 and
B_1 is product of convolution using different filters. the fusion
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of mismatched features can generate meaningless information
that might harm the accuracy and eventually threat the driving
safety.

In this work, we set out to explore the impacts of feature
matching to the accuracy of sensor fusion. Specifically, we
propose a feature disparity (FD) metric to quantitatively
describe the differences between features from different sens-
ing modals. Consequently, we argue that in middle fusion
the feature maps to be fused should possess similar visual
characteristic with complementary content, that being said,
with low feature disparity. To achieve this goal, we first
propose Fusion filter that learns the feature-matching rela-
tionship between the feature maps to be fused to guarantee the
feature matching. Second, we propose Layer-sharing network
architecture which allows the deep layers to share the same
filters based on our observation that features processed in deep
layers tend to be similar and the feature matching is preserved.
Besides, we utilize the feature disparity metric as an additional
sub-objective loss function(i.e., Feature Disparity Loss) to
further constrain two sub-network branches to learn similar
features during the training stage. This will not be executed in
the inference stage, hence does not affect the inference latency.

Finally, we implement comprehensive evaluations on mod-
els with our proposed techniques on the KITTI dataset [6],
and demonstrate that the feature-matching techniques can
effectively reduce the feature disparity between the feature
maps to be fused and achieve better accuracy than that of
the state-of-the-art RoadSeg [3] adopting the naive fusion.
Meanwhile, the Layer-sharing technique can effectively reduce
the computational overhead of the fused network with a
comparable or better accuracy compared to the RoadSeg.

To summarize, this paper makes the following contributions:

« To the best of our knowledge, we are the first to identify
the feature-mismatching issue while performing element-
wise fusion in a DCNN-based middle fusion method.
Accordingly, a feature disparity metric is proposed to
quantitatively measure the degree of feature deviation
between feature maps to be fused. Feature disparity is
then adopted as a individual loss in addition to the
baseline segmentation loss, enabling DCNN to learn
similar features with complementary content extracted
from different network branches.

» We propose the technique, Fuse-filter, to address the
feature-mismatching issue when fusing two independent
DCNN feature maps at various stages. Furthermore, we
propose the Layer-sharing network architecture which
allows the deep layers to share the same filters in the
fused network so that the feature matching property is
preserved.

« Our evaluation results among models equipped with dif-
ferent proposed fusion schemes on KITTI road dataset
reveal that our proposed Fuse-filter can achieve better
accuracy, while Layer-sharing can obtain comparable
accuracy with less computational resources demand on
KITTI dataset.
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Fig. 2. Architecture of baseline RoadSeg.

II. BACKGROUND AND CHALLENGES
A. DCNN-based Sensor Fusion

As a representative subset of DNN architectures, the Deep
Convolutional Neural Network(DCNN) is widely applied in
vision-related tasks [11]-[13]. Typically, DCNN is a stacked
structure composed of multiple layers [5]. From shallow to
deep, convolutional layers can hierarchically extract embedded
visual features by following the sliding-window method from
traditional image processing [9]. Specifically, each set of filters
slides over the input image and performs convolution operation
to produce the output feature map with a certain characteristic
corresponding to the content inside the sliding filter that can
perform edge extraction, image sharpening, etc.

As a mainstream sensor fusion method, the DCNN-based
fusion architecture leverages multiple separate neural networks
to process the data from the multiple independent sensors as
the perception approaches using single-modality data (e.g.,
either the camera data or the LiDAR data) can fail the task.
For instance, the LiDAR point cloud data is sparse and without
the fine texture of the object being scanned upon, using only
LiDAR data might lead to unfavorable perception accuracy.

In this work, We target the free road segmentation task,
which is crucial to the driving automation system to distin-
guish the free drivable road from the surroundings. We adopt
RoadSeg [3] as the baseline. It is the state-of-the-art open-
source DCNN architecture with a middle fusion element-wise
summation scheme between the separate RGB and Depth
network branches, which ranks at the top of KITTI road
segmentation task. RoadSeg also adopts the popular encoder
and decoder architecture with ResNet [14] structure being
the backbone network, as shown in Fig. 2. Specifically, an
RGB encoder and a Depth encoder are employed as the
two branches to extract the features from RGB and Depth
channels, respectively. Meanwhile, at each fusion stage, the
extracted RGB and depth features are fused via the element-
wise summation operation. Then, the fused feature maps from
the encoder are fed to the decoder to generate the final drivable
road segmentation result.

B. Feature Disparity Assessment

Feature disparity assessment [15] is a fundamental process
used in a variety of traditional computer vision tasks, and it
mainly compares the feature disparity between two correspon-
dent images. The most standard feature disparity measure is
using the L2 metric, which naively compares the pixel-level
value difference between two images.
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TABLE I
FEATURE DISPARITY METRIC COMPARISON

Feature disparity metric ~ Spatial information = luminance disparity

MI, Cross-bin X X
SSIM v X
Feature Disparity v v

Beyond the standard L2 metric, several other methods to
measure disparity between features are proposed in traditional
computer vision field [15]-[18] as shown in first two rows of
Table 1. The representative feature disparity metrics such as
mutual information (MI) [17] and cross-bin [18] mainly focus
on the statistical pixel-level mean and variation in luminance,
lacking the spatial information embedded in the feature map.
Addressing the lack of spatial information is deemed as the
major feature in our task. Although the structural disparity
measure (SSIM) [16] takes the structural information into
account, it favors two images to be similar in terms of pixel-
level intensity in luminance all across the image, which is not
applicable to our case.

C. Problem Definition

As we focus on the DCNN-based middle fusion architecture
with the element-wise summation technique, the fusion is
carried out by directly element-wisely adding the intermediate
feature maps from different modalities. Due to the fact that
the feature maps to be fused are extracted by the two separate
DCNN branches which use their own associated filters, there
are great chances that the feature maps to be fused possess
mismatched characteristics with each other. Accordingly, sim-
ply element-wisely summing the feature maps can cause the
chaotic and unfavorable results.

In order to quantitatively measure the degree of feature
deviation between the feature maps to be fused, our con-
cern is two-fold. Firstly, the spatial features from the two
sets of feature maps to be fused should be represented and
compared. Secondly, the pixel-level difference in luminance
of two feature maps is anticipated as the two feature maps are
obtained from two different sensing modalities. For example,
for the same driving scene, the RGB image obtained from
camera may be darker during the night, while depth image
converted from LiDAR point cloud will not be affected by the
light condition. In this case, the overall pixel-level luminance
differs in the two images, and the previous metrics would
fail since they are sensitive to this pixel-level difference in
luminance of the two images. Therefore, we choose the edge
information as the representative feature of each intermediate
feature map, and conduct comparison between the extracted
edges. Because the edge sketches by nature can well preserve
the spatial information and they can be identified as long as
there exists pixel-level difference on different objects.

By borrowing the edge detection [19] idea from traditional
computer vision field, we adopt opencv edge detection library
[10] to extract the edge sketches of each feature map, then the
Feature Disparity will be obtained by conducting comparison

Disparity
y/
//
H

Fig. 3. (a)Feature disparity between two sets of feature maps to be fused
at different fusion layers.(b) Corresponding accuracy performance evaluated
with and without feature-matching technique.

Fig. 4. (a) Feature-matching technique: Fusion-filter, which is denoted as
a yellow oval box. (b) Layer-sharing method. The shared layer between
two network branches is presented as a yellow square. (c) Auxiliary Weight
Network.

between the extracted edge from their corresponding feature
maps, which is formally described in Eq.1.

1 c
Dra =5 ) _lEi(fre) — Elfpe)l® m
i=0

Note that the channel-wise edge extraction process, denoted
as &£, will be first performed on feature maps from both
RGB branch(fg.) and Depth branch(fp.), then the pixel-level
feature disparity will be obtained across all the corresponding
channels. C represents the total number of channels.

Fig.3 (a) shows the result of our proposed feature disparity
metric applied on the intermediate RGB and Depth feature
maps at five different fusion stages over ten randomly selected
RGB and Depth input-image pairs. We observe that the feature
mismatch between corresponding RGB and Depth feature
maps exists at all fusion layers, and it gets less significant
as the fusion layer gets deeper. The blue line denotes the
raw feature disparity in the baseline model, and after applying
our proposed feature matching technique in next chapter, the
feature disparity can be reduced as the orange line shows.
accordingly, a better accuracy performance is gained as shown
in Fig.3 (b). In addition, we learn that high-level feature
maps tend to hold similar features, offering an opportunity
to share the feature-extracting filters residing in deep layers
between two network branches. By sharing these deep layers,
the model’s computational overhead in terms of total number
of parameters can be reduced (see Sec. III).

ITI. DESIGN

To address the aforementioned feature-mismatching issue,
we first present a feature-matching technique by leveraging
Fusion-filter to guarantee that two feature maps to be fused
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at each fusion stage possess similar characteristics with com-
plementary contents (© in Fig.4 (a)). Second, we observe
that the high-level feature maps from two fusion branches
often carry similar characteristics, a Layer-sharing method is
proposed to reduce the computational overhead and network
parameter volume (@ in Fig.4 (b)). Third, we apply the
Feature disparity loss in addition to the baseline segmentation
loss function to further make the model learn filters that can
extract analogous features from each modality (® in Fig.4 (a)
and (b)).

A. Feature-matching Utilizing Fusion-Filter

As we discussed in Sec. II-C, the best fusion paradigm
would be the feature maps holding similar characteristics with
complementary content. To achieve this goal, we introduce
Fusion-filter technique to address the feature-mismatching
issue, which target learning the feature-matching relationship
between two sets of feature maps to be fused from the training
data.

Without the loss of generality, we introduce the Fusion-
filter on top of the baseline architecture. As shown in Fig.
4(a), the Fusion-filter, presented as a yellow circle between
two separate neural networks, is employed before the stage
where the Depth feature maps are element-wisely summed
with RGB feature maps. The usage of Fusion-filter can be
described as Eq. 2. At the fusion stage ¢, the Depth feature
maps fp; are firstly convoluted with the corresponding fusion
filter W. This convolution process is denoted as F';. Secondly,
the resulting intermediate RGB feature maps f;ﬁ is updated
by the summation between original RGB feature maps fg;
and the aforementioned convolution result.

fr, = fr, + Fy(fp,; Wy) ()

The Fusion-filter is designed to reconstruct the Depth fea-
ture maps by conducting a convolution with Fusion-filter W7,
which is capable to learn the matching relationship from Depth
to RGB feature maps from the training data. Note that the
kemnel size of the fusion filter is 1 x1, since it only aims at
reorganizing the mapping relationship between those two sets
of feature maps. On the other hand, the extra memory access
for Fusion-filter parameters and corresponding convolution
calculation will be introduced (see Sec. IV-B).

B. Leveraging Layer-sharing Method

As Fig. 3 (a) shows, with layer going deeper, the feature
disparity between the two sets of feature maps significantly
decreases, which offers us a great opportunity to propose a
Layer-sharing method that allows the two fused networks to
share filters in deep layers while leaving shallow layers stay the
same. Fig. 4 (b) shows an example of sharing convolution layer
(indicated by the yellow rectangle) between the two networks.
That is, the Depth and RGB network branches share the same
convolution filters but process their own data independently.

Furthermore, after analyzing the baseline architecture, we
find that in non-shared architecture, there is an implicit weight
embedded in each set of filters from two network branches

Fig. 5. Models with different fusion schemes: (a)AllFilter_U, (b)AllFilter_B,
(c)BaseSharing, (d)WeightedSharing.

when the fusion is carried out. Therefore, we propose to apply
an Auxiliary Weight Network (AWN) (indicated by wy in
Fig. 4 (c)) on the resulting feature maps after the layering
sharing, considering that the feature maps of two network
branches are extracted from different sensing modalities and
carry different weights.

Specifically, we first adopt the same convolution layers
to extract the high level feature maps from the two input
sensing modalities. Then, the difference of the two sets of
extracted high level feature maps will be fed into a stacked
full-connected layer to generate the auxiliary weight parameter
Wy, which represents the weight of feature maps in Depth
Network branch when it is fused with its counterpart RGB
feature maps, as depicted in Fig.5 (d).

C. Feature Disparity in Objective Loss

Besides the objective loss function (i.e., segmentation loss),
we further utilize the feature disparity metric as an additional
sub-objective loss function (i.e., Feature Disparity Loss) to
further constrain the model to gradually extract features with
the same characteristics yet complementary contents from its
own sensing modality. Therefore, two modalities can together
reach a consensus on what they are perceiving, a better
resulting accuracy performance can be reaped (see Sec.IV-B).
With the Feature Disparity Loss included (indicated by the
green box in Fig. 4 (a) and (b)), the overall objective loss
function can be formally described as follows,

Lioge = ESegmenzation +a Z Dfd—:‘. 3)
i

Apart from segmentation 108S Lsegmentation. We formulate
the Feature Disparity Loss Dy4_; at fusion stage i by compar-
ing the edge characteristic between the two sets of the feature
maps instead of comparing feature maps directly. Moreover,
a tuning knob « is assigned to the feature disparity loss to
decide how much it weighs in the overall loss function. Note
that the proposed loss function will only be applied during
the training process, thus it does not increase the inference
latency.

IV. EVALUATION

A. Experimental Setup

1) Training Environment: The models proposed are trained
and tested on a single NVIDIA’s Quadro RTX 8000 GPU
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Fig. 6. Accuracy performance of proposed models under different road scenes in tables. In order to adapt the paper width, we term the architecture AllFilter U
as AU, AllFilter B as AB, BaseSharing as BS and WeightedSharing as WS respectively. The best model is highlighted under each metric.

Fig. 7. Model performance in terms of accuracy, total number of MACs and
parameters.

with CUDA 10.0 and PyTorch 1.1. As discussed in II-A, we
adopt RoadSeg [3] as our baseline, and the final objective
loss is comprised of two parts as shown in Eq. 3. From our
experimental experience, we empirically set a to 0.3.

2) Dataset and Merrics: KITTI road dataset [6] is widely
used for autonomous driving research as a benchmark. It
contains 289 image pairs(RGB image and Depth image) for
training and 290 image pairs for testing, where within each
pair there both containing three different road scene categories
including urban marked roads (UM), urban multiple marked
lanes (UMM), and urban unmarked roads (UU). Note that the
Depth images are generated from lidar point-cloud data by
utilizing the pre-processing method proposed in the baseline
[3]. Generally, there are four common metrics for performance
evaluation: F-score, AP, PRE, REC, and 10U [3]. For fair
evaluation, KITTI does not provide ground-truths for testing
images, and the final segmentation results of testing images
would be converted to a bird’s eye view before submitting to
KITTI evaluation server.

B. Performance of Our Proposed Models

With our proposed feature matching technique and layer-
sharing method, various architectures can be derived from
combining different fusion schemes with the baseline. The
corresponding diagrammatic presentation can be found in
Fig.5. In Fig.5 (a), we apply unidirectional Fusion-filter from
Depth branch to RGB branch at each fusion stage and term
this architecture as AllFilter_U. Similarly, we call architecture
from the Fig.5 (b) as AllFilter_B for applying bidirectional
Fusion-filter. Fig.5 (c) is termed as BaseSharing as the
last convolutional stage been shared between two branches.
WeightedSharing in figure (d) is named for the Auxiliary
Weight Network(AWN) applied on top of BaseSharing. Note
that the yellow oval box represents Fusion-filters and the yel-
low square box represents the shared layer, and the Auxiliary
Weight Network is presented in a white box in Fig.5 (d). We
experiment with these models first by training them on the
GPU platform and then evaluate the trained model with testing

images. Note that for the baseline model, we can achieve as
best as 95.12% for UM, 97.07% for UMM, and 94.69% for
UU in our experimental environment respectively, which is
lower than reported in [3].

1) Accuracy and Corresponding Computational Overhead:
As we can see in tables of Fig. 6, the overall accuracy
performance of all metrics are presented under three evaluation
road scenes. Generally, our proposed models perform better
than baseline nearly in every metric under different road
scenes. However, the accuracy improvement of our proposed
models under UU is less significant, since UU is the most
challenging one. Among all metrics, AllFilter U performs
better than others in UM, the same as BaseSharing in UMM,
and WeightedSharing in UU category while they all top three
metrics out of five as shown in tables in Fig. 6.

For models with the Fusion-filter technique, we have eval-
uated two types of models, AllFilter_U and AllFilter_B. By
taking advantage of the unidirectional fusion-filter, AllFilter U
is able to carry out fusion with more matched feature maps,
which is witnessed as the orange line shown in Fig.3 (a). It
outperforms baseline in every category and tops three accuracy
metrics out of five in UM category, one in UM and one in
UU. With bidirectional Fusion-filter, AllFilter B outperforms
baseline in UM and UMM category in nearly every metric.
The reason might be with the help of Fusion-filters across
two branches, more balanced segmentation results can be ob-
tained. However, with the introduction of Fusion-filters, higher
computational overhead in terms of MACs and parameters is
introduced as we can see in Fig. 7.

For the Layer-sharing method, both BaseSharing and
WeightedSharing are evaluated. BaseSharing achieves three
best accuracy performance out of five metrics in UMM road
scene category with least computational cost as observed
from Fig. 6 and Fig. 7. And after AWN is applied on top
of BaseSharing, WeightedSharing outperforms Baseline in all
three road scenarios and all metrics, and it even achieves the
best performance under three metrics in the challenging UU
scenario among all the proposed models as the introduced
weight parameter can dynamically adjust the weight from one
network branch to the other based on different input during
fusion. Moreover, WeightedSharing still carries less model
parameters than Baseline as shown in Fig.7.

2) Ablation Study for Feature Disparity Loss: We conduct
ablation evaluation on our proposed models with Feature
Disparity Loss, as shown in Fig. 8. Three typical architectures
(Baseline, AllFilter_U and BaseSharing) are evaluated using
the same KITTI dataset. Specifically, Baseline, AllFilter U
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Fig. 8. Ablation study for Feature Disparity Loss. The "loss™ indicates the
Feature Disparity Loss plus segmentation loss.
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and BaseSharing are trained with only segmentation loss while
BaselLoss, FilterLoss and SharingLoss are trained with both
segmentation loss and the proposed Feature Disparity loss.
As shown in the figure, architectures trained with Feature
Disparity Loss outperforms the same architecture trained
without it. This result proofs the efficacy of the concept of
feature-matching. Especially, for Baseline trained with Feature
Disparity Loss, BaseLoss even achieves the best accuracy in
UU road scenario under F-score metric.

3) Qualitative Samples: Fig. 9 shows some qualitative
results of model-AllFilter on the test set of the KITTI bench-
mark. Three road scenes(UM, UMM, UU) are presented
from left to right. To prove the robustness of our model,
we deliberately select the road scenes with over-exposure or
shadows. From these samples, we observe our model is robust
to these adversarial lighting conditions on road.

CONCLUSION

In order to achieve higher perception accuracy, we investi-
gate the various DCNN fusion architectures, and we identify
that feature-mismatching issue exists in directly element-
wisely adding feature maps from different sensing modalities,
which is commonly adopted by most DCNN middle fusion
methods. To tackle this issue, we first propose a feature
disparity metric that quantitatively measures the degree of
feature disparity between feature maps to be fused. After
identifying the feature-mismatching issue exists in conven-
tional element-wise middle fusion architectures, we propose a
Feature-matching technique, Fusion-filter, to address the issue.
We further learn that feature maps in deeper layer appears
to possess less different features, Layer-sharing method is
thus proposed to reduce the model’s computational overhead.
Together with the Feature Disparity Loss, the proposed models
can learn corresponding features from different modalities to
achieve higher accuracy. Experimental results demonstrate that

our proposed Feature matching techniques can achieve better
accuracy than the baseline, and the Layer-sharing method
achieves comparable accuracy with less computational over-
head compared to the baseline.
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