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Abstract—This paper is the first to provide a thorough
system design overview along with the fusion methods selec-
tion criteria of a real-world cooperative autonomous driving
system, named Infrastructure-Augmented Autonomous Driving
or IAAD. We present an in-depth introduction of the IAAD
hardware and software on both road-side and vehicle-side com-
puting/communication platforms. We extensively characterize the
IAAD system in the context of real-world deployment scenarios
and observe that the network condition fluctuates along the
road is currently the main technical roadblock for cooperative
autonomous driving. To address this challenge, we propose new
fusion methods, dubbed ”inter-frame fusion” and ”planning
fusion” to complement the current state-of-the-art ”intra-frame
fusion”. We demonstrate that each fusion method has its own
benefit and constraint. Adaptively choosing the fusion method
according to the real-world condition will benefit the SoV without
the violation of the SoV’s safety requirements.

I. INTRODUCTION

The cooperative autonomous driving approach benefits from
the collaboration between intelligent roads and smart vehicles
enabled by emerging wireless communication technologies
[1], [2]. It is not only more reliant but also more resilient
in driving decision making compared to the traditional on-
vehicle-only autonomous driving approaches, thanks to the
driving-augmented information transmitted from the roadside
systems. This paper provides the first thorough deployment
experiences of an autonomous driving system enabled by in-
telligent roadside assistance, called Infrastructure-Augmented
Autonomous Driving (IAAD) system.

The IAAD infrastructure consists of the roadside-deployed
perception augmentation system, named System-on-Road
(SoR), and the on-vehicle driving automation system, named
System-on-Vehicle (SoV). The SoR aims to extend SoV’s
”vision” by transmitting the perception information to the SoV
and it equips with the upgraded counterparts. By leveraging the
integrated information from the SoR and the SoV, the IAAD
system can make safer and more efficient driving decisions in
real time than the on-vehicle-only autonomous system.

*Authors with equal contribution

Although the current IAAD design is promising, it is also
very complex and comes with numerous real-world challenges.
Our characterization study paints a frustrating picture that even
the state-of-the-art version of the IAAD system configuration
[3] is far below the standard for feasibility.

To the best of our knowledge, there is no existing work
that focuses on the network latency and jitter affect on the
performance of a real-deployed IAAD system. Since the SoV-
SoR system is a cooperative system, a “synchronous process”
is required for the SoV to wait for the data from the SoR
before coming to the next pipeline module. The time when
the SoR arrives at the SoV will be significantly affected by
the network condition in the real-world. We observe that the
real-world wireless network condition is complex and ever-
changing. Specially, we find that the state-of-the-art fusion
mechanism (intra-frame fusion) that fuses the SoR data to the
SoV data with the same time stamp at the tracking module on
the SoV cannot adequately handle the complex external factors
including high network latency and jitter. Our deployment data
indicates that the deadline miss ratio can be as high as 30%.

Based on our field experimental experience, we pinpoint that
the system tolerance to the network impacts could be improved
by carefully choosing the data fusion method. Therefore, to
tackle the realtime network fluctuation challenge in IAAD
design, we propose new fusion methods, dubbed ”inter-frame
fusion” and ”planning fusion” to complement the current state-
of-the-art ”intra-frame fusion”.

We demonstrate that each fusion method has its own benefit
and constraint.Adaptively choosing the fusion method accord-
ing to the real-world condition will benefit the SoV without
the violation of the SoV’s safety requirements.

II. REAL-WORLD IAAD TESTBED

The infrastructure-augmented autonomous driving (IAAD)
system exhibits promising enhancement for the safety of the
autonomous driving. To the best of our knowledge, this is the
first work that presents a real-world IAAD system and the
corresponding thorough performance analysis.
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TABLE I: Hardware setup of IAAD.
SoV SoR

Industrial PC
CPU: Intel i9-9900K
GPU: GTX 1060 x1
Memory: 32GB

CPU: Intel i9-9900K
GPU: GTX 1080Ti x1
Memory: 32GB

Sensors
64-line LiDAR,
camera x2, and Radar,
GPS/IMU

Lightweight: 80-line LiDAR
Heavyweight: 80-line LiDAR,
camera x2, and Radars

Communication OBU RSU

In this section, we first describe the IAAD’s system hard-
ware configuration and then introduce its algorithmic compo-
nents and software pipeline in an end-to-end manner.

A. System Hardware Deployment

Hardware Setup: Table I lists the essential hardware config-
uration of our IAAD system. Our IAAD system consists of
an on-vehicle driving automation system (System-on-Vehicle,
SoV) and roadside-deployed driving augmentation system
(System-on-Road, SoR). The SoV consists of an Industrial
PC (IPC), a series of sensors, a communication component
(on-board unit, OBU) as well as the ECU and the CAN bus
connecting all components. ECU and CAN bus are standard
autonomous components. The SoR consists of consists of an
Industrial PC (IPC), a series of sensors, a communication
component (roadside Unit, RSU). Different from the SoV, the
SoR’s IPC is configured with a high-end Nvidia 1080Ti GPU
and two optional sets of perception sensors. The SoR can be
configured as heavy-weight SoR and light-weight SoR for the
different deployment purposes. The heavy-weight SoR equips
with cameras and LiDARs while the light-weight SoR only
equips with LiDAR. This is because the LiDAR provides more
accurate perception compared to the camera, especially during
the night time. The RSUs and OBUs communicate directly to
facilitate the fusion of the SoR data and the SoV data on the
vehicle-side. The communication protocol is based on LTE-
V2X currently and will support 5G-V2X in the future.

B. IAAD, An End-to-end Description

Fig. 1 presents an end-to-end illustration of our IAAD
system. The main components’ latency and throughputs are
demonstrated as well. Overall, both systems run a customized
kinetic ROS middleware and a series of algorithmic modules.
Specifically, our full-fledged L4 SoV includes Continental
ARS 408-21 mmWave radars for detecting and tracking ob-
jects, cameras with 1920x1080 pixels for sensing and 2D
perception module (based on YOLOv5), 64-line LiDAR and
3D perception module (based on PointPillars), GPS/IMU and
localization module (based on NDT). The 2D perception and
3D perception results, as well as the outputs from mmWave
radars, are combined to generate a comprehensive perception
view in SoV-side sensor fusion module ➀. The fused per-
ception results are subsequently fed into the tracking module
to keep track of each detected object ➁. The purpose of
tracking is to establish a temporal relation of the same object
across multiple time frames so that the SoV gets to know the
trajectory of the target object. Then the tracking results are fed
to the prediction module, whose purpose is to predict the future
trajectory of the target object based on its past trajectory ➂.

Finally, the prediction results are fed to the planning module
to make behavioral and motion planning decisions ➃. After
a planned trajectory is generated for SoV, the control module
will work with the vehicle chassis to execute the trajectory ➄.

In the meantime, the SoR detects and tracks objects with
Continental ARS 408-21 mmWave radars. The SoR also
performs 2D perception for the camera data and 3D perception
for the LiDAR data. The SoR sensor fusion then generates
the perception outputs ➅. The perception outputs will be pro-
cessed by tracking module and prediction module. Note that
the SoR performs a heavy-weight prediction (H-prediction)
[4]. Upon the various requests from SoV, either the perception
outputs or prediction outputs of SoR could be transmitted to
the SoV through LTE-V2X. These outputs can be fused with
the SoV data and then fed to the corresponding modules on
the SoV (e.g., either tracking ➆ or planning ➇).

III. THE REAL-WORLD NETWORK FLUCTUATION
CHALLENGE

Our deployment experiences demonstrate that it is challeng-
ing to enjoy the benefit of long-range detection capability
and high prediction accuracy in an IAAD system due to
the real-world network fluctuation constraint. In this section,
we thoroughly explore the challenges of an IAAD system
provoked by the real-world network system constraint.

A. The New Metric Reflecting the Prediction Accuracy

To demonstrate the IAAD’s safety quantitatively, we firstly
define a metric displacement error, which indicates the devi-
ation between the predicted driving path and the ground-truth
(i.e. ideal) driving path. The vehicle’s safety will be high when
the displacement error keeps low. The equation 1 illustrates the
definition of the displacement error:

Displacement error =

N∑
i=1

|Location(i)prediction − Location(i)ideal|

N
(1)

where the Location(i)prediction is the predicted location of the
object i, the Location(i)ideal is the ground truth location of
the object i and N is the total number of the detected objects.
Our Field deployment results are illustrated in Table II. In
this case, we assume every frame can arrive ”in time” without
the effect of the network fluctuation. We can observe that the
displacement error decreases as the number of input frames
increases. The displacement error will stay stable when the
input frames achieve 20 frames. Consequently, our system will
maintain a 20 frames window for the path prediction and will
update the path prediction result when each new frame flows
in.

TABLE II: Field deployment results
Input Frames

Number
Displacement
Error (meter)

Distance (meter) between vehicle and object
Without SoR Light SoR Heavy SoR

5 4.333 63 163 313
10 3.053 56 156 306
15 2.192 49 149 299
20 1.360 42 142 292
25 1.358 35 135 285
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Fig. 1: Overview of our infrastructure-augmented autonomous driving system.

Packet Loss

30% frame miss utilizing 

intra-frame fusion

(a) Latency and jitter (b) Light and heavy prediction per-
formance comparison

Fig. 2: Latency and jitter of real-world network and Compar-
ison of light and heavy prediction

B. Real-World Network Fluctuation Challenge to the state-of-
the-art Fusion Method

Intra-frame Tracking Fusion Constraint: The existing ef-
forts on cooperative perception consider the tracking fusion as
the state-of-the-art solution [3]. In the tracking fusion method,
the RSU in SoR will extract the sensor fusion module’s
output features and transmit them to SoV’s OBU using an
LTE-V2X connection. After receiving the data, the OBU will
fuse the data with its own sensor fusion module’s output
and subsequently publish the fused data into the car-side
software pipeline’s tracking module. Under this situation, the
SoV output will be fused with the SoR frame which has the
same timestamp. We name this tracking fusion method as
”intra-frame tracking fusion”. Since the SoV-SoR system is
a cooperative system, a “synchronous process” is required for
the SoV to wait for the data from the SoR before coming
to the next pipeline module. This synchronous process will
require an extra time window on the SoV side to wait for
the data from the SoR side. The presumption of the existing
work is that the frame from the SoR will always arrive the
SoV in time. However, based on our field test, there are
a bunch of cases when the SoV cannot receive the frame
of the SoR in time due to the SoR latency caused by the
network fluctuation. Since the autonomous driving exists the
End-to-End (E2E) pipeline boundary and the output interval
boundary, the maximum time window has to comply with the
above two boundaries to guarantee the vehicle’s safety. In the
IAAD system, SoR latency caused by the network fluctuation
will extend the E2E pipeline time and the output interval time.

To avoid the violation of the two above boundaries, when
the SoV cannot receive the SoR information within the time
window, it needs to go through to the subsequent modules
without the fusion to guarantee the safety of the vehicle. The
E2E pipeline boundary and output interval boundary will be
discussed as follows.

The E2E pipeline is defined as the duration from the time
when the vehicle receives the sensing data to the time when
the vehicle finishes its planning decision. Output interval is
defined as the time between the two consecutive planning
decisions. For the vehicle’s safety consideration, the E2E
software pipeline latency and output interval both need upper
boundaries. Thus, if the SoV cannot receive the data from the
SoR ”in time”, the data from SoV has to skip the “data fusion”
process to go through the pipeline individually in order to
follow the requirement of the E2E pipeline and output interval
boundary.
Performance Degradation caused by the Real-world Net-
work Fluctuation: Fig. 2a depict the network condition in
our real test field. We can observe that the network latency
fluctuates between 15 ms to 35 ms and sometimes will achieve
100ms. Even worse, in some cases the packets may totally
get lost due to the bad network condition. Consequently, the
SoR latency caused by the network fluctuation will probably
lead to the violation of the E2E pipeline latency requirement.
Besides, as shown in Fig. 2a, we observe that the network jitter
will significantly hurt the stability of the vehicle’s planning
decision interval time, which will cause the violation of
the vehicle’s output interval boundary. Based on our field
experience, the SoV will miss around 30% of the data from the
SoR when simply utilizing intra-frame tracking fusion method,
as illustrated in the Fig. 2a, which will cause the degradation
of the performance of the IAAD system.

C. Alternative Fusion methods to tackle the network fluctua-
tion challenges

In the previous section, we demonstrate the network fluctua-
tion challenge confronted by utilizing the intra-frame tracking
fusion method in the real world. Due to the E2E boundary
and output interval boundary, this fusion method’s require-
ment is strict. Since the network will fluctuate in the real-
world, a bunch of the frames will be missed from the SoR,
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Fig. 3: Analysis for fusion effectiveness under different fusion
position

which will cause the performance degradation for our IAAD
system. To deal with the network challenge and guarantee
the IAAD safety, we take the step to explore a flexible data
fusion framework, dubbed as inter-frame tracking fusion and
planning fusion. In this section, we will illustrate the benefit
and constraint of our inter-frame tracking fusion and planning
fusion method compared to the intra-frame tracking fusion.
We demonstrate that the proposed fusion methods have their
own benefit and constraint, adaptively choosing the fusion
method according to the real-world condition will benefit the
SoV without the violation of the SoV’s safety requirements.
Benefits and Constraints of Inter-frame Tracking Fusion:
The intra-frame fusion incurs a strict waiting window for
the SoV data. Based on our real deployment experience, the
OBU in SoV can intermittently miss the waiting window
due to some unavoidable network situations (e.g, base station
handovers, congestion), which will cause the performance
degradation in the system. To mitigate the affect, we explore
the opportunity to utilize the previous SoR frame stored in the
buffer to fuse with the current SoV frame if the intra-frame
waiting window is missed. We name this mechanism as inter-
frame fusion.

Unavoidably, the prediction accuracy of the inter-frame
fusion will decrease compared to the intra-frame fusion (the
requirement is most strict while the accuracy is the highest).
However, if the timestamp of the frame from SoR (stored in the
buffer) is very close to the current timestamp, the prediction
accuracy does not decrease significantly. Besides, the tolerance
of the prediction accuracy is high when concerning the far-
fledged objects detected by the SoR compared to the nearby
objects detected by the SoV. Consequently, the inter-frame
fusion will effectively decrease the performance degradation
compared to the system without fusion under the situation
where the current frame from the SoR is missed.

However, the inter-frame fusion still has its constraint under
the bad network condition, since the displacement error will
become unacceptably high when missed frames accumulate
due to the long-time network congestion. The tolerance time
for the inter-frame fusion is around 0.6s, which will be
adequate for the short time network congestion (i.e. base
station handover) but still be not enough when long time
network congestion occurs (i.e. go through tunnel region).
Benefits and Constraints of Planning Fusion: In our tracking
fusion (intra-frame and inter-frame) mechanism, the post-
perception data from the SoR will be combined with local data
and processed by the tracking and local prediction module.
However, a poor network environment can cause discontinued

provision of the SoR data due to the timeouts. The loss
of augmentation of the SoR data will lead to a comparable
displacement error in a much near distance with the object.

Since our local prediction module adopts a low-level pre-
diction algorithm which only provides a prediction of next 0.5
seconds, the prediction accuracy will be significantly reduced
if the network condition exacerbates, as shown in Fig. 2b. We
can observe that the displacement error of light prediction can
maintain in a low-level only for the first 5 frames and then
increases to a high-level in the following 45 frames. To solve
this issue, our SoR equips with a heavy-weight prediction
algorithm ( [4]) which can provide trajectory prediction for
the next 5 seconds. This provides an opportunity that the
prediction results from the SoR with lower displacement
error, could be transmitted to the SoV and be utilized by
planning module of SoV in the next 5 seconds instead of 0.5
second. As shown in Fig. 2b, the displacement error of heavy-
prediction method keeps low in the entire 50 frames, and with
a higher tolerance to the network latency. Motivated by this,
we implement the planning fusion mechanism to overcome
the performance degradation occurred in the tracking fusion
method. By implementing the planning fusion, the tolerance
time will be significantly extended compared to the tracking
fusion.

Although the planning fusion will tolerate the congested
network condition compared to the tracking fusion, the dis-
placement error is higher than the tracking fusion. The reason
for the higher displacement error is that the SoV’s view and
SoR’s view are complementary with each other. Integrating
SoR’s data into a late stage in the SoV’s software pipeline can
cause the ”spatial deficiency” for the system. For instance, as
shown in Fig. 3a, when the object stays in region A, only the
vehicle can detect the object (yellow vehicle) while the road
cannot detect it. When the object goes into the region B, only
the road can detect the object while the vehicle cannot detect
it. As shown in Fig. 3b, the tracking fusion can integrate the
fragmentary data from both sides to do its prediction while
planning fusion will have to rely on the SoV and the SoR to
do the prediction with their own fragmentary data, which will
lead to the degradation of the accuracy for the final planning
output. Consequently, when the network condition becomes
better, we need to switch the planning fusion back to tracking
fusion to avoid the spatial deficiency of the planning fusion.
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