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Abstract 

As the technology node of VLSI designs advances to sub-

10 nm, two interconnect-centric metrics of a circuit, the 

interconnect complexity (either number of interconnects or 

wirelength/WL) and congestion, become critically important 

across all design stages alongside conventional resource or 

function-unit (FU)-centric metrics like area/number-of-FUs 

and leakage power. High Level synthesis (HLS), one of the 

earliest and most impactful design stages, rarely monitors 

interconnect metrics, which makes their recovery at later 

stages very difficult. HLS algorithms and tools typically 

perform FU-centric minimization via operation scheduling, 

module selection (S&MS) and binding. As a consequence, it 

mostly overlooks interconnect-based metrics. In this paper, 

we explore whether this can adversely affect interconnect 

metrics, and in general explore the correlation between FU-

centric optimization in S&MS, and the resulting interconnect 

metrics co-optimized (along with FU metrics) in the later 

binding stage(s). For this purpose we develop a probabilistic 

analysis for post-scheduling binding to estimate interconnect 

metrics, and verify its accuracy by comparison to empirical 

results across different scheduling techniques that generate 

different degrees of FU optimization. Based on both empirical 

and analytical results we predict how interconnects metrics 

will pan out with different degrees of FU optimization. Finally, 

based on our analysis, we also provide suggestions to improve 

interconnect metrics for whatever FU optimization degree an 

available S&MS technique can achieve. 

1. Introduction 
Interconnect optimization is of make-or-break significance 

in VLSI designs in the sub-10nm regime. Since the density of 

transistors per unit area is increased dramatically, the 

complexity of interconnects per unit area, as well as overall, 

become key metrics that need to be made tractable in order to 

obtain feasible/routable designs. The earliest design stage of 

High Level Synthesis (HLS) is the first place to estimate the 

usage of resources and obtain interconnect information. 

Performing optimization in HLS is generally more effective 

in determining the quality of the final design, compared to the 

later stages such as routing and placement. Early HLS 

functions, like operation scheduling and module selection 

(including voltage assignment for different operations), are 

high-impact processes for optimizing functional-unit (FU)-

centric metrics like number of FUs, power (mainly leakage, 

but also dynamic), and area. Once a scheduling and module 

selection (S&MS) solution is obtained, performing FU and 

register binding generates the final HLS design with 

information on needed interconnects and steering logic 

(muxes and demuxes) between FUs. 

Due to considerations of runtime efficiency and algorithm 

design complexity, most existing HLS design flows/tools that 

synthesize complete HLS designs use a series of techniques. 

Each of these performs a different function and targets 

different sets of metrics. Techniques for S&MS focus on FU-

centric metrics (numbers of FUs used, FU power, area, etc.), 

and techniques for FU/register binding focus on one or more 

of FU-centric and interconnect-centric metrics (number of 

interconnects and congestion among FUs, registers, and 

muxes/demuxes, their area, and dynamic power). There are 

some techniques like [1] that estimate interconnect metrics by 

incorporating floorplanning into the FU binding process. 

However, the complexity of the algorithm as well as the 

resulting quality improvement vis-à-vis not using 

floorplanning is of some concern. For an efficient flow, it is 

thus necessary to solve the complete HLS problem in a 

sequence of phases, as alluded to above. However, the more 

interconnect-aware later binding phases would prima facie 

seem to be constrained by a truncated problem space 

determined by the solution of the earlier FU-centric S&MS 

phase. The natural question that then arises is whether this 

truncation impedes interconnect optimization in the later HLS 

phases. This would be the case if FU-based minimization 

fundamentally is in conflict with interconnect optimization. 

On the other hand, this truncation would not be of any 

significant concern if the two optimizations were strongly 

correlated. The former case would call for new algorithms that 

combine S&MS and the later binding phases to co-optimize 

both FU and interconnect-based metrics;  this would be a 

significant challenge, and would result in much higher  time 

complexities than in the separated phases of current HLS 

flows. If the latter is true, then we can be assured that FU and 

interconnect based metrics are being both properly optimized 

in current HLS flows that afford significant time efficiencies 

due to the separated phases; the only improvements needed 

here  could be better optimization algorithms for each phase 

without the need to combine them. We also explore whether 

there are any other aspects of the S&MS design, including a 

tipping point in the degree of FU minimization, that adversely 

or beneficially affect subsequent interconnect-aware 

minimization. 

Thus the goal of the paper is to provide an overview to 

designers of how FU-based optimization of early stage HLS 

impacts interconnect complexity in later stages, and what 

could be done to avoid any detrimental effect (alternatively, 

to obtain beneficial effects) of the former on the latter. The 

main contributions of the paper are: 1) A qualitative analysis 

of the correlation between FU minimization and interconnect 

complexity in HLS (Sec. 3). 2) A probabilistic model of post-



 

 

S&MS binding, which includes as an input variable the degree 

of FU optimization, to determine more generally than 

obtainable from empirical data, the correlation between FU 

and interconnect optimizations in HLS (Sec.4). The 

theoretical foundation of this analysis is established, as is its 

accuracy for real designs via corroboration from empirical 

data. Such an  analysis allows us to estimate interconnect 

metrics at  different  degrees of FU minimization to draw more 

comprehensive conclusions without needing to perform  

S&MS and binding for a large number of benchmarks.  3) An 

empirical exploration of the correlation between FU 

minimization and interconnect complexity (Sec. 5). 4) Based 

on the above analyses, we suggest: a) FU “white-spacing” for 

congestion reduction, and b) a balanced (pre-binding) 

operation allocation to FUs at any FU optimization degree (i.e., 

for any S&MS algorithm) in order to obtain better 

interconnect optimization in the binding stages. 

2. An HLS  Example and Evaluation Framework 

S&MS provides a partial HLS solution for a given data flow 

graph (DFG). Since after S&MS, every operation (op) has 

been assigned to a particular time slot, we can obtain the 

datapath (interconnect structure) by performing FU and 

register bindings. Figure 1(b) illustrates a scheduling solution 

of the simple DFG in Fig. 1(a) for the MR-LCS problem 

(minimize resources/FUs given a latency constraint) with a 

latency constraint L of 5 clock cycles (cc’s), where for 

simplicity, both adders and a multipliers have a delay of 1 cc. 

Also, for simplicity, no module selection is performed (i.e., 

there is only one design for each functional type). The 

corresponding FU binding solution is shown in Fig. 1(c). After 

performing scheduling and FU binding (S&B), we can easily 

determine the interconnects needed among different FUs and 

finalize the interconnect design by allocating/binding registers 

and muxes/demuxes. The detailed datapath design for the 

example S&B solution is shown in Fig. 1(d), where for each 

FU input, there is a dedicated register bank (this is also our 

assumed configuration in the register binding solutions in our 

experimental results). The datapath has a reasonable degree of 

interconnect sharing between different parent-child op pairs 

(e.g., between op pairs (op1, op5) and (op3, op6). 

Note that, there are different techniques to bind FUs and 

allocate registers like [3], and thereby to also synthesize the 

mux/demuxes at each FU port. Since in this paper, we explore 

the correlation between the degree of FU-centric optimization 

of S&MS and the degree of subsequent interconnect-aware 

optimization achieved by FU and register binding, we vary the 

techniques for the former to realize varying degrees of FU-

centric optimization, but by necessity (for an apples-to-apples 

comparison between these varying degrees of FU-centric 

optimization) keep the latter techniques the same. Given the 

S&MS solution, the technique we use for FU binding [3] is 

optimal for the number of FUs of each type, and within this 

solution space, it heuristically minimizes the numbers of 

interconnects needed (see Sec. 5-2). The register binding 

technique we use [3] is also optimal for the number of 

registers, given the FU binding solution. It also determines the 

mux/demux sizes, and thus, interconnect congestion at each 

FU port. In other words, we use well-known effective 

techniques for the latter interconnect-complexity determining 

 
Figure 1: (a) An example DFG. (b) Scheduling and (c) 

Binding solutions for a latency constraint L = 5 cc’s. (d) The 

corresponding datapath design. 

phase of HLS, and thus the conclusions we obtain on the 

aforementioned correlation should be reliable and general.  
In this paper, we evaluate the interconnect complexity of a 

given datapath/ design in HLS by the following interconnect-

centric metrics.  

1) The number of FU-to-FU interconnects in the datapath, 

denoted by nw. 

2) Interconnect congestion metrics based on the 

complexities/sizes of the steering logic at an FU), which 

includes the maximum mux/demux size, denoted by Q, 

and the average mux/demux size in the design, denoted 

by Qav. Note that each m-to-1 mux (1-to-m demux, where 

m > 2) has a tree-structure construction with 2m-1 basic 

2-to-1 muxes (1-to-2 demuxes).  

Next, we qualitatively discuss multiple correlations 

between FU minimization and interconnect complexity. 

3. Correlation between FU Minimization and 

Interconnect Complexity—A Qualitative Analysis 
Let F(S) be the total number of FUs allocated  in an S&MS 

solution S for a given DFG. We define the average operation 

utilization rate our(S) as the average number of ops executed 

per FU within the latency period L of S. For a S&MS solution 

S with k ops, our(S) is: 

𝑜𝑢𝑟(𝑆) =
𝑘

𝐹(𝑆)
                                   (1) 

Furthermore, our(S) also represents the degree of interconnect 

sharing based on the data dependency in the DFG for the 

following reason. Consider two S&MS solutions S1 and S2 for 

the same DFG with k ops. If F(S1) < F(S2), our(S1) > our(S2). 

Thus for a set of ops that are executed on the same FU Fi in 

S1, due to F(S1) < F(S2), the probability of these ops doing data 

transfer with a particular FU Fj is 1/F(S1) assuming uniform 

distribution of ops among FUs of the corresponding function 



 

 

type (more realistically, since an interconnect-aware binder is 

going to cluster ops on an FU A whose children or parents are 

in a small subset of FUs with which A has/will have 

interconnects—determined dynamically as the binding 

process proceeds—the probability will be non-uniform but 

still inversely proportional to some monotonically increasing 

function g(F(S1)), e.g., a Gaussian probability distribution 

with a mean inversely proportional to F(S1)).  This is more 

than the corresponding probability 1/F(S2) (or 1/g(F(S2))) in 

S2. As a result, two FUs Fi and Fj with an interconnect between 

them has more data transfers  on an average than  the same 

interconnect in S2.  Hence, since the total number of data 

transfers = number of arcs in the DFG, is the same for both S1 

and S2, fewer interconnects are needed in S1 than in S2. 

As far as congestion goes, our(S) also tells us that more ops 

are packed in an FU in a solution with fewer FUs. This means 

that there is a higher probability that two communications 

from A will also have a higher probability of having 

functionally dissimilar children ops, leading potentially to a 

greater fanout from A. Whether the actual fanout from A 

increases or decreases for a solution with a smaller number of 

FUs depends on the relative values of the following two 

probabilities: (i) probability ps of two communications out of 

A with functionally-same child ops, sharing an interconnect 

(which increases with fewer FUs in a solution and thus has a 

reduction effect on fanout), and (ii) the probability pd of the 

communications having functionally dissimilar children 

(which also increases with fewer FUs, but has an enlarging 

effect on the fanout). A symmetric argument applies to the 

fanin of an FU. Thus based on the relative values of the 

aforementioned probabilities, the congestion Q and average 

congestion Qav can either increase or decrease as the number 

of FUs used increases for a particular DFG. 

4. Correlation between FU Minimization and 

Interconnect Complexity—A Probabilistic Analysis 
We develop a probabilistic model for the MR-LCS problem 

to estimate interconnect-related metrics of an interconnect-

unaware binding process that attempts to bind ops of each 

functional type uniformly across all FUs of that type. We 

assume interconnect-unaware binding for simplicity, and in 

order to capture the main correlation between the number of 

FUs implied by an S&MS solution and interconnect metrics. 

Our empirical results also show that interconnect-unaware 

binding results in only 10 % more interconnects on the 

average compared to interconnect-aware binding. Our 

analysis should thus also hold, albeit somewhat approximately, 

for interconnect-aware binding (see  Sec. 5-2).  

For a function type α, let the number of ops in the DFG be 

nα, with an average out-degree (in-degree) to (from) ops of 

function type-β of 𝑑𝛼,𝛽
𝑜  (𝑑𝛼,𝛽

𝑖 ). 

𝑑𝛼,𝛽
𝑜 =

𝑛𝛼

𝐹𝛼(𝑆)
,    𝑑𝛼,𝛽

𝑖 =
𝑛𝛼,𝛽

𝑜

𝑛𝛼

                         (2) 

where 𝑛𝛼,𝛽
𝑖  is the number of type-β ops with inputs from type-

α ops, and 𝑛𝛼,𝛽
𝑜  is the number of type-β ops with outputs to 

type-α ops. 

Let the number of type-α FUs implied by an S&MS solution 

S be Fα(S); the average number of ops bound to a type-α FU 

is 
𝑛𝛼

𝐹𝛼(𝑆)
. We use a uniform probability density function; so the 

probability p that a type-α op is bound to a particular (type-α) 

FU is 1/Fα(S). In future work we will explore other probability 

density functions like Gaussian.  

The average out-degree (number of output data transfers) 

from a type-α FU to type-β FUs is 𝐷𝛼,𝛽
𝑜 : 

𝐷𝛼,𝛽
𝑜 =  

𝑛𝛼

𝐹𝛼(𝑆)
∙ 𝑑𝛼,𝛽

𝑜                                 (3) 

The average in-degree (number of input data transfers) 

from type-β FUs to a type-α FUs is 𝐷𝛼,𝛽
𝑖 : 

𝐷𝛼,𝛽
𝑖 =  

𝑛𝛼

𝐹𝛼(𝑆)
∙ 𝑑𝛼,𝛽

𝑖                                 (4) 

Let Pβ(m, k, r, p) be the probability that m type-β ops are 

bound to exactly k out of r type-β FUs with a base probability 

of p of a type-β op for being bound to any FU.  

𝑃𝛽(𝑚, 𝑘, 𝑟, 𝑝) = 𝐶𝑟
𝑘 ∙ (∑ 𝐶𝑚

𝑖

𝑈

𝑖=1

∙ 𝑃𝛽(𝑖, 1,1, 𝑝)

∙ 𝑃𝛽(𝑚 − 𝑖, 𝑘 − 1, 𝑘 − 1, 𝑝))                    (5) 

where 𝐶𝑟
𝑘 is “k Choose r”. Note that once set, p is a constant 

throughout  the recursion. U = min{m-k+1, Vβ}, and Vβ is the 

upper bound on the number of type-β ops that can be bound to 

a single type-β FU, and can be estimated as min{(L/((1+)∙dβ), 

DF(β)}, where: (a)  is the fractional fragmentation (we use  

= 0.25), dβ is the delay of a type-β FU, and L the latency 

constraint; (b) DF(β) is a non-empty FU distribution factor (to 

guarantee that no FU fills up with too many ops so that some 

FUs of that type are empty. It can be formulated as:  

𝐷𝐹(𝛽) = min {𝑛𝛽 − 𝐹𝛽(𝑆) + 1,
(1 + 𝛾)𝑛𝛽

𝐹𝛽(𝑆)
}         (6) 

where 𝛾 is a uniform-distribution deviation factor in the range 

[0, 1], and 𝛾 = 0.25 in our experiments. We first prove the 

following fundamental result about the correctness of our 

probability analysis before proceeding further (readers may 

choose to skip the proof without missing pertinent information 

for understanding the subsequent analysis). 

Theorem 1: The probability space defined by Pβ(m, k, r, p) in 

Eqn. 5 is a valid one. 

Proof Outline: The first term in Eqn. 5, ∑ 𝐶𝑚
𝑖𝑈

𝑖=1 ∙ 𝑃𝛽(𝑖, 1,1, 𝑝) 

corresponds to the probability of allocating i ops to a 

designated FU. Since this number varies from 1 to U, this 

means that in the 2nd term Pβ(m-i, k-1, r-1, p) of Eqn. 5, each 

of the remaining (k-1) FUs will have the chance to have the 

same number (and same subsets) of ops as the designated FU 

does across all possible patterns of ops to FU bindings among 

k FUs. Thus the first two terms exhaustively account for all 

possible ways of distributing the m ops among all k FUs (so 

that each FU has at least one op bound to it). Also, for each 

binding of i ops to the designated FU, the second term 

accounts for all ways of distributing the remaining (m-i) ops 

among exactly the remaining (k-1) FUs (and hence the 3rd 

parameter of the 2nd term is also (k-1), as there is no choice 

but to use all (k-1) remaining FUs—note also that the choices 

of different subsets of  k out of r FUs is captured in the 𝐶𝑟
𝑘 

term outside the summation expression, and within the 

summation and its two probability terms, we have an exact 

subset of k FUs to distribute the m ops among. 

We illustrate the above arguments with an example. Let m 

= 5 and k = 3; then, ignoring Vβ for simplicity, U = 3. Let us 



 

 

focus on a specific number of ops, say, 3, to see if Eqn. 5 

accounts for patterns of distribution in which each FU can be 

bound to 3 ops. The 1st term accounts for 3 ops for the 

designated FU, since i ranges from 1 to 3. For i = 1 for the 1st 

term, the 2nd term is Pβ(4, 2, 2, p), which recursively is =𝐶2
2 ∙

(∑ 𝐶4
𝑖3

𝑖=1 ∙ 𝑃𝛽(𝑖, 1,1, 𝑝) ∙ 𝑃𝛽(4 − 𝑖, 1,1, 𝑝)). 

So now the “second” designated processor in this sub-

expression  can be bound to 3 ops, as i again ranges from 1 to 

3. Further, again for i = 1 in the recursive term, the 2nd term of 

the sub-expression is Pβ(3, 1, 1, p), which exactly accounts for 

binding 3 ops to  the 3rd FU (in fact all possible subsets of  3 

ops,  as the 𝐶4
1 = 4 ways of selecting 1 op for the 2nd FU also 

implies the same number of ways (which is also 𝐶4
3 —

analytically, not by coincidence) for selecting the 3-op subsets 

for the 3rd FU. These are within the subexpression, in which 

within the “outer”  𝐶𝑚
1 = 𝐶5

1 = 5 choices of 1 op for the 1st FU,  

and thus within the 𝐶5
1  = 𝐶5

4  patterns of distributing 4 ops 

among 2  FUs. Thus the total number of 3-op subsets bound 

to the 3rd FU that are accounted for in Eqn.  6 is 𝐶5
4 ∙ 𝐶4

3 =
𝐶5

3 =  all 3-op subsets among the original set of m = 5 ops. A 

similar analysis shows that Eqn. 5 accounts for the distribution 

of all possible 𝐶5
3 3-op subsets for the 1st and 2nd FUs.  Since 

3 ops was a generic number we chose, the above analysis 

applies to any number i between 1 and U and thus Eqn. 5 

accounts for all i-op subsets bound to each of the k processors 

without repeating any; it thus does not undercount or 

overcount any i-op subset in its distribution/binding to any of 

the k FUs. Note also that the definition of Pβ(m, k, r, p) is that 

exactly k FUs be used for  binding the m ops, and no less, and 

thus for correctness U can be no more than m-k+1, which is 

also taken into consideration. This proves the theorem.          

Boundary Conditions for Eqn. 5: (a) Pβ(m, k, r, p) = 1 if m = 

0; (b) Pβ(m, k, r, p) = 0 if (m > 0 and any of k, r = 0) or  (k > 

r) or  (m < k)  or (ceiling(m/k) > Uβ); (c) Pβ(m, 1, 1, p) = pm ; 

(d) Pβ(m, 1, r, p) = 𝐶𝑟
𝑘pm = r∙pm if m ≤ Uβ , else Pβ(m, 1, r, p) 

= 0 (this is also obtained from Eqn. 5 and the other boundary 

conditions). 

The average number of interconnects 𝑊𝛼,𝛽
𝑜  (𝑊𝛼,𝛽

𝑖 ) from 

(into) a type-α FU to (from) type-β FUs is: 

𝑊𝛼,𝛽
𝑜 = ∑ 𝑘 ∙

𝑌𝑜

𝑘=1

𝑃𝛽 (𝐷𝛼,𝛽
𝑜 , 𝑘, 𝐹𝛽(𝑆),

1

𝐹𝛽(𝑆)
)                   

𝑊𝛼,𝛽
𝑖 = ∑ 𝑘 ∙

𝑌𝑖

𝑘=1

𝑃𝛽 (𝐷𝛼,𝛽
𝑖 , 𝑘, 𝐹𝛽(𝑆),

1

𝐹𝛽(𝑆)
)           (7) 

where Yo = min{𝐷𝛼,𝛽
𝑜 , 𝐹𝛽(𝑆)} and Yi = min{𝐷𝛼,𝛽

𝑖 , 𝐹𝛽(𝑆)}. 

Furthermore, the average number W(S) of interconnects 

corresponding to S&MS solution S is: 

𝑊(𝑆) = ∑ ∑ 𝐹𝛼(𝑆) ∙

𝛽𝛼

𝑊𝛼,𝛽
𝑜                       (8) 

where α = β is allowed. Then, the average max input and 

output congestions corresponding to S&MS solution S,  Qo(S) 

and Qi(S), respectively, are: 

𝑄𝑜(𝑆) = max
𝛼

∑ 𝑊𝛼,𝛽
𝑜

𝛽
 

𝑄𝑖(𝑆) = max
𝛼

∑ 𝑊𝛼,𝛽
𝑖

𝛽
                           (9) 

Moreover, the average max congestion corresponding to 

S&MS solution S is Q(S) = max{Qo(S), Qi(S)}, and the 

average congestion of S is Qav(S) = W(S)/F(S). 

5. Experimental Results 

5.1 Scheduling Techniques for Obtaining Varying 

Degrees of FU Optimization 
We obtain empirical correlation results for the MR-LCS 

HLS problem for 11 DFGs in [9]  by varying the degree of 

FU-centric optimization in the initial scheduling stage via 

using the following different well-known algorithms ranging 

from the seminal/classical and low- to medium quality (LS, 

FDS, SA) to the state-of-the-art approximate and high quality 

(FALLS) to an optimal formulation with exponential 

complexity (ILP): list scheduling (LS) [5], force-directed 

scheduling (FDS) [7], a simulated-annealing-based technique 

(SA) [8],  FALLS [3], and ILP [6]. We note that for keeping 

the complexity of our empirical and probabilistic analysis 

tractable, we do not perform module selection (e.g., [4]) here, 

but believe that the conclusions we derive should hold when 

module selection is performed. We obtain a wide range of the 

degree of FU-centric optimization by plotting the FU-centric 

results (# of FUs, total area of FUs) along with interconnect-

centric metrics (# of interconnects, congestion) of the above 

scheduling algorithms followed by a common interconnect-

aware variation (described in Sec. 5-2) of  optimal FU-binding 

and register-allocation techniques (both using the left-edge 

algorithm [2]). All techniques were implemented in C++, and 

all runs were performed on an Intel Core i7-4710HQ 

processor at 2.5 GHz with 16 GB RAM. 

5.2 Interconnect-Aware Binding 
After obtaining different scheduling solutions via the 

techniques listed above, we use interconnect-aware variations 

of the optimal techniques [2] for FU binding and register 

allocation to determine interconnect-centric metrics: numbers 

of interconnects and congestion. For brevity, we describe here 

only the FU binding technique. This is a modified 

interconnect-aware left-edge binding technique (Int-LE) for 

minimizing the numbers of interconnects without changing 

the FU allocation results provided by a scheduling (or S&MS) 

solution (i.e., the optimality of the left-edge binding algorithm 

[2] for the number of FUs is retained in Int-LE). The core idea 

of this technique is to proceed chronologically by cc’s, and in 

cc t, among all ops scheduled in t, determine the best (op = u, 

available FU = F) pair such that F has the maximum of the 

sum of: (1) existing fanin connections from all FUs that the 

parent ops of u have been bound to, and (2) existing fanout 

connections to all possible FUs that the child ops of u can be 

bound to. We then bind this (u, F) pair, and update the 

interconnects and mux/demux sizes are of all affected FUs.  

The process is repeated to bind the next best operation-FU pair 

in cc t, and so forth until all such pairs are bound in this cc. 

The binding then proceeds to ops scheduled in cc t+1. Thus, 

Int-LE achieves the goal of FU-to-FU interconnect 

minimization. 

5.3 Correlation Evaluation 
Table 1 shows the number of allocated FUs, numbers of 

interconnects (W),  max congestion (Q), average congestion 

(Qav), and area results for LS, FDS, SA, FALLS, and 0/1-ILP. 



 

 

FALLS reduces the total number of allocated FUs by an 

average of 14.8% to 49.3% compared to LS, FDS, and SA. 

Similar are the results for FU area reduction. FALLS has the 

same  number of FUs  compared to the optimal 0/1-ILP with 

a 0.2% optimality gap in FU area. 

Figures 2-4 plot W, Q and Qav for the different scheduling 

techniques (coupled with the aforementioned Int-LE binder) 

and our probabilistic model across 11 DFGs; for the 

probabilistic model, the assumed number of FUs for each 

DFG is the average of the number of FUs allocated by the 

different techniques.  As seen in these plots, except for 2 data 

points out of 33 (one for Q for DFG inter. in Fig. 3, and one 

for Qav for DFG write in Fig. 4), our probabilistic model tracks 

the empirical results obtained by the better scheduling 

techniques quite accurately (a 94% accuracy rate). Having 

established the significant degree of accuracy of our 

probabilistic model, we can use its results, that we obtain 

across many more number of FU points than given by the 

scheduling techniques, to draw reliable conclusions and 

guidelines. 

Figure 5 plots W and Qav across many FU points (FU 

optimization degrees) for the largest DFG mat-inv. It also 

includes the plot lines for these metrics obtained from the 

scheduling techniques’ results (coupled with the 

aforementioned Int-LE binder). As can be seen, the 

probabilistic model’s estimates track the empirical results well. 

The corresponding plot lines are similar for other DFGs. The 

main conclusions that we can reliably draw here are: 

(a) The number of interconnects increase as the number of 

allocated FUs increase for the same DFG. This also tracks 

our qualitative analysis in Sec. 3. 

(b) The average congestion decreases as the number of 

allocated FUs increase for the same DFG. This shows that 

among the two conflicting probabilities ps and pd (see Sec. 

3), the fanout-increasing probability pd clearly has the 

dominating effect. This also provides the following 

design guideline: If congestion and thus routability is a 

limiting factor in a design, this can be alleviated by 

increasing the number of FUs (FU-based “white-spacing”) 

used either globally, for a particular functional type, or in  

local regions of the chip  wherever the congestion is acute; 

this, of course, has to be followed by re-scheduling ops 

on all the FUs (a variation of the scheduling algorithms 

for the ML-RCS problem—minimizing latency given the 

number of FUs as resource constraints—could be used for  

this purpose). 

 
Figure 2: Number of interconnects W for multiple scheduling 

techniques followed by Int-LE binding, and our probabilistic 

model for 11 DFGs with increasing sizes from left to right. 

The solid line is the probabilistic analysis, and the dashed lines 

are for different scheduling techniques. 

Another relevant phenomenon is seen in the FDS and SA 

results in Table 1. Even though the number of FUs allocated 

in the two techniques are almost the same (average difference 

across DFGs of 3.6%), the difference in their W metric is 

significant—about 15%.  We believe that the answer to this 

conundrum is as follows.  Figures 6-7 plot the probabilistic 

model’s estimates of W along with the empirical W results of 

FDS (Fig. 6) and SA (Fig. 7). In these plots, the numbers of 

FUs for each DFG assumed for the probabilistic model’s 

estimates are those that are allocated by the corresponding 

scheduling technique. While the analytical results track the 

empirical ones from both SA and FDS, it is closer to the FDS 

results. The reason for this is that the probabilistic model 

assumes a uniform distribution in the binding of ops to FUs 

(of the same functionality), which leads to a well-balanced ops 

occupancy across all FUs of the same functionality. FDS’s 

main goal is to balance the number of ops executing in each 

cc in order to minimize the maximum number of FUs 

executing in any cc, and thereby to minimize the number of 

FUs. This temporal balance can be shown to translate to a 

spatial balance (i.e., in the number of ops bound to the FUs of 

the same functionality). This explains the closer accuracy of 

our probabilistic analysis in estimating W for FDS than for SA, 

even though the numbers of FUs allocated in each technique 

are similar. Thus the significant difference in interconnect 

complexity between FDS and SA is most probably due to 

spatial balance in FDS and some lack thereof in SA, which 

does not have this goal. This leads to our final 

conclusion/guideline: 

(c) For any number of FUs allocated for a DFG (i.e., at any 

FU optimization degree), a balanced ops to FU 

distribution, will generally provide a reduced number of 

interconnects compared to a relatively unbalanced 

distribution. 

 
Figure 3: Max congestion Q for multiple scheduling 

techniques followed by Int-LE binding, and our probabilistic 

model for 11 DFGs. 

 
Figure 4: Average congestion Qav for multiple scheduling 

techniques followed by Int-LE binding, and our probabilistic 

model for 11 DFGs. 



 

 

6. Conclusions 
In this paper, we explored the correlation between the 

degree of FU minimization (achieved via multiple scheduling 

techniques) and some important interconnect-centric metrics 

for the MR-LCS HLS problem. We also developed a 

probabilistic model to estimate these interconnect metrics that 

is quite accurate for the better performing scheduling 

techniques. The empirical and analytical (probabilistic model) 

results support our qualitative analysis for the expected 

correlation: the number of interconnects W will decrease for 

the most part with increased degree of FU-centric 

optimization, but the average congestion Qav will increase.  

Furthermore, based on both empirical and analytical results, 

we propose what we hope are useful guidelines to designers 

to improve W, Q, and Qav for any scheduling and binding 

technique. 

 
Figure 5: Interconnect metrics for DFG mat-inv versus 

different numbers of allocated FUs for different scheduling 

techniques followed by Int-LE binding, and a range of 

assumed number of allocated FUs  for our probabilistic model. 

 
Figure 6: Number of interconnects W for FDS plus Int-LE 
binding, and our probabilistic model for 11 DFGs. 

 
Figure 7: Number of interconnects W for SA plus Int-LE 

binding, and our probabilistic model for 11 DFGs. 
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area results across different scheduling techniques coupled with the int-LE binder. 
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