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Abstract

As the technology node of VLSI designs advances to sub-
10 nm, two interconnect-centric metrics of a circuit, the
interconnect complexity (either number of interconnects or
wirelength/WL) and congestion, become critically important
across all design stages alongside conventional resource or
function-unit (FU)-centric metrics like area/number-of-FUs
and leakage power. High Level synthesis (HLS), one of the
earliest and most impactful design stages, rarely monitors
interconnect metrics, which makes their recovery at later
stages very difficult. HLS algorithms and tools typically
perform FU-centric minimization via operation scheduling,
module selection (S&MS) and binding. As a consequence, it
mostly overlooks interconnect-based metrics. In this paper,
we explore whether this can adversely affect interconnect
metrics, and in general explore the correlation between FU-
centric optimization in S&MS, and the resulting interconnect
metrics co-optimized (along with FU metrics) in the later
binding stage(s). For this purpose we develop a probabilistic
analysis for post-scheduling binding to estimate interconnect
metrics, and verify its accuracy by comparison to empirical
results across different scheduling techniques that generate
different degrees of FU optimization. Based on both empirical
and analytical results we predict how interconnects metrics
will pan out with different degrees of FU optimization. Finally,
based on our analysis, we also provide suggestions to improve
interconnect metrics for whatever FU optimization degree an
available S&MS technique can achieve.

1. Introduction

Interconnect optimization is of make-or-break significance
in VLSI designs in the sub-10nm regime. Since the density of
transistors per unit area is increased dramatically, the
complexity of interconnects per unit area, as well as overall,
become key metrics that need to be made tractable in order to
obtain feasible/routable designs. The earliest design stage of
High Level Synthesis (HLS) is the first place to estimate the
usage of resources and obtain interconnect information.
Performing optimization in HLS is generally more effective
in determining the quality of the final design, compared to the
later stages such as routing and placement. Early HLS
functions, like operation scheduling and module selection
(including voltage assignment for different operations), are
high-impact processes for optimizing functional-unit (FU)-
centric metrics like number of FUs, power (mainly leakage,
but also dynamic), and area. Once a scheduling and module
selection (S&MS) solution is obtained, performing FU and
register binding generates the final HLS design with
information on needed interconnects and steering logic
(muxes and demuxes) between FUs.

Due to considerations of runtime efficiency and algorithm
design complexity, most existing HLS design flows/tools that
synthesize complete HLS designs use a series of techniques.
Each of these performs a different function and targets
different sets of metrics. Techniques for S&MS focus on FU-
centric metrics (numbers of FUs used, FU power, area, etc.),
and techniques for FU/register binding focus on one or more
of FU-centric and interconnect-centric metrics (number of
interconnects and congestion among FUs, registers, and
muxes/demuxes, their area, and dynamic power). There are
some techniques like [1] that estimate interconnect metrics by
incorporating floorplanning into the FU binding process.
However, the complexity of the algorithm as well as the
resulting quality improvement vis-a-vis not using
floorplanning is of some concern. For an efficient flow, it is
thus necessary to solve the complete HLS problem in a
sequence of phases, as alluded to above. However, the more
interconnect-aware later binding phases would prima facie
seem to be constrained by a truncated problem space
determined by the solution of the earlier FU-centric S&MS
phase. The natural question that then arises is whether this
truncation impedes interconnect optimization in the later HLS
phases. This would be the case if FU-based minimization
fundamentally is in conflict with interconnect optimization.
On the other hand, this truncation would not be of any
significant concern if the two optimizations were strongly
correlated. The former case would call for new algorithms that
combine S&MS and the later binding phases to co-optimize
both FU and interconnect-based metrics; this would be a
significant challenge, and would result in much higher time
complexities than in the separated phases of current HLS
flows. If the latter is true, then we can be assured that FU and
interconnect based metrics are being both properly optimized
in current HLS flows that afford significant time efficiencies
due to the separated phases; the only improvements needed
here could be better optimization algorithms for each phase
without the need to combine them. We also explore whether
there are any other aspects of the S&MS design, including a
tipping point in the degree of FU minimization, that adversely
or Dbeneficially affect subsequent interconnect-aware
minimization.

Thus the goal of the paper is to provide an overview to
designers of how FU-based optimization of early stage HLS
impacts interconnect complexity in later stages, and what
could be done to avoid any detrimental effect (alternatively,
to obtain beneficial effects) of the former on the latter. The
main contributions of the paper are: 1) A qualitative analysis
of the correlation between FU minimization and interconnect
complexity in HLS (Sec. 3). 2) A probabilistic model of post-



S&MS binding, which includes as an input variable the degree
of FU optimization, to determine more generally than
obtainable from empirical data, the correlation between FU
and interconnect optimizations in HLS (Sec.4). The
theoretical foundation of this analysis is established, as is its
accuracy for real designs via corroboration from empirical
data. Such an analysis allows us to estimate interconnect
metrics at different degrees of FU minimization to draw more
comprehensive conclusions without needing to perform
S&MS and binding for a large number of benchmarks. 3) An
empirical exploration of the correlation between FU
minimization and interconnect complexity (Sec. 5). 4) Based
on the above analyses, we suggest: a) FU “white-spacing” for
congestion reduction, and b) a balanced (pre-binding)
operation allocation to FUs at any FU optimization degree (i.c.,
for any S&MS algorithm) in order to obtain better
interconnect optimization in the binding stages.

2. An HLS Example and Evaluation Framework

S&MS provides a partial HLS solution for a given data flow
graph (DFG). Since after S&MS, every operation (op) has
been assigned to a particular time slot, we can obtain the
datapath (interconnect structure) by performing FU and
register bindings. Figure 1(b) illustrates a scheduling solution
of the simple DFG in Fig. 1(a) for the MR-LCS problem
(minimize resources/FUs given a latency constraint) with a
latency constraint L of 5 clock cycles (cc’s), where for
simplicity, both adders and a multipliers have a delay of 1 cc.
Also, for simplicity, no module selection is performed (i.e.,
there is only one design for each functional type). The
corresponding FU binding solution is shown in Fig. 1(c). After
performing scheduling and FU binding (S&B), we can easily
determine the interconnects needed among different FUs and
finalize the interconnect design by allocating/binding registers
and muxes/demuxes. The detailed datapath design for the
example S&B solution is shown in Fig. 1(d), where for each
FU input, there is a dedicated register bank (this is also our
assumed configuration in the register binding solutions in our
experimental results). The datapath has a reasonable degree of
interconnect sharing between different parent-child op pairs
(e.g., between op pairs (op1, ops) and (ops, Ops)-

Note that, there are different techniques to bind FUs and
allocate registers like [3], and thereby to also synthesize the
mux/demuxes at each FU port. Since in this paper, we explore
the correlation between the degree of FU-centric optimization
of S&MS and the degree of subsequent interconnect-aware
optimization achieved by FU and register binding, we vary the
techniques for the former to realize varying degrees of FU-
centric optimization, but by necessity (for an apples-to-apples
comparison between these varying degrees of FU-centric
optimization) keep the latter techniques the same. Given the
S&MS solution, the technique we use for FU binding [3] is
optimal for the number of FUs of each type, and within this
solution space, it heuristically minimizes the numbers of
interconnects needed (see Sec. 5-2). The register binding
technique we use [3] is also optimal for the number of
registers, given the FU binding solution. It also determines the
mux/demux sizes, and thus, interconnect congestion at each
FU port. In other words, we use well-known effective
techniques for the latter interconnect-complexity determining

(a) (b)

(0) (d)

Figure 1: (a) An example DFG. (b) Scheduling and (c)

Binding solutions for a latency constraint L = 5 cc’s. (d) The

corresponding datapath design.

phase of HLS, and thus the conclusions we obtain on the

aforementioned correlation should be reliable and general.

In this paper, we evaluate the interconnect complexity of a
given datapath/ design in HLS by the following interconnect-
centric metrics.

1) The number of FU-to-FU interconnects in the datapath,
denoted by n,.

2) Interconnect congestion metrics based on the
complexities/sizes of the steering logic at an FU), which
includes the maximum mux/demux size, denoted by Q,
and the average mux/demux size in the design, denoted
by Q.. Note that each m-to-1 mux (1-to-m demux, where
m > 2) has a tree-structure construction with 2m-1 basic
2-to-1 muxes (1-to-2 demuxes).

Next, we qualitatively discuss multiple correlations
between FU minimization and interconnect complexity.

3. Correlation between FU Minimization and
Interconnect Complexity—A Qualitative Analysis

Let F(S) be the total number of FUs allocated in an S&MS
solution S for a given DFG. We define the average operation
utilization rate our(S) as the average number of ops executed
per FU within the latency period L of S. For a S&MS solution
S with k ops, our(S) is:

k
our(S) = F©) (D

Furthermore, our(S) also represents the degree of interconnect
sharing based on the data dependency in the DFG for the
following reason. Consider two S&MS solutions S; and S, for
the same DFG with & ops. If F(S)) < F(S>), our(S:) > our(S>).
Thus for a set of ops that are executed on the same FU F; in
S1, due to F(S1) < F(S>), the probability of these ops doing data
transfer with a particular FU F; is 1/F(S;) assuming uniform
distribution of ops among FUs of the corresponding function



type (more realistically, since an interconnect-aware binder is
going to cluster ops on an FU A whose children or parents are
in a small subset of FUs with which A has/will have
interconnects—determined dynamically as the binding
process proceeds—the probability will be non-uniform but
still inversely proportional to some monotonically increasing
function g(F(S:)), e.g., a Gaussian probability distribution
with a mean inversely proportional to F(S;)). This is more
than the corresponding probability 1/F(S>) (or 1/g(F(S>))) in
S>. As aresult, two FUs F; and F; with an interconnect between
them has more data transfers on an average than the same
interconnect in S>. Hence, since the total number of data
transfers = number of arcs in the DFG, is the same for both S;
and S, fewer interconnects are needed in S; than in S>.

As far as congestion goes, our(S) also tells us that more ops
are packed in an FU in a solution with fewer FUs. This means
that there is a higher probability that two communications
from A will also have a higher probability of having
functionally dissimilar children ops, leading potentially to a
greater fanout from A. Whether the actual fanout from A
increases or decreases for a solution with a smaller number of
FUs depends on the relative values of the following two
probabilities: (i) probability ps of two communications out of
A with functionally-same child ops, sharing an interconnect
(which increases with fewer FUs in a solution and thus has a
reduction effect on fanout), and (ii) the probability ps of the
communications having functionally dissimilar children
(which also increases with fewer FUs, but has an enlarging
effect on the fanout). A symmetric argument applies to the
fanin of an FU. Thus based on the relative values of the
aforementioned probabilities, the congestion Q and average
congestion O, can either increase or decrease as the number
of FUs used increases for a particular DFG.

4. Correlation between FU Minimization and
Interconnect Complexity—A Probabilistic Analysis

We develop a probabilistic model for the MR-LCS problem
to estimate interconnect-related metrics of an interconnect-
unaware binding process that attempts to bind ops of each
functional type uniformly across all FUs of that type. We
assume interconnect-unaware binding for simplicity, and in
order to capture the main correlation between the number of
FUs implied by an S&MS solution and interconnect metrics.
Our empirical results also show that interconnect-unaware
binding results in only 10 % more interconnects on the
average compared to interconnect-aware binding. Our
analysis should thus also hold, albeit somewhat approximately,
for interconnect-aware binding (see Sec. 5-2).

For a function type a, let the number of ops in the DFG be
ng, with an average out-degree (in-degree) to (from) ops of
function type-f of dg 4 (dfzﬁ).

n . ngp

4

o _ a —

Gar ZF(s) Yr T, @
where n,"x, p 1s the number of type-f ops with inputs from type-
o ops, and ng_ﬁ is the number of type-f ops with outputs to
type-a ops.

Let the number of type-a FUs implied by an S&MS solution
S be F,(S); the average number of ops bound to a type-a FU

is Fn(“s). We use a uniform probability density function; so the
a

probability p that a type-a op is bound to a particular (type-a)
FU is 1/F(S). In future work we will explore other probability
density functions like Gaussian.

The average out-degree (number of output data transfers)
from a type-a FU to type-f FUs is Dy 4:

n
DSy = ——"df 3
a,B Fa(S) ap ( )
The average in-degree (number of input data transfers)
from type-f FUs to a type-a FUs is D g:

Diy= —2_.gi )
RS
Let Pg(m, k, r, p) be the probability that m type-f ops are

bound to exactly k out of » type-f FUs with a base probability
of p of a type-f op for being bound to any FU.
U

Py, k,,p) = CE - () G By 1L,p)

i=1

“Pg(m —i,k—1,k—1,p)) (5)
where CF is “k Choose 7. Note that once set, p is a constant
throughout the recursion. U = min{m-k+1, Vg}, and Vy is the
upper bound on the number of type-f ops that can be bound to
a single type-f FU, and can be estimated as min {(L/((1+¢)-dp),
DF ()}, where: (a) ¢is the fractional fragmentation (we use ¢
= 0.25), dp is the delay of a type-f FU, and L the latency
constraint; (b) DF(f) is a non-empty FU distribution factor (to
guarantee that no FU fills up with too many ops so that some
FUs of that type are empty. It can be formulated as:

DF(B) = mindny — Fy(s) +1, 8L ()
B B ’ FB ( S)

where y is a uniform-distribution deviation factor in the range
[0, 1], and y = 0.25 in our experiments. We first prove the
following fundamental result about the correctness of our
probability analysis before proceeding further (readers may
choose to skip the proof without missing pertinent information
for understanding the subsequent analysis).
Theorem 1: The probability space defined by Pp(m, k, r, p) in
Eqn. 5 is a valid one.
Proof Outline: The first term in Eqn. 5, %{_; C}, - Pg(i, 1,1,p)
corresponds to the probability of allocating i ops to a
designated FU. Since this number varies from 1 to U, this
means that in the 2™ term Pg(m-i, k-1, r-1, p) of Eqn. 5, each
of the remaining (k-1) FUs will have the chance to have the
same number (and same subsets) of ops as the designated FU
does across all possible patterns of ops to FU bindings among
k FUs. Thus the first two terms exhaustively account for all
possible ways of distributing the m ops among all £ FUs (so
that each FU has at least one op bound to it). Also, for each
binding of i ops to the designated FU, the second term
accounts for all ways of distributing the remaining (m-i) ops
among exactly the remaining (k-1) FUs (and hence the 3™
parameter of the 2™ term is also (k-1), as there is no choice
but to use all (k-1) remaining FUs—note also that the choices
of different subsets of k out of » FUs is captured in the C¥
term outside the summation expression, and within the
summation and its two probability terms, we have an exact
subset of k£ FUs to distribute the m ops among.

We illustrate the above arguments with an example. Let m
=5 and k = 3; then, ignoring Vs for simplicity, U = 3. Let us



focus on a specific number of ops, say, 3, to see if Eqn. 5
accounts for patterns of distribution in which each FU can be
bound to 3 ops. The 1% term accounts for 3 ops for the
designated FU, since i ranges from 1 to 3. For i = 1 for the 1%
term, the 2" term is Py(4, 2, 2, p), which recursively is =CZ -
(Z?:l Ci ' Pﬁ (l, 1;1; p) ' P[)’ (4‘ -1 1;1, p))

So now the “second” designated processor in this sub-
expression can be bound to 3 ops, as i again ranges from 1 to
3. Further, again for i = 1 in the recursive term, the 2" term of
the sub-expression is Pg(3, 1, 1, p), which exactly accounts for
binding 3 ops to the 3™ FU (in fact all possible subsets of 3
ops, as the C} = 4 ways of selecting 1 op for the 2" FU also
implies the same number of ways (which is also C} —
analytically, not by coincidence) for selecting the 3-op subsets
for the 3™ FU. These are within the subexpression, in which

within the “outer” Cj, = C3 =5 choices of 1 op for the 1** FU,

and thus within the C2 = C2 patterns of distributing 4 ops
among 2 FUs. Thus the total number of 3-op subsets bound
to the 3" FU that are accounted for in Eqn. 6 is C& - C3 =
C3 = all 3-op subsets among the original set of m = 5 ops. A
similar analysis shows that Eqn. 5 accounts for the distribution
of all possible C3 3-op subsets for the 1* and 2" FUs. Since
3 ops was a generic number we chose, the above analysis
applies to any number i between 1 and U and thus Eqn. 5
accounts for all i-op subsets bound to each of the & processors
without repeating any; it thus does not undercount or
overcount any i-op subset in its distribution/binding to any of
the k FUs. Note also that the definition of Ps(m, k, r, p) is that
exactly & FUs be used for binding the m ops, and no less, and
thus for correctness U can be no more than m-k+1, which is
also taken into consideration. This proves the theorem. 0
Boundary Conditions for Eqn. 5: (a) Pg(m, k, r,p)=11ifm =
0; (b) Ps(m, k, r, p) = 0 if (m > 0 and any of k, r = 0) or (k>
ryor (m<k) or (ceiling(m/k) > Up); (c) Ps(m, 1, 1, p)=p™;
(d) Pg(m, 1, r, p) = Ckp™ = r-p™ if m < Uy, else Pg(m, 1,1, p)
= 0 (this is also obtained from Eqn. 5 and the other boundary
conditions).

The average number of interconnects W, ; (Wé’ﬁ) from

(into) a type-a FU to (from) type-f FUs is:
o

Y
1
0, = Z kP, (Dgﬁ,k, Fo(S) s (5))
k=1 £
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. . 1
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where Y’ = min{Dg g, Fg(S)} and Y' = min{Dy g, F5(S) }.

Furthermore, the average number W(S) of interconnects
corresponding to S&MS solution S is:

OEWWAORT ®
a B

where o = f is allowed. Then, the average max input and
output congestions corresponding to S&MS solution S, Q,(S)
and Qi(S), respectively, are:

o (S) = wp
Qo (5) m;lXEﬁ )
i(8) = w; 9
Q:(S) rngxgﬁ B ©)

Moreover, the average max congestion corresponding to
S&MS solution S is O(S) = max{Q.(S), O«S)}, and the
average congestion of S is Q.u(S) = W(S)/F(S).

5. Experimental Results

5.1 Scheduling Techniques for Obtaining Varying
Degrees of FU Optimization

We obtain empirical correlation results for the MR-LCS
HLS problem for 11 DFGs in [9] by varying the degree of
FU-centric optimization in the initial scheduling stage via
using the following different well-known algorithms ranging
from the seminal/classical and low- to medium quality (LS,
FDS, SA) to the state-of-the-art approximate and high quality
(FALLS) to an optimal formulation with exponential
complexity (ILP): list scheduling (LS) [5], force-directed
scheduling (FDS) [7], a simulated-annealing-based technique
(SA) [8], FALLS [3], and ILP [6]. We note that for keeping
the complexity of our empirical and probabilistic analysis
tractable, we do not perform module selection (e.g., [4]) here,
but believe that the conclusions we derive should hold when
module selection is performed. We obtain a wide range of the
degree of FU-centric optimization by plotting the FU-centric
results (# of FUs, total area of FUs) along with interconnect-
centric metrics (# of interconnects, congestion) of the above
scheduling algorithms followed by a common interconnect-
aware variation (described in Sec. 5-2) of optimal FU-binding
and register-allocation techniques (both using the left-edge
algorithm [2]). All techniques were implemented in C++, and
all runs were performed on an Intel Core i7-4710HQ
processor at 2.5 GHz with 16 GB RAM.

5.2 Interconnect-Aware Binding

After obtaining different scheduling solutions via the
techniques listed above, we use interconnect-aware variations
of the optimal techniques [2] for FU binding and register
allocation to determine interconnect-centric metrics: numbers
of interconnects and congestion. For brevity, we describe here
only the FU binding technique. This is a modified
interconnect-aware left-edge binding technique (Int-LE) for
minimizing the numbers of interconnects without changing
the FU allocation results provided by a scheduling (or S&MS)
solution (i.e., the optimality of the left-edge binding algorithm
[2] for the number of FUs is retained in Int-LE). The core idea
of this technique is to proceed chronologically by cc’s, and in
cc t, among all ops scheduled in ¢, determine the best (op = u,
available FU = F) pair such that F' has the maximum of the
sum of: (1) existing fanin connections from all FUs that the
parent ops of u have been bound to, and (2) existing fanout
connections to all possible FUs that the child ops of u can be
bound to. We then bind this (u, F) pair, and update the
interconnects and mux/demux sizes are of all affected FUs.
The process is repeated to bind the next best operation-FU pair
in cc ¢, and so forth until all such pairs are bound in this cc.
The binding then proceeds to ops scheduled in cc #+1. Thus,
Int-LE achieves the goal of FU-to-FU interconnect
minimization.

5.3 Correlation Evaluation

Table 1 shows the number of allocated FUs, numbers of
interconnects (W), max congestion (Q), average congestion
(QOw), and area results for LS, FDS, SA, FALLS, and 0/1-ILP.



FALLS reduces the total number of allocated FUs by an

average of 14.8% to 49.3% compared to LS, FDS, and SA.

Similar are the results for FU area reduction. FALLS has the

same number of FUs compared to the optimal 0/1-ILP with

a 0.2% optimality gap in FU area.

Figures 2-4 plot W, Q and Q. for the different scheduling
techniques (coupled with the aforementioned Int-LE binder)
and our probabilistic model across 11 DFGs; for the
probabilistic model, the assumed number of FUs for each
DFG is the average of the number of FUs allocated by the
different techniques. As seen in these plots, except for 2 data
points out of 33 (one for Q for DFG inter. in Fig. 3, and one
for Q. for DFG write in Fig. 4), our probabilistic model tracks
the empirical results obtained by the better scheduling
techniques quite accurately (a 94% accuracy rate). Having
established the significant degree of accuracy of our
probabilistic model, we can use its results, that we obtain
across many more number of FU points than given by the
scheduling techniques, to draw reliable conclusions and
guidelines.

Figure 5 plots W and Q. across many FU points (FU
optimization degrees) for the largest DFG mat-inv. It also
includes the plot lines for these metrics obtained from the
scheduling techniques’ results (coupled with the
aforementioned Int-LE binder). As can be seen, the
probabilistic model’s estimates track the empirical results well.
The corresponding plot lines are similar for other DFGs. The
main conclusions that we can reliably draw here are:

(a) The number of interconnects increase as the number of

allocated FUs increase for the same DFG. This also tracks
our qualitative analysis in Sec. 3.

(b) The average congestion decreases as the number of
allocated FUs increase for the same DFG. This shows that
among the two conflicting probabilities ps and p, (see Sec.
3), the fanout-increasing probability ps clearly has the
dominating effect. This also provides the following
design guideline: If congestion and thus routability is a
limiting factor in a design, this can be alleviated by
increasing the number of FUs (FU-based “white-spacing”)
used either globally, for a particular functional type, or in
local regions of the chip wherever the congestion is acute;
this, of course, has to be followed by re-scheduling ops
on all the FUs (a variation of the scheduling algorithms
for the ML-RCS problem—minimizing latency given the
number of FUs as resource constraints—could be used for
this purpose).
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Figure 2: Number of interconnects W for multiple scheduling
techniques followed by Int-LE binding, and our probabilistic
model for 11 DFGs with increasing sizes from left to right.
The solid line is the probabilistic analysis, and the dashed lines

are for different scheduling techniques.

Another relevant phenomenon is seen in the FDS and SA
results in Table 1. Even though the number of FUs allocated
in the two techniques are almost the same (average difference
across DFGs of 3.6%), the difference in their W metric is
significant—about 15%. We believe that the answer to this
conundrum is as follows. Figures 6-7 plot the probabilistic
model’s estimates of W along with the empirical W results of
FDS (Fig. 6) and SA (Fig. 7). In these plots, the numbers of
FUs for each DFG assumed for the probabilistic model’s
estimates are those that are allocated by the corresponding
scheduling technique. While the analytical results track the
empirical ones from both SA and FDS, it is closer to the FDS
results. The reason for this is that the probabilistic model
assumes a uniform distribution in the binding of ops to FUs
(of the same functionality), which leads to a well-balanced ops
occupancy across all FUs of the same functionality. FDS’s
main goal is to balance the number of ops executing in each
cc in order to minimize the maximum number of FUs
executing in any cc, and thereby to minimize the number of
FUs. This temporal balance can be shown to translate to a
spatial balance (i.e., in the number of ops bound to the FUs of
the same functionality). This explains the closer accuracy of
our probabilistic analysis in estimating W for FDS than for SA,
even though the numbers of FUs allocated in each technique
are similar. Thus the significant difference in interconnect
complexity between FDS and SA is most probably due to
spatial balance in FDS and some lack thereof in SA, which
does not have this goal. This leads to our final
conclusion/guideline:

(c) For any number of FUs allocated for a DFG (i.e., at any
FU optimization degree), a balanced ops to FU
distribution, will generally provide a reduced number of
interconnects compared to a relatively unbalanced
distribution.
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Figure 3: Max congestion Q for multiple scheduling
techniques followed by Int-LE binding, and our probabilistic
model for 11 DFGs.

Figure 4: Average congestion Q, for multiple scheduling
techniques followed by Int-LE binding, and our probabilistic
model for 11 DFGs.



6. Conclusions

In this paper, we explored the correlation between the
degree of FU minimization (achieved via multiple scheduling
techniques) and some important interconnect-centric metrics
for the MR-LCS HLS problem. We also developed a
probabilistic model to estimate these interconnect metrics that
is quite accurate for the better performing scheduling
techniques. The empirical and analytical (probabilistic model)
results support our qualitative analysis for the expected
correlation: the number of interconnects W will decrease for
the most part with increased degree of FU-centric
optimization, but the average congestion Q. will increase.
Furthermore, based on both empirical and analytical results,
we propose what we hope are useful guidelines to designers
to improve W, Q, and Q.. for any scheduling and binding
technique.
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Figure 5: Interconnect metrics for DFG mat-inv versus
different numbers of allocated FUs for different scheduling
techniques followed by Int-LE binding, and a range of
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Figure 6: Number of interconnects W for FDS plus Int-LE
binding, and our probabilistic model for 11 DFGs.

160
140
120
100
80
60
10

# of Interconnects

20

g e

hal  horner arf motion ewf feedb. write inter. matmul smoothmat-inv

——SA Prob.Anal
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binding, and our probabilistic model for 11 DFGs.
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Table 1: Average number of FUs (# of FUs), number of interconnects (W), max congestion (Q), average congestion (Qay), and
area results across different scheduling techniques coupled with the int-LE binder.

Size LS FDS SA ILP FALLS

DFG (]:\2:}9 ’ #;_‘[):f W Q | Qav |Area #;_‘[):f W Q | Qav |Area ﬁ;;f W Q | Qav | Area ﬁ;}: W Q | Qav | Area #;_‘Er w Q | Qav |Area
hal 11. 8 5 6 2 0.6 | 394 5 6 2 0.6 | 394 5 6 2 0.6 | 394 5 6 2 0.6 | 394 5 6 2 0.6 | 394
horner | 18,16 5 7 3 0.7 | 394 3 7 2 1.2 | 238 3 6 2 1.0 | 238 3 6 2 1.0 | 238 3 6 2 1.0 | 238
arf 28,30 7 17 6 12 | 559 5 11 5 11 | 394 5 11 5 1.1 | 394 5 10 5 10 | 394 5 10 5 10 | 394
motion | 32 29 9 18 6 10 | 715 8 12 4 0.8 | 633 8 11 4 0.7 | 633 6 9 4 08 | 477 6 9 4 0.8 | 477
ewf 34,47 4 9 4 11 | 312 5 9 3 09 | 394 4 9 4 11 | 312 4 9 3 0.8 | 312 4 6 3 1.1 | 312
feedb. 53,50 13 34 15 13 |1008] 9 17 7 09 | 697 8 22 7 14 | 623 7 22 6 12 | 550 7 17 7 16 | 550
write 106.88 | 16 66 14 | 2.1 |1237| ¢ 30 9 1.7 | 697 9 30 9 1.7 | 697 g 23 g 14 | 614 g 23 10 14 | 614
inter. | 108,104| 26 39 16 1.1 |2035] 14 38 10 14 |10901] 14 42 10 | 1.5 [1247] 12 30 9 13 [ 935] 12 31 9 1.3 | 935
matmul | 109, 116 27 67 16 12 )2090] 13 31 g 12 |1018] 14 42 11 1.5 |1100] 12 34 8 14 |94 ] 12 33 9 14 | 944
smooth | 197, 196| 45 | 136 | 14 1.5 |3567] 18 65 12 1.8 |1736] 21 87 13 | 2.1 [1632] 16 57 14 1.9 [1247] 16 62 14 1.8 [ 1247
mat-inv | 333,354 48 | 145 | 20 1.5 |3768] 33 | 119 | 19 1.8 |2576] 35 | 133 | 15 [ 1.9 2750 26 | 118 | 18 | 23 |2059] 26 [ 122 | 17 | 23 |2044
Avg (923,997 186 | 513 | 105 | 12 [1462]| 111 | 314 74 | 1.2 | 897 | 115|363 | 75 | 1.3 [ 911 | 95 |2945| 72 | 12 | 742 | 95 (295 75 | 13 | 41
FALLS % Improv. |19.3%[42 4%|29 3%)| -5.9%|49 3%]| 14.8%)| 5.8% | -1.2%|-6.9%|17.4%|17.5%|18.5%)| 0.0% | 2.2% |18.7%| 0.0% [ -0.3% 3.8%|-3.6%)| 0.2% ] 0.0% | 0.0% | 0.0% | 0.0% | 0.0%
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