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The fossil record represents the world's largest historical dataset of biodiversity.
However, the biomechanical and ecological potential of this dataset has been
restricted by various unique barriers obstructing experimental study. Fossils are
often partial, modified by taphonomy, or lacking modern analogs. In the past,
these barriers confined many studies to descriptive and observational
techniques. Fortunately, advances in computer modeling, virtual simulations,
model fabrication, and physical experimentation now allow ancient organisms
and their biomechanics to be studied like never before using “Defossilized
Organismal Proxies” (DOPs). Although DOPs are forging new approaches
integrating ecology, evolutionary biology, and bioinspired engineering, their
application has yet to be identified as a unique, independent methodological
approach. We believe that techniques involving DOPs will continue
revolutionizing paleontology and how other related fields interact with and
draw insights from life’s evolutionary history. As the field of paleontology moves
forward, identifying the framework for this novel methodological development
is essential to establishing best practices that maximize the scientific impact of
DOP-based experiments. In this perspective, we reflect on current literature
innovating the field using DOPs and establish a workflow explaining the
processes of model formulation, construction, and validation. Furthermore,
we present the application of DOP-based techniques for non-specialists and
specialists alike. Accelerating technological advances and experimental
approaches present a host of new opportunities to study extinct organisms.
This expanding frontier of paleontological research will provide a more holistic
view of ecology, evolution, and natural selection by breathing new life into the
fossil record.

KEYWORDS

functional morphology, experimental paleontology, biomechanics, 3D printing,
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Introduction

Organisms have adapted to constantly changing
environments throughout the earth’s history. These changes
are documented in the fossil record, providing a critical deep-
time context for the evolution and structure of modern
ecosystems and organisms. Beyond paleontology, fossils give
macroevolutionary context to interrelated fields like biology,
ecology, and bioinspired engineering (Takita et al, 2003;
Roberts et al., 2011; Fukuoka and Akama, 2014; Park et al.,
2014). Yet distinct challenges are associated with studying the
functional morphology of organisms whose behavior cannot be
directly observed. Paleontologists have continuously developed
new techniques to explore past life at a level that more closely
matches our understanding of modern organisms. Early studies
prioritized describing novel, extinct organisms and constructing
their evolutionary framework (e.g., Cope, 1878; Sherwood
Romer, 1968) using environmental information and modern
analogs to generate ecological hypotheses. Later, functional
morphologists analyzed the potential function of fossil
morphologies. As the number of described fossil taxa and
individuals increased, investigators created quantitative
approaches to study evolution, extinction, and ecological
trends through morphological change (Parrington and
Parrington, 1977; Holmes, 1989; Vermeij, 1993; Hutchinson
and Garcia, 2002). Today, the study of form and function is
transforming again, as computational defossilization creates new
means to study organisms previously rendered static by
We  define

defossilization as the process of resurrecting fossils as virtual

fossilization ~ experimentally. computational
and/or physical proxies of once-living organisms” morphologies.
We refer to these virtual and physical models as Defossilized
Organismal Proxies (DOPs). Rapidly developing 3D printing and
computational modeling technologies have helped DOPs
flourish, bringing investigators closer than ever to subjecting
the morphologies of extinct organisms to biomechanical tests
akin to those conducted on extant organisms (Johnson and
2019; Pandolfi et 2020). as the

experimental design using DOPs is rooted in techniques from

Carter, al., However,
fields in which, classically, many paleontologists do not have

foundational training, paleontologists must apply these
technologies meaningfully by ensuring an understanding of
experimental inputs, assumptions, and limitations.

We, the authors, have broad interests in using the process of
computational defossilization for biomechanical experiments,
primarily applying these techniques to physical experiments
regarding functional morphology and its implications for
macroevolution and paleoecology. While individually, we
focus on disparate topics and taxa, we have identified
fundamental commonalities in our experimental goals and
approaches. Going forward, we anticipate that paleontology
will emphasize a broadened understanding of how form and

function are related to interactions between organisms (e.g.,
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predator-prey interactions) and across complex anatomical
systems of single organisms (e.g., interactions between the
spine and limbs during locomotion). Analyzing such
biomechanical interactions will require physical models that
can accommodate complex morphologies and the chaotic
circumstances of real-world environments. In this perspective,
we synthesize a generalized experimental workflow, highlight
methodological limitations, and suggest best practices to make
DOP-based

meaningful in a broader evolutionary context. Lastly, we

biomechanical experiments repeatable and
discuss future directions for the field to develop the skills
needed for increasingly interdisciplinary experimentation for

macroevolutionary research using DOPs.

Experimental design

The first step in designing a DOP-based experiment is
identifying an ecological or evolutionary hypothesis that
would benefit from empirical testing. Often, these are long-
standing hypotheses from the literature that propose drivers
the
adaptations. However, investigators must first strategically

of macroevolution or function of morphological
narrow the vast scale of macroevolutionary hypotheses to
questions with scopes that can be addressed empirically
(Table 1). The resulting empirical scope often targets aspects
of morphology that can be isolated. While the technology to
create DOPs has existed for many years (Cunningham et al.,
2014; Pandolfi et al,, 2020), many researchers within the field
adopted defossilization in

have not vyet computational

combination  with physical experiments to establish
fundamental, empirical relationships between form and
function (i.e., first-order approximations of functional

morphology). Investigators can subsequently incorporate new
levels of complexity to systematically probe models increasingly
similar to taxa of interest (Figure 1).

The limitations of taphonomy and taxonomy for a chosen
fossil group dictate the morphological assumptions needed to
create a DOP, thus, informing whether virtual models are
sufficient or if physical models are required. Investigators
must  consider  taphonomic  variation

across taxa,

morphologies, fossil completeness, levels of taxonomic
identification, and sampling frequency (Tarver et al, 2007;
Starrfelt and Liow, 2016). These limitations influence the level
of abstraction needed for a DOP, affecting whether a DOP is
intended to demonstrate strict mimicry or some level of
inspiration from fossils. For example, in cases of exceptional
preservation of morphology, direct mimicry from a specimen
may be more achievable (Perricone et al., 2022). In contrast,
fossils that exhibit greater taphonomic distortion require a larger
level of abstraction to fill morphological gaps. Investigators,
therefore, may instead aim to create a DOP inspired to probe

unique morphological features that unite a taxon in its
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TABLE 1 Examples of macroevolutionary hypotheses and topics that have been addressed using DOPs. Each topic must be narrowed to an
appropriate scope for an experimental question before a VDOP or PDOP can be used.

Evolutionary hypothesis or
topic

There may exist tradeoffs between the ability to escape
predators and having a stronger shell based on shape

Ammonoid septa became more complex over time due to
predation pressures

There is a wide variation in durophagous dentition, and
some tooth forms break shells more effectively than
others

The land to flight transition in Maniraptora did not

require an intervening gliding transition phase flapping?

Advanced terrestrial locomotion historically has been
restricted to stem-amnniotes

Therpod dinosaurs may have used their tails to stabilize
in jumping maneuvers

The function of long necks of plesiosaurs is unclear
(plesiosaur)?

Hydrostatic stability versus maneuverability in
cephalopods

Investigating a physiological function for fractal-like

septa potential?

Investigating how hydrostatic stability constrains mode

of life vertical orientations?

biomechanical applications. We will expand upon these concepts
in the following sections.

Model construction and
experimentation

The goal of a DOP is to represent the living animal and/or the
critical parts of its morphology for experimentation. Sometimes
this requires reconstruction and/or retrodeformation while a
DOP is virtual (VDOP) (Srivastava and Shah, 2006; Molnar
et al.,, 2012; Tallman et al., 2014; Johnson et al., 2017; Pohle and
Klug, 2018; Schlager et al., 2018). Investigators can mitigate
taphonomic distortion by assuming symmetry to complete a
partial specimen (Schlager et al., 2018), using modern analogs as
guides (Molnar et al., 2012; Tallman et al, 2014), forming
composites from multiple individuals (Ibrahim et al., 2014;
Peterman et al, 2020b), or reconstructing morphologies
mathematically (Raup, 1967; Peterman et al., 2020a; Peterman
et al., 2020c; Moron Alfonso et al., 2020; Chirat et al., 2021).

Mathematical reconstruction is uniquely valuable for
creating theoretical morphologies that “simplify” characters
and isolate morphological variables of interest (Johnson,
2020).
increasingly complex models, modifying a few morphological

These models can serve as a foundation for

characters at a time. In addition to avoiding taphonomic
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Experimental question

Do shell shapes which permit escape sustain lower peak loads
than those which do not permit escape?

When all other parameters are equal (shell size, whorl shape,
thickness, etc.) do complex septa sustain higher peak loads
than less complex septa?

Which tooth shapes require the least load to induce breakage?
Could oscillation frequencies in Caudipteryx cause wing
What was the walking gait of Orobates pabsti?

How does the presence of a stiff tail affect stability in agama
lizards and a small robot?
What is the range of motion in Nichollssaura borealis
Are hydrostatically unstable morphotypes capable of
modifying their orientation in the water column?

Do more complex ammonoid septa have higher capillary

Were orthocone cephalopods capable of assuming non-

03

VDOP or  References

PDOP

PDOP Johnson (2020)

PDOP Johnson et al. (2021)
PDOP Crofts and Summers, (2014)
VDOP & Talori et al. (2019)
PDOP

VDOP & Nyakatura et al. (2019)
PDOP

PDOP Libby et al. (2012)
VDOP Nagesan, et al. (2018)
VDOP & Peterman and Ritterbush
PDOP (2022)

VDOP & Peterman et al. (2021)
PDOP

VDOP & Peterman et al. (2019b);
PDOP Peterman and Ritterbush

(2021)

distortion altogether, theoretical morphologies help compare
the form and function of non-existent morphologies to
realized (extant and extinct) morphologies (Hebdon et al,
2020b; Johnson, 2020). Testing non-existent morphologies can
reveal evolutionary, functional, and sometimes developmental
constraints on ancient and extant forms (Raup, 1966). In any
case, one must recognize that all abstractions (e.g., morphology,
biological material properties, size) made to create a DOP for
likely results.

retrodeformation  and

biomechanical experiments will influence

Therefore, choices made in
reconstruction must be clearly outlined in publications so that
future investigators may make meaningful comparisons to their
work and understand precisely how virtual components were
constructed (mesh size, density, smoothing, etc.) so that they may
replicate methods.

There are many determining factors for choosing to use a
VDOP, a PDOP, or both. Experiments on VDOPs can often be
cost-effective as many iterations of an experiment may be run
while changing single parameters (e.g., kinematic studies, multi-
body dynamic analysis, computational fluid dynamics) (Sellers
et al.,, 2009; Hebdon et al., 2020b; Jones et al., 2021). Virtual
experiments are also valuable tests of expected outcomes for
further physical experiments or settings that are not feasible for a
physical laboratory setting (e.g., those which require extremely
large spaces or amounts of materials) (Diez Diaz et al., 2020). For

example, investigators have performed hydrostatic simulations to
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Workflow for macroevolutionary experiments using DOPS
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FIGURE 1

Generalized workflow for using DOPs to study macroevolutionary hypotheses showing steps to experimental design, model construction,
experimentation, validation, and application of results. The workflow is iterative by design, allowing for models and experiments to be refined as new

results are generated.

determine the buoyancy and mass distributions of organisms
submerged in water (Peterman et al, 2019a). Others have
performed computational fluid dynamics (CFD) simulations
on similar models to determine aero- and hydrodynamic drag,
lift, and movement capabilities (Rahman, 2017; Hebdon et al,,
2020a; Hebdon et al., 2020b). VDOPs have also been used to
study structural resistance to mechanical stress (Lemanis et al,,
2016; Lemanis and Zlotnikov, 2018; Lemanis, 2020), bite force
(Rayfield, 2007; Walmsley et al., 2013; Cox et al., 2015), and other
properties with various finite element analysis (FEA) utilities
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(Bright, 2014). Additionally, the mechanics of movement have
been derived from VDOPs (Snively et al., 2013; Nyakatura et al.,
2015; Sellers et al., 2017; Bishop et al., 2018; Bishop et al., 2021).

However, virtual analyses remain computationally limited
in several important areas of biomechanical study, including
modeling fracture, material properties of soft tissues, ground
reaction forces, and the mechanics of locomotion on soft
substrates. Additionally, the properties of many biological
materials are still unknown, requiring investigators to
assume similarity to taxa whose material properties are
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known (which may significantly change results). Since virtual

studies are highly dependent on chosen inputs and
assumptions, it is crucial that investigators clearly state
these choices in their methods. While methodological
transparency may seem like an obvious scientific caveat, it
is of particular importance for paleontological studies, which
often draw conclusions from relative comparisons rather than
the absolute magnitudes of simulated results to account for
necessary estimations (e.g., bulk material properties) (Tseng
et al.,, 2011).

Finally, it is imperative to thoroughly explain virtual
behind

prefabricated programs can lead to mistakes in choosing

methodologies because not knowing what lies
inputs or interpreting results. It is also essential to understand
how researchers in other fields use tools that paleontologists have
adopted (e.g., FEA, MBDA from engineering). For example,
finite element methods have become common practice as
complete paleontological studies examining the morphologies
of ancient organisms. However, in our experience in engineering
labs, virtual or mathematical models are often a first step used to
approximate the outcome of a physical model, which researchers
will build subsequently. The virtual model does not stand alone;
instead, it serves to help the investigator detect areas of weakness
in their design, anticipate possible outcomes, and troubleshoot
and validate ideas that researchers will put into practice
physically. Thus, we suggest that using physical DOPs
(PDOPs) creates a valuable complement and point of
validation for existing VDOPs.

Experiments with PDOPs incorporate real-world variability
unaccounted for in virtual settings. Recent advances in the
fabrication of physical models, most notably 3D printing, have
created direct conversions of virtual models to physical ones
(Long et al.,, 2006; Mcinroe et al., 2016; Talori et al., 2018;
Johnson and Carter, 2019; Nyakatura et al., 2019; Talori et al,,
2019; Ibrahim et al., 2020; Johnson et al., 2021). Now, in
addition to performing experiments on casts or physical
approximations of specimens (Chamberlain, 1976; Jacobs,
1992; Schulp, 2005; Whitenack and Herbert, 2015), more
intricate morphologies can be created at high levels of
detailed spanning
reconstruction (Nyakatura et al., 2019; Ibrahim et al., 2020),
compression experiments (Johnson, 2020; Johnson et al., 2021),

combinations for uses robotic  gait

hydrostatic balancing (Peterman et al., 2020d) and dynamic
fluid flow experiments (Peterman and Ritterbush, 2021). These
experiments may not always reflect absolute physical properties
or behaviors; however, they provide valuable insight from
of different
morphologies using materials with similar bulk properties

relative  comparisons results  between
(Johnson et al., 2021). Even the most fundamental syn vivo
capabilities have not yet been determined for many extinct
organisms, especially those lacking clear modern analogs.

Again, this illustrates the importance of defining an
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DOP-based
meaningful interpretation and validation.

appropriate  scope for experiments  for

Validation

The inherent challenges of working with fossils necessitate
methods to confirm that experimental design accurately captures
modeled behavior and does not reflect experimental conditions
alone. DOPs can be validated in multiple ways:

1) Researchers can conduct sensitivity analyses during the
experimental design process. Sensitivity analysis entails
systematically changing parameters to determine effects on
results (Tseng et al.,, 2011; Bijlert et al., 2021; Bishop et al,,
2021) and demonstrate methodological constraints. Such
tests are often used to validate VDOP studies and to tune
parameters over many iterations. In contrast, PDOP studies
often require a priori decisions, which may affect sensitive
parameters.

2) Once an experiment is complete, one can demonstrate that
an experimental design produces results within a range
generated using extant taxa with similar material

properties, morphologies, or behaviors (Sellers et al.,

2009; Pierce et al., 2012; Nagesan et al., 2018; Talori

et al., 2019; Ibrahim et al., 2020). However, there are

biases in this approach: similar structures may not be
environmentally homologous when
their

context (Pierce et al, 2013). Some paleontologists can

functionally or

organisms are considered in paleoecological
alleviate this by using recently-extinct taxa or taxa with
living descendants (Dzemski and Christian, 2007). In cases
without relevant modern analogs, validation can be
conducted using different taxa from various phylogenetic
backgrounds. The farther apart the modern taxa are
phylogenetically, the less likely a method will capture
data present due to homoplasy alone. Given these
constraints, many investigators also benefit from cross-
methodological validation.

3) Comparing VDOPs and PDOPs can ground a virtual model
in real-world conditions (Nyakatura et al., 2019; Ijspeert,
2020). Using VDOPs and PDOPs in conjunction reduces
the chance that experimental design choices dominate results.
PDOPs help constrain and assess the real-world plausibility of
a simulation using a VDOP. For example, cross-method
validation has been used in reconstructing walking gaits in
a stem-amniote and flapping motion in an early bird
(Nyakatura et al., 2019; Talori et al, 2019). A VDOP
model predicted accepted results, and physical experiments
validated virtual results in both cases. VDOPs and PDOPs
have also been used in concert to investigate liquid retention
in extinct cephalopods (Peterman et al., 2021).
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Experiments using DOPs are frequently interdisciplinary,
generating results that investigators can apply across ecology,
evolution, engineering, paleontology, and other fields in
1) Collecting data
investigators to assess the potential function of morphology

several ways: empirical allows
and hypothesize about its adaptive value, if any, exists. For
example, DOPs can be used to evaluate morphological
tradeoffs like

locomotion or

roles, defense and
2020)

(Peterman

between different
and
2022).
are also valuable to

(Johnson, stability

maneuverability and  Ritterbush,

Functional experimental studies
modern animal behaviorists interested in evolutionary
processes governing behaviors (Hsiech and Plotnick, 2020).
Understanding the behaviors of extinct organisms also
expands the range of taxa that can be used for bioinspired
design in engineering (Perricone et al., 2022; Tamborini,
2022). 2) DOP-based studies are useful for refining existing
deep-time  eco-evolutionary

hypotheses  previously

understood primarily from description. Incorporating
empirical data sharpens our understanding of existing
macroevolutionary hypotheses. 3) Finally, the results of
experiments using DOPs are highly informative for future
experimental design. DOPs aid in establishing fundamental,
first-order approximations of form and function. Thus, DOP-
based experiments create a foundation for future work that
can incorporate new levels of complexity once a framework
has been developed. These more detailed models will further
aid macroevolutionary studies that contextualize how past life
was influenced by changing environmental and ecological
conditions. Understanding long-term evolutionary patterns,
in turn, informs the advancement of studies of modern life
and ecosystems.

Future directions and synthesis

In this perspective, we have discussed a generalized
workflow for the effective use of DOPs in paleontology
studies. For the first time, we can understand extinct taxa
with the same rigor as their extant counterparts. This new
scientific horizon will revolutionize how the fossil record is
utilized across many fields. As paleobiology embarks on this
journey, it is essential to consider how to approach this
venture meaningfully.

Recently, there has been increasing emphasis on the
applications of the fossil record for paleomimetics and
paleo-bioinspired  design. Mimetic approaches are
appropriate for species-specific questions (i.e., Nyakatura
et al., 2019; Perricone et al., 2022). However, for questions
encompassing generalized forms relevant to multiple taxa
(e.g., macroevolutionary inquiry aligned), abstracted models
using paleo-bioinspiration (McInroe et al., 2016) are more

valuable. Abstracted models can incorporate parameters
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tuned to match a host of animals (i.e., a test bed). As
paleontology is further integrated into studies in related
fields like robotics and engineering, investigators should
carefully consider the significant differences between these
approaches and ensure that their choices match their
questions. Furthermore, it is essential to correctly interpret
the results from either type of model and ensure other fields
understand the evolutionary context of the results from any
DOP-based study.

While related fields are becoming increasingly aware of
the value of understanding the history of past life,
macroevolution often remains misused as a means to
the
example, the previously common misconception that

support development of bioinspired work. For
modern animals are the result of many iterations of failure
and improvement in morphology over geologic time
(i.e., evolution is an optimizing process) has mainly been
mitigated (Flammang, B.E., 2022). However, it remains
challenging to interpret a DOP-based result without a
robust paleontological background to understand a taxon
within its geologic framework (time, environment, ecological
composition). The biotic and abiotic conditions that lead to
the evolution of extant taxa have changed over time (e.g.,
environments change, predators are introduced, and gene
duplication events occur). Extinct animals were sufficient for
life during their given time periods. While scientists have the
power of retrospection, evolution does not. Without
understanding the broader evolutionary and geologic
context for functional morphology, investigators in other
fields may employ tests that do not capture their aims or
misinterpret paleontological trends.

Lastly, as paleontologists continue to embrace rapidly
developing technologies, we must ensure our scientists are
trained to utilize these advancements to their full potential.
Paleontologists are traditionally heavily trained in geology
and biology; however, it is becoming increasingly apparent
that having training in areas like engineering, manufacturing,
and mathematics enables a host of new PDOP-based
experiments. Not only are those skills practical within the
field, but also being trained in these areas also has the
potential to attract and retain more diverse paleontologists
from a wide range of backgrounds and interests. By utilizing
skills from other fields and drawing members from these
fields, paleontology can recruit and retain more diverse
scientists (which has been a historical challenge (Carter,
et al., 2022)). Paleontology has always had one foot in the
past and one foot in the present. However, with modern
technologies and DOP-based approaches, we can now make
good on the adage: “What’s past is prologue” and take a step
into the future. It will require reassessing our model types and
changing how we teach our students, but this is doable for a
field that has taken on the challenge of investigating life from
its beginning.
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