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AbstractÐ When robots operate in real-world off-road envi-
ronments with unstructured terrains, the ability to adapt their
navigational policy is critical for effective and safe navigation.
However, off-road terrains introduce several challenges to robot
navigation, including dynamic obstacles and terrain uncertainty,
leading to inefficient traversal or navigation failures. To address
these challenges, we introduce a novel approach for adaptation by
negotiation that enables a ground robot to adjust its navigational
behaviors through a negotiation process. Our approach first
learns prediction models for various navigational policies to
function as a terrain-aware joint local controller and planner.
Then, through a new negotiation process, our approach learns
from various policies’ interactions with the environment to agree
on the optimal combination of policies in an online fashion to
adapt robot navigation to unstructured off-road terrains on the
fly. Additionally, we implement a new optimization algorithm
that offers the optimal solution for robot negotiation in real-
time during execution. Experimental results have validated
that our method for adaptation by negotiation outperforms
previous methods for robot navigation, especially over unseen
and uncertain dynamic terrains.

I. INTRODUCTION

In recent years, autonomous mobile robots have been

increasingly deployed in off-road field environments to carry

out tasks related to disaster response, infrastructure inspection,

and subterranean and planetary exploration [1], [2], [3]. When

operating in such environments, mobile robots encounter

dynamic, unstructured terrains that offer a wide variety of

challenges (as seen in Fig. 1), including dynamic obstacles and

varying terrain characteristics like slope and softness. In these

environments, terrain adaptation is an essential capability that

allows ground robots to perform successful maneuvers by

adjusting their navigational behaviors to best traverse the

changing unstructured off-road terrain characteristics [4], [5].

Given its importance, the problem of robot adaptation over

unstructured terrains has been extensively investigated in

recent years. In general, terrain adaptation has been addressed

using three broad categories of methods. The first category,

classic control-based methods, use mathematical tools from

control theory [6], [7], [8] to design robot models that

achieve the desired robot behavior and perform robust ground

maneuvers in various environments. The second category,
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Fig. 1. Robots operating in dynamic, unstructured environments often
generate sub-optimal behaviors leading to inefficient robot traversal or even
navigation failure. For example, robots may consider tall grass terrain as an
obstacle. Terrain negotiation allows robots to explore different navigation
policies to determine the optimal combination for successful and efficient
navigation in unknown terrains. In this example, the robot initially treats tall
grass as an obstacle but simultaneously explores a max speed policy. The
robot then quickly observes that the max speed policy improves efficiency
by traversing across tall grass, and thus, learns to give more importance to
the max speed policy compared to obstacle avoidance.

learning-based methods, use data-driven formulations to either

imitate an expert demonstrator [5], [9], [10], learn from trial-

and-error in a reinforcement learning setting [11], [12], [13],

or use online learning to continuously learn and adapt in

an environment [14], [15], [16]. Finally, the third category,

machine-learning-based control, exploits the advantage of

integrating machine learning into control theory to learn

accurate robot dynamics and accordingly adapt navigational

behaviors [17], [18], [19].

However, unstructured terrains often have dynamic ob-

stacles that change their state as the robot traverses over

them, such as tall grass. Additionally, these terrains can

occlude future obstacles and ground cover, leading to traversal

uncertainty (e.g., grass occluding a rock as seen in Fig. 1).

These challenges can also be observed in commonly traversed

unstructured environments such as sand, snow, mud, and forest

terrains. As characteristics of such terrains cannot be modeled

beforehand, robots cannot be trained for all possible terrain

variations and must therefore adapt as these variations are

encountered. Existing methods for robot navigation generally

lack robustness to address these challenges as they are

designed as a local controller to execute a single robot

navigation policy, causing inefficient (e.g., longer traversal

time and distance) or even failed navigation. In addition,



current methods such as [9], [10] require significant amounts

of training data to learn optimal navigational behaviors. The

challenge of quickly learning a joint local controller and

planner to enable adaptive behaviors has not been addressed.

In this paper, we introduce our novel approach to robot

navigation: Negotiation for Adaptation to Unstructured

Terrain Surfaces (NAUTS). Instead of generating terrain-

aware behaviors for only the current time steps, NAUTS

learns a non-linear prediction model to estimate future robot

behaviors and states for several different policies. Each policy

represents a series of navigational behaviors that can be

learned either using imitation learning [5] or self-supervised

learning [10] according to a specific goal (e.g., obstacle

avoidance, maximum speed, etc.). NAUTS then learns from

the continuous interaction of these different policies with

the terrain to generate optimal behaviors for successful and

efficient navigation. We define negotiation as the process of

learning robot navigation behaviors from online interactions

between a library of policies with the terrain in order to agree

on an optimal combination of these policies. The learning of

both the non-linear prediction models and policy negotiation

are integrated into a unified mathematical formulation under

a regularized optimization paradigm.

There are three main contributions of this paper:

• We introduce a novel non-linear prediction model to

estimate goal-driven future robot behaviors and states

according to various navigational policies and address

the challenge of learning a terrain-aware joint local

controller and planner.

• We propose one of the first formulations on negotiation

for robot adaptation under a regularized optimization

framework. Our approach allows a robot to continuously

form agreements between various navigational policies

and optimally combines them to i) improve the efficiency

of navigation in known environments and ii) learn new

navigation policies quickly in unknown and uncertain

environments.

• We design a new optimization algorithm that allows for

fast, real-time convergence to execute robot negotiation

during deployment.

As an experimental contribution, we provide a compre-

hensive performance evaluation of learning-based navigation

methods over challenging dynamic unstructured terrains.

II. RELATED WORK

The related research in robot terrain adaptation can be

classified under methods based on classical control theory,

learning-based, and machine-learning-based control.

The methods developed under the classical control theory

use pre-defined models to generate robust navigational behav-

iors and reach the desired goal position in an outdoor field en-

vironment. Earlier methods used a fuzzy logic implementation

to perform navigation [20], [21], without using the knowledge

of a robot’s dynamics. This led to the development of system

identification [22], where methods learn robot dynamics using

transfer functions to model linear robotic systems and perform

navigation [23], [24]. More recently, trajectory optimization

models such as differential dynamic programming (DDP),

specifically iterative linear quadratic regulator (iLQR), used

knowledge of non-linear robot dynamics to solve navigation

tasks [25], [26]. Model predictive control (MPC) learns to be

robust to robot model errors and terrain noise by implementing

a closed-loop feedback system during terrain navigation [27],

[28], [29]. However, these methods can approximate robot

dynamics to a limited extent as these methods cannot learn

from high-dimensional robot data and lack the ability to adapt

as terrain changes.

Learning-based methods use data-driven formulations to

generate navigational behaviors in various environments. Early

methods used Koopman operator theory [30] to model non-

linear robot systems using an infinite-dimensional robot

observable space [31], [32] to perform terrain navigation.

Subsequent learning-based methods mainly used learning

from demonstration (LfD) [33] to transfer human expertise

of robot driving to mobile robots [9], [34]. One method to

perform terrain-aware navigation combined representation

learning for terrain classification with apprenticeship learning

to perform terrain adaptation [5]. Kahn and Levine [10]

learned navigational affordance from experts over various

terrains for carrying out off-road navigation. Recently, consis-

tent behavior generation was achieved [35] to match actuation

behaviors with a robot’s expected behaviors. Unlike learning

from demonstration, reinforcement learning based methods

learn purely from a robot’s own experience in an unknown

environment in a trial-and-error fashion [11], [12]. Rapid

motor adaptation was achieved by updating learned policies

via inferring key environmental parameters to successfully

adapt in various terrains [13]. Life-long learning methods,

similar to reinforcement learning, sequentially improve the

performance of robot navigation by continuously optimizing

learned models [16], [36]. Rather than just learning a robot

model, learning-based methods also learn robot interactions

with the terrain, thus being terrain-aware. However, these

methods fail in unstructured environments [37] as they cannot

adapt on the fly with the terrain or exhibit catastrophic

forgetting [38], which is the tendency to forget previously

learned data upon learning from new data.

Machine-learning-based control methods learn robot behav-

iors by combining data-driven formulations into predefined

robot models [39], [40]. Early methods used Dynamics Mode

Decomposition (DMD) [41] and Sparse Identification of Non-

Linear Dynamics (SINDy) [42] to learn data-driven models

based on system identification and performed terrain naviga-

tion [43], [44]. Later, evolutionary algorithms were developed

to optimize parameters of a robot model in an online learning

fashion for robust navigation [45], [46]. For robots with

multiple degrees of freedom, methods were developed that

use a combination of iterative Linear Quadratic Regulators

(iLQR) and machine learning search to explore multiple robot

configurations and plan self-adaptive navigation [47]. Similar

approaches were designed using a neural network based

functional approximator to learn a robot dynamics model

and adapt this model with online learning [48]. Robust path

planning was performed for safe navigation of autonomous



Fig. 2. Overview of our proposed NAUTS approach for robot negotiation to adapt over unstructured terrains. Illustrated is the learning performed by our
approach during the training phase. The module in the yellow box illustrates robot negotiation during the execution stage.

vehicles under perception uncertainty [49]. However, these

methods do not address adaptation to previously unseen,

unstructured terrains, and are unable to address the dynamic

nature of the terrain, which often leads to ineffective terrain

traversal.

III. APPROACH

In this section, we discuss our proposed method, NAUTS,

for robot traversal adaptation by negotiation. An overview of

the approach is illustrated in Fig. 2.

A. Learning Policy Prediction Models

Our approach first learns a non-linear prediction model to

estimate future robot states and behaviors for each policy in

a previously trained library. Navigational policies describe

various goals of navigation, e.g., obstacle avoidance, adaptive

maneuvers or max speed. This model enables our approach

to predict how a policy works without the requirement of

knowing its implementation (i.e., the policy can be treated as

a black box). Formally, at time t, we denote the robot terrain

observations (e.g., RGB images) input to the i-th policy

as oi
t ∈ R

q, where q is the dimensionality of the terrain

observations. The robot behavior controls, i.e, navigational

behaviors (e.g., linear and angular velocity), and states (e.g.,

robot’s body pose and position) output from the policy are

denoted as ait ∈ R
c and sit ∈ R

m, with c and m denote

the dimensionality of robot behaviors and states respectively.

Then the i-th policy can be represented as πi : (sit,o
i
t) → ait.

Let g denote the relative goal state (with respect to sit)

that the robot needs to reach at time t+ T . For every policy

Fig. 3. A shallow GP is designed to implement our prediction model f
wi .

πi, we propose to learn a prediction model fwi : (oi
t,g) →

(âit:t+T , ŝ
i
t:t+T ) that predicts a sequence of goal driven T -

future robot behaviors âit:t+T and states ŝit:t+T . The prediction

model estimates behaviors for the present time and functions

like a local controller, and by estimating robot behaviors and

states for future T -steps, it functions as a local planner. We

introduce a shallow Gaussian Process (GP) [50] to implement

fwi that is parameterized by wi, as shown in Fig. 3. This

shallow Gaussian Process with a recursive kernel has been

shown in [50] to be equivalent to, but more data-efficient than,

a deep Bayesian CNN with infinitely many filters. In addition,

as this Gaussian Process assumes that each weight of the

network is a distribution instead of scalar values, it allows

for uncertainty modeling and thus, is robust to environmental

variations. We then learn the prediction model fwi by solving

the following regularized optimization problem:

min
wi

λ1L
(

(πi(sit:t+T ,o
i
t:t+T ), s

i
t:t+T ), fwi(oi

t,g)
)

+ λ2∥g
i − (̂sit+T − ŝit)∥

2
2 (1)

where L(·) is the cross-entropy loss [51], mathematically

expressed as L(p, q) = −Ep[log(q)]. This loss helps the

prediction model to be insensitive to noisy observations in

unstructured environments due to the logarithmic scale. The

first part of Eq. (1) models the error of predicting T -future

robot behaviors and states from actual navigational behaviors

and states. The second part of Eq. (1) models the error of

the robot failing to reach its relative goal state. The hyper-

parameters λ1 and λ2 model the trade-off between the losses.

Following Eq. (1), the robot learns prediction models

for N -different policies. However, when navigating over

unstructured terrains, a single policy may not always prove

to be effective for all scenarios. For example, the policy of

obstacle avoidance may lead to longer traversal time in grass

terrain, and the policy of max speed may cause collisions

with occluded obstacles.

B. Robot Negotiation for Terrain Adaptation

The key novelty of NAUTS is its capability of negotiating

between different policies to perform successful and efficient

navigation, especially in unstructured off-road terrains. Given



N -policies in the library, NAUTS formulates robot adaptation

by negotiation under the mathematical framework of multi-

arm bandit (MAB) optimization [52]. MAB comes from the

hypothetical experiment where the robot must choose between

multiple policies, each of which has an unknown regret with

the goal of determining the best (or least regretted) outcome

on the fly. We define regret, rit : (o
i
t−T ,g)

)

→ R
+, of the

i-th policy at time t as the error of not reaching i) the goal

position and ii) the goal position in minimum time and effort.

We calculate the regret for each policy as:

rit =
(∥g∥2∥ŝ

i
t∥2

(g)⊤(̂sit)
− 1

)

+

t
∑

k=t−T

(t− k)(âik)
⊤âik (2)

where the first part of Eq. (2) models the error of not reaching

the goal position, with zero regret if the robot reached its

goal position. This error grows exponentially if the robot has

deviated from the goal position. The second part of Eq. (2)

models the error of not reaching the goal in minimum time

and effort. Specifically, the regret is smaller when the robot

uses fewer values of navigational behaviors to reach the same

goal and also if the robot reaches the goal in minimum time

due to the scaling term (t− k).
Unstructured terrain-aware negotiation can be achieved

using the best subset of policies that minimize the overall

regret in the present terrain as:

min
V

λ3

N
∑

i=1

R(oi
t, r

i
t;v

i) + λ4∥V∥E (3)

s.t.

N
∑

i=1

(oi
t)

⊤vi = 1

where R(·), parameterized by vi ∈ R
q , is the terrain-aware

regret of choosing policy πi in the present terrain and

V = [v1, . . . ,vN ] ∈ R
N×q . Mathematically, R(oi

t, r
i
t;v

i) =
∑t+T

k=t ∥r
∗
k − (oi

t)
⊤virik∥

2
2, with r∗k = min rik; i = 1, . . . , N .

The use of a linear model enables real-time convergence

for terrain-aware policy negotiation. The column sum of V

indicates the weights of each policy towards minimizing

the overall regret of robot navigation. In doing so, the

robot recognizes the important policies and exploits these

policies to maintain efficient navigation. However, we also

need to explore the various policies to improve navigation

efficiency or even learn in an unknown environment, which

is achieved by the regularization term in Eq. (3), called

the exploration norm. Mathematically, ∥V∥E =
∑N

i=1

∥V∥F

∥vi∥2

,

where the operator ∥·∥F is the Frobenius norm with ∥V∥F =
√

∑N

i=1

∑q

j=1
(vij)

2. The exploration norm enables NAUTS

to continuously explore all navigational policies in any terrain.

Specifically, the exploration norm enables NAUTS to explore

sub-optimal policies by ensuring vi ̸= 0. If vi = 0, i.e., if

the i-th policy is given zero importance, then the value of

objective in Eq. (3) would be very high. The hyper-parameters

λ3 and λ4 control the trade-off between exploration and

exploitation during negotiation. The constraints in Eq. (3)

normalize the various combination of navigational policies.

Algorithm 1: Optimization algorithm for solving the

robot negotiation problem during execution in Eq. (3).

Input : Policies W∗ and Weights V∗
∈ R

N×q

Output : Optimized Weights for Negotiation V∗
∈ R

N×q

1 while goal is not reached do
2 for i = 1, . . . , N do

3 Obtain predicted behavior âi
t:t+T and states ŝit:t+T

from fwi∗(ot0 ,g);
4 Calculate regret of i-th policy ri from Eq. (2);

5 Calculate r∗t0 = min rit0 ; i = 1, . . . , N ;
6 while not converge do
7 Calculate diagonal matrix Q with the i-th diagonal

block given as I

2∥V∥E
;

8 Compute the columns of the distribution V
according to Eq. (7);

9 return: V∗
∈ R

N×q

Integrating prediction model learning and policy negotiation

under a unified mathematical framework, robot adaptation by

negotiation can be formulated as the following regularized

optimization problem:

min
W,V

N
∑

i=1

(

λ1L
(

(πi(sit:t+T ,o
i
t:t+T ), s

i
t:t+T ), fwi(oi

t,g)
)

+ λ2∥g
i − (̂sit+T − ŝit)∥

2
2 + λ3R(oi

t, r
i
t;v

i)
)

+ λ4∥V∥E

s.t.

N
∑

i=1

(oi
t)

⊤vi = 1 (4)

where W = [w1, . . . ,wN ]. During the training phase, we

compute the optimal W∗ and V∗.

During execution, we fix W∗, meaning the prediction

models do not update during execution. However, our ap-

proach continuously updates V∗ in an online fashion, which

allows for negotiation at each step. At every time step t0, we

acquire observations ot0 . For a given robot goal state g, we

dynamically choose the best combination of policies as:

at0:t0+T =

N
∑

i=1

(ot0)
⊤vi∗fwi∗(ot0 ,g) (5)

where at0 is the behavior executed by the robot following

policy negotiation at time t0 and the behaviors at0:t0+T make

up the local plan for the robot.

C. Optimization Algorithm

During training, we reduce Eq. (4) to simultaneously

optimize W∗ and V∗. As the first term is non-linear, reducing

Eq. (4) amounts to optimizing a non-linear objective function.

We use the zeroth order non-convex stochastic optimizer from

[53]. This optimizer has been proven to avoid saddle points

and avoids local minima during optimization [53], and is

specifically designed for constrained optimization problems

like in Eq. (4). Additionally due to its weaker dependence on

input data dimensionality [53], W and V can be computed

faster despite using high dimensional terrain observations.



To perform robot adaptation by negotiation, we optimize V

in an online fashion during the execution phase by solving the

MAB optimization problem in Eq. (3), which has a convex

objective with non-smooth regularization term. To perform

fast online learning for negotiation, we introduce a novel

iterative optimization algorithm that is tailored to solve the

regularized optimization in Eq. (3), which at each time step

performs fast iterations and converges in real-time to a global

optimal value of V. This optimization algorithm is provided in

Alg. 1. Specifically, to solve for the optimal V, we minimize

Eq. (3) with respect to vi, resulting in:

t+T
∑

k=t

λ3

(

2(rik)
2(oi

t)
⊤(oi

t)v
i − 2r∗kr

i
ko

i
t

)

+ λ4Qvi = 0 (6)

where Q is a block diagonal matrix expressed as Q = I

2∥V∥E

and I ∈ R
N×N is an identity matrix. Then, we compute vi

in a closed-form solution as:

vi = (λ4Q+2

t+T
∑

k=t

λ3(r
i
k)

2(oi)⊤oi)−1λ3

t+T
∑

k=t

(2r∗kr
i
ko

i) (7)

Because Q and V are interdependent, we are able to derive an

iterative algorithm to compute them as described in Algorithm

1.

Convergence. Algorithm 1 is guaranteed to converge to the

optimal solution for the optimization problem in Eq. (3)1.

Complexity. For each iteration of Algorithm 1, computing

Steps 3, 4, and 7 is trivial, and Step 8 is computed by solving

a system of linear equations with quadratic complexity.

IV. EXPERIMENTS

This section presents the experimental setup and imple-

mentation details of our NAUTS approach, and provides a

comparison of our approach with several previous state-of-

the-art methods.

A. Experimental Setup

We use a Clearpath Husky ground mobile robot for our field

experiments. The robot is equipped with an Intel Realsense

D435 color camera, an Ouster OS1-64 LiDAR, a Global

Positioning System (GPS), and an array of sensors including

a Microstrain 3DM-GX5-25 Inertial Measurement Unit (IMU)

and wheel odometers. The robot states, i.e., robot pose,

are estimated using an Extended Kalman Filter (EKF) [54],

applied on sensory observations from LiDAR, IMU, GPS,

and wheel odometers. The RGB images and the estimated

robot states are used as our inputs. The robot runs a 4.3 GHz

i7 CPU with 16GB RAM and Nvidia 1660Ti GPU with 6GB

of VRAM, which runs non-linear behavior prediction models

at 5Hz and policy negotiation at 0.25 Hz.

We evaluate our approach on navigation tasks that require

traversing from the robot’s initial position to a goal position,

and provide a performance comparison against state-of-the-

art robot navigation techniques including Model Predictive

Path Integral (MPPI) [7] control, Terrain Representation and

1Derivation is presented in the supplementary material at: https://
arxiv.org/pdf/2207.13647.pdf

Apprenticeship Learning (TRAL) [5], Berkley Autonomous

Driving Ground Robot (BADGR) [10], and Learning to

Navigate from Disengagements (LaND) [9]. To quantitatively

evaluate and compare these approaches to NAUTS, we use

the following evaluation metrics:

• Failure Rate (FR): This metric is defined as the number

of times the robot fails to complete the navigation task

across a set of experimental trials. If a robot flips or is

stopped by a terrain obstacle, it is considered a failure.

Lower values of FR indicate better performance.

• Traversal Time (TT): This metric is defined as the time

taken to complete the navigation task over given terrain.

Smaller values of TT indicate better performance.

• Distance traveled (DT): This metric is defined as the

total distance traveled by the robot when completing

a navigational task. A smaller DT value may indicate

better performance.

• Adaptation time (AT): This metric is defined as the time

taken by the robot to regain half its linear velocity when

introduced to an unseen unstructured environment. A

lower value of AT may indicate better performance.

To collect the training data, a human expert demonstrates

robot driving over simple terrains of concrete, short grass,

gravel, medium-sized rocks, large-sized rocks and forest

terrain. Each of these terrain were used to learn one specific

aspect of robot navigation such as adjusting traversal speeds

over large-sized rocks, or obstacle avoidance using the forest

terrain. Specifically, we used these terrains to learn from a

library of five distinct navigational policies:

• Maximum Speed: When following this navigational

policy, the human expert drives with the maximum

traversal speed irrespective of the terrain the robot

traverses upon. The aim when following the maximum

speed navigational policy is to teach the robot to cover

as much distance as possible in the least amount of time.

Thus, while collecting training data with this policy the

expert demonstrator uses straight line traversal without

steering the robot.

• Obstacle Avoidance: While following this policy, the

expert demonstrates how to maneuver by driving around

obstacles to avoid collision. To learn this policy, expert

demonstrations in forest terrains are used where humans

navigate the forest by avoiding trees and logs while

moving the robot through the terrain. The underlying

goal with this policy is to teach the robot to steer around

obstacles.

• Minimum Steering: For this policy, the expert drives the

robot with limited steering. During navigation, linear

velocity is fixed to 0.75 m/s and obstacle avoidance is

performed by beginning to turn the robot when it is

further away from obstacles instead of making short,

acute turns. The policy differs from obstacle avoidance

by maintaining a fixed speed while taking a smooth and

long maneuver around obstacles.

• Adaptive Maneuvers: While following this policy, the

expert varies the robot’s speed across different terrain



(a) Tall grass terrain (b) Paths taken by different methods (c) Importance of different policies

Fig. 4. The tall grass terrain used in our experiments and the qualitative results over this terrain.

to reduce traversal bumpiness. Specifically, with terrains

that are relatively less rugged such as concrete or

short-grass, the expert demonstrator uses high speed

maneuvers. On the other hand, over terrains with high

ruggedness such as gravel or medium sized rocks, the

expert demonstrator uses slower speeds, with the slowest

traversal speed across the large rocks terrain.

• No Navigational Bias: When following this policy,

multiple expert demonstrators navigate the robot across

the different terrains without particular policy bias, i.e.,

without following any specific navigational policy. The

underlying goal behind using such policy is to cover

most of the common navigational scenarios encountered

by the robot, and include the navigational bias from

multiple expert demonstrators.

For each policy, the robot is driven on each of the different

terrains, resulting in approximately 108000 distinctive terrain

observations with the corresponding sequence of robot

navigational behaviors and states for each navigational policy.

No further pre-processing is performed on the collected data.

We use this data to learn optimal πi, i = 1, . . . , N and V

during training. We learn these parameters for different values

of hyper-parameters of the NAUTS approach, i.e., λ1, λ2, λ3,

λ4 and T . The combination of these hyper-parameters that

results in the best performance of NAUTS during validation

are then used for our experiments. In our case, the optimal

performance of NAUTS is obtained at λ1 = 0.1, λ2 = 10,

λ3 = 1 and λ4 = 0.1 for T = 9.

TABLE I

QUANTITATIVE RESULTS FOR SCENARIOS WHEN THE ROBOT TRAVERSES

OVER DYNAMIC, UNCERTAIN GRASS TERRAIN.

Metrics MPPI [7] TRAL [5] BADGR [10] LaND [9] NAUTS

FR (/10) 3 3 1 5 1

TT (s) 88.72 72.99 64.47 90.18 58.79

DT (m) 68.58 56.69 50.29 64.93 36.57

AT (s) 14.23 10.92 ± ± 6.24

B. Navigating over Dynamic Uncertain Grass Terrain

In this set of experiments, we evaluate robot traversal

performance over the tall grass terrain environment, as shown

in Fig. 4(a). This is one of the most commonly found terrains

in off-road environments and is characterized by deformable

dynamic obstacles added with the terrain uncertainty of

occluded obstacles. The process of negotiation is continuously

performed throughout the execution phase. The evaluation

metrics for each of the methods are computed across ten trial

runs over the tall grass terrain environment.

The quantitative results obtained by our approach and its

comparison with other methods are presented in Table I. In

terms of the FR metric, BADGR and NAUTS obtain the

lowest values, whereas MPPI, TRAL and LaND have high

FR values. Navigation failure for MPPI, TRAL and LaND

generally occurred as the robot transitioned into the tall grass

terrain where it would get stuck after determining the tall

grass was an obstacle. Failure cases for NAUTS and BADGR

occurred when the robot was stuck in the tall grass terrain due

to wheel slip. Both NAUTS and BADGR obtain significantly

fewer failures than MPPI and LaND methods due to their

ability to adapt to different terrains.

When comparing the traversal time and the distance

traversed by the different methods, we observe that NAUTS

obtains the best performance followed by BADGR and TRAL.

The LaND and MPPI approaches obtain higher TT and DT

metrics, with MPPI performing the poorest in terms of DT

and LaND performing poorest in terms of TT. A qualitative

comparison, from a single trial, of the path traversed by

these methods is provided in Fig. 4(b). Notice, MPPI, LaND,

and TRAL all consider tall grass as obstacles and avoid

this terrain while traversing. We observe that BADGR and

NAUTS explore tall grass terrain and the shortest path is

taken with our NAUTS approach resulting in the lowest DT

and TT values.

NAUTS also performs better than the TRAL and MPPI

approaches in terms of the AT metric. The AT metric is

observed when robots encounter an unseen terrain and require

adaptation. In this environment, that happens when the robot

transitions into the tall grass terrain. We do not provide AT

values for BADGR and LaND as both approaches have a

fixed linear velocity without adaptation. Overall, we observe

that our approach obtains successful navigation (from FR

metric) and better efficiency (from TT and DT metrics) over

previous methods.

Fig. 4(c) illustrates the NAUTS negotiation process between

the five policies in the tall grass terrain. NAUTS learns

optimal combinations of policies in real-time during execution
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Fig. 5. The forest terrain used in our experiments and the qualitative results over this terrain.

(each update is marked by dots in the figure). Initially, max

speed has higher importance over other policies. However,

as the robot enters tall grass, obstacle avoidance becomes

more important. While traversing further, the robot learns

to give more importance to the max speed policy again and

obstacle avoidance becomes less important. All other policies

have relatively low importance, but they never reach zero, as

NAUTS regularly evaluates the different policies.

TABLE II

QUANTITATIVE RESULTS FOR SCENARIOS WHEN THE ROBOT TRAVERSES

OVER UNSEEN DYNAMIC, UNSTRUCTURED OFF-ROAD FOREST TERRAIN.

Metrics MPPI [7] TRAL [5] BADGR [10] LaND [9] NAUTS

FR (/10) 5 5 4 7 2

TT (s) 34.28 33.95 26.17 33.98 24.21

DT (m) 24.68 23.77 20.94 26.51 16.45

AT (s) 10.04 11.93 ± ± 7.32

C. Navigating on Unseen Unstructured Forest Terrain

In this set of experiments, we evaluate navigation across

forest terrains. Apart from high uncertainty and dynamic

obstacles, this terrain has different characteristics that the

robot has not previously seen during training, e.g, terrain

covered with wood chips, dried leaves, rocks, and tree

branches. Similar to the previous set of experiments, the

evaluation metrics in the forest terrain are computed across

ten runs for each of the methods.

The quantitative results over off-road forest terrain are

presented in Table II. In terms of the FR metric, we observe

a similar trend seen in the tall grass terrain experiments.

Specifically, MPPI and TRAL have similar performance in

terms of FR metrics. Our NAUTS approach obtains the lowest

FR value followed by the BADGR approach, and the LaND

approach obtains the highest value. Common failures in the

forest terrain occur when tree branches occluding the terrain

are classified as obstacles or traversing over large rocks,

wooden tree barks, or mud in the terrain cause the robot

to get stuck. NAUTS also obtains better efficiency in both

the TT and DT metrics, followed by the BADGR approach.

Again, MPPI and TRAL both obtain similar TT and DT

values, and LaND exhibits the worst performance.

Fig. 5(b) illustrates qualitatively how MPPI, TRAL, and

LaND avoid uncertain and unseen paths and follow an existing

trail. However, BADGR explores unknown paths, reaching

the goal faster than these methods, and NAUTS outperforms

all methods by exploring different policies in this unseen

terrain. In this set of experiments, the AT metric is observed

throughout navigation as each section of the terrain is not

previously seen by the robot and requires the robot to adapt.

NAUTS obtains better AT values than MPPI and TRAL,

indicating a better adaptation capability.

Fig. 5(c) illustrates the negotiation process by NAUTS

in the forest terrain. At the start of the navigation task,

each policy has different importance, with obstacle avoidance

being the most significant. As the robot continues with the

navigation task, it learns to use the optimal combination of

policies, which results in the most efficient navigation. Thus,

the max speed and adaptive navigational policies become

more significant than other policies. It is important to note

that there is no single optimal policy throughout navigation

due to i) the highly unstructured nature of this terrain and ii)

the continuous exploration of the NAUTS approach.

V. CONCLUSION

In this paper, we introduce the novel NAUTS approach for

robot adaptation by negotiation for navigating in unstructured

terrains, that enables ground robots to adapt their navigation

policies using a negotiation process. Our approach learns a

non-linear prediction model to function as a terrain-aware

joint local controller and planner corresponding to various

policies, and then uses the negotiation process to form

agreements between these policies in order to improve

robot navigation efficiency. Moreover, our approach explores

different policies to improve navigation efficiency in a

given environment continuously. We also developed a novel

optimization algorithm that solves the global optimal solution

to the robot negotiation problem in real-time. Experimental

results have shown that our approach enables a robot to

negotiate its behaviors with the terrain and delivers more

successful and efficient navigation compared to the previous

methods.
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