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Abstract— Collaborative localization is an essential capability
for a team of robots such as connected vehicles to collaboratively
estimate object locations from multiple perspectives with reliant
cooperation. To enable collaborative localization, four key chal-
lenges must be addressed, including modeling complex relation-
ships between observed objects, fusing observations from an ar-
bitrary number of collaborating robots, quantifying localization
uncertainty, and addressing latency of robot communications.
In this paper, we introduce a novel approach that integrates
uncertainty-aware spatiotemporal graph learning and model-
based state estimation for a team of robots to collaboratively
localize objects. Specifically, we introduce a new uncertainty-
aware graph learning model that learns spatiotemporal graphs
to represent historical motions of the objects observed by each
robot over time and provides uncertainties in object localization.
Moreover, we propose a novel method for integrated learning
and model-based state estimation, which fuses asynchronous
observations obtained from an arbitrary number of robots for
collaborative localization. We evaluate our approach in two
collaborative object localization scenarios in simulations and
on real robots. Experimental results show that our approach
outperforms previous methods and achieves state-of-the-art per-
formance on asynchronous collaborative localization.

I. INTRODUCTION

Object localization is an important area in robotics due to
its necessity for improving situational awareness for robots.
It aims to estimate the real-world locations of the objects
moving in a dynamic environment using observations that are
acquired by robot sensors such as cameras. Object localization
is widely deployed in a variety of robotics applications, such
as autonomous driving to perceive street objects and search
and rescue to find victims. It is also applied as a critical
component in robot capabilities such as scene reconstruction
[1], [2] and simultaneous localization and mapping (SLAM)
[3], [4]. Recently, collaborative object localization using a
team of robots has attracted an increased interest because
of its improved object localization accuracy and resilience
to sensor failures [5], [6]. The goal of collaborative object
localization is to estimate locations of observed objects by
fusing observations obtained by multiple robots from different
perspectives [7], [8], [9], [10]. For example, as shown in
Figure 1, two connected vehicles are able to improve shared
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Fig. 1. A motivating scenario of asynchronous collaborative localization
of street objects in connected driving. When some connected vehicles meet
at an intersection, they can improve their shared situational awareness and
decrease blind spots by incorporating their observations to collaboratively
localize street objects.

situational awareness and decrease blind spots at an inter-
section by combining their observations to collaboratively
localize street objects.

Given its importance, several approaches have been de-
veloped to address collaborative object localization. Previ-
ous methods can be generally grouped into model-based
and learning-based methods. Model-based methods are often
based upon Bayesian filtering to localize objects, e.g., using
Kalman filters [11] and other Bayesian filters [12]. These
methods lack the ability to model the complex spatiotem-
poral relationship among objects, e.g., to model the impact
of surrounding objects. The second category of methods use
machine learning such as deep neural networks to localize ob-
jects [13], [14]. However, learning-based methods including
deep networks assume a fixed number of observations, and
cannot fuse observations from an arbitrary and dynamically
changing number of robots. Moreover, for both categories
of approaches, asynchronous observations caused by robot
communication delays have not been well addressed.

In this paper, we introduce a novel asynchronous collab-
orative object localization approach, which integrates deep
spatiotemporal graph learning and Bayesian modeling to per-
form multi-robot sensor fusion in an asynchronous fashion for
collaborative object localization. We encode each observation
obtained by each robot in a team as a graph, where the nodes
denote detected objects in the robot’s field of view and the
edges denote their spatial relationships. We then encode a
sequence of historical observations obtained by each robot as
a spatiotemporal graph in order to encode temporal motions
of the objects. Given the representation of spatiotemporal
graphs, we formulate collaborative object localization as a
multi-robot sensor fusion problem for state estimation. We



propose an uncertainty-aware graph learning method to esti-
mate locations of objects and provide uncertainty quantifica-
tion. Then, we introduce a method to integrate spatiotemporal
graph learning and model-based estimation for asynchronous
collaborative object localization.

The key contribution of the paper focuses on the proposal of
an asynchronous collaborative object localization approach.
The novelty of the proposed approach is twofold:

o We introduce a novel uncertainty-aware spatiotemporal
graph learning approach, which is able to represent
complex spatiotemporal relationships among observed
objects and provide probabilistic estimations of object
locations with uncertainty quantification.

o We propose a novel method for integrating deep spa-
tiotemporal graph learning and model-based estimation,
which fuses the asynchronous observations acquired by
a team of robots. This approach explicitly addresses the
latency of robot communications by asynchronous sen-
sor fusion. It also offers the ability to fuse observations
from an arbitrary and dynamically changing number of
robots.

II. RELATED WORK

Existing techniques for collaborative localization through
sensor fusion can be grouped into two categories. Model-
based approaches often apply Bayesian filtering to integrate
observations obtained from multiple sensors, e.g., based on
Kalman filters [11], particle filters [15], [16], covariance
intersection [17] and Bayesian sequential filters [18], [19].
Previous model-based approaches are not able to represent
the complex relationships among the objects or learn from
data to improve the localization accuracy. Learning-based
approaches apply machine learning methods to fuse multiple
observations for object localization. For example, recurrent
neural networks were used to encode object motions and
localize the objects [13], graph neural networks were designed
to represent spatial relationships of multiple objects [14], and
convolutional neural networks were used to model visual-
spatial relationships of the objects [20], [21], [22]. Learning-
based methods are often not able to integrate observations
that are obtained by an arbitrary and dynamically changing
number of robots.

In addition, several learning-based methods were imple-
mented to quantify the uncertainty in object localization, in-
cluding Bayesian and non-Bayesian methods. Bayesian meth-
ods focus on modeling the distribution of model weights,
such as Bayes by Backprop [23] and Monte Carlo Dropout
[24]. However, Bayesian methods generally are computation-
ally expensive compared with non-Bayesian methods [25]. A
state-of-the-art non-Bayesian uncertainty quantification tech-
nique is deep ensemble, which averages predictions from mul-
tiple parallel networks to capture the deep network uncertainty
[26], [27]. We propose a new multivariate loss function under
this framework to quantify the uncertainty of estimated object
locations in this paper.

Recently, several hybrid approaches were proposed for
state estimation by integrating model-based and learning-

based methods, e.g., by integrating convolutional neural net-
works and Bayesian filters for robot pose estimation [28],
[29], and hybrid sensor fusion based on Gaussian process
for location query [30]. However, existing hybrid approaches
cannot well address asynchronous observations caused by the
delay of robot communications. In this paper, we propose one
of the first hybrid approaches for asynchronous collaborative
object localization that is capable of quantifying localization
uncertainty, addressing the latency of robot communications,
and addressing the shortcomings of learning and model-based
methods.

III. APPROACH

Notation. We use superscript ¢ and n to denote the time
step and the robot index, respectively. We use subscript ¢ to
denote the index of the object in an observation observed by
a robot. For example, vf” denotes a feature vector of the i-th
object observed by the n-th robot at time ¢.

A. Problem Formulation

Given M objects observed by a team of N robots, we rep-
resent each observation obtained by the n-th robot as a graph
g ={Z"R™E"},n = 1,2,...,N. The node set Z" =
{z},2Y,...,27,} denotes the observed locations of objects
detected by the n-th robot, with z?' € R? denoting the 3D
central location of the i-th object. R"™ = {R},R%,..., R}, }
denotes the uncertainty in observations, where R? € R3*3
is defined as the covariance of z]'. The observation z}' and
its uncertainty R}' can be assumed to follow a multivariate
Gaussian distribution N (z}", R}") with z!' as the mean and
R} as the covariance. The edge set £" = {e]',} denotes
the spatial relationships between a pair of detected objects,
where e;'Y = 1, if z;"” and 2" are connected. We further
encode a sequence of observations recorded from time 1 to
time ¢ by the n-th robot as a spatiotemporal graph M" =
{gl,n’ g27n7 o gt,n}'

We represent the estimated locations of the objects ob-
served by the n-th robot at time ¢ as the states X" =
{x/"™},i = 1,2,... M, where x,"™ denotes the state estima-
tion (location) of the i-th object. In addition, we use P*" =
{PL™},i = 1,2,..., M to denote the uncertainties in X'*",
where P} € R3*? denotes the state estimation uncertainty
in XZ’". Then, xf’n and PE’” can be assumed to follow the
multivariate Gaussian distribution AV(x}", P%™).

In this paper, we formulate collaborative object localization
as a multi-robot state estimation problem, with the objective
of estimating object states X'“™ (i.e., 3D locations of the
objects) by fusing sequences of observations obtained from
multiple robots {M"},n =1,2,... N. The correspondences
of objects in different observations can be obtained through
the recent methods [31], [32].

B. Uncertainty-Aware Spatiotemporal Graph Learning

Based on the spatiotemporal graph representations, our
approach is able to represent complex spatiotemporal rela-
tionships and estimates learning-based locations of observed
objects based on their historical motions.



Our approach consists of three components. First, temporal
motions of the objects are encoded using a long short-term
memory (LSTM) encoder [33], which is able to process
sequential data and mitigates the vanishing gradient problem.
Second, the spatial relationships of objects are embedded by
a graph attention neural network [34], which captures the
spatial impacts of each object from an arbitrary number of
neighbor objects (e.g., avoiding collision or changing move-
ment direction). The spatial and temporal embeddings of each
object are defined as follows:
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where z' """ — z!7%" denotes the relative location (motion)
of the i- th object observed by the n-th robot from time ¢t — 2
to t — 1, ¢ denotes a one-layer LSTM encoder network with
a trainable parameter matrix W€ that is shared among all
objects, and mffl’" denotes the temporal motion embedding
of the ¢-th object. By iteratively running the encoder, we
capture the motion of the object from time 1 to ¢ — 1. In ad-
dition, W* is the trainable parameter matrix for the attention
network, ozt 71 " denotes the impact of the j-th neighborhood
object on the i-th object, which is obtained through the graph
attention neural network [34], e L Jl '™ denotes the connection
between the i-th object and its j-th neighborhood object,
ReLu denotes the nonlinear activation function [35], and

™1™ denotes the spatial embedding of the -th object, which
captures the impacts on the ¢-th object from its neighbors.
Given the temporal embedding mt L7 and spatial embedding

t—1,n

S, , we predict the states of objects at current time ¢

through a LSTM decoder [33], which is defined as
X:,n — w (mE_LnHSE_anZE_Ln _ ZE—Q,n,Wd) (3)

where || denotes the concatenation operator, ) denotes a
one-layer LSTM decoder network with a trainable parameter
matrix W¢, and xf” is the estimated states of the i-th object
observed by the n-th robot at time ¢. By running Eq. (3) for
multiple times, we can predict arbitrary steps in the future.

Due to the limited amount of training data and noisy ob-
servations, the learning-based state estimations obtained from
the spatiotemporal graph neural network exhibit uncertain-
ties caused by model bias and perception uncertainty [24].
Inspired by deep ensemble technique [36], we quantify the
estimation uncertainties in two steps.

First, to quantify the data uncertainty, we modify the graph
learning model to output the estimated location and the es-
timation uncertainty in the final layer. For simplification, we
write x"™ as x' by ignoring the index of objects and robots.
The output is assumed to follow the Gaussian distribution,
which is defined as

go (X" |MTT) ~ N (g, ) “)

where the mean value ,ué denotes the estimated location, the
covariance Zfl denotes the quantified uncertainty of ué, and

0 denotes the network parameters. To train this model to
provide uncertainty estimations, based on the score rule for
deep ensemble [36], we design a multivariate negative log-
likelihood loss (NLL) defined as follows:

L(0) = —log (go (x"|M™*71))
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where | - | denotes the determinant operator and y* denotes
the object’s ground truth location at time ¢. EZ represents
the covariance of the Gaussian distribution with respect to
the estimations and the ground truth, which captures the data
uncertainty [36].

Second, to quantify the model uncertainty, instead of using
just one model, an ensemble of K models is used to form a
Gaussian mixture model, which is defined as:

( t‘Mlt 1 quek t|M1t 1) (6)

k=1

where {6, }% denotes the set of parameters in K networks.
Based on deep ensemble theory [36], the Gaussian mixture
model can be approximated as the Gaussian distribution,
defined as

K

Z
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Thus, the final estimation is x! = i, and the estimation

uncertainty is defined as:

Data uncertainty

:%Z(zt

k

Model uncertainty

K
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where diag(-) is the diagonal operator, and Q""" is the process
uncertainty, which captures the model and data uncertain-
ties in the learning-based estimation. The data uncertainty is
captured by each ensemble model trained with NLL, which
describes the ambiguity in targets x* given the inputs M~
The model uncertainty is captured by averaging a combination
of ensemble models with consistent training data. If the train-
ing data is infinite, then p! = p!, . In this case, the model
uncertainty will be eliminated and the total uncertainty Q?
will be reduced to the data uncertainty.

C. Single-Robot State Estimation

Based on the quantified process uncertainties, we further
integrate learning-based state estimations with single-robot
measurements to obtain the single-robot state estimation. In



conventional sensor fusion methods, the process uncertainties
are generally identified through empirical settings [11], [29].
In this paper, we integrate the quantified process uncertainty
into the sensor fusion process as:

Pz;,n _ szl,n + Qzlf,n (9)

where Pf-’" denotes the uncertainty of the learning-based state
estimation xin which is computed by the sum of the process
uncertainty Qf" and the state estimation uncertainty at the
previous time step. Based on Kalman filter [37], we update
the learning-based state estimation with the measurement z*"
to obtain the single-robot state estimation, which is defined as
follows:

K" =Py (P + Ry (10)
)A(i»” — X?n + Kt,n(z?n _ X?n) (11
P = (I-K")Py" (12)

where z' denotes the measurement at time ¢, RZ’" denotes
the uncertainty in the measurement, K" denotes the Kalman
gain that encodes the relative weight of both the state esti-
mation and the measurement given their uncertainties, fcf"
denotes the updated state estimation and lsf’" denotes the
updated uncertainty of the single-robot state estimation.

D. Asynchronous Multi-robot State Estimation

Based on the single-robot state estimation and the state esti-
mation uncertainty, our approach computes a final estimation
for each robot by integrating multi-robot state estimations.
We also address the challenges of asynchronous multi-robot
state estimations caused by communication time delays and
integrating arbitrary number of state estimations provided by
multiple robots.

In real-world multi-robot collaborative object localization,
asynchronous multi-robot state estimations caused by com-
munication time delays usually significantly increase the error
in object localization, as the time-delayed locations of objects
can be far away from the current locations of the objects.
In order to address asynchronous state estimations, we first
compensate the state estimations with time delay by using a
deep graph learning network as follows:

QU =@ (xR & AT )
where X" and estimation uncertainty Q. denotes the com-
pensated state estimation and estimation uncertainty. ® de-
notes the deep graph learning network, which has the same ar-
chitecture as the the uncertainty-aware graph neural network.
AT denotes the time delay in the state estimation provided by
the n-th robot, which can be obtained through timestamps or
learning models [38].

Since the compensation process also introduces uncertainty
into the state estimation, we update the uncertainty of the

compensated state estimation as follows:
ot,n _ Pt—ATn AL,
P, =P; +Q; (14)

where 152" denotes the updated uncertainty of the compen-

sated state estimation, which is obtained by the sum of the pro-
cess uncertainties Qf’" generated in the compensation process
and the state estimation uncertainty PTAT’” computed AT
time ago. To improve the robustness to noise in collaborative
object localization, we propose a multi-robot fusion gain to
integrate state estimations provided by an arbitrary number of
collaborative robots, which is defined as follows:
—1

@
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where E['" € R3*3 denotes the state fusion gain for each
robot’s state estimations. In addition, EZ" follows the con-
straint S~ EY™ = 1, where T € R3*® denotes an identity
matrix. The fusion gain for each robot represents the weight
of each robot’s state estimation in all the multi-robot state es-
timations given the normalized state estimation uncertainties.
The final state is defined as follows:

N . .
X =E"K 4+ > Eo(x)Y) (16)

j=1,j#n

where o denotes the transformation function that transforms
the multi-robot state estimations to the n-th robot’s coordi-
nates based on camera extrinsic parameters [39]. The camera
extrinsic parameters can be obtained through GPS [40] or
deep learning algorithm [41]. X" denotes the final state
estimation of the i-th object observed by the n-th robot at
time ¢, which is computed by the sum of single-robot state
estimations weighted by the fusion gains. If a robot’s state
estimation has large uncertainty (e.g., existing large commu-
nication delay), then its contribution will be heavily weakened
during the fusion. The uncertainty of the final state estimation
is defined as
-1

a7

N
P (e
>
where P/ denotes the uncertainty of the final state estima-
tion i;t’”, which is obtained by integrating all the single-robot
state estimation uncertainties.

The complexity of our algorithm is O(N K G), where O(QG)
denotes the complexity of the graph learning network. Since
the time compensation for each robot can be run parallel, the
complexity of our algorithm reduces to O(KG). Since the
ensemble models can also be run parallel, the complexity can
further reduce to O(G). When our algorithm is executed on a
Linux machine with an 19 3.6 GHz CPU, 3 TB memory, and
an Nvidia RXT 2080Ti GPU, the average runtime is around
10 Hz.

1V. EXPERIMENTS
A. Experimental Setup

We use both high-fidelity robotic simulations and physical
robots to evaluate our method for asynchronous collaborative
object localization in multi-robot systems. Our evaluation
consists of two scenarios, including simulated Connected Au-
tonomous Driving (CAD) and real-world Multi-Robot Object
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Fig. 2. Illustrations of the simulated Connected Autonomous Driving (CAD)
and Multi-Robot Object Localization (MROL) scenarios that are used in our
experiments.

Localization (MROL), as demonstrated in Figure 2. CAD
includes 1500 data instances recorded at 10Hz by four RGB-
D cameras mounted on the autonomous vehicles. The ground
truth locations are obtained from the connected vehicle simu-
lator provided by Toyota. MROL includes 800 data instances,
which are recorded by two RGB-D cameras mounted on
robots at 10Hz. The ground truth locations are obtained from
an Optitrack motion tracking system.

In the experiments, we only perform our approach to the
objects observed by more than one robot and the association
of the same object in different observations is identified based
on the recent work [32]. The node attributes are generated
from 3D locations of objects and the edges are fully con-
nected. The LSTM encoder in Eq. (1) and decoder in Eq. (3)
are constructed by only one LSTM layer, with W€ setting to
the dimension of 3 x 32 and W< setting to 64 x 6. The graph
attention network is constructed with two layers, with W*¢
having the dimension of 32 x 64 followed by dropout with
probability 0.1. The number of ensemble models is KX = 5.
Initially, the state x is set to an all zero matrix and the state
estimation uncertainty P is a diagonal matrix with the diago-
nal values set to 10. Observation uncertainty R is calculated
based on the depth sensor model given the real depth values of
objects [42]. ADMM is used as the optimization solver [43].

We implemented our full approach and two baseline meth-
ods for asynchronous collaborative object localization. The
first baseline method named Ours-U that only quantifies the
process uncertainty without addressing asynchronous obser-
vations caused by communication latency among multiple
robots. The second baseline method named Ours-D that
only addresses asynchronization and uses a fixed value as
the process uncertainty. In addition, we compare with four
previous methods, including AOM [44] that directly averages
the locations of the same objects in different observations,
MMT [11] that estimates the locations of objects based on the
classical Kalman filter, STTP [13] that localizes objects based
on spatiotemporal graph learning, MCOL [29] that integrates

TABLE I
QUANTITATIVE RESULTS ON CAD AND MROL.THE UNIT IS METER.

Method CAD MROL

DE | Rel-DE DE | Rel-DE
AOM [44] 22288 | 0.1197 | 0.0343 | 0.0283
STTP [13] 17859 | 0.0950 | 0.0357 | 0.0294
MMT [11] 1.6240 | 0.0866 | 0.0344 | 0.0283
MCOL[29] | 14445 | 00771 | 0.0319 | 0.0263
Ours-D 14397 | 0.0768 | 00310 | 0.0256
Ours-U 13688 | 00730 | 00304 | 0.0251
Ours 13533 | 00723 | 0.0288 | 0.0238

model-based and learning-based estimations for object local-
ization, but without considering uncertainty quantification and
asynchronous sensing data.

We follow a widely used experimental setup [13], [45]
to evaluate our approach. Displacement error (DE) is used
to evaluate the localization accuracy, which is defined as
the Euclidean distance between the estimated location and
the ground truth location. The unit of DE is meter. Relative
displacement error (REL-DE) is used to evaluate the localiza-
tion accuracy relative to the measurement distance, which is
defined as the ratio of the displacement error over the ground
truth location.

B. Connected Autonomous Driving Simulation

Our approach is first evaluated on the CAD scenario, aim-
ing to localize the dynamic pedestrians and vehicles given the
observations from multiple connected vehicles. The number
of connected vehicles is from 1 to 4, and communication
delays between connected vehicles is from 0.1 to 0.7 sec.

The qualitative results over CAD are presented in Figures
3(a)-3(c). We observe that the movement of the yellow ve-
hicle has a sharp turn, which is challenging to accurately
localize it. In this situation, our approach works much better
compared with the other two methods. Moreover, we observe
that MMT works poorly as shown in Figure 3(a), as the
linear velocity assumption in MMT cannot estimate the non-
linear movement of objects. MCOL improves the localization
performance, however, its estimations contain a lagging effect
(the estimated locations lag behind the ground truth), which
is caused by the asynchronous state estimations provided
by multiple connected vehicles. Our approach outperforms
all these methods, due to its ability to model the complex
spatiotemporal relationship among objects, and to address
multi-robot asynchronous state estimations.

The quantitative results for the CAD scenario are shown
in Table 1. We observe that our baseline methods outperform
the compared previous methods, which indicates the impor-
tance of quantifying estimation uncertainty and addressing
asynchronous multi-robot state estimations caused by com-
munication latency for collaborative object localization. In
addition, AOM performs poorly due to the noisy observations.
STTP and MMT obtain an improved performance by utilizing
learning-based state estimation to encode historical estima-
tions, and by using model-based sensor fusion for object local-
ization. MCOL further improves the performance by integrat-
ing learning-based and model-based state estimations. Due



to uncertainty quantification and addressing asynchronous
state estimations resulting from communication latency, our
approach can readily integrate multi-robot asynchronous state
estimations and performs the best.

C. Real-world Multi-robot Object Localization

Our method is also evaluated in the MROL scenario. In
this scenario, multiple robots collaboratively localize the ob-
jects to assist with collision avoidance. The object instances
used in this scenario include different dynamic robots. The
MROL scenario is challenging due to the large noise, large
communication latency (ranging from 0.1 sec to 0.7 sec) and
uncertainty existing in robot observations, which is caused by
non-smooth movements of robots and occlusion.

The qualitative results obtained on MROL are presented
in Figures 3(d)-3(f). We can see visually that our approach
outperforms MMT and MCOL. Specifically, MCOL’s esti-
mations lag the ground truth caused by the communication
latency in the multi-robot system. In addition, our approach
has better localization accuracy than MCOL, as we use the
quantified process uncertainty in the sensor fusion process,
which can appropriately weight learning-based state estima-
tions during sensor fusion, rather than using a constant value
as in MCOL. Thus, the proposed approach achieves the best
performance in this realistic multi-robot object localization
scenario. The quantitative results obtained in the MROL sce-
nario are presented in Table I. Similar to the other scenarios,
our approach and its baseline methods also outperform MCOL
by quantifying the uncertainty of the learning process and
addressing asynchronous state estimations, resulting in the
best performance on this real-world multi-robot scenario.
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Fig. 3. Qualitative experimental results of our approach and comparisons
with the previous and baseline methods on CAD and MROL. Ground truth
paths are shown in yellow, the estimated paths are shown in red, and the
blue lines denotes the starting and ending points of trajectories (indicating
the lagging effects in Figure 3(b) and 3(e)).

D. Discussion

Using the CAD simulations, we further investigate our
approach’s characteristics, including the effect of communi-
cation latency, the number of collaborating robots, and the
robustness to noise.
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Fig. 4. Analysis of our method’s characteristics. The unit of DE is meter.

Figure 4(a) depicts how our approach is affected by in-
creasing communication time delays among vehicles, which
causes asynchronous state estimations. We observe that the
performance of our approach gradually decreases as the
communication latency among robots increases. When the
communication latency increases beyond 600 ms, the per-
formance becomes stable with small fluctuations. In this
case, each robot uses only its own observations to localize
objects without using any collaboration from other robots.
The figure generally shows that our approach can effectively
fuse asynchronous multi-robot state estimations with large
communication delays.

Figure 4(b) illustrates the influence of the number of col-
laborative robots on CAD. We can see that the performance of
our approach gradually improves as the number of collabora-
tors increases. When the number of collaborators is larger than
5, the performance becomes stable with small fluctuations.
The best performance is around [1.2145, 1.2373] meter. Thus,
integrating multi-robot observations can effectively improve
the performance of collaborative object localization.

Figure 4(c) illustrates the effect of varying noise rates. It
compares the performance of measurement-only localization,
only the learning-based state estimation, only the model-
based state estimation, and on our complete method. We
observe that the area under using measurements directly is
0.5068, the area under only using model-based state estima-
tion is 0.3744, the area under only using learning-based state
estimations is 0.3217 and our complete approach is 0.2561.
Thus, integrating model and learning-based estimations effec-
tively improves the robustness to noise.

V. CONCLUSION

In this paper, we propose a novel asynchronous collabora-
tive object localization approach that integrates uncertainty-
aware spatiotemporal graph learning and model-based state
estimation in a principled way to perform asynchronous col-
laborative object localization. Our approach learns spatiotem-
poral relationships among objects to provide probabilistic es-
timations of object locations. Then, we propose a new method
to integrate learning and model-based state estimations, which
is able to fuse asynchronous observations obtained from an
arbitrary number of robots to collaboratively localize objects.
Extensive experiments are conducted to evaluate our approach
and the experimental results show that our approach outper-
forms existing methods and achieves state-of-the-art perfor-
mance on asynchronous collaborative object localization.
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