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Abstract— Optimization models have been widely used in
many engineering systems to solve the problems related to system
operation and management. For instance, in power systems, the
optimal power flow (OPF) problem, which is a critical component
of power system operations, can be formulated using optimization
models. Specifically, the alternating current OPF (AC-OPF)
problems are challenging since some of the constraints are non-
linear and non-convex. Moreover, due to the high variability that
the power system may have, the coefficients of the optimization
model may change, increasing the difficulty of solving the OPF
problem. Although the conventional optimization tools and deep
learning approaches have been investigated, the feasibility and
optimality of the solutions may still be unsatisfactory. Hence, in
this paper, based on the recently developed model-informed
generative adversarial network (MI-GAN) framework, a tailored
version for solving the non-linear AC-OPF problem under
uncertainties is proposed. The contributions of this work can be
summarized into two main aspects: (1) To ensure the feasibility
and improve the optimality of the generated solutions, two
important layers, namely, the feasibility filter layer and
optimality-filter layer, are considered and designed; and (2) An
efficient model-informed selector is designed and integrated to the
GAN architecture, by incorporating these two new layers to
inform the generator. Experiments on the IEEE test systems
demonstrate the efficacy and potential of the proposed method for
solving non-linear AC-OPF problems.

Keywords-- generative adversarial network (GAN), model-
informed generation, optimal power flow (OPF), non-linear
optimization

I. INTRODUCTION

Many problems in system operations and management can
be formulated and handled by optimization models in
engineering practice. For example, in the operations of power
systems, one of its essential components is to estimate the
optimal power flow (OPF), which aims to minimize the total
generation cost while satisfying the operational requirements
and system constraints [1, 2]. A common approach to deal with

*Corresponding author: Chenang Liu

OPF problem is to formulate it as an optimization model and
search for the optimal solution [3, 4]. Specifically, the
alternating current OPF (AC-OPF) formulation is widely
applied in real-world power system operations. However, it is
notoriously challenging to be solved due to its nonlinear and
nonconvex nature. Also, the AC-OPF models are usually not
fixed, i.e., model parameters may change dynamically with
uncertainties in the power system [5]. Though some traditional
optimization approaches, such as stochastic and robust methods
[5], could address the OPF problem effectively, the problems
are solved individually in each stage, which is time-consuming
and not suitable for online applications.

In recent decades, an increasing number of artificial
intelligent-based techniques have been developed to solve the
optimization problems [6-9]. The majority of them are based on
neural networks, such as convolutional neural network [6], deep
neural network [7], and graph neural network [8]. The neural
networks are trained to predict the sets of independent
operational variables. In this way, the number of variables
could be considerably lowered, reducing the complexity of
neural network structures and speeding up the computation.
However, massive simulations need to be obtained in advance
for model training, which may result in sample inefficiency.

To close the gaps mentioned above, a natural idea is to
search for optimal solution based on the historical solutions
instead of solving the entire optimization model at each stage.
In addition, an efficient way to train the neural networks ahead
of time is also essential to be considered. Following in this vein,
Li et al. [9] developed a model-informed generative network to
handle the linearly modeled direct current OPF (DC-OPF)
problem. This framework is based on generative adversarial
network (GAN), which was first proposed by Goodfellow et al.
[10]. GAN has been recently used in a large variety of
applications, including image generation [11], missing data
imputation [12], manufacturing process monitoring [13],
biology [14], and so on. The GAN is composed of two
networks, generator ᵃ� and discriminator ᵃ�, which is based on
a minimax game for ᵄ�(ᵃ�,ᵃ�) shown in (1).
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ᵆ�

min maxᵄ�(ᵃ�,ᵃ�ᵅ�) = ᵓ�ᵃ�~ᵄ�ᵁ�ᵁ�ᵁ�ᵁ�(ᵃ�)�log�ᵃ�(ᵃ�)��
(1)

+ᵓ�ᵃ�~ᵄ�ᵁ�(ᵃ�)[log(1 − ᵃ�(ᵃ�(ᵃ�)))]

where ᵃ� generates artificial samples ᵃ�(ᵃ�) and ᵃ� distinguishes
between ᵃ�(ᵃ�) and actual samples ᵃ� . ᵃ� and ᵃ� compete with
each other until ᵃ� is unable to differentiate actual data and
artificial data. In such cases, the distribution of artificial data
should be highly similar to that of actual data [10].

In the optimization fields, model-informed GAN (MI-
GAN) [9] is developed to learn the distribution of data around
optimal solutions. In MI-GAN, ᵃ� generates the solutions and ᵃ�
distinguishes the generated solutions and historical solutions,
where the historical solutions are approximately centered on the
optimal solution. More importantly, a model-informed selector
is proposed to ensure that the solutions generated by ᵃ� are able
to satisfy the model constraints.

In this paper, using the MI-GAN architecture, we further
tailored a more advanced MI-GAN framework to solve the non-
linear optimization problems under uncertainties, e.g., AC-
OPF. Its main contribution consists of two aspects:

i)  Two critical model-informed layers are designed,
feasibility filter layer and optimality filter layer, to
guarantee the feasibility and optimize the generated
solutions.

ii) An efficient model-informed selector is built based on
these two model-informed layers in the generator of GAN-
based architecture.

Furthermore, the performance of the proposed MI-GAN
based approach is also demonstrated in the AC-OPF problem.
The remainder of the work is organized as follows: In Section
II, the revised MI-GAN is proposed to solve non-linear
optimization problem. Numerical case study results are
presented in Section V to demonstrate the effectiveness of the
proposed method. Finally, conclusions and future work are
discussed in Section VI.

II. RESEARCH METHODOLOGY

A. Model-informed GAN (MI-GAN)
As shown in Fig. 1, MI-GAN is incorporated into the

optimization process when training the neural networks.
Similar to GAN, there are two key components in MI-GAN,
i.e., the model-informed (MI) generator ᵃ�ᵅ�      and the
discriminator ᵃ� . ᵃ�ᵅ� is to generate solution sets, i.e., ᵁ�ᵆ� ,
whereas ᵃ� is to distinguish the generated solution sets, i.e., ᵁ�ᵆ�,
and historical solution sets, i.e., ᵁ�ℎ . When the model
converges, the distribution of the generated solutions, i.e., ᵄ� 

ᵅ�
,

should be the same as the distribution of the historical solutions,
i.e., ᵄ� ᵁ�ᵁ�ᵁ�.

The objective function is denoted by ᵅ�(∙). When ᵁ�ℎ is close
to the optimal solution, i.e., ᵃ�∗, the objective function values
calculated by ᵁ�ℎ, i.e., ᵅ�(ᵁ�ℎ), should also be close to the optimal
objective function value, i.e., ᵅ�(ᵃ�∗). Hence, since ᵄ� 

ᵅ�  
= ᵄ� ᵁ�ᵁ�ᵁ�

is achieved when the model converges, ᵁ�ᵆ� should be similar to
ᵁ�ℎ . That is, ᵅ�(ᵁ�ᵆ�) ≈ ᵅ�(ᵁ�ℎ) . In this way, the generated
solutions will be similar or close to the optimal solutions.
Notably, ᵁ�ℎ could be selected to feed ᵃ� from the optimal or
near-optimal solutions of the previous or solved optimization
models.

Besides, in the model-informed (MI) selector ᵄ�, ᵁ� is also
updated by identifying the feasibility and optimality of the
generated solutions. For comparison, a saved solution set, i.e.,
ᵁ�ᵆ�, with the same size as ᵁ�, is used for comparison. In each
iteration, ᵁ�ᵆ� will be replaced by ᵁ�ᵆ� to save the generated
solutions.

Fig. 1. A demonstration of the proposed MI-GAN based framework.

B. Model-informed Selector

As stated in Sec. II.A, the MI selector ᵄ� updates the
solutions based on the comparison between ᵁ� and ᵁ�ᵆ� . The
comparison considers two distinct factors: feasibility and
optimality. Hence, two different model-informed layers,
namely, feasibility filter layer and optimality filter layer, are
proposed to construct ᵄ� as illustrated in Fig. 2.

In Fig. 2, there are two steps in ᵄ� to update ᵁ�. First, the
feasibility filter layer is used to ensure that the constraints for
both ᵁ� and ᵁ�ᵆ� are satisfied. The solutions in ᵁ� may be replaced
by the solutions in ᵁ�ᵆ� depending on the different feasibility
conditions. In this way, the new generated solution set, i.e., ᵁ�ᵅ�,
can be obtained. Afterwards, the optimality filter layer is
applied to compute the objective function values for both ᵁ�ᵅ�
and ᵁ�ᵆ� . The solutions in ᵁ�ᵅ� may also be replaced by the
solutions in ᵁ�ᵆ� depending on different optimality conditions.
The updated generated solution set, i.e., ᵁ�ᵅ� , could be then
obtained.

1) Feasibility filter layer

Fig. 3(a) provides an illustration of the proposed feasibility
filter layer. Initially, ᵁ� and ᵁ�s are combined as pairs and then
sent to this layer. That is, the pair involves one solution from ᵁ�
and another solution from ᵁ�ᵆ�. Therefore, for the ᵅ�-th pair, i.e.,

(ᵁ�(ᵅ�),ᵁ�
(ᵅ�)

), ᵅ� = 1,2,… ,ᵅ�, one solution will be selected from
this pair and then passed to the newly generated solution set ᵁ�ᵅ�.
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Fig. 2. An overview of the model-informed selector.

In particular, based on the feasibility conditions of both
solutions, (ᵁ�(ᵅ�),ᵁ�

(ᵅ�)
) may have four cases: i) feasible ᵁ�(ᵅ�) and

infeasible ᵁ�(ᵅ�); ii) feasible ᵁ�(ᵅ�) and feasible ᵁ�(ᵅ�); iii) infeasible
ᵁ�(ᵅ�) and infeasible ᵁ�(ᵅ�) ; as well as iv) infeasible ᵁ�(ᵅ�) and
feasible ᵁ�(ᵅ�). To save the feasible solutions, for case i) and iv),
the feasible solution will be passed to ᵁ�ᵅ�. However, for case ii)
and iii), the feasibility of both solutions is the same. In such
cases, the passed solution should be used to demonstrate the
performance of ᵃ�ᵅ� in current iteration. Hence, the generated
solution is passed to ᵁ�ᵅ� in case ii) and iii). Notably, the
feasibility of each pair is also recorded to show which
feasibility case it belongs to, which is denoted as ᵄ�ᵅ� (ᵄ�ᵅ� =

1,2,3,4) in one label sequence ᵄ�. Then ᵄ� will also be routed to
the optimality filter layer.

Based on the above-mentioned description for feasibility
filter layer, the corresponding algorithm is shown in the
Algorithm 1. For the ᵅ�-th pair, only when ᵁ�(ᵈ�) is infeasible and
ᵁ�

(ᵈ�) is feasible, ᵁ�(ᵈ�) is passed to ᵁ�ᵅ� as ᵁ�(ᵅ�). Otherwise, ᵁ�(ᵈ�) is

assigned as ᵁ�(ᵅ�) . In this way, all the solutions in ᵁ�ᵅ� are
essentially synthesized from either current iteration or the
previous iterations.

Algorithm 1: Feasibility filter layer algorithm

Input: ᵁ� {ᵁ�(1),ᵁ�(2),… ,ᵁ�(ᵅ�)}, ᵁ�ᵆ� {ᵁ�
(1)

,ᵁ�
(2)

,… ,ᵁ�
(ᵅ�)

Step 1: Define a new solution set as ᵁ�ᵅ� and a zero sequence ᵄ�
For ᵅ� = 1 to ᵅ� do

Step 2: Calculate the constraints based on ᵁ�(ᵈ�) and ᵁ�(ᵅ�)

If ᵁ�(ᵈ�) is feasible and ᵁ�(ᵅ�) is infeasible:

Step 3: Assign ᵁ�(ᵅ�) to ᵁ�(ᵅ�) and set ᵄ�ᵅ� = 1

Else if ᵁ�(ᵈ�) and ᵁ�(ᵅ�) are both feasible:

Step 4: Assign ᵁ�(ᵅ�) to ᵁ�(ᵅ�) and set ᵄ�ᵅ� = 2

Else if ᵁ�(ᵈ�) and ᵁ�(ᵅ�) are both infeasible:

Step 5: Assign ᵁ�(ᵅ�) to ᵁ�(ᵅ�) and set ᵄ�ᵅ� = 3

Else: Assign ᵁ�(ᵈ�) to ᵁ�(ᵅ�) and set ᵄ�ᵅ� = 4

Output ᵁ�ᵅ�, ᵄ�

Fig. 3. The framework of the feasibility filter layer (a) and optimality filter
layer (b) in the model-informed selector.

2) Optimality filter layer

The optimality filter layer compares the objective function
values calculated by ᵁ�ᵅ� and ᵁ�ᵆ� , i.e., ᵅ�(ᵁ�ᵅ�) and ᵅ�(ᵁ�ᵆ�). Fig.
3(b) depicts the optimality filter layer in ᵄ�. Similar as the input
of feasibility filter layer, ᵁ�ᵅ� and ᵁ�ᵆ� are also sent as pairs to the
optimality filter layer. One solution in the pair is from ᵁ�ᵅ� while
another is from ᵁ�ᵆ�. The output of optimality filter layer, i.e.,
ᵁ�ᵆ�, will also select one solution from each pair.

The ᵅ�-th pair of ᵁ�ᵅ� and ᵁ�ᵆ�, i.e., (ᵁ�1(ᵅ�)
,ᵁ�

(ᵅ�)
), may have two

cases, as shown in (2).

i) ᵅ�(ᵁ�
(ᵅ�)

) ≥ ᵅ�(ᵁ�
(ᵅ�)

); ii) ᵅ�(ᵁ�
(ᵅ�)

) < ᵅ�(ᵁ�
(ᵅ�)

). (2)

In such cases, a natural idea is to pass the solution with a
smaller objective function value to ᵁ�ᵆ� . However, since the
feasibility is more important than optimality, the feasibility of
ᵁ�ᵅ� and ᵁ�ᵆ�, i.e., the label ᵄ�, should also be considered in the
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optimality filter layer. Hence, case i) and ii) are discussed
separately according to ᵄ�:

(a) For the case i), if ᵁ�(ᵅ�) is feasible, i.e., ᵄ�ᵅ� is 1 or 2, ᵁ�(ᵅ�)

will be assigned as ᵁ�(ᵅ�); Otherwise, ᵁ�(ᵅ�) will be sent to
ᵁ�2 as ᵁ�2(ᵅ�).

(b) For the case ii), only when ᵁ�1(ᵅ�) is feasible and ᵁ�(ᵅ�) is
infeasible, i.e., ᵄ�ᵅ� is 1, ᵁ�(ᵅ�) will be assigned as ᵁ�(ᵅ�) ,

Otherwise, ᵁ�(ᵅ�) will be sent to ᵁ�ᵆ� as ᵁ�(ᵅ�).

Based on the above two cases, the algorithm for optimality
filter layer is demonstrated in Algorithm 2 below. The objective
function values in both ᵁ�ᵅ� and ᵁ�ᵆ� are computed. Two cases are
considered separately with the help of calculated objective
function values and ᵄ�. In this way, the feasible solutions with
smaller objective function values could be passed to ᵁ�ᵆ�. Hence,
based on the feasibility filter layer and optimality filter layer,
the overall procedure of model-informed selector can be then
established. The formulation of the proposed model is
discussed in Sec. II-C.

Algorithm 2: Optimality filter layer algorithm

Input: ᵁ�ᵅ� {ᵁ�
(1)

,ᵁ�
(2)

,… ,ᵁ�
(ᵅ�), ᵁ�ᵆ� {ᵁ�

(1)
,ᵁ�

(2)
,… ,ᵁ�

(ᵅ�)
}, ᵄ�

Step 1: Define a new saved solution set as ᵁ�ᵆ�
For ᵅ� = 1 to ᵅ� do

Step 2: Calculate ᵅ�(ᵁ�
(ᵅ�)) and ᵅ�(ᵁ�

(ᵅ�))

If ᵅ�(ᵁ�
(ᵅ�)) < ᵅ�(ᵁ�

(ᵅ�)):

If ᵄ�ᵅ� = 1: Assign ᵁ�(ᵅ�) to ᵁ�(ᵅ�); Else: Assign ᵁ�(ᵅ�) to ᵁ�(ᵅ�)

Else if ᵄ�ᵅ� > 2: Assign ᵁ�(ᵅ�) to ᵁ�(ᵅ�); Else: Assign ᵁ�(ᵅ�) to ᵁ�(ᵅ�)

Output ᵁ�ᵆ�

C. Formulation of MI-GAN for Non-linear Optimization

Based on the description in Sec. II-B, the MI selector could
be demonstrated as in (3). The generated solution set ᵁ� is
updated as ᵁ�ᵆ� based on the saved solution set ᵁ�ᵆ�.

ᵁ�ᵆ� = ᵄ�(ᵁ�|ᵁ�ᵆ�) (3)

In this way, the model-informed generator, i.e., ᵃ�ᵅ�, could
be formulated in (4). The generator first generates solutions
based on the input noise ᵁ�. Afterwards, the generated solutions
will be sent to the MI selector and output as ᵁ�ᵆ�. Then ᵁ�ᵆ� will
be sent to ᵃ� with actual solution set ᵁ�ℎ for distinguishing.

ᵃ�ᵅ�(ᵁ�) = ᵄ�(ᵃ�(ᵁ�)|ᵁ�ᵆ�) (4)

Based on ᵃ�ᵅ� and ᵃ�, as shown in (5), the minimax game for
the MI-GAN, i.e., ᵄ�(ᵃ�,ᵃ�ᵅ�), can be formulated in (5),

min maxᵄ�(ᵃ�,ᵃ�ᵅ�) = ᵓ�ᵃ�ℎ~ᵄ�ᵁ�ᵁ�ᵁ�ᵁ�
�log�ᵃ�(ᵃ�ℎ)��

(5)
+ᵓ�ᵁ�~ᵄ�ᵃ�ᵅ�

[log(1 − ᵃ�(ᵃ�ᵅ�(ᵁ�)))]

Accordingly, the loss of ᵃ�ᵅ�, i.e., ᵃ�ᵃ�ᵅ� , and the loss of ᵃ�, ᵃ�ᵃ�,
could be expressed in (6).

ᵃ�ᵃ�      = −ᵓ�ᵃ�~ᵄ� (ᵃ�(ᵃ�ᵅ�(ᵁ�)))
(6)

ᵃ�ᵃ� = ᵓ�ᵃ�~ᵄ�ᵃ�ᵅ�
(ᵃ�(ᵃ�ᵅ�(ᵁ�))) − ᵓ�ᵃ�ℎ~ᵄ�ᵁ�ᵁ�ᵁ�ᵁ�

(ᵃ�(ᵃ�ℎ))

Based on the established MI-selector, the algorithm for MI-
GAN is shown in Algorithm 3. ᵁ�ℎ and an initialized pre-
defined ᵁ�ᵆ� are sent to the MI-GAN. Then in first iteration, the
pre-defined solutions in ᵁ�ᵆ� could be replaced by the generated
solutions ᵁ� according to the principle described in Sec. II-A.
Hence, in each iteration, the solutions in ᵁ�ᵆ� are all generated
either from the current iteration or from the previous iterations.
Then, when ᵃ�ᵃ� and ᵃ�ᵃ�ᵅ� 

converge, ᵁ�ᵆ� should be similar to ᵁ�ℎ.
Under such circumstances, ᵅ�(ᵁ�ᵆ�) will also be similar to
ᵅ�(ᵁ�ℎ), which will be close to the optimal objective function
value, i.e., ᵅ�(ᵃ�∗).

Algorithm 3: MI-GAN algorithm to solve non-linear optimization

Input: ᵁ�ℎ {ᵁ�
(1)

,ᵁ�
(2)

,… ,ᵁ�
(ᵅ�)

} , ᵁ�ᵆ� {ᵁ�
(1)

,ᵁ�
(2)

,… ,ᵁ�
(ᵅ�)

} , ᵁ� , ᵀ� , ᵁ� ,
ᵅ�, parameter ᵰ�, ᵅ�
Repeat

Step 1: Randomly generate noise ᵁ�
Step     2:     Generate ᵅ�     fake     solutions     by     generator     as

ᵁ� {ᵁ�(1),ᵁ�(2),… ,ᵁ�(ᵅ�)}
Step 3: Obtain ᵁ�ᵆ� by inputting ᵁ�ℎ , ᵅ� to algorithm 1 and

algorithm 2
Step 4: Send ᵁ�ℎ and ᵁ�ᵆ� into discriminator ᵃ� to get output label

results ᵃ�(ᵁ�) and ᵃ�(ᵁ�), respectively
Step 5: Optimize the model parameters based on the output of

discriminator
Step 6: Assign ᵁ�ᵆ� to ᵁ�ᵆ�

Until both Lossᵃ�ᵅ�, −ᵃ�(ᵁ�), and Lossᵃ�, ᵃ�(ᵁ�) − ᵃ�(ᵁ�), converge
Output ᵃ�ᵅ�, D

Specifically, to ensure that the solutions in the pre-defined
ᵁ�ᵆ� are replaced in the first iteration, each solution is set as a
vector with extremely large values. In this way, in the feasibility
filter layer, since the solutions in the pre-defined ᵁ�ᵆ� are not
feasible, they could be replaced by the generated solutions in ᵁ�.
Hence, the pre-defined ᵁ�ᵆ� will not interfere the training process
of MI-GAN.

It is worth noting that, the proposed MI-GAN based
framework has the same convergence property like MI-GAN.
That is, when ᵄ� ᵁ�ᵁ�ᵁ� = ᵄ� 

ᵅ�  
[9], the model will converge. If ᵃ�∗

locates in the center of ᵄ� ᵁ�ᵁ�ᵁ�, then after the model converges,
the solutions from ᵃ�ᵅ� , i.e., ᵁ�ᵆ� , should also be around ᵃ�∗ .
Following that, the solution with the smallest objective function
values among ᵁ�ᵆ� is selected as the output solution of MI-GAN
model, i.e., ᵃ�. To achieve that, the historical solutions of the
optimization model could be used as ᵁ�ℎ.

If the historical solutions are not available, solutions can be
sampled from the feasible region. Then the sampled solutions
could also be considered as historical solutions. When the
optimization model is large in scale, such sampling may take a
long time. In such cases, the constraints could be partially
relaxed in order to reduce the sampling time.
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In addition, when the sampled solutions are applied as ᵁ�ℎ,
ᵃ�∗ may not be located in the center of ᵄ� ᵁ�ᵁ�ᵁ�. Then ᵁ�ᵆ� may also
not be around ᵃ�∗. Under such conditions, the recursive iteration
algorithm, similar as the process in [9], could be developed to
make ᵁ�ᵆ� approach to ᵃ�∗. That is, the historical solutions will be
replaced by the generated solutions gradually and the model
will be trained based on the updated actual solutions.

III. CASE STUDIES

A. Data Introduction and Experimental Setup

In this paper, an IEEE test system for alternating current
optimal power flow (AC-OPF) problem is used to validate the
effectiveness of the proposed method. As described in Sec. I,
AC-OPF problem is a very popular non-linear optimization
problem in power system operations and management. It
minimizes the total generation cost while satisfying system
constraints and operational requirements. In this way, economic
power system operation could be achieved in day-ahead and
real-time markets [1].

The AC-OPF problem involves four groups of variables: the
actual power generation, ᵇ�ᵅ� , the reactive power generation,
ᵇ�ᵅ�, the power voltage magnitudes, ᵇ�, and the power voltage
phase angles, ᵳ� . Denote ᵄ� and ᵄ�ᵃ� as the buses and power
generators, respectively. Besides, ᵅ�ᵄ�     and ᵅ�ᵅ� are used to
represent the number of buses and power generators. Then in
ᵇ�ᵅ�={ᵄ� 1, ᵄ� 2,…, ᵄ� ᵅ�ᵅ�}, ᵄ� ᵅ� is the actual power generation of
generator ᵅ�, and in ᵇ�ᵅ�={ᵄ�ᵅ�1, ᵄ�ᵅ�2,…, ᵄ�ᵅ�ᵅ�ᵅ�}, ᵄ�ᵅ�ᵅ� is the reactive
power generation of generator ᵅ�. In addition, in ᵳ�={ᵰ�1, ᵰ�2,…,
ᵰ�ᵅ�ᵄ�} , ᵰ�ᵅ�     is the voltage phase angle for bus ᵅ� , and in
ᵇ�= {ᵄ� , ᵄ� ,…, ᵄ� 

ᵄ�
} , ᵄ� is the voltage magnitude for bus ᵅ� .

Similarly, denote that the actual power load and reactive power
load as ᵇ�ᵅ�={ᵄ� 1, ᵄ� 2,…, ᵄ� ᵅ�ᵄ�} and ᵇ�ᵅ� = {ᵄ�ᵅ�1,ᵄ�ᵅ�2,… ,ᵄ�ᵅ�ᵅ�ᵄ�},
respectively. Furthermore, the transmission line is represented
by ℰ. The number of lines in ℰ is denoted as ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�. Based on the
transmission lines between different buses, the flow limit
matrix following one matrix S, whose size is ᵄ� × ᵄ�. According
to the notations, the formulation of the applied AC-OPF
problem in this study is shown in (7)-(14).

min     ᵃ�(ᵇ� )
ᵇ�ᵅ�,ᵇ�ᵅ�,ᵇ�,ᵳ�

s.t. ᵄ� ᵅ� − ᵄ� ᵅ� = ∑ᵅ�∈ᵄ� ᵄ� ᵄ� �ᵅ�ᵅ�ᵅ� cosᵰ�ᵅ�ᵅ� + ᵄ�ᵅ�ᵅ� sinᵰ�ᵅ�ᵅ��, ᵅ� ∈ ᵄ� (8)

ᵄ�ᵅ�ᵅ� − ᵄ�ᵅ�ᵅ� = ∑ᵅ�∈ᵄ� ᵄ� ᵄ� �ᵅ�ᵅ�ᵅ� sinᵰ�ᵅ�ᵅ� − ᵄ�ᵅ�ᵅ� cosᵰ�ᵅ�ᵅ��, ᵅ� ∈ ᵄ� (9)

ᵄ�min ≤ ᵄ� ᵅ� ≤ ᵄ�max, ᵅ� ∈ ᵄ�ᵃ� (10)

ᵄ�ᵅ�ᵅ�
in ≤ ᵄ�ᵅ�ᵅ� ≤ ᵄ�ᵅ�ᵅ�

ax, ᵅ� ∈ ᵄ�ᵃ� (11)

ᵄ�min ≤ ᵄ� ≤ ᵄ�max, ᵅ� ∈ ᵄ� (12)

ᵄ� ᵅ� + ᵄ�ᵅ�ᵅ� ≤ �ᵄ�ᵅ�ᵅ� 
ax�

2
, (ᵅ�, ᵅ�) ∈ ℰ (13)

ᵰ�ᵅ�ᵅ� 
in ≤ ᵰ�ᵅ�ᵅ� ≤ ᵰ�ᵅ�ᵅ� 

ax, (ᵅ�, ᵅ�) ∈ ℰ (14)

Equation (7) minimizes the power generation cost where the
cost function is denoted as ᵃ�. Following that, equation (8)-(9)
demonstrates the Kirchhoff's circuit laws for both actual power
and reactive power, respectively, where ᵅ� and ᵄ� are
coefficients. In addition, equations (10)-(11) represent the
limits for active power generation, reactive power generation
and voltage magnitudes, separately. Equation (12) shows the
flow limit on each transmission line and (13) demonstrates the
voltage phase angles limit where ᵰ�ᵅ�ᵅ� = ᵰ�ᵅ� − ᵰ� .

In this study, an IEEE case9 test system is demonstrated for
the AC-OPF problem. The system setups in this work are
similar to those in Venzke et al. [15]. There are 9 buses and 3
power generators in case9, i.e., ᵅ�ᵄ� = 9 , and ᵅ�ᵅ� = 3 . In
addition, there are 9 transmission lines, i.e., ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� = 9 . In
addition, the cost function in this case is also linear.

As shown in (8)-(14), equation (8), (9) and (13) are non-
linear constraints while the others are linear constraints. Hence,
since the non-linear constraints are hard to handle, without loss
of generality, the required variables are directly calculated
rather than generated or sampled. That is, only ᵇ� and ᵳ� are
synthesized for both sampling process for actual solutions and
generation process for generated solutions. Then using ᵇ� and
ᵳ�, ᵇ�ᵅ� and ᵇ�ᵅ� are calculated by (8) and (9). Following that, all
the variables are sent to (10)-(14) for feasibility testing. This
makes the optimization problem easier to learn. Specifically, in
the sampling process for the actual solutions, 3,000 feasible
pairs of ᵇ� and ᵳ� are sampled under the uniform distribution
according to the range in (12) and (14).

Notably, the proposed MI-GAN is compatible with most of
the popular GAN architectures. In this study, since the popular
Wasserstein GAN (WGAN) [11] could make the training
process more stable, MI-GAN is built by incorporating WGAN.
Besides, in both ᵃ� and ᵃ�ᵅ�     of MI-GAN, the multilayer
perceptron (MLP) networks are applied. ᵃ� consists of three
fully connected layers whereas ᵃ�ᵅ� consists of five fully
connected layers. In the last layer of ᵃ�ᵅ� , to customize the
generated pairs of ᵇ� and ᵳ� , they are mapped to the range
following (12) and (14) after utilizing sigmoid as the activation
function. For all the other layers in both ᵃ� and ᵃ�ᵅ� ,
Leaky_ReLU is incorporated as the activation function. The
number of iterations is set as 3,000. The batching size is set as
50. That is, 50 feasible pairs of ᵇ� and ᵳ� are generated in the
generator. The proposed method is implemented using the
TensorFlow 1.13 [16]. The experiments were conducted on a
regular computer with i7-9750H CPU @2.60 GHz, and 16 GB
RAM.

B. Results and Discussions

In this study, to validate the effectiveness of the proposed
method comprehensively, two different scenarios are
considered for different perspectives. Sec. III-B-1 applied the
fixed AC-OPF problems to show the performance of the
proposed method. In addition, Sec. III-B-2 applied the AC-OPF
problem with uncertainties to test the robustness of the
proposed method.
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1) MI-GAN performance under fixed AC-OPF
problem

In this study, the output solution of the proposed method
could be obtained from the first recursive iteration. Hence,
unlike [9], the recursive iteration algorithm is not applied in this
study. In addition, a convergence plot of the proposed method
is shown in Fig. 4. That is, as the mode progresses from 0 to
2,000 iterations, the feasible solutions in the generated solution
set will be recorded in each iteration. The average objective
function values of generated feasible solutions are then
calculated for plotting. Fig. 4. clearly shows that the objective
function value gradually decreases and converges as the
iteration progresses.

Specifically, according to Fig. 4, the update process of
objective function values could be divided in two phases. In the
first phase, which is before approximately 250 iterations, the
feasibility filter layer plays a critical role. This is due to the MI-
GAN model’s inability to generate the desired solutions
accurately during this phase. Hence, the model is primarily
concerned with the feasibility filtering in this phase. Under
these conditions, the number of feasible solutions in the
generated solution set is increasing, but their quality is not
guaranteed. Hence, the average objective function values may
exhibit some fluctuation patterns during the first phase.

also recorded to demonstrate the efficiency of the proposed
method. Specifically, the running time of the proposed model
in each case is about 7.91 seconds, and the standard deviation
of the running time is about 0.19. Hence, since the running time
is relatively lower and the standard deviations are small, it has
the potential to be applied in the online power systems.

2) MI-GAN performance under AC-OPF problem
with uncertainties

In this study, to demonstrate the effectiveness of the
proposed method comprehensively, the scenarios when the AC-
OPF problems have uncertainties are demonstrated. That is, the
experiments to add the fluctuations to the net loads, including
ᵇ�ᵅ� and ᵇ�ᵅ� , are conducted. In the experiments, the proposed
method is trained given the original ᵇ�ᵅ� and ᵇ�ᵅ� . After the
proposed method is well-trained, ᵇ�ᵅ� and ᵇ�ᵅ� are changed to
ᵰ�ᵇ�ᵅ� and ᵰ�ᵇ�ᵅ�, respectively. Then according to ᵰ�ᵇ�ᵅ� and ᵰ�ᵇ�ᵅ�,
the feasible region will also change. Afterwards, the MI-GAN
is trained based on the changed feasible region to obtain new
solutions. If the proposed method is effective, the objective
function value calculated by the new output solution should still
converge under each experiment.

To fully show the capability of MI-GAN, two cases to
change the actual and reactive power loads are considered as
follows:

i) Increasing ᵇ�ᵅ� and ᵇ�ᵅ� by selecting ᵰ� among the set
{1.1, 1.2, 1.3, 1.4, 1.5}.

ii) Decreasing ᵇ�ᵅ� and ᵇ�ᵅ� by selecting ᵰ� among the set
{0.9, 0.8, 0.7, 0.6, 0.5}.

Fig. 4. The objective function value convergence for the proposed method.

In the second phase, which occurs after approximately 250
iterations, most of the solutions in the generated solution set are
already feasible. That is, the MI-GAN model has already been
well-trained to generate feasible solutions. Hence, the model is
primarily concerned with the optimality filtering in this phase.
Higher-cost objective values are replaced by the lower-cost
objective values. In this way, the average objective values will
decrease and converge steadily.

Based on the first phase and second phase in Fig. 4, the
effectiveness of feasibility filter layer and optimality filter layer
are validated. In addition, the generated solutions are
approaching to the optimal solution. Thereby, it demonstrates
that the proposed method could converge and gradually find the
solutions around the optimal solution to solve this problem.

Besides, the experimental running time of MI-GAN were

Two violin plots of the objective function values obtained
under different ᵰ� are shown in Fig. 5(a)-(b). Specifically, Fig.
5(a) shows the objective function values when ᵰ� is increasing
in the first case, and Fig. 5(b) shows the objective function
values when ᵰ� is decreasing in the second case. The size of
violins does not show any significant increasing or decreasing
patterns in either case. Thus, it could be demonstrated that the
changing of net loads has no effect on the stability of the
generated solutions by the proposed method.

To better show the moving pattern of the objective function
values when ᵰ� changes, the average objective function values
and the standard deviations are shown in Table I. It is clearly
shown that as ᵰ� increases, the moving percentages of objective
function values will also increase. This is because the power
generation will increase to fit the loads, which leads to the cost
increment. In addition, for case 2, as shown in Table I, the
objective function values are fluctuating. Overall, it shows that
the proposed method is not sensitive to the dynamic changes in
the optimization model.

Besides, according to Table I, the standard deviations of the
proposed method are also fluctuating for both increasing and
decreasing loads. Such similar standard deviations also reveal
that the proposed method is relatively stable when the loads
change. Hence, the experiments conducted under uncertainties
demonstrate that even if the coefficients of the optimization
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model may change, the well-trained MI-GAN could still be re-
trained to find the near-optimal solutions effectively.

Fig. 5. The violin plot of the objective function value calculated by the proposed
method when changing the power loads: (a) The objective function values when ᵰ�
is increasing and larger than 1; (b) The objective function values when ᵰ� is
decreasing and smaller than 1.

proposed, which incorporates the two new layers, to identify the
generated solutions in the GAN-based architecture. In addition,
the proposed MI-GAN is compatible with the majority of
popular GAN architectures. Therefore, the proposed method
could solve various optimization problems by applying
different GAN architectures.

The superior performance of the proposed method is
demonstrated by one AC-OPF case from IEEE test systems.
The solution generated by the proposed method is demonstrated
to show its effectiveness. In addition, the recorded running
times also demonstrate the computational efficiency of the
proposed method. Furthermore, to validate the robustness of the
proposed method, the experiments are also conducted when the
actual and reactive power loads are not fixed. In such cases, it
also shows that the proposed method is effective to handle the
uncertainties. Therefore, the experiments in this work have
shown the highly potential of the proposed method to be applied
in the large-scale nonlinear optimization problems.

In our future work, the output solutions of the proposed MI-
GAN based approach will also be compared with the actual
optimal solutions to better demonstrate the effectiveness of the
proposed method. In addition, the proposed method will also be
applied to test more optimization problems, e.g., other AC-OPF
cases from IEEE test systems. Furthermore, the recursive
iteration algorithm will also be tested under the optimization
cases where the historical solutions are not available.
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TABLE I. THE PERFORMANCE OF THE PROPOSED MI-GAN BASED
FRAMEWORK IN TERMS OF OBJECTIVE FUNCTION VALUES BY AVERAGE (STD)

ᵴ�

1.1 1.2 1.3 1.4 1.5
Case 1 0.87               1.15               1.25               1.30               1.54

(0.90) (0.53) (0.34) (0.40) (0.72)

ᵰ�

0.9 0.8 0.7 0.6 0.5
Case 2 0.63               1.15               0.99               0.62               1.32

(0.20) (0.44) (0.60) (0.29) (0.44)

IV. CONCLUSIONS

In this paper, a novel MI-GAN based framework is
proposed to solve complex non-linear non-convex optimization
problems. Compared with the conventional optimization
algorithms, the proposed MI-GAN based approach has two
main contributions: (i) two model-informed layers, i.e.,
feasibility filter layer and optimality filter layer, are developed
to guarantee the feasibility and improve the optimality of the
generated solutions; and (ii) an efficient MI selector is
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