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Abstract

We report the linear rheology for dense suspensions of sterically stabilized smooth and mesoscopically rough colloids interacting as hard par-
ticles. Small amplitude oscillatory measurements reveal that rough colloids at high volume fractions exhibit storage and loss moduli that are
orders of magnitude greater than smooth colloids. Frequency-concentration superposition is used to collapse the viscoelasticity data onto a
master curve, where shift factors suggest a more elastic microstructure and reduced cage volume for rough particles. A combination of the
mode-coupling theory, hydrodynamic modeling, and the activated hopping theory shows that these rough particles with significantly reduced
localization lengths tend to become trapped in their glassy cages for extended periods of time. High-frequency data show that rough colloids,
but not smooth colloids, display a transition from a free-draining to a fully lubricated state above the crossover volume fraction and, further-
more, exhibit solidlike behavior. Scaling analyses support the idea that lubrication forces between interlocking asperities are enhanced,
leading to rotational constraints and stress-bearing structures that significantly elevate the viscoelasticity of dense suspensions. The results
provide a framework for how particle surface topology affects the linear rheology in applications such as coatings, cement, consumer prod-

ucts, and shock-absorbing materials. © 2022 The Society of Rheology. https://doi.org/10.1122/8.0000424

Il. INTRODUCTION

Understanding how mesoscale particle roughness affects
suspension rheology is an important problem because most
technologically relevant materials contain particulates with
anisotropic surfaces. Dense suspensions of such particulates are
used in energy-efficient batteries, gas and oil processing, the
agricultural and food sectors, as well as pharmaceutical and
consumer formulations. Studies that move beyond hard spheres
and scientifically investigate rheological effects are now possi-
ble due to recent progress in synthesis methods that produce
well-controlled particle roughness [1]. In this study, we focus
on the linear viscoelastic properties of dense colloidal suspen-
sions, which are consequences of the interplay between the
Brownian and hydrodynamic forces between neighboring parti-
cles that form dynamically arrested cages. These excluded
volume effects depend on the colloid volume fraction (¢) and
the nature of the interparticle forces [2]. At low to moderate
volume fractions (¢ <0.30), colloidal suspensions display
stresses due to contributions from the solvent viscosity, the
Brownian motion, and particle interactions with one another
[3]. As ¢ increases, the environment around hard colloids
becomes crowded, and the Brownian motion is slowed by
lubrication hydrodynamics [4—6] as well as by any irregularities
in the particle geometry [7—10]. The kinetic arrest results in an
increase in the suspension stress, and understanding how parti-
cle crowding affects bulk stresses is important in fields ranging
from cancer cell dynamics [11] to the prediction of geological
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phenomena [12]. Here, we are especially interested in how
colloid surface roughness affects the frequency (w)-dependent
linear oscillatory rheology of dense colloidal suspensions.

The slow dynamics and finite viscoelasticity of dense sus-
pensions are a result of collective kinetic trapping by nearest
neighbors. When suspensions are dilute (¢ <0.05), colloidal
dynamics are readily described by the Stokes—Einstein—
Sutherland relation, which states that the translational self-
diffusivity of a colloid is Dy = kgT/6mn.a, where kgT is the
thermal energy, a is the particle radius, and 7 is the solvent
viscosity. As ¢ approaches the glass transition point
(¢pg ~ 0.58 for hard spheres), deviation from Fickian diffu-
sion manifests as a sublinear regime in the mean-squared dis-
placement at intermediate lag times. This regime separates
two diffusive dynamics: the short-time J-relaxation mode
arises from particle rearrangement inside the ¢-dependent
cage defined by a colloid’s nearest neighbors, while the long-
time o-relaxation mode is a consequence of slow cage rear-
rangement events that vanishes near random close packing
(max = 0.64 for hard spheres) [5]. Both relaxation modes are
well established in experiments and computer simulations for
colloidal hard spheres at ¢<0.55 [5,6] but are much less
understood for particles that deviate from hard spheres or at
high ¢ — the subject of this study.

The translational diffusion coefficients are typically much
more strongly affected by ¢ than their rotational counterparts,
primarily due to the minimal effects of hydrodynamics on
the rotational mode of a smooth spherical particle. However,
this statement does not necessarily hold true for rough col-
loids suspended at high ¢, where the surface asperities
between nearest neighbors generate rotational constraints
[13,14]. Such types of rough colloids shear thicken strongly
[15,16], tend to suppress crystallization [17], and form
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stringlike networks when used in depletion flocculated gels
[17]. The microscopic origin of their unusual material proper-
ties is attributed to the presence of surface asperities. When
two rough colloids are sufficiently near one another, the
asperities are able to interlock and impart a tangential resis-
tance that is not accessible with smooth spheres [13,18,19].
Earlier, we observed that the rotational dynamics of rough
colloids in a quiescent suspension is much slower than that
of smooth colloids, even though the microstructure and trans-
lational mobility are relatively unchanged [10]. Collectively,
these observations suggest that both the storage and loss
moduli (G’ and G”) of dense suspensions comprising rough
colloids could be different from that displayed by classical
hard sphere systems because of the enhanced hydrodynamic
interactions between nearest surface asperities [13,19].

The contributions of cage relaxation and lubrication hydro-
dynamics to the suspension viscoelasticity can be modeled
using the mode-coupling theory (MCT) combined with equa-
tions of motion that account for diffusional boundary layers
and hydrodynamic interactions. MCT is a dynamic mean-field
approach that was originally developed to predict the glass tran-
sition and subsequently applied to colloidal glass rheology
[20-22]. Specifically, it predicts the change in single-particle
dynamics due to particle caging [20]. Incorporation of an
ensemble-averaged localization parameter, which can be
thought of as the characteristic length scale of microscopic cage
hopping, into Green—Kubo transport equations generates a pre-
diction of the glassy elastic modulus [23]. One of the mecha-
nisms for the slow diffusion in this caging regime comes from
activated processes in colloidal glasses. The probability for par-
ticles to “hop” over an entropic barrier and move outside of its
cage is a function of the barrier height and the diffusion length
scale. The size of transient cages formed in the glassy regime
of colloidal suspensions is directly related to the localization
length. In addition to microstructural interactions, when a dense
suspension of hard spheres is sheared at high oscillatory fre-
quencies o, lubrication interactions dominate over diffusion
and a high-frequency G’ plateau is observed with a scaling that
is independent of the applied frequency (G’ ~ °). In contrast, a
freely draining system with screened lubrication interactions
will not develop a high-frequency plateau but rather exhibit a
power-law dependence (G’ ~ w'’?) [24]. These type of measure-
ments have been made using specialized high-frequency tor-
sional devices [2,25] or standard rheometers [26,27] if the
particle size and Brownian time scale is sufficiently large.

At ¢>d¢,, sterically stabilized silica and poly(12-
hydroxystearic acid) stabilized poly(methyl methacrylate)
(PHSA-PMMA) colloids have traditionally shown scalings of
G' ~o'?, unless the stabilizer chain lengths are long or if
surface asperities are present. Schroyen et al. showed that when
the PHSA brush length is large compared to the particle size
(h,=60nm, hJ/2a=0.08, where h, is the PHSA contour
length), brush compression suppresses free-draining behavior,
increases the viscous contribution to the suspension stress, and
causes the lubrication regime to shift to extremely high frequen-
cies. The so-called ‘“hairy” PHSA-PMMA particles exhibit
screened lubrication interactions at moderate o, unlike classical
silica and PHSA-PMMA hard spheres with thin stabilizer layers
(h.~10nm). They also showed that the diffusive boundary

layer thickness for raspberrylike silica colloids decreases with
¢, possibly due to the reduced space for fluid flow at very
small separation distances between surface asperities [2].

In this work, we investigate G’ and G” of smooth and
rough PHSA-PMMA colloids and their frequency-dependent
linear rheology. The colloids are synthesized using free
radical polymerization and suspended at different volume
fractions in a refractive index-matched solvent, squalene, that
minimizes van der Waals interactions and generates hard-
particle interactions. Small amplitude oscillatory strain
sweeps are first used to identify the linear viscoelastic regime
for all suspensions. Then, frequency sweeps at a fixed strain
are used to perturb the microstructure of the suspensions.
The resultant data are modeled using MCT and hydrody-
namic models [28] to deduce how surface morphology alters
the localization length and lubrication interactions of rough
colloids. Shift factors are used to collapse the frequency
sweep data onto a master curve, where the magnitude of the
shift factors is used to infer the microstructure and relaxation
time scales of rough colloids. A ¢-dependent caging length
scale, obtained from the glassy elastic modulus and the
dynamic localization theory, provides further physical insight
into why the viscoelasticity of rough colloids differs signifi-
cantly from their smooth counterparts in dense suspensions.

Il. MATERIALS AND METHODS
A. Colloidal synthesis and characterization

Smooth PHSA-PMMA microspheres are synthesized using
dispersion polymerization of PHSA-(glycidyl methacrylate)-(
methyl methacrylate) (PHSA-GMA-MMA) block copolymer
with 2-azobisisobutyronitrile (AIBN) as the free radical initia-
tor and MMA and methacrylic acid as the monomer mixture.
The fluorescent dye Nile red is added during the synthesis
reaction to enable characterization of the colloidal volume frac-
tion using confocal laser scanning microscopy. Rough
PHSA-PMMA colloids are synthesized by adding a cross-
linker, ethylene glycol dimethacrylate (EGDMA), near the
start of the dispersion polymerization reaction after the particle
seeding commences. Earlier studies indicate that the PHSA
copolymer brush is 10-15 nm in contour length with standard
reaction protocols, as detailed elsewhere [29]. The synthesized
particles are initially stored in a stock solution of hexane and
later transferred to an index-matching solvent, squalene
(nsqualene =npmma = 1.49, Psqualene = 858 kg/mg’ PPMMA
~1180kg/m®) at 045<¢$<0.62. The density difference
between the particles and the solvent is neglected due to the
slow sedimentation rate at high volume fractions and the rel-
atively short time for rheological testing.

Colloidal particles swell in squalene because of polymer-
solvent interactions. The effective swollen particle diameter
(2acsr) of both smooth and rough colloids is obtained from
2D confocal microscopy images of colloids suspended in the
solvent. Images are collected near the bottom of the sample
vials where colloids form a single layer. The images are used
to obtain particle sizes and the 2D circularity parameter
(¥,p) from 100 independent particles for each type of
surface morphology. The effective diameters, 2a.s, for sus-
pended colloidal particles are obtained using the expression
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derr = (Ap/m)%. The values of 2a.; are 1.50 um=4% for
smooth colloids and 1.55um +5% for rough colloids. For
comparison, representative scanning electron micrographs of
the dry particles are shown in Fig. 1. The parameter ¥,p, rep-
resents the deviation of a shape from a circle and is mathe-
matically defined as the ratio of area to the square of the
particle perimeter as ¥,p= 47Ap/P3, where Ap is the
maximum 2D area of the particle and Pp is the corresponding
perimeter. The ¥;p value is 0.99 +0.01 for smooth colloids
and 0.87 = 0.03 for rough colloids.

Centrifugation of PMMA in squalene at gravitational stress
equivalent to 1500 g is used to obtain dense sediments at
random close packing (¢rcp). The high speed of centrifugation
reduces the chances of crystallization by rapidly quenching the
system [30]. Excess solvent is removed from the centrifuged
sediment, and an appropriate volume is re-added to the sedi-
ment followed by slowly rolling the samples over a period of
days to obtain the required ¢. The suspensions are imaged on
a confocal laser scanning microscope (Leica SP8) to obtain the
particle volume fraction, d):4nag’fpr/Vbox, where Np is the
number of particle centroids identified using standard image
processing routines [31] in a 3D image volume, Viox.
Additionally, we estimate the maximum packing ¢p,.x of our
PHSA-PMMA colloidal suspensions through confocal
imaging of the sediments, which are undisturbed over a period
of three months. Using this method, we find that ¢, s=0.64
for the smooth colloids (equivalent to ¢rcp for frictionless,
monodisperse spheres [32]) and ¢, r=0.57 for the rough
colloids used in this study. The reduction in ¢y, for rough
colloids is likely due to their hindered rotational dynamics
[15,16]. Because smooth and rough colloids have different
values of ¢, we use the jamming distance parameter, A¢/
Grmax = (Pmax — ) Pmax, to normalize the volume fraction for a
better comparison of their rheological differences.

B. Rheological measurements

A stress-controlled rheometer (TA Instruments, DHR-2)
equipped with a 50 mm sand-blasted cone and plate geome-
try is used to perform oscillatory strain sweep experiments
where the strain y varies from 0.01% to 100% at a fixed fre-
quency o =1rad/s. Small amplitude oscillatory frequency
sweep experiments are conducted in the linear viscoelastic
regime at y values below the yield strain. After sample
loading and prior to the beginning of data collection, samples
are allowed to equilibrate for 60s to remove prior shear-
induced microstructural changes. To reduce the dilatancy
tendencies of the suspensions during sample loading, the
cone geometry is lowered very slowly at a constant rate of
10 micro.m/s, while the axial force is monitored continuously
to ensure that it does not exceed the instrument limits.

lll. RESULTS AND DISCUSSION
A. Linear viscoelastic measurements

Strain sweep experiments performed on suspensions of
smooth (0.45 < ¢ <0.62) and rough (0.45 < ¢ <0.55) colloids
show that the G’ and G” remain independent of the applied
strain when y < 10%, followed by the onset of nonlinearity and

yielding (Fig. 2). For suspensions of smooth colloids, the y
values at the onset of nonlinearity and yielding decrease with
increasing ¢, similar to earlier results reported in the literature
[28,33,34]. In contrast, this observation is not as clear in sus-
pensions of rough colloids. One plausible explanation is that
the rough particles experience rotational constraints at
¢ >0.53, which could produce clusters that do not signifi-
cantly change in size with increasing ¢ and, therefore, the line-
arity limit to remain constant above ¢, [35]. In contrast, the
linearity limit decreases with increasing ¢ for smooth colloids,
which may indicate larger rigid clusters connected by weaker
intercluster bonds. For both types of particles at ¢ <0.50, the
G’ values are always lower than the G” values; suspensions of
smooth colloids at ¢ <0.55 and rough colloids at ¢ <0.52
exhibit liquidlike behavior. This result is also similar to the
data for silica colloids dispersed in ethylene glycol [28]. At
higher ¢, suspensions of smooth colloids (¢ > 0.58) and rough
colloids (¢ >0.53) become solidlike with G'>G”. A major
difference is that both the G’ and G” values of rough colloids
at ¢ >0.53 are nearly 10° times that observed in suspensions
of smooth colloids at the highest volume fraction (¢ = 0.62).

Figure 3 shows changes in G’ and G” as a function of @
for smooth colloids. At ¢»=0.45 and w > 10 rad/s, the suspen-
sion behaves as a fluid for which G’ ~@* and G” ~ ®. This
fluid behavior changes to a solidlike behavior at ¢ >0.58
where G’ > G” at w < 1rad/s. There are two crossover points
observable or inferable at low and high frequencies (espe-
cially, apparent for ¢=0.53), corresponding to the long-time
(out-of-cage) and short-time (in-cage) relaxation time scales.
As ¢ increases from 0.45 to 0.62, the magnitudes of G’ and
G” increase by one to two orders of magnitude, with G’
increasing more than G”, which indicates the formation of
confining cages. The relaxation frequencies also shift to
lower frequencies as ¢ increases, qualitatively indicating that
it takes longer for colloidal particles to escape from their
cages. A more quantitative measure obtained using MCT will
be discussed in Sec. III D.

The frequency dependence of G’ and G” for suspensions of
rough colloids is shown in Fig. 4. Rough colloids suspended at
¢ <0.52 exhibit qualitatively similar fluidlike behavior as the
smooth colloids at ¢ <0.58. The most interesting observation
is the dramatic increase in G’ and G” at ¢ > 0.53. The G’ value
becomes frequency independent, reminiscent of a high-
frequency plateau modulus observed in compressed emulsions
[36] and arrested gel networks [37-39]. For rough colloids at
¢ =0.53, the magnitude of G’ is 10°-10° times higher than
that of smooth colloids while the magnitude of G” is only 10°—
10" times higher, consistent with the strain sweep experiments.
Another interesting difference is the appearance of a reproduc-
ible G minimum at @ = 1 rad/s, which is a phenomenon often
observed in glassy suspensions [40]. When ¢ = 0.56, the mag-
nitudes of both G’ and G” for rough colloids are much larger
than their smooth counterparts, suggesting that both the elastic
contribution from the glassy structure and the viscous dissipa-
tion between surface asperities increase significantly. The rela-
tive contributions of both dissipation modes for rough colloids
are examined in greater detail in Sec. IIT D.

In both suspensions of smooth and rough colloids at
¢ < 0.50, the frequency-dependent linear viscoelastic moduli
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FIG. 1. Representative scanning electron micrographs of (a) smooth and (b) mesoscopically rough PHSA-PMMA colloids. Scale bars =5 um.

scale is characteristic of suspensions with liquidlike behavior,
shown using a simple Maxwell model fitted to the rheologi-
cal data in Sec. III C. For suspension at ¢ >0.50, the
increase in particle concentration results in modified particle
dynamics and an increase in relaxation time scales due to
particle caging effects, which requires a different model to
model the viscoelastic behavior. Section III D uses an
MCT-based model that captures the high-frequency rheologi-
cal data to provide physical insight into the differences
between smooth and rough colloids.

B. Rationale for estimating the crossover point ¢,

To estimate the ¢ at which the suspensions begin to
exhibit kinetic arrest and glassy dynamics, we plot G’ and G’
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FIG. 2. Strain sweeps of suspensions containing (a) smooth (circles) and (b)
rough particles (squares). The values of G’ (closed symbols) and G” (open
symbols) are plotted as a function of the applied y. Experiments are per-
formed at w = 1 rad/s. Volume fractions indicated for the smooth particle sus-
pensions in (a) are ¢ =0.45 (AP/Ppax =0.30, red), ¢ =0.55 (Ad/ P =0.14,
green), ¢=0.58 (A@/Pmax=0.09,blue), and $=0.62 (Ad/Ppax=0.03,
purple). Volume fractions indicated for the rough particle suspensions in (b)
are ¢p=0.45 (Ad/Pmax=0.21, red), ¢$=0.52 (Ad/¢n.x=0.09, green),
¢ =0.53 (Ap/pyax =0.07, red), and ¢ =0.56 (A@/pyax = 0.02, purple).

at fixed o values as a function of ¢, in order to determine the
crossover volume fraction ¢. [41]. The value of ¢. is a
mechanical descriptor of the microstructural rigidity, and we
estimate ¢, from the amplitude sweep for the colloidal sus-
pensions, where G’ crosses G” as ¢ is increased. Figure 5
shows the data for smooth and rough colloids at two different
frequencies (w =1, 10rad/s). The data indicate that ¢.=0.58
for smooth colloids and ¢.=0.53 for rough colloids, inde-
pendent of @. The value of ¢, for smooth colloids coincides
with the glass transition point predicted for suspensions of
hard spheres [23].

C. Maxwell model description for ¢ <0.50

The viscoelastic moduli for suspensions of smooth and
rough colloids at ¢=0.45 are shown in Fig. 6. For all , the

102

100 100 10" 102
w (rad/s)

FIG. 3. Frequency sweeps of suspensions containing smooth particles. The
values of (a) G’ (closed symbols) and (b) G” (open symbols) are plotted as a
function of the applied w. Experiments are performed in the linear viscoelas-
tic regime. Volume fractions are ¢=0.45 (A¢/Pmax=0.30, red), ¢p=0.53
(Ap/Pmax =0.18, orange), ¢=0.55 (Ad/Pmax=0.14, green), ¢=0.58 (A¢/
Pimax =0.09, blue), and ¢ =0.62 (A/pmax =0.03, purple).
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FIG. 4. Frequency sweeps of suspensions containing rough particles. The
values of (a) G’ (closed symbols) and (b) G” (open symbols) are plotted as a
function of the applied w. Experiments are performed within the linear
regime. Volume fractions are ¢=0.45 (Ad/pyax =0.21, red), ¢=0.50 (A¢d/
Gmax =0.12, orange), ¢=0.52 (Ad/Pmax=0.09, green), ¢=0.53 (AP/Ppmax-
=0.07, blue), and ¢=0.56 (Ad/Ppax = 0.02, purple).

loss moduli exhibit a single scaling of G” ~ . The storage
moduli do not exhibit a uniform scaling below ® < 10 rad/s,
but beyond o > 10 rad/s, a single form G’ ~ ” is obtained for
both particle types at the same ¢. Thus, at @> 10rad/s, both
types of suspensions at ¢=0.45 behave as viscoelastic
fluids. For small amplitude oscillatory experiments, the fre-
quency dependencies of the viscoelastic shear moduli (G
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FIG. 5. Crossover volume fraction. The values of G’ (closed symbols) and
G" (open symbols) for (a) smooth and (b) rough colloids are plotted as a
function of ¢. Data from two different frequencies are shown: o= 1 rad/s
(green) and @ = 10rad/s (blue). Dashed lines represent ¢, where G' and G”
intersect.
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FIG. 6. Maxwell model fit for suspensions at moderate ¢. Values of G’
(closed symbols) and G” (open symbols of smooth (circles) and rough
(squares) colloids plotted as a function of @ at ¢=0.45. Solid and dashed
lines are Maxwell models for G’ and G” respectively. Inset: Viscoelastic
moduli as a function of @ for smooth colloids at ¢=0.25.

and G") are described by the Maxwell model as [42]

/ _ (an're])2

Gl = Gl + (C‘)Trel)2 ’ M
m o OTre]

“ (a)) B Gl + (Clnv'rel)2 . (2)

Here, G is the relaxation modulus (Pascal) and 7., is the
timescale of relaxation (second), which is the inverse of the
crossover frequency. The fit values used in Fig. 6 are
G =12.5Pa and 7, =0.009 s for both types of suspensions at
¢=0.45. The frequency-dependent viscoelastic moduli of
smooth and rough colloids fall on the same curve as the
Maxwell model at @>1rad/s. Furthermore, at 10rad/
s <o < 100 rad/s, both types of suspensions display expected
liquidlike scaling with G’ ~w* and G” ~w. At o<1 rad/s,
rough colloids have a slightly higher G’ than that of smooth
colloids, and there is a second crossover point between G’
and G” for the rough particles (7 = 10 s). There is little dif-
ference in the viscoelastic behavior between suspensions of
smooth and rough particles at ¢<0.50. For ¢<0.50, the
surface roughness does not affect the rheology in the “high-
frequency regime.” The reason why we chose a Maxwell
model and not MCT to fit the data for ¢»=0.45 in Fig. 6 is
because of the lack of a measurable crossover between G’
and G” at low o for smooth colloids, representing the short-
time or f-relaxation of the colloids. Attempts to force fit
MCT to the dataset produced negative fitting parameters.
Furthermore, at ¢p=0.45, the values of G” are always greater
than G, indicating that the suspension is fluidlike within the
observable frequency range. Although we observe hints of a
crossover for rough colloids at @ = 0.1 rad/s, to be conserva-
tive, we decided that MCT is not a physically valid model
for suspensions with A¢/py,.x > 0.20.

D. Mode-coupling theory analysis for dense
suspensions

MCT is best suited for glassy or deeply supercooled
systems (¢ >0.53, Ad/pnax <0.17) where a separation
between short-time and long-time relaxation can be
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measured. For these dense suspensions, the caging effect by
the neighboring particles contributes to the increased short-
and long-time relaxation as ¢ — ¢.. The consequence of this
transient caging effect is kinetically arrested dynamics and an
increased viscoelasticity in the suspension (Figs. 3 and 4).
The linear viscoelastic behavior of colloidal suspensions
approaching the glass transition [28,40,43] has been previ-
ously modeled using a version of MCT that sums the high-
frequency lubrication hydrodynamic contributions [24] and
the glassy elastic contributions [20]. We use this framework
to model the G’ and G” of our colloidal suspensions with
respect to their relaxation time scales,

G(0) = Gp+ G, [F(l —d')cos <”7“> (0t5)"

— BI'(1 + b')cos <%> (wtg)b} + Gp@), (3)

G" (@) = G, {F(l —d)sin (”7“) (0t5)"

+ BI(1 + b)sin (%) (a)tc,)bl

+ GH(®) + N “4)

In this formulation, the complex modulus is a sum of the
microstructural contribution of the glassy cages, the stresses
imparted by entropic diffusion, and the pure viscous dissipa-
tion in the suspension. The glassy plateau modulus G’ is a
parameter that describes the frequency independent contribu-
tion from the structure of the cages, while the gamma func-
tions around the parameters in G, (¢’ =0.301, b’ =0.545, and
B=0.963 for hard sphere suspensions [28]) describe the
near-glass density fluctuations and stress autocorrelation
from caging dynamics. Within the viscoelastic G, term, 7, is
a parameter for the time scale associated with the G’ minima
that separates the short- and long-time relaxation of colloidal
glasses [44]. The analytical form of the high-frequency diffu-
sional boundary layer contributions to the complex modulus

TABLE I. Fit parameters for the mode-coupling theory.

G, Gs Neo
Type ¢ (Pa) (Pa) ts (8) D, (m%s) <z> (Pas)
Smooth 0.53 0.005 0.0009 50000 2.23x107° 25 0.12

1.62x107"° 35 0.18
127x107% 50 0.23°
6.06x107'° 55 048"
404x107'% 58 0.72°

0.55 0.009 0.002 10 000
0.58 0.04 0.02 9000
0.61 0.10 0.035 8000
0.62 020 0.07 5000

Rough 0.50 0.008 0.015 25000 1.77x107"° 2.0 0.17
0.52 0.16 0.02 10000 1.15x107'° 3.0 026
0.53 250 2 5 7.52x107'° 4.0 040
0.55 560 28 4 — [ —
0.56 1050 80 1 — [ —

¢

superposiion — 029  0.01 1.00x10° 1.60x10™"° 6.0 0.20

“From Eq. (7).

is given by [24]

6 kgT
Gp() ~ Gp(@) =~ ¢*g()Varp, 5)
7T Qegr

where g(r/2a.;=1)=g(1) is the magnitude of the pair distri-
bution function at contact, kz is Boltzmann’s constant, and T
is the temperature. The relaxation time scale is defined as
Tp= asz/Ds, where Dy is the ¢-dependent short-time diffusiv-
ity of hard sphere suspensions [4]. To obtain D, for the sus-
pensions in this study, we use the relation Dy/Dg=1nyN
[26], where 7, is the solvent viscosity and 7., is the high-
frequency suspension viscosity. In the theoretical derivation
by Lionberger and Russel, integrating the conservation equa-
tion using the boundary condition of particles at contact gen-
erates a high-frequency storage modulus that scales with
g(1). For linear oscillatory perturbations below the yield
strain, it is valid to assume that the suspension is near equi-
librium. Because g(1) is not well defined in experimental
systems, especially for rough particles where the Carnahan—
Starling equation of state [45] cannot be used, the mean
contact number (z) reported for smooth and rough colloids in
our earlier work [29] is used as a proxy for g(1). Parameters
used for the MCT model are available in Table 1.

The high-frequency suspension viscosity term, 7., also
enters the loss modulus. Figure 7 shows the real part i’ of
the complex viscosity n*, defined as G”/w, as a function of @
where a}ll’rolo [G"(w)/w] = ns. The values of 1., are obtained

using two different methods depending on ¢. At ¢ < ¢, the

10* - - - -
103_
102 .
10™ .
10°1

1075
104

10°1

10%

10"

10°1 e

10-1_ . . VI 7

102 101" 100 10" 102
w (rad/s)

FIG. 7. Real part of the complex viscosity 1’ from linear viscoelasticity of
(a) smooth (circles) and (b) rough colloids (squares) as a function of w. Solid
lines are Cross model fits to the experimental data. Smooth colloid volume
fractions are ¢=0.45 (AP/Pna=0.30, red), $=0.53 (Ad/Pmax=0.18,
orange), ¢=0.55 (Ad/Ppmax =0.14, green), ¢p=0.58 (Ad/Pmax =0.09, blue),
and ¢=0.62 (Ad/Ppmax =0.03, purple). Rough colloid volume fractions are
=045 (Ad/Pmax =0.21, red), ¢=0.50 (Ad/max = 0.12, orange), ¢=0.52
(APl Prmax =0.09, green), ¢=0.53 (Ad/Ppax =0.07, blue), and ¢=0.56 (A¢/
Pmax =0.02, purple).

n'(Pa-s)
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Cross model is used to obtain 7, from the complex viscosity
1’ [46,47],

’_ Mo — Noo

RGN ©

n

The parameters 1y, k, and m are fitting values, where 7 is
the zero-shear viscosity, k is the critical time scale for the
onset of shear thinning, and m is the shear thinning power.
Table II provides a list of parameters used in the Cross
model fitting. Since the experiments involve minimal disturb-
ance of the microstructure in small amplitude frequency
sweep experiments, a Cox—Merz relationship of the form
7'(y) = 7 2rn/w) is assumed in Eq. (6).

For both smooth and rough colloids at ¢ > ¢, but espe-
cially for rough colloids, there is no easy way to determine
Neo OF 7o because of the presence of a yield stress. Instead, an
empirical expression is used to obtain the value of 7., for
smooth colloids. This second order truncated formulation
captures the mean-field mobility reduction and an associated
increase in viscous dissipation as a function of ¢ [24],

14+ 1.5¢(1 + ¢ — 0.189¢7)

B 60+ 6018942 @

o —

where n,=0.012 Pass is the squalene viscosity. For rough col-
loids at ¢ > ¢, the material behaves as a glassy material
with a well-defined G’ and G” plateau, unlike that of smooth
colloids (Figs. 3 and 4). Equations (3)—(7) allow us to
capture the complete linear viscoelastic behavior of smooth
and rough colloids in our study. Overall, the model provides
a good fit to the experimental data as shown in Fig. 8.

E. Frequency-concentration superposition and
associated shift parameters

Figure 9 shows the frequency sweep data for the colloidal
suspensions for ¢ >0.50 collapsed onto a single master
curve by w—¢ superposition. The w—¢ superposition is analo-
gous to the time-temperature superposition principle for poly-
mers [48], which allows the mapping of the complex
modulus for viscoelastic polymers at different temperatures
by assuming that the modulus dependence of the curves on
the applied frequency does not change. This principle has
been previously extended to colloidal systems [49-51] to

TABLE II. Cross model fit parameters.

Type ¢ 1o (Pass) Neo (Pas) k(s) M
Smooth 0.45 1 0.08 750 0.55
0.53 4.5 0.12 500 0.65
0.55 8 0.18 400 0.65
0.45 6 0.16 400 0.65
0.5 10 0.16 250 0.65
0.52 20 0.26 250 0.65
Rough 0.53 — 0.40° — —
0.55 — 1.48* — —

At 0 =100 rad/s.

elucidate the effect of volume fraction on the caging mecha-
nism responsible for the relaxation of suspensions.

To rescale the viscoelastic spectrum, smooth colloids sus-
pended at ¢=0.62 is used as the reference system. The
remainder of the data for both smooth and colloids is shifted
in the horizontal and vertical axes with respect to the refer-
ence system to generate a master curve that represents a
glassy material that can be fit to the MCT formulation in
Egs. (3)-(5) [40,50]. Parameters A and B represent the shift
factors for the complex modulus and the applied frequency
and span 6 and 8 orders of magnitude, respectively. The
shifted viscoelastic spectrum is in good agreement with the
MCT formulation, using adjustable parameters that are differ-
ent from that of the individual suspensions (Table I).

A physical description of these shift factors can be
obtained in terms of the relaxation time and caging length
scales in dense suspensions. Figure 10(a) shows that A>1
for smooth colloids at ¢<0.62 and rough colloids at
¢ <0.52, while A<1 for rough colloids at ¢ >0.53. The
value of this shift factor indicates how complex modulus
differs from the reference system (smooth colloids at
¢=0.62). The complex modulus is a combination of G,
which is related to the elastic energy stored in a microstruc-
tural cage, and G”, which represents the viscous contribu-
tions from solvent interactions between colloids that form the
cage. Any shifts in G' and G”, therefore, represent the
in-cage displacement and scale as the inverse volume of the
cage, again with respect to the reference system. In other
words, A >1 means that the unscaled G’ and G” values for
the suspension are small and that the caging volume is large.
On the other hand, A <1 indicates an extremely small
caging volume, as seen in rough colloids at ¢ > 0.53; a parti-
cle is dynamically arrested within its cage due to steric hin-
drance from nearest neighbors. Large stresses would be
required to perturb the equilibrium microstructure and to
overcome the near-field viscous dissipation found in the
small lubrication gaps.

The horizontal shift factor B can be thought of as a time
scale for a particle to escape from the neighboring cages as
suspension ¢ increases [49]. To support this statement, we
find that the values of B increase with increasing ¢, (MCT
fitting parameters in Table I), suggesting that the separation
of short-time and long-time relaxation is correlated with the
cage relaxation time of the systems. Figure 10(b) shows
values of B> 1 for smooth suspensions of ¢ <0.62, indicat-
ing that these suspensions relax more rapidly because less
time is required for particles to escape the larger cage
volumes. It is also interesting to note that rough colloids at
0.45< ¢ < ¢p. have similar values of B as the reference
system, but when the particle loading is at ¢, < ¢ < Ppax,
then values of B become six orders of magnitude lower than
the smooth colloids at all ¢ as well as the rough colloids at
¢ < ¢.. This suggests that the time required for a rough
colloid to escape from its cage microstructure at ¢ > ¢, is
nearly six orders of magnitude higher than that of its smooth
counterpart at ¢ > ¢..

In small amplitude oscillatory rheology, weak flows
change the equilibrium pair distribution function g(r) as a
first order perturbation that scales with the short-time
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FIG. 8. Fitting experimental data to the mode-coupling theory. Frequency sweep data for suspensions of (a) smooth and (b) rough colloids at different ¢ and

A@/ Prmax. Solid lines represent G/, and dashed lines represent G” from MCT fit.

translational self-diffusivity Dy~ g(r)(1 —D,7Y [52). Earlier
work has shown that the value of Dy(¢) for rough colloids is
reduced [9] and, hence, the distortion to g(r) may be slightly
less pronounced than that of smooth colloids. Furthermore,
when ¢>0.30, the effect of surface roughness on the short-
time rotational self-diffusivity D, for rough colloids is an
order of magnitude smaller than that of smooth particles at
same ¢ [10]. These observations suggest that the thermody-
namic and hydrodynamic contributions to G’ are enhanced
for rough colloids between ¢, and ¢p,,.x. The large decreases
in the shift factors A and B, along with our previous measure-
ments of the rotational dynamics [10], strongly suggest that

3 : — : :

?102_

& 1o1

: 10'

O 1001

g

=~ 10"
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Bw (rad/s)

FIG. 9. Frequency-concentration (w—¢) superposition for dense colloidal
suspensions. The master curve comprising viscoelasticity data from smooth
(circles) and rough (squares) colloids scaled by the horizontal shift factor B
and the vertical shift factor A. Reference system is smooth colloids sus-
pended at ¢=0.62. Closed symbols are G’, and open symbols are G”.
Smooth colloid volume fractions are ¢=0.53 (orange), ¢=0.55 (blue),
¢ =0.58 (green), and ¢=0.62 (purple). Rough colloid volume fractions are
¢ =0.50 (orange), ¢=0.52 (blue), ¢=0.53 (green), and ¢=0.56 (purple).
The solid line represents G’, and the dashed line represents G”
from MCT fit.

the geometric frustration generates smaller, stronger cages
that relax extremely slowly and therefore restricts the mobil-
ity of colloids. Our results indicate that this type of rotational
constraint affects not only the elastic glassy structure but also
the viscous dissipation due to enhanced hydrodynamics
between asperities.

F. Kinetic description of the glassy modulus

To estimate the localization length of cages formed by
rough colloids at ¢ > ¢, we plot the scaled localization
length scale as a function of A¢/,,,,. Figure 11(a) shows r,,
normalized by the effective particle diameter as a function of
¢. As expected, the localization length scale for rough col-
loids is nearly 2 orders of magnitude lower than that of the
smooth colloids, indicating that particles rattle around in a
much smaller cage volume. For rough colloids, the computed
localization length approaches ~0.1 nm, suggesting that the
polymer brushes may interpenetrate one another and further-
more become significantly compressed. However, we do not
have direct evidence of brush compression and the difference
between the localization length scales represents a qualitative
method way to interpret the geometric frustration created by
the rotational constraint in the rough colloids. The localiza-
tion length scales with cage volume as r;~ Véﬁc,c and
Fig. 11(a) suggests that the space available for smooth particles
to rattle is more than that of rough colloids, Viuges> Veager-
However, Fig. 12 suggests that the cage volume for both
types of particles should be similar, if we naively consider
that rough colloids have the same 2a.g as the smooth col-
loids. In reality, we suspect that the two orders of magnitude
change in is a reflection of the reduced free volume available
to rough colloids due to asperity interlocking. This is in qual-
itative agreement with Fig. 10(a), where rough colloids
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FIG. 10. Shift factors in w—¢ superposition. (a) The vertical and (b) horizontal shift factors as a function of ¢ for smooth (red circles) and rough (blue squares)

colloids.

displayed a three orders-of-magnitude reduction in the shift
factor A. In addition, dynamic localization theory states that
the hopping energy barrier Ep scales with r as
Eg ~ kgT(ace/ry) [23]. This gives an estimate of Ep as
~10% kg T for rough colloids and ~10% kgT for smooth col-
loids at ¢ > ¢.. If we assume that the associated cage escape
time scale has an Arrhenius type scaling of g ~exp(—Ej),
then it would take rough colloids almost infinitely longer to
escape their glassy cages than smooth colloids near
maximum packing.

The difference in the localization lengths and cage escape
times can be related to Gp' within the context of the activated
hopping theory, which links r;, at the single-particle level and
glassy dynamics at ¢ > ¢, in the ultralocal limit as
[23,53,54]

G =~ 9 kT
P Smacr;

®)

For ¢.> ¢ > ¢pax, We obtain localization length scale r;,
for suspensions of smooth and rough colloidal suspensions
from the respective Gp' and ¢ values. Figure 11(b) shows the
scaled glassy modulus as a function of the distance from
jamming. To compare our data with the activated hopping
theory, we use an empirical form of the hard sphere localiza-
tion length as r; =29.9a.exp(—12.2¢) [54]. This empirical
description is in good agreement with experimental data for
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FIG. 11. Glassy dynamics and kinetic theory. (a) The scaled localization
length as a function of ¢. The solid line represents the hard sphere-prediction
from the activated hopping theory. (b) The scaled glassy modulus as a func-
tion of the distance from Solid lines represent empirical correlations for hard
spheres in Ref. 54. Experimental data for smooth (red circles) and rough
(blue squares) colloids are shown.

the smooth colloids at ¢ > ¢.. The glassy modulus increases
as the volume fraction approach the respective ¢.x, as
expected. The values of G,/ for rough colloids are plotted for
comparison, but there is currently no prediction or empirical
data for how r; varies with ¢ for rough colloids.

G. Evidence for enhanced lubrication between
asperities from high-frequency moduli

The high-frequency dependence of G’ and G” is commonly
used to evaluate the relative contributions of hydrodynamic and
interparticle forces to the suspension stress because the oscilla-
tions introduce affine perturbations in such a rapid manner that
the microstructure is unable to relax its shear-induced anisot-
ropy through the Brownian motion [24,26,27,55]. As @ — oo,
the contributions to suspension stress become dominated by the
lubrication stresses of the solvent between neighboring parti-
cles. High-frequency oscillatory methods have been previously
used to extract the viscous and elastic stresses for hairy PMMA
colloids and raspberrylike silica colloids [2]. In our rheological
experiments, we define the high-frequency limit as the value of
o at which 77 approaches 7, [24], corresponding to @ > 10 rad/
s. The Brownian diffusion time scales of smooth and rough col-
loids at infinite dilution, fp=a’/Do=6mnas/(kgT), are
between 23 and 26 s and correspond to a characteristic fre-
quency range between 0.2 and 0.3rad/s. The choice of
o =10rad/s as the high-frequency limit is, therefore, accept-
able, especially considering that dense suspensions relax 1-2
orders of magnitude more slowly than dilute suspensions.
Note that our experimental time scale is far from the inertial
relaxation and vorticity diffusion times of the PMMA colloids,
defined as 7, = agﬁ pPrvma/18n, and £, = azfppMMA/ns, respec-
tively. At w=10rad/s, the oscillatory time scale is ~107"s
while 7 and 1, are ~107° and ~10™ s, indicating that particle
inertia is unimportant in our study.

Figure 12 shows that at ¢ > ¢, the high-frequency storage
modulus G’ for both smooth and rough particles are on the
same order of magnitude at ¢ <0.52. At ¢ > 0.52, rough col-
loids exhibit G’y nearly 10° times that of the smooth col-
loids. In addition, G’ scales with ' for smooth colloids,
corresponding to the free-draining approximation between
hard spheres [24]. In contrast, G, is frequency independent
for rough colloids. This type of transition from free-draining
to fully lubricated behavior was previously observed in hairy
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FIG. 12. Microstructural visualization of glassy cages formed by (a) smooth and (b) rough colloids. On first glance, approximating the rough colloids with an
effective spherical shape with the same diameter as the smooth colloids (red dashed lines) suggests that there should be little difference in their cage volumes.
In reality, data presented in this study and elsewhere [10] state that there is a significant difference in their cage volumes; this could be possible if we consider
the geometric overlapping and interlocking between very rough asperities. The steric layer is not shown here.

PHSA-PMMA and raspberrylike silica colloids [2]. Schroyen
et al. altered the PHSA brush contour length on the
PHSA-PMMA colloids, finding that PMMA colloids with
longer stabilizer brushes (60nm) exhibited G’ ~ o',
whereas very thin brush layers (6 nm) led to G’ ~ «°. This
phenomenon was attributed to the free flow of solvent in long
brushes that screened out strong lubrication forces until the
brushes became compressed, while thin brushes were less
effective at hydrodynamic screening and exhibited a weak
power-law dependence. Interestingly, they also noted a signif-
icant increase in both the elastic and viscous stresses in sus-
pensions of raspberrylike silica colloids at intermediate w,
and that the effective thickness of the diffusional boundary
layer was equivalent to the roughness length scale.

In our experimental data (Fig. 13), suspensions of smooth
colloids obey the free-draining approximation for all ¢, sug-
gesting that our PHSA stabilizer layers are potentially com-
pressible. Crucially, suspensions of rough particles follow a
similar free-draining trend up to ¢, and then full lubrication
becomes prominent at ¢ > ¢, possibly because of interlock-
ing between the rough facets of neighboring particles. These
observations agree with the data for raspberrylike silica from
Schroyen et al., with the exception that we find a significant
change in the lubrication behavior for rough colloids at
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FIG. 13. Scaled G’ as a function of scaled ¢. The solid line represents
prediction from the hydrodynamic boundary layer theory, and the dashed
line represents prediction from free-draining approximation. Experimental
data for smooth (red circles) and rough (blue squares) colloids at @ = 10 rad/s
are shown. Inset: Scaled G, as a function of ¢.

o kT

&l Prmax > 0.93. We attribute these differences to the type of
interactions present in our system. At ¢ < ¢, both rough and
smooth colloids generate “soft” contacts due to the compress-
ibility of PHSA brushes in a way that fits the diffusion boun-
dary layer mechanism. At low values of w, diffusion is still
capable of relaxing the nonequilibrium microstructure. The
“hard” lubricated contacts are found only at ¢ > . as
¢ — ¢max, Where asperities in near contact leads to a much
stronger contribution to the suspension stress from squeeze
flows. The shift from the diffusional to lubrication layers is
only observed for the rough colloids possibly because of
extreme asperity-asperity hydrodynamic interactions, which
manifest as additional gap-dependent terms in the hard
sphere-lubrication squeeze force [19].
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FIG. 14. Loss modulus without solvent contributions. Experimental data for
(a) smooth and (b) rough colloids are shown as a function of . Smooth
colloid volume fractions are ¢=0.45 (AP/P,nar=0.30, red), ¢p=0.53 (AP/
Gmax=0.18, orange), ¢=0.55 (AP/¢a=0.14, green), ¢=0.58 (Ad/,an-
=0.09, blue), and ¢ =0.62 (Ad/,q =0.03, purple). Rough colloid volume
fractions are ¢=0.45 (A}/Pac=0.21, red), $=0.50 (Ad/¢h,q=0.12,
orange), ¢=0.52 (Ad/Pnax=0.09, green), ¢=0.53 (Ad/},0, =0.07, blue),
and ¢=0.56 (Ap/P,0 = 0.02, purple).
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We further note that the loss modulus exhibits unusual
dependences on ¢ for rough colloids at the highest volume
fractions tested. Figure 4 shows that rough colloids exhibit
large increases in G” when ¢ > 0.53, in ways that are not seen
with smooth colloids. A local minimum in G” is observed at
¢ =0.53, which is characteristic of glassy behavior in dense
colloidal suspensions [49]. Surprisingly, no such minimum is
found when ¢ > 0.56, and both G’ and G” exhibit nearly com-
plete frequency independence. The w-independence of G is
normally found in gelling materials that comprise of rigid net-
works formed by adhesive colloids [56] but have not been
observed in glassy hard sphere systems. Removing the bulk
solvent contribution 7., from G”, as shown in Fig. 14, more
accurately represents the viscous contribution from particle-
particle and asperity-asperity interactions. Smooth colloids at
all ¢ display a weak power-law scaling of (G” — o) ~ ©'"
at low w, followed by a sharp drop in G”. This behavior is con-
sistent with hard sphere systems [26]. Rough colloids exhibit
similar (G” — n.w) scalings at ¢ <0.53, but the behavior at
low @ becomes frequency independent at ¢ >0.53. The
average value of (G” — n.w) at ¢=0.53 is about an order of
magnitude larger than that at ¢=0.52, and this difference
becomes three orders of magnitude larger at ¢»=0.56. In con-
trast, (G” — nw) does not increase significantly with ¢ for
smooth colloids. These results suggest that the hydrodynamic
interactions between rough colloids are different from that of
smooth colloids, and that load-bearing networks could be
formed by strong lubrication forces at ¢ = 0.56 by interlocking
asperities that relax extremely slowly due to hindered rotations
[10,19]. Although these near-equilibrium microstructures bear
resemblance to the hydroclusters and force chains found in
shear thickening suspensions [15,16], the physical origins of
the suspension stresses in both cases could be rather different.

IV. CONCLUSIONS

We investigate the effect of surface roughness on the linear
viscoelastic rheology of colloids in dense suspensions.
Suspensions of rough colloids exhibit viscoelastic moduli, G’
and G”, that are orders of magnitude higher than suspensions of
smooth colloids. A physical interpretation for this observation is
that the rough facets between nearest neighbors interlock when
the surface separation is small at high densities (¢, < ¢ < Prax),
which causes a large increase in the near-field hydrodynamics
and reduces the effective free volume available for the rough
colloids to relax within the suspensions. The experimental data
are compared against theories of mode-coupling, activated
barrier hopping, and high-frequency boundary layers. The anal-
yses provide evidence that rough colloids in dense suspensions
create stress-bearing networks that are reminiscent of the clusters
and networks in shear thickening suspensions, but instead
operate primarily through strong lubrication interactions
between asperities on the surface of the rough colloids.

This work provides a mean-field description of how
roughness-induced geometric frustration modifies the spatio-
temporal scales responsible for the viscoelastic response of
hard-particle suspensions at high ¢. The microstructural and
dynamical parameters obtained from theoretical modeling
provide an additional inference of the small structural

perturbations and glassy behavior of these suspensions.
Although there is no real-time microstructural characteriza-
tion in this study, earlier work indicates that slow clusters
contribute to the bulk elasticity in dense colloidal glasses
[57]. It would be interesting in the future to visualize single-
particle dynamics using confocal rheometry, which could
reveal clusters with correlated dynamics in dense suspensions
of rough colloids. This would enable a greater understanding
of the slow flows caused by rough particles in geophysical
phenomena and cement [12] or enhance the properties of col-
loidal composite materials used as impact-resistant textiles
and coatings [58].

ACKNOWLEDGMENTS

The authors thank Jan Vermant, James Swan, and Jeffrey
Morris for scientific discussions. This work is supported by the
International Fine Particles Research Institute (No. 129-CA),
the National Science Foundation (Nos. CBET-1804462 and
DMR-2104726), and the American Chemical Society
Petroleum Research Fund (No. 59208-DNI9).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

REFERENCES

[1] Hsiao, L. C., and S. Pradeep, “Experimental synthesis and characteri-
zation of rough particles for colloidal and granular rheology,” Curr.
Opin. Colloid Interface Sci. 43, 94-112 (2019).

[2] Schroyen, B., C.-P. Hsu, L. Isa, P. Van Puyvelde, and J. Vermant,
“Stress contributions in colloidal suspensions: The smooth, the rough,
and the hairy,” Phys. Rev. Lett. 122, 218001 (2019).

[3] Russel, W. B., D. A. Saville, and W. R. Schowalter, Colloidal
Dispersions (Cambridge University, Cambridge, 1989).

[4] Brady, J. F., “The rheological behavior of concentrated colloidal dis-
persions,” J. Chem. Phys. 99, 567-581 (1993).

[5] Brady, J. F., “The long-time self-diffusivity in concentrated colloidal
dispersions,” J. Fluid Mech. 272, 109-134 (1994).

[6] Phillips, R. J., J. F. Brady, and G. Bossis, “Hydrodynamic transport
properties of hard-sphere dispersions. I: Suspensions of freely mobile
particles,” Phys. Fluids 31, 3462-3472 (1988).

[7] Yanagishima, T., Y. Liu, H. Tanaka, and R. P. A. Dullens, “Particle-level
visualization of hydrodynamic and frictional couplings in dense suspen-
sions of spherical colloids,” Phys. Rev. X 11, 021056 (2021).

[8] Roller, J., A. Laganapan, J.-M. Meijer, M. Fuchs, and A. Zumbusch,
“Observation of liquid glass in suspensions of ellipsoidal colloids,”
Proc. Natl. Acad. Sci. U.S.A. 118, €2018072118 (2021).

[9] Ilhan, B., F. Mugele, and M. H. G. Duits, “Roughness induced rota-
tional slowdown near the colloidal glass transition,” J. Colloid
Interface Sci. 607, 1709-1716 (2022).

[10] Hsiao, L. C., I. Saha-Dalal, R. G. Larson, and M. J. Solomon,
“Translational and rotational dynamics in dense suspensions of smooth
and rough colloids,” Soft Matter 13, 9229-9236 (2017).

[11] Bi, D.,, X. Yang, M. C. Marchettii, and M. L. Manning,
“Motility-driven glass and jamming transitions in biological tissues,”
Phys. Rev. X 6, 021011 (2016).

[12] Ferdowsi, B., C. P. Ortiz, and D. J. Jerolmack, “Glassy dynamics of land-
scape evolution,” Proc. Natl. Acad. Sci. U.S.A. 115, 4827-4832 (2018).


https://doi.org/10.1016/j.cocis.2019.04.003
https://doi.org/10.1016/j.cocis.2019.04.003
https://doi.org/10.1103/PhysRevLett.122.218001
https://doi.org/10.1063/1.465782
https://doi.org/10.1017/S0022112094004404
https://doi.org/10.1063/1.866914
https://doi.org/10.1103/PhysRevX.11.021056
https://doi.org/10.1073/pnas.2018072118
https://doi.org/10.1016/j.jcis.2021.08.212
https://doi.org/10.1016/j.jcis.2021.08.212
https://doi.org/10.1039/C7SM02115A
https://doi.org/10.1103/PhysRevX.6.021011
https://doi.org/10.1073/pnas.1715250115

906

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

PRADEEP, WESSEL, AND HSIAO

Jamali, S., and J. F. Brady, “Alternative frictional model for discontin-
uous shear thickening of dense suspensions: Hydrodynamics,” Phys.
Rev. Lett. 123, 138002 (2019).

Otsuki, M., and H. Hayakawa, “Discontinuous change of shear
modulus for frictional jammed granular materials,” Phys. Rev. E 95,
062902 (2017).

Pradeep, S., M. Nabizadeh, A. R. Jacob, S. Jamali, and L. C. Hsiao,
“Jamming distance dictates colloidal shear thickening,” Phys. Rev.
Lett. 127, 158002 (2021).

Hsu, C.-P., S. N. Ramakrishna, M. Zanini, N. D. Spencer, and L. Isa,
“Roughness-dependent tribology effects on discontinuous shear thick-
ening,” Proc. Natl. Acad. Sci. U.S.A. 115, 5117-5122 (2018).

Rice, R., R. Roth, and C. P. Royall, “Polyhedral colloidal ‘rocks’:
Low-dimensional networks,” Soft Matter 8, 1163—-1167 (2012).

Singh, A., C. Ness, R. Seto, J. J. de Pablo, and H. M. Jaeger, “Shear
thickening and jamming of dense suspensions: The ‘roll’ of friction,”
Phys. Rev. Lett. 124, 248005 (2020).

Wang, M., S. Jamali, and J. F. Brady, “A hydrodynamic model for dis-
continuous shear-thickening in dense suspensions,” J. Rheol. 64, 379-394
(2020).

Gotze, W., and L. Sjogren, “Relaxation processes in supercooled
liquids,” Rep. Prog. Phys. 55, 241-376 (1992).

Brader, J. M., T. Voigtmann, M. Fuchs, R. G. Larson, and M. E. Cates,
“Glass rheology: From mode-coupling theory to a dynamical yield cri-
terion,” Proc. Natl. Acad. Sci. U.S.A. 106, 15186-15191 (2009).
Bouchaud, J.-P., L. Cugliandolo, J. Kurchan, and M. Mézard,
“Mode-coupling approximations, glass theory and disordered systems,”
Phys. A 226, 243-273 (1996).

Schweizer, K. S., and E. J. Saltzman, “Entropic barriers, activated
hopping, and the glass transition in colloidal suspensions,” J. Chem.
Phys. 119, 1181-1196 (2003).

Lionberger, R. A., and W. B. Russel, “High frequency modulus of
hard sphere colloids,” J. Rheol. 38, 1885-1908 (1994).

Fritz, G., B. Maranzano, N. Wagner, and N. Willenbacher, “High fre-
quency rheology of hard sphere colloidal dispersions measured with a tor-
sional resonator,” J. Non-Newtonian Fluid Mech. 102, 149-156 (2002).
Shikata, T., and D. S. Pearson, “Viscoelastic behavior of concentrated
spherical suspensions,” J. Rheol. 38, 601-616 (1994).

van der Werff, J. C., C. G. de Kruif, C. Blom, and J. Mellema, “Linear
viscoelastic behavior of dense hard-sphere dispersions,” Phys. Rev. A
39, 795-807 (1989).

Mason, T. G., and D. A. Weitz, “Linear viscoelasticity of colloidal
hard sphere suspensions near the glass transition,” Phys. Rev. Lett. 75,
2770-2773 (1995).

Pradeep, S., and L. C. Hsiao, “Contact criterion for suspensions of
smooth and rough colloids,” Soft Matter 16, 49804989 (2020).
Hunter, G. L., and E. R. Weeks, “The physics of the colloidal glass
transition,” Rep. Prog. Phys. 75, 066501 (2012).

Crocker, J. C., and D. G. Grier, “Methods of digital video microscopy
for colloidal studies,” J. Colloid Interface Sci. 179, 298-310 (1996).
Torquato, S., T. M. Truskett, and P. G. Debenedetti, “Is random close
packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064-2067
(2000).

Petekidis, G., D. Vlassopoulos, and P. N. Pusey, “Yielding and flow of
sheared colloidal glasses,” J. Phys.: Condens. Matter 16, S3955-S3963
(2004).

Trappe, V., and D. A. Weitz, “Scaling of the viscoelasticity of weakly
attractive particles,” Phys. Rev. Lett. 85, 449-452 (2000).

Shih, W.-H., W. Y. Shih, S.-I. Kim, J. Liu, and I. A. Aksay, “Scaling
behavior of the elastic properties of colloidal gels,” Phys. Rev. A 42,
4772-4779 (1990).

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Mason, T. G., J. Bibette, and D. A. Weitz, “Elasticity of compressed
emulsions,” Phys. Rev. Lett. 75, 2051-2054 (1995).

Winter, H. H., and F. Chambon, “Analysis of linear viscoelasticity of a
crosslinking polymer at the gel point,” J. Rheol. 30, 367-382 (1986).
Pandey, R., and J. C. Conrad, “Gelation in mixtures of polymers and
bidisperse colloids,” Phys. Rev. E 93, 012610 (2016).

Hsiao, L. C., M. J. Solomon, K. A. Whitaker, and E. M. Furst, “A
model colloidal gel for coordinated measurements of force, structure,
and rheology,” J. Rheol. 58, 1485-1504 (2014).

Crassous, J. J., R. Régisser, M. Ballauff, and N. Willenbacher,
“Characterization of the viscoelastic behavior of complex fluids using
the piezoelastic axial vibrator,” J. Rheol. 49, 851-863 (2005).

Kramb, R. C., R. Zhang, K. S. Schweizer, and C. F. Zukoski, “Glass
formation and shear elasticity in dense suspensions of repulsive aniso-
tropic particles,” Phys. Rev. Lett. 105, 055702 (2010).

Macosko, C. W., Rheology Principles, Measurements and Applications
(Wiley, New York, NY, 1994).

Daneshfar, Z., F. Goharpey, H. Nazockdast, and R. Foudazi,
“Rheology of concentrated bimodal suspensions of nanosilica in
PEG,” J. Rheol. 61, 955-966 (2017).

Helgeson, M. E., N. J. Wagner, and D. Vlassopoulos, “Viscoelasticity
and shear melting of colloidal star polymer glasses,” J. Rheol. 51,
297-316 (2007).

Sierou, A., and J. F. Brady, “Rheology and microstructure in concen-
trated noncolloidal suspensions,” J. Rheol. 46, 1031-1056 (2002).
Bergstrom, L., “Shear thinning and shear thickening of concentrated
ceramic suspensions,” Colloids Surf., A 133, 151-155 (1998).

Roberts, G. P, H. A. Barnes, and P. Carew, “Modelling the flow behaviour
of very shear-thinning liquids,” Chem. Eng. Sci. 56, 5617-5623 (2001).
Rubenstein, M., and R. H. Colby, Polymer Physics (Oxford University,
New York, 2003).

Jacob, A. R., A. S. Poulos, S. Kim, J. Vermant, and G. Petekidis,
“Convective cage release in model colloidal glasses,” Phys. Rev. Lett.
115, 218301 (2015).

Mattsson, J., H. M. Wyss, A. Fernandez-Nieves, K. Miyazaki, Z. Hu,
D. R. Reichman, and D. A. Weitz, “Soft colloids make strong glasses,”
Nature 462, 83-86 (2009).

M., M. Fuchs, H. Winter, and M. Ballauff,

“Viscoelasticity and shear flow of concentrated, noncrystallizing colloi-

Siebenbiirger,

dal suspensions: Comparison with mode-coupling theory,” J. Rheol.
53, 707-726 (2009).

Lionberger, R. A., and W. B. Russel, “Microscopic theories of the rhe-
ology of stable colloidal dispersions,” Adv. Chem. Phys. 111, 399-474
(1999).

Schweizer, K. S., and G. Yatsenko, “Collisions, caging, thermodynam-
ics, and jamming in the barrier hopping theory of glassy hard sphere
fluids,” J. Chem. Phys. 127, 164505 (2007).

Schweizer, K. S., and E. J. Saltzman, “Activated hopping, barrier fluc-
tuations, and heterogeneity in glassy suspensions and liquids,” J. Phys.
Chem. B 108, 19729-19741 (2004).

Elliott, S. L., and W. B. Russel, “High frequency shear modulus of
polymerically stabilized colloids,” J. Rheol. 42, 361-378 (1998).

Kim, J. M., J. Fang, A. P. Eberle, R. Castafieda-Priego, and N. J. Wagner,
“Gel transition in adhesive hard-sphere colloidal dispersions: The role of
gravitational effects,” Phys. Rev. Lett. 110, 208302 (2013).

Conrad, J. C., P. P. Dhillon, E. R. Weeks, D. R. Reichman, and
D. A. Weitz, “Contribution of slow clusters to the bulk elasticity near
the colloidal glass transition,” Phys. Rev. Lett. 97, 265701 (2006).
Decker, M., C. Halbach, C. Nam, N. Wagner, and E. Wetzel, “Stab
resistance of shear thickening fluid (STF)-treated fabrics,” Compos.
Sci. Technol. 67, 565-578 (2007).


https://doi.org/10.1103/PhysRevLett.123.138002
https://doi.org/10.1103/PhysRevLett.123.138002
https://doi.org/10.1103/PhysRevE.95.062902
https://doi.org/10.1103/PhysRevLett.127.158002
https://doi.org/10.1103/PhysRevLett.127.158002
https://doi.org/10.1073/pnas.1801066115
https://doi.org/10.1039/C1SM06663C
https://doi.org/10.1103/PhysRevLett.124.248005
https://doi.org/10.1122/1.5134036
https://doi.org/10.1088/0034-4885/55/3/001
https://doi.org/10.1073/pnas.0905330106
https://doi.org/10.1016/0378-4371(95)00423-8
https://doi.org/10.1063/1.1578632
https://doi.org/10.1063/1.1578632
https://doi.org/10.1122/1.550530
https://doi.org/10.1016/S0377-0257(01)00175-6
https://doi.org/10.1016/S0377-0257(01)00175-6
https://doi.org/10.1122/1.550477
https://doi.org/10.1103/PhysRevA.39.795
https://doi.org/10.1103/PhysRevLett.75.2770
https://doi.org/10.1039/D0SM00072H
https://doi.org/10.1088/0034-4885/75/6/066501
https://doi.org/10.1006/jcis.1996.0217
https://doi.org/10.1103/PhysRevLett.84.2064
https://doi.org/10.1088/0953-8984/16/38/013
https://doi.org/10.1103/PhysRevLett.85.449
https://doi.org/10.1103/PhysRevA.42.4772
https://doi.org/10.1103/PhysRevLett.75.2051
https://doi.org/10.1122/1.549853
https://doi.org/10.1103/PhysRevE.93.012610
https://doi.org/10.1122/1.4884965
https://doi.org/10.1122/1.1917843
https://doi.org/10.1103/PhysRevLett.105.055702
https://doi.org/10.1122/1.4995604
https://doi.org/10.1122/1.2433935
https://doi.org/10.1122/1.1501925
https://doi.org/10.1016/S0927-7757(97)00133-7
https://doi.org/10.1016/S0009-2509(01)00291-3
https://doi.org/10.1103/PhysRevLett.115.218301
https://doi.org/10.1038/nature08457
https://doi.org/10.1122/1.3093088
https://doi.org/10.1002/9780470141700.ch3
https://doi.org/10.1063/1.2780861
https://doi.org/10.1021/jp047763j
https://doi.org/10.1021/jp047763j
https://doi.org/10.1122/1.550940
https://doi.org/10.1103/PhysRevLett.110.208302
https://doi.org/10.1103/PhysRevLett.97.265701

	Hydrodynamic origin for the suspension viscoelasticity of rough colloids
	I. INTRODUCTION
	II. MATERIALS AND METHODS
	A. Colloidal synthesis and characterization
	B. Rheological measurements

	III. RESULTS AND DISCUSSION
	A. Linear viscoelastic measurements
	B. Rationale for estimating the crossover point Φc
	C. Maxwell model description for Φ < 0.50
	D. Mode-coupling theory analysis for dense suspensions
	E. Frequency-concentration superposition and associated shift parameters
	F. Kinetic description of the glassy modulus
	G. Evidence for enhanced lubrication between asperities from high-frequency moduli

	IV. CONCLUSIONS
	AUTHOR DECLARATIONS
	Conflict of Interest

	References


