
Open camera or QR reader and
scan code to access this article

and other resources online.

On the Hardness of Sequence Alignment

on De Bruijn Graphs

DANIEL GIBNEY,1 SHARMA V. THANKACHAN,2 and SRINIVAS ALURU1

ABSTRACT

The problem of aligning a sequence to a walk in a labeled graph is of fundamental im-
portance to Computational Biology. For an arbitrary graph G = (V‚ E) and a pattern P of
length m, a lower bound based on the Strong Exponential Time Hypothesis implies that an
algorithm for finding a walk in G exactly matching P significantly faster than O(jEjm) time is
unlikely. However, for many special graphs, such as de Bruijn graphs, the problem can be
solved in linear time. For approximate matching, the picture is more complex. When edits
(substitutions, insertions, and deletions) are only allowed to the pattern, or when the graph
is acyclic, the problem is solvable in O(jEjm) time. When edits are allowed to arbitrary
cyclic graphs, the problem becomes NP-complete, even on binary alphabets. Moreover, NP-
completeness continues to hold even when edits are restricted to only substitutions. Despite
the popularity of the de Bruijn graphs in Computational Biology, the complexity of ap-
proximate pattern matching on the de Bruijn graphs remained unknown. We investigate
this problem and show that the properties that make the de Bruijn graphs amenable to
efficient exact pattern matching do not extend to approximate matching, even when re-
stricted to the substitutions only case with alphabet size four. Specifically, we prove that
determining the existence of a matching walk in a de Bruijn graph is NP-complete when
substitutions are allowed to the graph. We also demonstrate that an algorithm significantly
faster than O(jEjm) is unlikely for the de Bruijn graphs in the case where substitutions are
only allowed to the pattern. This stands in contrast to pattern-to-text matching where exact
matching is solvable in linear time, such as on the de Bruijn graphs, but approximate
matching under substitutions is solvable in subquadratic ~O(n

ffiffiffiffi

m
p

) time, where n is the text’s
length.

Keywords: approximate pattern matching, computational complexity, de Bruijn graphs, sequence

alignment.

1School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
2Department of Computer Science, North Carolina State University, Raleigh, North Carolina, USA.
An earlier draft of this manuscript was posted as a preprint at arXiv (https://arxiv.org/pdf/2201.12454.pdf).

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 29, Number 12, 2022

Mary Ann Liebert, Inc.

Pp. 1377–1396

DOI: 10.1089/cmb.2022.0411

1377

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

https://arxiv.org/pdf/2201.12454.pdf

1. INTRODUCTION

De Bruijn graphs play an essential role in Computational Biology. Their application to de novo

assembly spans back to the 1980s (Pevzner, 1989) and has been the topic of extensive research since

then (Chikhi et al, 2015; Chikhi and Rizk, 2013; Georganas et al, 2014; Lin et al, 2016; Peng et al, 2010, 2013;

Ren et al, 2012; Zerbino and Birney, 2008). More recently, de Bruijn graphs have been applied in meta-

genomics and in the representation of large collections of genomes (Flick et al, 2017; Kamal et al, 2017; Li

et al, 2015; Pell et al, 2012; Ye and Tang, 2016) and for solving other problems such as read error correction

(Limasset et al, 2020; Morisse et al, 2018) and compression (Benoit et al, 2015; Holley et al, 2018).

This popularity of the de Bruijn graphs for the modeling of sequencing data makes having efficient

algorithms to find walks in a de Bruijn graph matching (or approximately matching) a given query pattern

important to numerous applications. For example, in metagenomics, such an algorithm can be used to

quickly detect the presence of a particular species within genetic material obtained from an environmental

sample. Or, in the case of read error correction, such an algorithm can be used to efficiently find the best

mapping of reads onto a ‘‘cleaned’’ reference de Bruijn graph with low-frequency k-mers removed (Li-

masset et al, 2020). To facilitate such tasks, several algorithms and software tools that perform pattern

matching on the de Bruijn (and sometimes general) graphs have been developed (Almodaresi et al, 2018;

Heydari et al, 2018; Holley and Peterlongo, 2012; Kavya et al, 2019; Limasset et al, 2016; Liu et al, 2016;

Navarro, 2000; Rautiainen and Marschall, 2017). These are often based on seed-and-extend heuristics.

With respect to theory, there has been a recent surge of interest in pattern matching on labeled graphs.

This has led to many new fascinating algorithmic and computational complexity results. However, even

with this improved understanding of the theory of pattern matching on labeled graphs, our knowledge is

still lacking in many respects concerning specific, yet extremely relevant, classes of graphs, such as the de

Bruijn graphs. An overview of the current state of knowledge is provided in Table 1.

For general graphs, we can consider exact and approximate matching. For exact matching, conditional lower

bounds based on the Strong Exponential Time Hypothesis (SETH), and other conjectures in circuit complexity,

indicate that an O(jEjm1 - e + jEj1 - e
m) time algorithm with any constant e > 0, for a graph with jEj edges and a

pattern of length m, is highly unlikely (as is the ability to shave more than a constant number of logarithmic

factors from the O(jEjm) time complexity) (Equi et al, 2019; Gibney et al, 2021). These results hold for even

very restricted types of graphs, for example, directed acyclic graphs (DAGs) with maximum total degree three

and binary alphabets. For approximate matching, when edits are only allowed in the pattern, the problem is

solvable in O(jEjm) time (Amir et al, 2000). If edits are also permitted in the graph, but the graph is a DAG,

matching can be done in the same time complexity (Kavya et al, 2019).

However, the problem becomes NP-complete when edits are allowed in arbitrary cyclic graphs. This was

originally proven in Amir et al (2000) for large alphabets and more recently proven for binary alphabets

in Jain et al (2019). These results hold even when edits are restricted to only substitutions. The distinction

between modifications to the graph and modifications to the pattern is important as these two problems are

Table 1. The Computational Complexity of Pattern Matching on Labeled Graphs

Exact matching Approximate matching

Easy Solvable in linear time

Wheeler Graphs (Gagie et al, 2017) (e.g., de

Bruijn graphs, NFAs for multiple strings)

Solvable in O (jEjm) time

DAGs: Substitutions/edits to graph (Kavya et al,

2019)

General graphs: Substitutions/edits to pattern

(Amir et al, 2000)

de Bruijn graphs: Substitutions to pattern

No strongly sub-O(jEjm) algorithm (this study)

Hard No strongly sub-O (jEjm) algorithm

General graphs (Equi et al, 2019; Gibney et al,

2021) (including DAGs with total degree �3)

NP-complete

General graphs: Substitutions/edits to graph

(Amir et al, 2000; Jain et al, 2019)

de Bruijn Graphs: Substitutions to vertex labels

(this study)

DAGs, directed acyclic graphs; NFA, nondeterministic finite automation.

1378 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

fundamentally different. When changes are made to cyclic graphs, the same modification can be en-

countered multiple times while matching a pattern with no additional cost [see section 3.1 in Jain et al

(2019) for a detailed discussion]. Furthermore, algorithmic solutions appearing in the studies by Kavya et al

(2019), Navarro (2000), and Rautiainen and Marschall (2017) are for the case where modifications are

performed only to the pattern.

The de Bruijn graphs are an interesting class of graphs from a theoretical perspective. They fall within a

more general class of graphs that allow for the extension of the Burrows–Wheeler Transformation-based

techniques that enable efficient pattern matching. Sufficient conditions for doing this are captured by the

definition of Wheeler graphs, introduced in the study of Gagie et al (2017) and further studied in Alanko

et al (2020, 2019), Egidi et al (2020), Gagie (2021), and Gibney and Thankachan (2019). The de Bruijn

graphs are themselves Wheeler graphs, which in turn implies that exact pattern matching is solvable in

linear time on a de Bruijn graph. However, the complexity of approximate matching in the de Bruijn graphs

when permitting modifications to the graph or modifications to the pattern remained open (Jain et al, 2019).

We make two important contributions, which are indicated in Table 1. First, we prove that for the de

Bruijn graphs, despite exact matching being solvable in linear time, the approximate matching problem

with vertex label substitutions is NP-complete. Second, we prove that a strongly subquadratic time algo-

rithm for the approximate pattern matching problem on the de Bruijn graphs, where substitutions are only

allowed to the pattern, is not possible under the SETH. Note that, in contrast, pattern-to-text matching

(under substitutions) can be solved in subquadratic ~O(n
ffiffiffiffi

m
p

) time, where n is the text’s length (Abrahamson,

1987). This result establishes the optimality of the known quadratic time algorithms up to polynomial

factors. To the best of our knowledge, these are the first such results for any type of Wheeler graph.

1.1. Technical preliminaries

1.1.1. Notation for edges. For a directed edge from a vertex u to a vertex v, we will use the notation

(u‚ v). Additionally, we will refer to u as the tail of (u‚ v), and v as the head of (u‚ v).

1.1.2. Walks versus paths. A distinction must be made between the concept of a walk and a path in a

graph. A walk is a sequence of vertices v1‚ v2‚ . . . ‚ vt such that for each i 2 [1‚ t - 1], (vi‚ vi + 1) 2 E.

Vertices can be repeated in a walk. A path is a walk where vertices are not repeated. The length of a walk is

defined as the number of edges in the walk, t - 1, or equivalently one less than the number of vertices in the

sequence (counted with multiplicity). This work will be concerning the existence of walks, not paths.

1.1.3. Induced subgraphs. An induced subgraph of a graph G = (V‚ E) consists of a subset of

vertices V 0 � V , and all edges (u‚ v) 2 E such that u‚ v 2 V 0. This is in contrast to an arbitrary subgraph of

G, where an edge can be omitted from the subgraph, even if both of its incident vertices are included.

1.1.4. De Bruijn graphs. An order-k full de Bruijn graph is a compact representation of all k-mers

(strings of length k) from an alphabet S of size r. It consists of rk vertices, each corresponding to a unique

k-mer (which we call as its implicit label) in Sk. There is a directed edge from each vertex with implicit

label s1 s2 . . . sk 2 Sk to the r vertices with implicit labels s2 s3 . . . ska, a 2 S. We will work with

induced subgraphs of the full de Bruijn graphs in this article. We assign to every vertex v a label L(v) 2 S,

such that the implicit label of v is L(u1) L(u2) . . . L(uk - 1) L(v), where u1‚ u2‚ . . . ‚ uk - 1‚ v is any length

k - 1 walk ending at v. This is equivalent to the notion of a de Bruijn graph constructed from k-mers

commonly used in Computational Biology.

1.1.5. Strings and matching. For a string S of length n indexed from 1 to n, we use S[i] to denote

the ith symbol in S. We use S[i‚ j] to denote the substring S[i] S[i + 1] . . . S[j]. If j < i, then we take S[i‚ j]

as the empty string. As mentioned above, we will consider every vertex v as labeled with a single symbol

L(v) 2 S. A pattern P[1‚ m] matches a walk v1, v2, ., vm iff P[i] = L(vi) for every i 2 [1‚ m].

With these definitions in hand, we can formally define our first problem.

Problem 1 (Approximate matching with vertex label substitutions). Given a vertex labeled graph

D = (V‚ E) with alphabet S of size r, pattern P[1‚ m], and integer d � 0, determine if there exists a walk in

D matching P after at most d substitutions to the vertex labels.

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1379

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Theorem 1. Problem 1 is NP-complete on the de Bruijn graphs with r = 4.

Theorem 1 is proven in Section 2. Intuitively, our reduction transforms a general directed graph into a de

Bruijn graph that maintains key topological properties related to the existence of walks. The distinct

problem of approximately matching a pattern to a path in a de Bruijn graph was shown to be NP-complete

in the study by Limasset et al (2016). As mentioned by the authors of that work, the techniques used there

do not appear to be easily adaptable to the problem for walks. Our approach uses edge transformations

more closely inspired by those used in the study by Kapun and Tsarev (2013) for proving hardness on the

paired de Bruijn sound cycle problem.

Problem 2 (Approximate matching with substitutions to the pattern). Given a vertex labeled graph

D = (V‚ E) with alphabet S of size r, pattern P[1‚ m], and integer d � 0, determine if there exists a walk in

D matching P after at most d substitutions to the symbols in P.

For Problem 2, we provide a hardness result based on the SETH, which is frequently used for estab-

lishing conditional optimality of polynomial time algorithms (Abboud et al, 2018; Backurs and Indyk,

2016; Equi et al, 2019; Gibney, 2020; Gibney et al, 2021; Hoppenworth et al, 2020). We refer the reader to

the study of Williams (2015) for the definition of the SETH and for the reduction to the orthogonal vectors

(OV) problem, which is utilized to prove Theorem 2.

Theorem 2. Conditioned on the SETH, for all constants e > 0, there does not exist an

O(jEjm1 - e + jEj1 - e
m) time algorithm for Problem 2 on the de Bruijn graphs with r = 4.

Note that the order, k, of the de Bruijn graphs used in ours proofs are Y (log2 jV j) for Theorem 1 and

Y (log jV j) for Theorem 2.

2. HARDNESS OF PROBLEM 1 ON THE DE BRUIJN GRAPHS

Our proof of NP-completeness uses a reduction from the Hamiltonian cycle problem on directed graphs,

which is the problem of deciding if there exists a cycle through a directed graph that visits every vertex

exactly once. The Hamiltonian cycle problem has been proven NP-complete, even when restricted to

directed graphs where the number of edges is linear in the number of vertices (Plesnı́k, 1979). To present

our reduction, we introduce the concept of merging two vertices. To merge vertices u and v, we first create a

new vertex w. We then take all edges with either u or v as their head and make w their new head. Next, we

take all edges with either u or v as their tail and make w their new tail. This makes the edges (u‚ v) and

(v‚ u) (if they existed) into self-loops for w. If identical self-loops are formed, we delete all but one of

them. Finally, we delete the original vertices u and v.

2.1. Reduction

We start with an instance of the Hamiltonian cycle problem on a directed graph where the number of

edges is linear in the number of vertices. We can assume that there are no self-loops or vertices with in-

degree or out-degree zero. To simplify the proof, we first eliminate any cycles of length 2 using the gadget

in Figure 1. We denote the resulting graph as D = (V‚ E) and let n = jVj. We assign each vertex v 2 V a

unique integer L(v) 2 [0‚ n - 1]. Let ‘= Ø log nø, bin(i) be the standard binary encoding of i using ‘ bits and

S = f$‚ #‚ 0‚ 1g. Define enc(i) = (02‘1)2‘bin(i), W = jenc(i)j, and k = 3W .

We construct a new (de Bruijn) graph D0 = (V 0‚ E0) as follows: Initially, D0 is the empty graph. For

i = 0‚ 1‚ . . . ‚ n - 1, for each edge (u‚ v) 2 E where L(v) = i, create a new path whose concatenation of

vertex labels is #W enc(i)$W
enc(i). The vertex u will correspond with a new vertex /(u) at the start of

this path, and the vertex v will correspond with a new vertex /(v) at the end of this path. The vertex /(v)

has the implicit label enc(L(v))$W
enc(L(v)). The vertex /(u) is ‘‘temporarily assigned’’ the implicit label

FIG. 1. Gadget to remove cycles of length 2 from the

initial input graph.

1380 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

enc(L(u))$W
enc(L(u)). See Figure 2. We call vertices with implicit labels of the form enc(L(�))$W

enc(L(�)) marked vertices. We use the notation /((u‚ v)) to denote the path created when applying this

transformation to (u‚ v) 2 E. After the path /((u‚ v)) is created, vertices in V 0 having the same implicit

label are merged, and parallel edges are deleted (Figs. 3 and 4). See Figure 5 for a complete example.

Finally, let d = 2‘(n - 1) and

P = #W enc(0)$W
enc(0)#W enc(1)$W

enc(1)#W . . .

#W enc(n - 1)$W
enc(n - 1)#W enc(0)$W

enc(0):

We will show that there exists a walk in D0 matching P with at most d vertex label substitutions iff D

contains a Hamiltonian cycle.

2.1.1. Proof of correctness.

Lemma 1. The graph D0 constructed as above is a de Bruijn graph.

Proof. There are three properties that must be proven: (i) Implicit labels are unique, meaning for every

implicit label at most one vertex is assigned that label; (ii) There are no edges missing, that is, if the implicit

label of y 2 V 0 is Sa for some string S[1‚ k - 1] and symbol a 2 S, and there exists a vertex x 2 V 0 with

implicit label bS[1‚ k - 1] for some symbol b 2 S, then (x‚ y) 2 E0; (iii) Implicit labels are well defined, in

that every walk of length k - 1 ending at a vertex x 2 V 0 matches the same string (the implicit label of x).

Property (i) holds since after every edge transformation, vertices with the same implicit label are merged,

making every implicit label occur at most once.

For Property (ii), consider the completed graph D0 and an arbitrary vertex y on an arbitrary path /((u‚ v)).

Regarding a possible edge (x‚ y) 2 E0, we have the following cases:

� Case: the implicit label of y is

Sa = enc(L(u))$W
enc(L(u)):

Then, any potential x 2 V 0 must have an implicit label

bS = b enc(L(u))$W
enc(L(u))[1‚ W - 1]:

FIG. 2. The transformation from edges to paths used in our

reduction.

FIG. 3. Vertices with the same implicit label are

merged while transforming D to D0, causing edges

with shared head vertex to become paths with

multiple shared vertices.

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1381

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

However, the only implicit labels created that have a suffix of the form enc(L(u))$W
enc(L(u))[1‚ W - i]

have a prefix #W - i. This implies that b = #, and the edge (x‚ y) already exists in E0 (under the as-

sumption that there are no vertices with in-degree zero in V).
� Case: the implicit label of y is

Sa = enc(L(u))[i‚ W]$W
enc(L(u))#i - 1

1 < i � W + 1.* Then, any potential x must have an implicit label

bS = b enc(L(u))[i‚ W]$W
enc(L(u))#i - 2:

Because the only implicit labels with the substring $W
enc(L(u)) have a prefix consisting of some suffix

of enc(L(u)), this implies b = enc(L(u))[i - 1], and (x‚ y) already exists in E0.
� Case: the implicit label of y is

Sa = $W - i
enc(L(u))#W enc(L(v))[1‚ i]

1 � i � W . Then, any potential x must have an implicit label

bS = b$W - i
enc(L(u))#W enc(L(v))[1‚ i - 1]:

In the case i < W , b = $ and the edge (x‚ y) already exists in E0. In the case where i = W , the only implicit

label with a suffix of the form enc(L(u))#W enc(L(v))[1‚ W - 1] has a prefix $, and the edge (x‚ y)

already exists in E0.
� Case: the implicit label of y is

Sa = enc(L(u))[i‚ W]#W enc(L(v))$i - 1

1 < i � W + 1. Then, any potential x must have an implicit label

bS = b enc(L(u))[i‚ W]#W enc(L(v))$i - 2:

FIG. 4. Vertices with the same implicit label

are merged while transforming D to D0, causing

edges with shared tail vertex to become paths

with multiple shared vertices.

*Recall enc(L(u))[W + 1‚ W] is the empty string.

1382 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Because the only implicit labels with the substring #Wenc(L(v)) have a prefix consisting of some suffix

of enc(L(u0)) where the edge (u0‚ v) is in D, the edge (x‚ y) already exists in E0. This is an interesting case,

as merges can happen, that is, b enc(L(u))[i‚ W] = enc(L(u0))[i - 1‚ W], where u0 6¼ u.
� Case: the implicit label of y is

Sa = #W - i enc(L(v))$W
enc(L(v))[1‚ i]

1 � i � W . Then, any potential x must have an implicit label

bS = b#W - i enc(L(v))$W
enc(L(v))[1‚ i - 1]:

For i < W , b = # and the edge (x‚ y) already exists in E0. For i = W , this is equivalent to the first case.

We prove Property (iii) that all walks of length k - 1 ending at the same vertex match the same string,

using induction on the number of edges transformed into paths. Our inductive hypothesis (IH) is that before

an edge being replaced by a path, Property (iii) holds for every vertex added to V 0 thus far. Let i denote the

number of edges transformed. For i = 1, all vertices where there exists such a walk ending at them are on the

newly created path, and implicit labels are well defined.

For i > 1, we assume that the IH holds for all vertices created in the previous i - 1 steps of transforming

edges and merging. First, consider a new vertex x that is created by transforming the ith edge (ui‚ vi).

FIG. 5. (Top) A graph before the reduction is applied to it. (Bottom) The transformed graph. Implicit labels for

marked vertices are shown, and the path directions are annotated by arrows beside each path.

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1383

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Starting with x = /(ui), if x is merged with another transformed vertex x0 having the same implicit label,

then all length k - 1 walks ending at x0 match this implicit label, and thus, the IH holds for x after merging.

Using a secondary induction step, we assume that the IH holds post-merging for all vertices between /(ui)

and x (not including x) on the path /((ui‚ vi)). Let xprev be the vertex on /((ui‚ vi)) before x. Since all length

k - 1 walks ending at xprev match xprev’s implicit label, the length k - 1 walks obtained by disregarding the

vertex at the start of these walks, and adding the vertex x at the end, all match the implicit label of x. At the

same time, any vertices merged with x, by the IH also have the same implicit label and hence the walks

ending at them match the implicit label of x. Hence, the IH holds for x after merging it with all vertices

having the same implicit label.

After processing all vertices on /((ui‚ vi)), we next consider a previously created vertex x00 2 V 0 not in

/((ui‚ vi)). Consider a newly created walk W of length k - 1 ending at x00 so that W contains vertices in

/((ui‚ vi)). Since all length k - 1 walks ending at a vertex z in /((ui‚ vi)) match the same implicit label,

when disregarding some number of vertices at the start of a walk that ends at z and appending new vertices,

the resulting walk W matches the implicit label for x00, and the IH continues to hold for x00 as well. ,
The correctness of the reduction remains to be shown. Lemmas 2–4 establish useful structural properties

of D0, Lemma 5 proves that the existence of a Hamiltonian cycle in D implies an approximate matching in

D0, and Lemmas 6–9 demonstrate the converse.

Lemma 2. Any walk between two marked vertices /(u) and /(v) containing no additional marked

vertices has length 4W. Hence, we can conclude any such walk is a path.

This is proven using induction on the number of edges transformed. It is shown that for every vertex, a

key property regarding the distances to its closest marked vertices continues to hold after vertices on any

newly created path are merged.

Proof. We first define forward distance and backward distance. Let x‚ y 2 V 0. The forward distance

from x to y is defined as the minimum number of edges on any path from x to y (the usual distance in a

directed graph). The backward distance from x to y is defined as the minimum number of edges on any path

from y to x. We say a marked vertex /(u) is backward adjacent to x if there exists a walk from /(u) to x not

containing any other marked vertices, and /(v) is forward adjacent to x if there exists a walk from x to /(v)

not containing any other marked vertices.

We use induction on the number of edges transformed. Our IH will be that the length of all walks that

end at and contain only two marked vertices is 4W and that a vertex x created from an edge transformation

having an implicit label of the form:

1. enc(L(u0))[j‚ W]$W
enc(L(u0))#j - 1, 1 � j � W , has backward distance j - 1 from all its backward

adjacent marked vertices{, and forward distance 4W - j + 1 from all its forward adjacent marked

vertices;

2. $W - j
enc(L(u0))#W enc(L(v0)))[1‚ j], 0 � j � W , has backward distance W + j from all its backward

adjacent marked vertices, and forward distance 3W - j from all its forward adjacent marked vertices;

3. enc(L(u0))[j‚ W]#W enc(L(v0)))$j - 1
, 1 � j � W , has backward distance 2W + j - 1 from all its

backward adjacent marked vertices, and forward distance 2W - j + 1 from all its forward adjacent

marked vertices{;

4. #W - j enc(L(v0)))$W
enc(L(v0))[1‚ j], 0 � j � W , has backward distance 3W + j from all its backward

adjacent marked vertices, and forward distance W - j from all its forward adjacent marked vertices.

The base case, i = 1, is satisfied since there exists only one such path and all stated properties hold. Now,

for i > 1, let (ui‚ vi) be the ith edge transformed. We assume that the IH holds for all vertices and walks

created in the first i - 1 edge transformations. First, observe that for any walk ending at, and containing only

two previously created marked vertices, for all vertices on this walk the distances from their forward

adjacent marked vertices and backward adjacent marked vertices will not be altered unless one of the

vertices on this walk is merged with a vertex on /((ui‚ vi)).

{/(u0) is x’s only backward adjacent marked vertex, but this is unnecessary for the IH.
{/(v0) is x’s only forward adjacent marked vertex, but this is unnecessary for the IH.

1384 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Also, all the stated properties in the IH also hold for /((ui‚ vi)) before merging any vertices. Now, let y be

a vertex on /((ui‚ vi)). Starting with y = /(ui), and continuing from /(ui) to /(vi), we merge y with existing

vertices when their implicit labels match. Because the stated distance properties hold for x and y before

merging, they continue to hold for the vertex created from merging x and y as well. Moreover, for vertices

on any walk containing this now merged vertex the distances from their forward adjacent and backward

adjacent marked vertices are unaltered. Because these distances are unaltered by merging, the IH continues

to hold for all vertices. ,

Lemma 3. For (u1‚ v1)‚ (u2‚ v2) 2 E, unless u1 = u2 or v1 = v2, /((u1‚ v1)) and /((u2‚ v2)) share no

vertices.

Proof. In the case where fu1‚ v1g \ fu2‚ v2g = � (Fig. 6, top), every implicit vertex label in

/((u1‚ v1)) contains enc(L(u1)) or enc(L(v1)) (or both) and contains neither enc(L(u2)) nor enc(L(v2)).

Similarly, every implicit vertex label in /((u2‚ v2)) contains enc(L(u2)) or enc(L(v2)) (or both) and contains

neither enc(L(u1)) nor enc(L(v1)). This implies that none of the implicit labels match between the two paths;

thus, no vertices are merged.

In the case where v1 = u2 and u1 6¼ v2 (Fig. 6, bottom), the implicit labels of vertices /((u1‚ v1)) not

containing enc(L(u1)) have # symbols in different positions than implicit labels of vertices in /((u2‚ v2))

not containing enc(L(v2)). Also, since v1 6¼ v2, the implicit labels of vertices /((u1‚ v1)) not containing

enc(L(u1)) cannot match the implicit labels of vertices in /((u2‚ v2)) containing enc(L(v2)). However,

vertices in /((u1‚ v1)) with implicit labels containing enc(L(u1)) have # symbols in different positions than

implicit labels of vertices in /((u2‚ v2)) not containing enc(L(u2)), and, since u1 6¼ u2, cannot match the

implicit labels of vertices in /((u2‚ v2)) containing enc(L(u2)).

FIG. 6. Examples where paths between marked vertex cannot share any vertex: (Top) The case where fu1‚ v1g \
fu2‚ v2g =�. (Bottom) The case where v1 = u2 and u1 6¼ v2.

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1385

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

The case u1 = v2 and u2 6¼ v1 is symmetric and the case u1 = v2 and v1 = u2 cannot happen since, by the use

of our gadget in Figure 1, D cannot contain the edges (u1‚ v1) and (v1‚ u1). ,

Lemma 4. There exists a path from a marked vertex /(u) 2 V 0 to a marked vertex /(v) 2 V 0 con-

taining no other marked vertices iff (u‚ v) 2 E.

Proof. It is clear from construction that if there is an edge (u‚ v) 2 E, then such a walk is in D0.
In the other direction, suppose for the sake of contradiction that there exists such a walk starting at /(u)

and ending at /(v) with no other marked vertices between /(u) and /(v) on the walk, and (u‚ v) =2 E. Let

the first such walk be created when transforming the ith edge (ui‚ vi). The only way such a walk could exists

is if some vertex in /((ui‚ vi)) is merged with a vertex on a walk /((u‚ v0)) for some v0 6¼ v, and some

vertex in /((ui‚ vi)) merged with a vertex in a walk /((u0‚ v)) for some u0 6¼ u. This is since, before

creating /((ui‚ vi)) all walks starting at /(u) encountered some other marked vertex, /(v0), before /(v).

Similarly, there existed some set of marked vertices not including /(u) such that every walk containing a

marked vertex and ending at /(v) must include at least one vertex in this set, /(u0). See Figure 7. We

consider all possible cases:

� u = ui and v0 = vi: This contradicts the assumption that (ui‚ vi) is transformed on the ith step.
� u = ui and v0 6¼ vi (Fig. 8): By Lemma 3, since ui = u 6¼ u0, /((ui‚ vi)) and /((u0‚ v)) can only share a

vertex if vi = v. However, this implies the edge (ui‚ vi) = (u‚ v) 2 E, a contradiction.
� u 6¼ ui and v0 6¼ vi: We can directly use Lemma 3 to say no such merged vertices exists between

/((u‚ v0)) and /((ui‚ vi)).
� u 6¼ ui and v0 = vi (Fig. 9): By Lemma 3, if ui 6¼ u0, then /((ui‚ vi)) and /((u0‚ v)) can only share a

vertex v = vi. However, this would imply v = v0, a contradiction.

The more interesting case is if ui = u0 (Fig. 10). Any vertex y having an implicit label containing

enc(L(u0)) and occurring in /((ui‚ vi)) and /((u0‚ v)) occurs before (has smaller backward distance to

/(u0)) any vertex with implicit label containing enc(L(v0)). At the same time, any vertex x occurring in

/((u‚ v0)) and /((ui‚ vi)) must have an implicit label containing enc(L(v0)) because u 6¼ ui. Since the

FIG. 7. In the proof of Lemma 4, we consider whether the path /((ui‚ vi)) being added could potentially cause a path

between /(u) and /(v). The white circles connected by the thin dashed curve represent merged vertices.

FIG. 8. In the proof of Lemma 4, the case where u = ui and v0 6¼ vi.

1386 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

vertex x occurs later in /((ui‚ vi)) than any shared vertex y in /((ui‚ vi)) and /((u0‚ v)), the only way any

vertices in /((ui‚ vi)) are in a walk from /(u) to /(v) not containing any other marked vertices is if

there is walk from x to y not containing marked vertices; however, the cycle this creates contradicts

Lemma 2. ,

Lemma 5. If D has a Hamiltonian cycle, then P can be matched in D0 with at most d substitutions to

vertex labels of D0.

Proof. Let vi1 ‚ . . . ‚ vin be a Hamiltonian cycle in D and suppose without loss of generality that vi1 is

assigned 0 in the first step of our reduction. To obtain a walk in D0, follow the cycle in D0 that traverses the

marked vertices / vinð Þ‚ / vi1ð Þ‚ / vi2ð Þ‚ . . . ‚ / vinð Þ‚ / vi1ð Þ in that order. By Lemma 4, each edge tra-

versed in D corresponds to a path in D0. While traversing these paths, modify the vertex labels in D0 on

subpaths matching bin(i), 1 � i � n to match P. No conflicting label substitutions will be necessary. To

see this, consider the edges (u1‚ v1)‚ (u2‚ v2) 2 E used in the Hamiltonian cycle in D. We will never have

u1 = u2 or v1 = v2. Hence, by Lemma 3, the sets of vertices on the paths /((u1‚ v1)) and /((u2‚ v2)) are

disjoint. At most 2‘(n - 1) substitutions are required overall. ,

Lemma 6. If P can be matched in D0 with at most d substitutions to vertex labels of D0, then all $’s in P

are matched with non-substituted $’s in D0 and all #’s in P are matched with non-substituted #’s in D0.
Consequently, we can assume that the only substitutions are to the vertex labels corresponding to bin(i)’s

within enc(i)’s.

To prove this, we establish the existence of a long non-branching path for every marked vertex that can

be traversed at most once when matching P. This, combined with maximal paths of, $, #, and 0/1-symbols,

all being of length W, makes it so that ‘‘shifting’’ P to match a portion of D forces the shift to occur

throughout the walk traversed while matching P. Utilizing the large Hamming distance between shifted

instances of two encodings, we can then show that not matching all non-0/1 symbols requires more than d
substitutions.

FIG. 9. In the proof of Lemma 4, the case where u 6¼ ui, v0 = vi, and ui 6¼ u0.

FIG. 10. In the proof of Lemma 4, the case where u 6¼ ui, v0 = vi, and ui = u0.

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1387

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Proof. We first make the following observations: pre-substitution of any of the vertex labels in D0:

1. For all vertices u 2 V , there is exactly one path in D0 that matches

enc(L(u))#W (02‘1)2‘

and all vertices on this path have in-degree and out-degree one. In fact, the only vertices with in-degree

greater than one having implicit labels

enc(L(u))[i‚ W]#W enc(L(v))$i - 1
‚

where W - ‘ < i � W + 1 (these vertices have vertex label $). And the vertices with out-degree greater

than one having implicit labels of the form

$W - i
enc(L(u))#W enc(L(v))[1‚ i]‚

where W - ‘ � i � W (the last ‘ symbols in #W enc(L(v)). This path contains the marked vertex /(u).

Furthermore, all marked vertices are included on exactly one such path.

2. Every maximal walk containing only $ or # symbols is of length W, and the distance from the end of

any maximal walk consisting of only $ symbols (or # symbols) to the start of a maximal walk

consisting of only # (or $ symbols respectively) is W. This follows from the construction of D0: every

vertex added in the construction has an implicit label where all maximal substrings consisting of non-

$ or non-# are of length W, and maximal substrings consisting of $ or # are of length W.

To see the ‘‘local’’ number of substitutions caused by matching a #=$-symbol in D0 to a 0=1 symbol in

P, suppose the matching of enc(L(u)) in P is ‘‘shifted left’’ by 1 � s < W so that the first s symbols of

some enc(L(u)) in P are matched against the last s symbols in some walk of $/#-symbols in D0. These last s

symbols require s substitutions. In addition, assuming s < 2‘, due to the prefix (02‘1)2‘, at least 2‘- 1

substitutions that do not involve a # or $ symbol are needed as well.

We now look at the number of substitutions needed on a ‘‘global’’ level due to shift of size

s < 2‘. From Lemma 2, every walk of length 4W contains a marked vertex. Hence, while matching

P0 at least ºjP0j=4Wß = 4Wn=4W = n times, a marked vertex is visited. Because every substring of

P0 = P[1‚ jPj - 4W] of length 3W - ‘ is distinct, every path described in Observation 1 is traversed at most

once while matching P0. Since each marked vertex is on a unique path that can be traversed at most once

and we traverse at least n such paths, we traverse n distinct paths of the form described in Observation 1.

We can now use Observation 2 to infer that the substitutions needed to match the shifted patterns in P0 must

be repeated n times. Hence, to match P0, the total number of substitutions involving $/# symbols is at least

sn. When s < 2‘, the total number of substitutions is at least

(s + 2‘ - 1)n > 2‘(n - 1) = d:

If 2‘ � s < W , then 2‘ substitutions to match the substring (02‘1)2‘ in P may not be needed, but the total

number of substitutions required is still greater than d since sn � 2‘n > d. A symmetric argument can be

used for when the matching of P to D0 is ‘‘shifted right’’ by s so that the last s symbols in enc(L(u)) in P are

matched against the first s symbols in some walk of $/#-symbols in D0.
For W < s < 4W , it still holds that all paths described in Observation 1 are traversed exactly once.

Combined with Observation 2, it can be seen that the substitution cost incurred when making a path of

length W originally matching #W match a substring of P without # is incurred at least n times. This results

in the total number of substitutions required being at least nW > d. ,
Post-substitution to vertex labels, we will refer to a vertex as newly marked if there exists a walk ending

at it that matches a string of the form

enc(L(u))$W
enc(L(u))

for some u 2 V , where no such walk existed pre-substitution. Note that this definition does not require all

length k - 1 walks ending at such a vertex to match the same string.

1388 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Lemma 7. If P can be matched in D0 with at most d substitutions to vertex labels of D0, then no newly

marked vertices are created due to vertex substitutions.

Proof. Pre-substitution, only marked vertices have implicit labels of the form S1$W
S2 where S1

and S2 contain no $ symbols. Hence, the only way that a vertex could have a walk ending at it that

matches a pattern of the form S1$W
S2 post-substitution is if either it was originally a marked vertex, or

some non-0/1-symbols were substituted in D0. However, by Lemma 6, the latter case cannot happen, and

only originally marked vertices have walks ending at them matching strings of the form S1$W
S2 post-

substitution. ,

Lemma 8. If P can be matched in D0 with at most d substitutions to vertex labels of D0, then each

marked vertex in D0 is visited exactly once, except for an marked vertex at the end of a path matching

enc(0)$W
enc(0) that is visited twice.

Proof. First, we show that all marked vertices, except the one with implicit label enc(0)$W
enc(0), are

visited at most once. Pre-substitution, a marked vertex with implicit label enc(i)$W
enc(i) is at the end of a

unique, branchless path of length W matching enc(i). By Lemma 6, the only substitutions to this path made

while matching P are substitutions making it match enc(i0), i0 6¼ i. If this path were modified to match

enc(i0), i0 > 0, then the only way the marked vertex could be visited twice while matching P is if after

traversing the path, another path matching $W
is taken back to the start of this enc(i0) path. However, any

edges leaving this marked vertex are labeled with #, making this impossible. By similar reasoning, the path

matching enc(0) ending at a marked vertex is visited at most twice.

We next show that each marked vertex is visited at least once. Suppose for sake of contradiction that

some marked vertex is not visited. By Lemma 7, no additional marked vertices are created. Hence, a

marked vertex ending a path matching enc(i), i > 0 is visited at least twice, or a marked vertex ending a

path matching enc(0) is visited at least three times, a contradiction. ,

Lemma 9. If P can be matched in D0 with at most d substitutions to vertex labels of D0, then D has a

Hamiltonian cycle.

Proof. By Lemma 4, the paths between marked vertices traversed while matching with P correspond to

edges between vertices in D. Combined with marked vertices being visited exactly once from Lemma 8

(except the marked vertex ending a path matching enc(0)), the walk matched by P in D0 corresponds to a

Hamiltonian cycle through D beginning and ending at the vertex labeled 0. ,
This completes the proof of Theorem 1. We next show that k = Y(log2 jV 0j). First, recall that jVj is the

number of vertices in the original graph, where we assumed jEj = O(jVj). At most 4W jEj = O(kjV j)
vertices are created in the reduction. Also, the proof of Lemma 6 establishes that there is a unique set of at

least Y(k) vertices for every marked vertex, each one corresponding to a vertex in the original graph.

Combining, we have that jV 0j = Y(kjV j). By construction, k = Y(log2 jVj), and since jV 0j = Y(kjV j), we

have k = Y(log2 jV 0j) as well.

3. HARDNESS FOR PROBLEM 2 ON THE DE BRUIJN GRAPHS

3.1. Reduction

The OV problem is defined as follows: given two sets of binary vectors A‚ B � f0‚ 1gd
, where

jAj = jBj = N, determine whether there exist vectors a 2 A and b 2 B such that their inner product is zero.

Conditioned on SETH, a standard reduction shows that this cannot be solved in time dY(1)N2 - e for any

constant e > 0 (Williams, 2015).

Let the given instance of OV consists of A‚ B � f0‚ 1gd
where jAj = jBj = N = 2m for some natu-

ral number m. This makes Ølog (N + 1)ø = log N + 1 easing computation later. We also assume that

d > log N. This is reasonable, as if d � log N, then jAj and jBj would contain either all vectors of length d

or repetitions.

We will next provide a formal description of the graph D our reduction creates from the set

A = fa1‚ a2‚ . . . ‚ aNg and the pattern P it creates from the set B = fb1‚ b2‚ . . . ‚ bNg. The reader may

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1389

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

find Figure 11 helpful. The graph will consist of four sections. We name these according to their function in

the reduction: the Selection fan-in, the Selection section, the Post-Selection Merge section, and the Syn-

chronization loop.

We start with the Selection fan-in. Let 2c be the smallest power of 2 such that 2c � N + 1. The Selection

fan-in consists of a complete binary tree with 2c leaves, where all paths are directed away from the root.

The root is labeled 0 and the children of every node are labeled 0 and 1, respectively.

The Selection section consists of N + 1 paths. We first define the mappings fA and fB from f0‚ 1g to

sequences of length four as fA(0) = 1100, fA(1) = 1111, fB(0) = 0110, and fB(1) = 0000. These mappings have

the property that dH(fA(0)‚ fB(0)) = dH(fA(0)‚ fB(1)) = dH(fA(1)‚ fB(0)) = 2 and dH(fA(1)‚ fB(1)) = 4,

where dH(x‚ y) is the Hamming distance between strings x and y. We make the ith path for 1 � i � N, a path

of 4(d + 1) vertices with labels matching the string fA(ai[1])fA(ai[2]) . . . fA(ai[d])fA(0). We make that the

(N + 1)th path has 4(d + 1) vertices and matches the string fA(0)dfA(1). Let si denoted the start vertex of path

i. We arbitrarily choose N + 1 leaves, l1, l2, ., lN + 1, from the Selection fan-in and add the edges (li‚ si) for

1 � i � N + 1.

We define the implicit label size as k = Ø log (N + 1)ø + 4(d + 1) and ‘= k - 1. To construct the Post-

Selection Merge section, we start with N + 1 length ‘ - 1 paths, each matching the string 2‘. For every path

in the Selection section, we add an edge from the last vertex in the path to one of the paths matching 2‘.

This is done so that every path matching 2‘ in the Post-Selection Merge section is connected to exactly one

path from the Selection section. Next, we merge two vertices if they have the same implicit label. This is

repeated until all vertices in the Post-Selection Merge section have a unique implicit label.

To construct the Synchronization loop, we create a directed cycle with ‘+ 1 = k vertices. One of these is

labeled with the symbol 3, and the rest with the symbol 2. Edges from each ending vertex in the Post-

Selection Merge section to the vertex labeled 3 are then added. A final edge from the vertex labeled 3 to the

root of the binary tree in the Selection fan-in completes the graph, which we denote as D.

Let t = 5d + Ø log (N + 1)ø. To complete the reduction, we make the pattern

P = (2‘3)t2Ø log (N + 1)øfB(b1[1])fB(b1[2]) . . . fB(b1[d])fB(1)

(2‘3)t2Ø log (N + 1)øfB(b2[1])fB(b2[2]) . . . fB(b2[d])fB(1)

. . .

(2‘3)t2Ø log (N + 1)øfB(bN[1])fB(bN[2]) . . . fB(bN[d])fB(1)

and the maximum number of allowed substitutions d = NØ log (N + 1)ø + 2(d + 1) + (2d + 4)(N - 1):
We call substrings in P of the form fB(bi[1])fB(bi[2]) . . . fB(bi[d])fB(1) and paths in D matching

strings of the form fA(ai[1])fA(ai[2]) . . . fA(ai[d])fA(0) vector gadgets. Note that jEj = O(dN) and

FIG. 11. An illustration of the reduction from orthogonal vectors to Problem 2.

1390 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

m = jPj = O(d2N). Hence, an algorithm for approximate matching running in time O(mjEj1 - e + m1 - ejEj)
for some e > 0 would imply an algorithm for OV running in time dY(1)N2 - e. This implies that once the

correctness of the reduction has been established, Theorem 2 follows.

3.2. Proof of correctness

Lemma 10. The graph D is a de Bruijn graph.

Proof. For each of the four graph sections discussed above, we will prove for each vertex in that section

that Properties (i)–(iii) from the proof of Lemma 1 hold. That is, for every vertex v, the implicit label of v is

well defined, unique, and there are no additional edges that should have v as their head.

� Selection fan-in:
� (well defined) For any vertex v in the Selection fan-in, there are two paths of length k - 1 leading to v

(one containing vertices labeled with 2s from the Post-Selection Merge section and one containing

vertices labeled with 2s from the Synchronization loop). Both match the same string 2‘
0
3B, where

‘0 < ‘ and B is a binary string of length at most Ø log N + 1ø.
� (unique) The binary string B could only possibly occur again as a suffix the Selection section.

However, all implicit labels occurring in that section contain longer binary strings. Hence, the implicit

label occurs only once in D.
� (no missing inbound edges) Let u be any vertex such that (u‚ v) is in D. A vertex v in the Selection fan-

in has an implicit label of the form

Sa = 2‘
0
3Bi0 [1‚ i]‚

where ‘0 < ‘, 1 � i < Ø log Nø, and 0 � i0 � N + 1. This implies that u has the implicit label

bS = b2‘
0
3Bi0 [1‚ i - 1]:

Based on the limited number of implicit labels present in D, it must be that b = 2, and there exists only

one such u. Hence, the edge (u‚ v) already exists.
� Selection section:
� (well defined) For a vertex v in the Selection section, there are two length k - 1 paths leading to v (one

with 2s from the Post-Selection Merge section and one with 2s from the Synchronization loop). Both

match a string of the form

2‘
0
3Bi0 fA(ai[1])fA(ai[2]) . . . fA(ai[j])[1‚ h]‚

where 0 � ‘0 < ‘ and 1 � h � 4.
� (unique) If v has a path of length k - 1 matching

2‘
0
3Bi0 fA(ai[1])fA(ai[2]) . . . (fA(ai[j])[1‚ i]‚

then it must be in the Selection section. The substring Bi0 following the prefix 2‘
0
3 is distinct, hence this

implicit label only occurs once in the Selection section.
� (no missing inbound edges) Taking u and v as above, if the vertex v has an implicit label of the form

Sa = 2‘
0
3Bi0 fA(ai[1])fA(ai[2]) . . . fA(ai[j])[1‚ h]

1 � h � 4, this implies that the any potential u has an implicit label

bS = b2‘
0
3Bi0[1‚ h - 1]fA(ai[1])fA(ai[2]) . . . fA(ai[j])[1‚ h - 1]

or

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1391

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

bS = b2‘
0
3Bi0 [1‚ h - 1]fA(ai[1])fA(ai[2]) . . . fA(ai[j - 1]):

In either case, b = 2, and the edge (u‚ v) already exists.

If the vertex v has an implicit label of the form

Sa = Bi0 fA(ai[1])fA(ai[2]) . . . fA(ai[d])‚

then any potential vertex u has an implicit label

bS = bBi0 fA(ai[1])fA(ai[2]) . . . fA(ai[d])[1‚ 3]‚

where b must be 3, and the edge (u‚ v) already exists.
� Post-Selection Merge section:
� (well defined) For a vertex v in this section, all length k - 1 paths ending at v match a string of the form

B2‘
0
, where B is a binary string. By construction, the paths ending at v match the same string (they

were merged based on this condition).
� (unique) Again by construction, if another vertex v0 in the Post-Selection merging section has a length

k - 1 path ending at it that matches v’s implicit label v0 will be merged with v. At the same time,

vertices in the other sections of D will not have an implicit label of the form B2‘.
� (no missing inbound edges) Taking u and v as above, vertex v has an implicit label of the form

Sa = B2‘
0
, ‘0 � 1‚ this implies that any potential vertex u has an implicit label bS = bB2‘

0 - 1: Such a

vertex u is already in the Post-Selection Merge section or is a vertex at the end of a path in the

Selection section (if ‘0 = 1). Since appending a 2 and removing b will make the implicit label of u equal

to the implicit label of v, the vertex at the head of the edge with tail u must have been merged with v.

Hence, the edge (u‚ v) already exists.
� Synchronization loop:
� (well defined) There are two length k - 1 paths to a vertex v in the Synchronization loop. Both match

the string 2‘
0
32‘

0 0
, where ‘0 + ‘00 = k - 1 = ‘, and ‘0 depends on v’s position within the Synchronization

loop.
� (unique) An implicit label for a vertex in any other section contains a symbol that is not a 2 or a 3.

Within the Synchronization loop, each implicit label clearly occurs exactly once.
� (no missing inbound edges) Taking u and v as above, vertex v has an implicit label of the form

Sa = 2‘
0
32‘

0 0
: This implies that any potential vertex u has an implicit label bS = b2‘

0
32‘

0 0 - 1: If ‘0 < ‘, it

must be that b = 2 and the edge (u‚ v) already exists. If instead ‘0 = ‘, then for both bS = 02‘3 and

bS = 12‘3, there already exists an edge (u‚ v) as well. ,

Lemma 11. In an optimal solution, 3s in P are matched with 3s in D.

Proof. Suppose that some 3 in P is not matched with 3 in D or with the final vertex in a path in the

Selection section. Since any walk between 3s in D has a length that is a multiple of k and 3 in P are k - 1

symbols apart, all 3s must then not be matched with 3 in D. This requires at least tN substitutions within P.

However, when 3s in P are matched with 3s in D, there exists a solution requiring at most

4d(N + 1) + NØ log (N + 1)ø. Specifically, this is obtained by matching each vector gadget in P,

fB(bi[1]) . . . fB(bi[d]) to the N + 1th path in the Selection section. Since

t = 5d + Ø log (N + 1)ø > 4d +
4d

N
+ Ø log (N + 1)ø

for d = o(N) and N large enough, we can assume that tN > 4d(N + 1) + NØ log (N + 1)ø. Hence, all 3s in P are

matched with the 3 in D or with some final vertex in a path in the Selection section.

Next, suppose some 3 in P is matched with the last vertex in a path in the Selection section. We consider

the first such occurrence. In the case where this occurrence of 3 in P is followed in P by a substring

2Ø log (N + 1)øfB(ai[1]) . . . fB(ai[d])fB(1)‚

then a cost of at least 8(d + 1) is incurred, first at least 4(d + 1) from matching the substring 2‘3 in P to a

path through the Selection fan-in and the Selection section, then an additional 4(d + 1) from matching a

1392 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

vector gadget in P to a path of 2s in the Post-Selection Merge section. We could have instead matched the

Synchronization loop twice with a cost of only 4(d + 1) substitutions, and started and ended at the same

vertex while still matching

2‘32Ø log (N + 1)øfB(ai[1]) . . . fB(ai[d])fB(1):

Hence, matching 3 in P with the last vertex in a path in the Selection section is suboptimal. In the case

where the occurrence of 3 in P is followed in P by 2‘3, then the cost incurred is only 4(d + 1). However, we

could have instead matched 2‘32‘3 with the Synchronization loop twice with a substitution cost of 0, and

again started and ended at the same vertex. Hence, matching 3 in P with the last vertex in a path in the

Selection section is again suboptimal. ,

Lemma 12. In an optimal solution, vector gadgets in P are matched with vector gadgets in D.

Proof. Suppose otherwise. By Lemma 11, this can only occur if some vector gadget in P is matched

against the Synchronization loop. This requires at least 4(d + 1) substitutions. We can instead match the

Ø log (N + 1)ø 2s preceding the vector gadget in P with the Selection fan-in and the vector gadget in P with

the (N + 1)th path in the Selection section. Due to dH(fA(0)‚ fB(0)) = dH(fA(0)‚ fB(1)) = 2 and

d(fA(1)‚ fB(1)) = 4, this requires Ø log (N + 1)ø + 2d + 4 substitutions in P. Since, log N < d < 2d we have

log N < 2d - 1. Using that N is some power of 2,

Ø log (N + 1)ø + 2d + 4 = log N + 1 + 2d + 4 < 4d + 4:

Hence, the cost decreases by matching the vector gadget in P to a vector gadget in D instead. ,

Lemma 13. If there exists a vector a 2 A and b 2 B such that a � b = 0, then P can be matched to D with

at most d substitutions.

Proof. Match the vector gadget for b in P with the vector gadget for a in the Selection section of D. This

costs 2(d + 1) substitutions. Match the remaining N - 1 vector gadgets in P with the (N + 1)th path in the

Selection section, requiring (2d + 4) (N - 1) substitutions in total. The total number of substitutions of 2s in

P to match the Selection fan-in is NØ log (N + 1)ø. Adding these, the total number of substitutions is

exactly d. The Synchronization loop can be used for matching all additional symbols in P without any

further substitutions. ,

Lemma 14. If P can be matched in D with at most d substitutions, then there exist vectors a 2 A and

b 2 B such a � b = 0.

Proof. By Lemma 12, we can assume vector gadgets in P are only matched against vector gadgets in D.

Suppose that there does not exist a pair of OV a 2 A and b 2 B. Then, whichever vector gadget in D we

choose to match a vector gadget in P to, matching the vector gadget requires at least 2d + 4 substitutions.

Hence, the total cost is at least (2d + 4)N + NØ log (N + 1)ø > d, proving the contrapositive. ,

4. DISCUSSION

We leave open several interesting problems. An NP-completeness proof for Problem 1 on the de Bruijn

graphs when k =O(log n) and the alphabet size is constant is still needed. Additionally, we need to extend

these hardness results to when substitutions are allowed in both the graph and the pattern, and when

insertions and deletions in some form are allowed in the graph and (or) the pattern. It seems unlikely that

adding more types of edit operations would make the problems computationally easier, and we conjecture

these variants are NP-complete on the de Bruijn graphs as well. It also needs to be determined whether

Problem 1 is NP-complete on the de Bruijn graphs with binary alphabets, or whether the SETH-based

hardness results hold for Problem 2 on binary alphabets.

A practical question is whether these problems are hard for small d values on the de Bruijn graphs

[the problem for general graphs was proven to W[2] hard in terms of d in the study by Dondi et al (2020)].

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1393

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

In applications, the allowed error thresholds are quite small. Clearly, the problems are slice-wise-

polynomial with respect to d, that is, for a constant d, it is solvable in polynomial time via brute force, but

are they fixed-parameter-tractable in d? The reduction presented in this study as well as the reductions

presented in the studies by Amir et al (2000) and Jain et al (2019) are based on the Hamiltonian cycle

problem, where a large d value is used. This makes the existence of such a fixed-parameter-tractable

algorithm a distinct possibility.

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no conflicting financial interests.

FUNDING INFORMATION

This research was supported in part by the U.S. National Science Foundation (NSF) grants CCF-

1704552, CCF-1816027, and CCF-2112643.

REFERENCES

Abboud A, Backurs A, Hansen TD, et al. Subtree isomorphism revisited. ACM Trans Algorithms 2018;14(3):27:

1–27:23; doi: 10.1145/3093239

Abrahamson KR. Generalized string matching. SIAM J Comput 1987;16(6):1039–1051; doi: 10.1137/0216067

Alanko J, D’Agostino G, Policriti A, et al. Wheeler languages. CoRR 2020; abs/2002.10303.

Alanko JN, Gagie T, Navarro G, et al. Tunneling on wheeler graphs. In: Data Compression Conference, DCC 2019,

Snowbird, UT, USA, March 26–29, 2019; 2019; pp. 122–131; doi: 10.1109/DCC.2019.00020

Almodaresi F, Sarkar H, Srivastava A, et al. A space and time-efficient index for the compacted colored de Bruijn

graph. Bioinformatics 2018;34(13):i169–i177; doi: 10.1093/bioinformatics/bty292

Amir A, Lewenstein M, Lewenstein N. Pattern matching in hypertext. J Algorithms 2000;35(1):82–99; doi: 10.1006/

jagm.1999.1063

Backurs A, Indyk P. Which regular expression patterns are hard to match? In: IEEE 57th Annual Symposium on

Foundations of Computer Science, FOCS 2016, 9–11 October 2016, Hyatt Regency, New Brunswick, New Jersey,

USA; 2016; pp. 457–466; doi: 10.1109/FOCS.2016.56

Benoit G, Lemaitre C, Lavenier D, et al. Reference-free compression of high throughput sequencing data with a

probabilistic de Bruijn graph. BMC Bioinformatics 2015;16:288:1–288:14; doi: 10.1186/s12859-015-0709-7

Chikhi R, Limasset A, Jackman S, et al. On the representation of de Bruijn graphs. J Comput Biol 2015;22(5):336–352;

doi: 10.1089/cmb.2014.0160

Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based on a bloom filter. Algorithms Mol

Biol 2013;8:22; doi: 10.1186/1748-7188-8-22

Dondi R, Mauri G, Zoppis I. Complexity issues of string to graph approximate matching. In: Language and Automata

Theory and Applications: 14th International Conference, LATA 2020, Milan, Italy, March 4–6, 2020, Proceedings:

12038 (Lecture Notes in Computer Science). (Leporati A, Martı́n-Vide C, Shapira D, et al. eds.) Springer; 2020;

pp. 248–259; doi: 10.1007/978-3-030-40608-0_17

Egidi L, Louza FA, Manzini G. Space efficient merging of de Bruijn graphs and wheeler graphs. CoRR 2020; abs/

2009.03675.

Equi M, Grossi R, Mäkinen V, et al. On the complexity of string matching for graphs. In: 46th International Colloquium

on Automata, Languages, and Programming, ICALP 2019, July 9–12, 2019, Patras, Greece, 2019; pp. 55:1–55:15;

doi: 10.4230/LIPIcs.ICALP.2019.55

Flick P, Jain C, Pan T, et al. Reprint of ‘‘a parallel connectivity algorithm for de Bruijn graphs in metagenomic

applications.’’ Parallel Comput 2017;70:54–65; doi: 10.1016/j.parco.2017.09.002

Gagie T. r-Indexing wheeler graphs. CoRR 2021; abs/2101.12341.

Gagie T, Manzini G, Sirén J. Wheeler graphs: A framework for BWT-based data structures. Theor Comput Sci 2017;

698:67–78; doi: 10.1016/j.tcs.2017.06.016

Georganas E, Buluç A, Chapman J, et al. Parallel de Bruijn graph construction and traversal for de novo genome

assembly. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC

2014, New Orleans, LA, USA, November 16–21, 2014, 2014; pp. 437–448; doi: 10.1109/SC.2014.41

1394 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Gibney D. An efficient elastic-degenerate text index? not likely. In: String Processing and Information Retrieval—27th

International Symposium, SPIRE 2020, Orlando, FL, USA, October 13–15, 2020, Proceedings, 2020; pp. 76–88; doi:

10.1007/978-3-030-59212-7y_6

Gibney D, Hoppenworth G, Thankachan SV. Simple reductions from formula-sat to pattern matching on labeled graphs

and subtree isomorphism. In: 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January

11–12, 2021, 2021; pp. 232–242; doi: 10.1137/1.9781611976496.26

Gibney D, Thankachan SV. On the hardness and inapproximability of recognizing wheeler graphs. In 27th Annual

European Symposium on Algorithms, ESA 2019, September 9–11, 2019, Munich/Garching, Germany, 2019;

pp. 51:1–51:16; doi: 10.4230/LIPIcs.ESA.2019.51

Heydari M, Miclotte G, de Peer YV, et al. Browniealigner: Accurate alignment of illumina sequencing data to de Bruijn

graphs. BMC Bioinformatics 2018;19(1):311:1–311:10; doi: 10.1186/s12859-018-2319-7

Holley G, Peterlongo P. Blastgraph: Intensive approximate pattern matching in string graphs and de-Bruijn graphs. In:

Holub J, Zdrek J (eds): Proceedings of the Prague Stringology Conference 2012, Prague, Czech Republic, August

27–28, 2012. Czech Technical University in Prague; Prague, Czech Republic. PSC 2012, 2012.

Holley G, Wittler R, Stoye J, et al. Dynamic alignment-free and reference-free read compression. J Comput Biol

2018;25(7):825–836; doi: 10.1089/cmb.2018.0068

Hoppenworth G, Bentley JW, Gibney D, et al. The fine-grained complexity of median and center string problems under

edit distance. In: 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy

(Virtual Conference), 2020; pp. 61:1–61:19; doi: 10.4230/LIPIcs.ESA.2020.61

Jain C, Zhang H, Gao Y, et al. On the complexity of sequence to graph alignment. In: Research in Computational

Molecular Biology—23rd Annual International Conference, RECOMB 2019, Washington, DC, USA, May 5–8,

2019, Proceedings; 2019; pp. 85–100; doi: 10.1007/978-3-030-17083-7y_6

Kamal MS, Parvin S, Ashour AS, et al. de-Bruijn graph with mapreduce framework towards metagenomic data

classification. Int J Inf Technol 2017;9(1):59–75.

Kapun E, Tsarev F. On NP-hardness of the paired de Bruijn sound cycle problem. In: Algorithms in Bioinformatics—

13th International Workshop, WABI 2013, Sophia Antipolis, France, September 2–4, 2013. Proceedings. 2013;

pp. 59–69; doi: 10.1007/978-3-642-40453-5y_6

Kavya VNS, Tayal K, Srinivasan R, et al. Sequence alignment on directed graphs. J Comput Biol 2019;26(1):53–67;

doi: 10.1089/cmb.2017.0264

Li D, Liu C, Luo R, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly

via succinct de Bruijn graph. Bioinformatics 2015;31(10):1674–1676; doi: 10.1093/bioinformatics/btv033

Limasset A, Cazaux B, Rivals E, et al. Read mapping on de Bruijn graphs. BMC Bioinformatics 2016;17:237; doi:

10.1186/s12859-016-1103-9

Limasset A, Flot J, Peterlongo P. Toward perfect reads: Self-correction of short reads via mapping on de Bruijn graphs.

Bioinformatics 2020;36(2):651; doi: 10.1093/bioinformatics/btz548

Lin Y, Shen MW, Yuan J, et al. Assembly of long error-prone reads using de Bruijn graphs. In: Research in Com-

putational Molecular Biology—20th Annual Conference, RECOMB 2016, Santa Monica, CA, USA, April 17–21,

2016, Proceedings. 2016; p. 265.

Liu B, Guo H, Brudno M, et al. debga: Read alignment with de Bruijn graph-based seed and extension. Bioinformatics

2016;32(21):3224–3232; doi: 10.1093/bioinformatics/btw371

Morisse P, Lecroq T, Lefebvre A. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph.

Bioinformatics 2018;34(24):4213–4222; doi: 10.1093/bioinformatics/bty521

Navarro G. Improved approximate pattern matching on hypertext. Theor Comput Sci 2000;237(1–2):455–463; doi:

10.1016/S0304-3975(99)00333-3

Pell J, Hintze A, Canino-Koning R, et al. Scaling metagenome sequence assembly with probabilistic de Bruijn graphs.

Proc Natl Acad Sci USA 2012;109(33):13272–13277; doi: 10.1073/pnas.1121464109

Peng Y, Leung HCM, Yiu S, et al. IDBA—A practical iterative de Bruijn graph de novo assembler. In: Research in

Computational Molecular Biology, 14th Annual International Conference, RECOMB 2010, Lisbon, Portugal, April

25–28, 2010. Proceedings. 2010; pp. 426–440; doi: 10.1007/978-3-642-12683-3y_28

Peng Y, Leung HCM, Yiu S, et al. Idba-tran: A more robust de novo de Bruijn graph assembler for transcriptomes with

uneven expression levels. Bioinformatics 2013; 29(13):326–334; doi: 10.1093/bioinformatics/btt219

Pevzner PA. 1-Tuple DNA sequencing: Computer analysis. J Biomol Struct Dyn 1989;7(1):63–73.

Plesnı́k J. The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf

Process Lett 1979;8(4):199–201; doi: 10.1016/0020-0190(79)90023-1

Rautiainen M, Marschall T. Aligning sequences to general graphs in o (v+ me) time. bioRxiv 2017; p. 216127.

Ren X, Liu T, Dong J, et al. Evaluating de Bruijn graph assemblers on 454 transcriptomic data. PLoS One 2012;

7(12):e51188.

HARDNESS OF SEQUENCE ALIGNMENT ON DE BRUIJN GRAPHS 1395

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Williams VV. Hardness of easy problems: Basing hardness on popular conjectures such as the strong exponential time

hypothesis (invited talk). In: 10th International Symposium on Parameterized and Exact Computation, IPEC 2015,

September 16–18, 2015, Patras, Greece, 2015; pp. 17–29; doi: 10.4230/LIPIcs.IPEC.2015.17

Ye Y, Tang H. Utilizing de Bruijn graph of metagenome assembly for metatranscriptome analysis. Bioinformatics

2016;32(7):1001–1008; doi: 10.1093/bioinformatics/btv510

Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res

2008;18(5):821–829.

Address correspondence to:

Dr. Daniel Gibney

School of Computational Science and Engineering

Georgia Institute of Technology

S1257A CODA Building, 756 W Peachtree St NW

Atlanta, GA 30332

USA

E-mail: daniel.j.gibney@gmail.com

1396 GIBNEY ET AL.

D
ow

nl
oa

de
d

by
 G

eo
rg

ia
 T

ec
h

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
26

/2
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

