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ABSTRACT

The problem of aligning a sequence to a walk in a labeled graph is of fundamental im-
portance to Computational Biology. For an arbitrary graph G=(V, E) and a pattern P of
length m, a lower bound based on the Strong Exponential Time Hypothesis implies that an
algorithm for finding a walk in G exactly matching P significantly faster than ((|E|m) time is
unlikely. However, for many special graphs, such as de Bruijn graphs, the problem can be
solved in linear time. For approximate matching, the picture is more complex. When edits
(substitutions, insertions, and deletions) are only allowed to the pattern, or when the graph
is acyclic, the problem is solvable in (/(|E|m) time. When edits are allowed to arbitrary
cyclic graphs, the problem becomes NP-complete, even on binary alphabets. Moreover, NP-
completeness continues to hold even when edits are restricted to only substitutions. Despite
the popularity of the de Bruijn graphs in Computational Biology, the complexity of ap-
proximate pattern matching on the de Bruijn graphs remained unknown. We investigate
this problem and show that the properties that make the de Bruijn graphs amenable to
efficient exact pattern matching do not extend to approximate matching, even when re-
stricted to the substitutions only case with alphabet size four. Specifically, we prove that
determining the existence of a matching walk in a de Bruijn graph is NP-complete when
substitutions are allowed to the graph. We also demonstrate that an algorithm significantly
faster than (/(|E|m) is unlikely for the de Bruijn graphs in the case where substitutions are
only allowed to the pattern. This stands in contrast to pattern-to-text matching where exact
matching is solvable in linear time, such as on the de Bruijn graphs, but approximate
matching under substitutions is solvable in subquadratic O(n\/rﬁ) time, where 7 is the text’s
length.
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1. INTRODUCTION

DE BRUUN GRAPHS PLAY AN ESSENTIAL ROLE in Computational Biology. Their application to de novo
assembly spans back to the 1980s (Pevzner, 1989) and has been the topic of extensive research since
then (Chikhi et al, 2015; Chikhi and Rizk, 2013; Georganas et al, 2014; Lin et al, 2016; Peng et al, 2010, 2013;
Ren et al, 2012; Zerbino and Birney, 2008). More recently, de Bruijn graphs have been applied in meta-
genomics and in the representation of large collections of genomes (Flick et al, 2017; Kamal et al, 2017; Li
etal, 2015; Pell et al, 2012; Ye and Tang, 2016) and for solving other problems such as read error correction
(Limasset et al, 2020; Morisse et al, 2018) and compression (Benoit et al, 2015; Holley et al, 2018).

This popularity of the de Bruijn graphs for the modeling of sequencing data makes having efficient
algorithms to find walks in a de Bruijn graph matching (or approximately matching) a given query pattern
important to numerous applications. For example, in metagenomics, such an algorithm can be used to
quickly detect the presence of a particular species within genetic material obtained from an environmental
sample. Or, in the case of read error correction, such an algorithm can be used to efficiently find the best
mapping of reads onto a ‘‘cleaned” reference de Bruijn graph with low-frequency k-mers removed (Li-
masset et al, 2020). To facilitate such tasks, several algorithms and software tools that perform pattern
matching on the de Bruijn (and sometimes general) graphs have been developed (Almodaresi et al, 2018;
Heydari et al, 2018; Holley and Peterlongo, 2012; Kavya et al, 2019; Limasset et al, 2016; Liu et al, 2016;
Navarro, 2000; Rautiainen and Marschall, 2017). These are often based on seed-and-extend heuristics.

With respect to theory, there has been a recent surge of interest in pattern matching on labeled graphs.
This has led to many new fascinating algorithmic and computational complexity results. However, even
with this improved understanding of the theory of pattern matching on labeled graphs, our knowledge is
still lacking in many respects concerning specific, yet extremely relevant, classes of graphs, such as the de
Bruijn graphs. An overview of the current state of knowledge is provided in Table 1.

For general graphs, we can consider exact and approximate matching. For exact matching, conditional lower
bounds based on the Strong Exponential Time Hypothesis (SETH), and other conjectures in circuit complexity,
indicate that an ((|E|m' =%+ |E|'~*m) time algorithm with any constant ¢ > 0, for a graph with |E| edges and a
pattern of length m, is highly unlikely (as is the ability to shave more than a constant number of logarithmic
factors from the ()(|E|m) time complexity) (Equi et al, 2019; Gibney et al, 2021). These results hold for even
very restricted types of graphs, for example, directed acyclic graphs (DAGs) with maximum total degree three
and binary alphabets. For approximate matching, when edits are only allowed in the pattern, the problem is
solvable in (O(|E|m) time (Amir et al, 2000). If edits are also permitted in the graph, but the graph is a DAG,
matching can be done in the same time complexity (Kavya et al, 2019).

However, the problem becomes NP-complete when edits are allowed in arbitrary cyclic graphs. This was
originally proven in Amir et al (2000) for large alphabets and more recently proven for binary alphabets
in Jain et al (2019). These results hold even when edits are restricted to only substitutions. The distinction
between modifications to the graph and modifications to the pattern is important as these two problems are

TABLE 1. THE COMPUTATIONAL COMPLEXITY OF PATTERN MATCHING ON LABELED GRAPHS

Exact matching Approximate matching
Easy Solvable in linear time Solvable in O (|E|m) time
Wheeler Graphs (Gagie et al, 2017) (e.g., de DAGs: Substitutions/edits to graph (Kavya et al,
Bruijn graphs, NFAs for multiple strings) 2019)

General graphs: Substitutions/edits to pattern
(Amir et al, 2000)

de Bruijn graphs: Substitutions to pattern

No strongly sub-()(|E|m) algorithm (this study)

Hard No strongly sub-0 (|[E|m) algorithm NP-complete
General graphs (Equi et al, 2019; Gibney et al, General graphs: Substitutions/edits to graph
2021) (including DAGs with total degree <3) (Amir et al, 2000; Jain et al, 2019)

de Bruijn Graphs: Substitutions to vertex labels
(this study)

DAGs, directed acyclic graphs; NFA, nondeterministic finite automation.
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fundamentally different. When changes are made to cyclic graphs, the same modification can be en-
countered multiple times while matching a pattern with no additional cost [see section 3.1 in Jain et al
(2019) for a detailed discussion]. Furthermore, algorithmic solutions appearing in the studies by Kavya et al
(2019), Navarro (2000), and Rautiainen and Marschall (2017) are for the case where modifications are
performed only to the pattern.

The de Bruijn graphs are an interesting class of graphs from a theoretical perspective. They fall within a
more general class of graphs that allow for the extension of the Burrows—Wheeler Transformation-based
techniques that enable efficient pattern matching. Sufficient conditions for doing this are captured by the
definition of Wheeler graphs, introduced in the study of Gagie et al (2017) and further studied in Alanko
et al (2020, 2019), Egidi et al (2020), Gagie (2021), and Gibney and Thankachan (2019). The de Bruijn
graphs are themselves Wheeler graphs, which in turn implies that exact pattern matching is solvable in
linear time on a de Bruijn graph. However, the complexity of approximate matching in the de Bruijn graphs
when permitting modifications to the graph or modifications to the pattern remained open (Jain et al, 2019).

We make two important contributions, which are indicated in Table 1. First, we prove that for the de
Bruijn graphs, despite exact matching being solvable in linear time, the approximate matching problem
with vertex label substitutions is NP-complete. Second, we prove that a strongly subquadratic time algo-
rithm for the approximate pattern matching problem on the de Bruijn graphs, where substitutions are only
allowed to the pattern, is not possible under the SETH. Note that, in contrast, pattern-to-text matching
(under substitutions) can be solved in subquadratic @(n\ﬁn') time, where n is the text’s length (Abrahamson,
1987). This result establishes the optimality of the known quadratic time algorithms up to polynomial
factors. To the best of our knowledge, these are the first such results for any type of Wheeler graph.

1.1. Technical preliminaries

1.1.1. Notation for edges. For a directed edge from a vertex u to a vertex v, we will use the notation
(u, v). Additionally, we will refer to u as the tail of (u,v), and v as the head of (u, v).

1.1.2. Walks versus paths. A distinction must be made between the concept of a walk and a path in a
graph. A walk is a sequence of vertices vy, Vs, ..., v, such that for each i € [1,7—1], (v;,vi+1) € E.
Vertices can be repeated in a walk. A path is a walk where vertices are not repeated. The length of a walk is
defined as the number of edges in the walk, 7 — 1, or equivalently one less than the number of vertices in the
sequence (counted with multiplicity). This work will be concerning the existence of walks, not paths.

1.1.3. Induced subgraphs. An induced subgraph of a graph G = (V, E) consists of a subset of
vertices V' C V, and all edges (1, v) € E such that u, v € V’. This is in contrast to an arbitrary subgraph of
G, where an edge can be omitted from the subgraph, even if both of its incident vertices are included.

1.1.4. De Bruijn graphs. An order-k full de Bruijn graph is a compact representation of all k-mers
(strings of length k) from an alphabet X of size . It consists of ¢* vertices, each corresponding to a unique
k-mer (which we call as its implicit label) in Z¥. There is a directed edge from each vertex with implicit
label s1 55 ... sg € =F to the o vertices with implicit labels s s3 ... spa, o € 2. We will work with
induced subgraphs of the full de Bruijn graphs in this article. We assign to every vertex v a label L(v) € X,
such that the implicit label of v is L(u;) L(uy) ... L(ug—1) L(v), where uy, uy, ..., ux_1, v is any length
k—1 walk ending at v. This is equivalent to the notion of a de Bruijn graph constructed from k-mers
commonly used in Computational Biology.

1.1.5. Strings and matching. For a string S of length n indexed from 1 to n, we use S[i] to denote
the i symbol in S. We use S[i, j] to denote the substring S[i] S[i + 1] ... S[j]. If j < i, then we take S[i, j]
as the empty string. As mentioned above, we will consider every vertex v as labeled with a single symbol
L(v) € X. A pattern P[1, m] matches a walk vy, v,, ..., v, iff P[i] = L(v;) for every i € [1, m].

With these definitions in hand, we can formally define our first problem.

Problem 1 (Approximate matching with vertex label substitutions). Given a vertex labeled graph
D=(V, E) with alphabet X of size o, pattern P[1, m], and integer 6 > 0, determine if there exists a walk in
D matching P after at most 0 substitutions to the vertex labels.
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Theorem 1. Problem 1 is NP-complete on the de Bruijn graphs with g =4.

Theorem 1 is proven in Section 2. Intuitively, our reduction transforms a general directed graph into a de
Bruijn graph that maintains key topological properties related to the existence of walks. The distinct
problem of approximately matching a pattern to a path in a de Bruijn graph was shown to be NP-complete
in the study by Limasset et al (2016). As mentioned by the authors of that work, the techniques used there
do not appear to be easily adaptable to the problem for walks. Our approach uses edge transformations
more closely inspired by those used in the study by Kapun and Tsarev (2013) for proving hardness on the
paired de Bruijn sound cycle problem.

Problem 2 (Approximate matching with substitutions to the pattern). Given a vertex labeled graph
D=(V, E) with alphabet % of size o, pattern P[1, m], and integer 6 > 0, determine if there exists a walk in
D matching P after at most & substitutions to the symbols in P.

For Problem 2, we provide a hardness result based on the SETH, which is frequently used for estab-
lishing conditional optimality of polynomial time algorithms (Abboud et al, 2018; Backurs and Indyk,
2016; Equi et al, 2019; Gibney, 2020; Gibney et al, 2021; Hoppenworth et al, 2020). We refer the reader to
the study of Williams (2015) for the definition of the SETH and for the reduction to the orthogonal vectors
(OV) problem, which is utilized to prove Theorem 2.

Theorem 2. Conditioned on the SETH, for all constants ¢ >0, there does not exist an
O(|E|m'~¢ + |E|'"*m) time algorithm for Problem 2 on the de Bruijn graphs with c=4.

Note that the order, k, of the de Bruijn graphs used in ours proofs are ® (log” |V|) for Theorem 1 and
O (log|V]) for Theorem 2.

2. HARDNESS OF PROBLEM 1 ON THE DE BRUILJN GRAPHS

Our proof of NP-completeness uses a reduction from the Hamiltonian cycle problem on directed graphs,
which is the problem of deciding if there exists a cycle through a directed graph that visits every vertex
exactly once. The Hamiltonian cycle problem has been proven NP-complete, even when restricted to
directed graphs where the number of edges is linear in the number of vertices (Plesnik, 1979). To present
our reduction, we introduce the concept of merging two vertices. To merge vertices u and v, we first create a
new vertex w. We then take all edges with either u or v as their head and make w their new head. Next, we
take all edges with either u or v as their tail and make w their new tail. This makes the edges (¢, v) and
(v, u) (if they existed) into self-loops for w. If identical self-loops are formed, we delete all but one of
them. Finally, we delete the original vertices u and v.

2.1. Reduction

We start with an instance of the Hamiltonian cycle problem on a directed graph where the number of
edges is linear in the number of vertices. We can assume that there are no self-loops or vertices with in-
degree or out-degree zero. To simplify the proof, we first eliminate any cycles of length 2 using the gadget
in Figure 1. We denote the resulting graph as D=(V, E) and let n=|V|. We assign each vertex v € V a
unique integer L(v) € [0, n—1]. Let ¢ =[ log n|, bin(i) be the standard binary encoding of i using ¢ bits and
T={$, #, 0, 1}. Define enc(i) = (0*‘1)*’bin(i), W = |enc(i)|, and k=3W.

We construct a new (de Bruijn) graph D'=(V’, E') as follows: Initially, D' is the empty graph. For
i=0, 1, ..., n — 1, for each edge (u,v) € E where L(v) = i, create a new path whose concatenation of
vertex labels is #% enc(i)$W enc(i). The vertex u will correspond with a new vertex ¢(u) at the start of
this path, and the vertex v will correspond with a new vertex ¢(v) at the end of this path. The vertex ¢(v)
has the implicit label enc(L(v))$W enc(L(v)). The vertex ¢(u) is ““temporarily assigned” the implicit label

FIG. 1. Gadget to remove cycles of length 2 from the =I5
initial input graph.
u v u v
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é(v) enc(L(v)) $%W enc(L(v))

A
o #Wenc(Lv) 8%
.:(> enc(L(w) #V enc(L(v)) rFeIdGucnzon The transformation from edges to paths used in our
$W enc(L(u)) #W
u ﬁf’(l’“) enc(L(u)) $" enc(L(u))

enc(L(u))$W enc(L(u)). See Figure 2. We call vertices with implicit labels of the form enc(L( - ))$W
enc(L( - )) marked vertices. We use the notation ¢((u, v)) to denote the path created when applying this
transformation to (#, v) € E. After the path ¢((u, v)) is created, vertices in V’ having the same implicit
label are merged, and parallel edges are deleted (Figs. 3 and 4). See Figure 5 for a complete example.
Finally, let 6=2¢(n—1) and

P = #" enc(0)$" enc(0)#" enc(1)$" enc(D#" ...
#Y enc(n — 1$" enc(n — D#" enc(0)$" enc(0).

We will show that there exists a walk in D’ matching P with at most J vertex label substitutions iff D
contains a Hamiltonian cycle.

2.1.1. Proof of correctness.
Lemma 1. The graph D' constructed as above is a de Bruijn graph.

Proof. There are three properties that must be proven: (i) Implicit labels are unique, meaning for every
implicit label at most one vertex is assigned that label; (ii) There are no edges missing, that is, if the implicit
label of y € V' is Su for some string S[1, k—1] and symbol o € X, and there exists a vertex x € V' with
implicit label SS[1, k— 1] for some symbol f§ € %, then (x, y) € E'; (iii) Implicit labels are well defined, in
that every walk of length k—1 ending at a vertex x € V' matches the same string (the implicit label of x).

Property (i) holds since after every edge transformation, vertices with the same implicit label are merged,
making every implicit label occur at most once.

For Property (ii), consider the completed graph D’ and an arbitrary vertex y on an arbitrary path ¢((u, v)).
Regarding a possible edge (x, y) € E', we have the following cases:

e Case: the implicit label of y is

So. = enc(L(u)$" enc(L(u)).

Then, any potential x € V' must have an implicit label

BS = Benc(L(u)$" enc(Lau)[1, W — 1].

v enc(L(v)) $W enc(L(v)) ¢(v)
A

w w !
ey : FIG. 3. Vertices with the same implicit label are
E " ” merged while transforming D to D', causing edges
enc(L(u) #7 enc(L(v)) 1 enc(L(w)) #" enc(L(v)) with shared head vertex to become paths with

i \ multiple shared vertices.
$W enc(L(u)) #W ! b $Wenc(L(w)) #W

o ow enclw) sWenc(Lv) ¢(u) H(w) enc(Lw) $* enciL(w))
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v W enc(L(v)) $W enc(L(v)) ¢(v) Mw)enc(L(w)) $W enc(L(w))
A A

FIG. 4. Vertices with the same implicit label #WencL) s 1 1 #WencLw) Y
are merged while transforming D to D', causing

edges with shared tail vertex to become paths ={> enc(L(u)) #W enc(L(v) ¥ enc(L(u)) #W enc(L(w))
with multiple shared vertices. '

$W enc(L(u)) #W ,

¥ enc(L(u)) $W enc(L(u) ¢(u)

However, the only implicit labels created that have a suffix of the form enc(L(u))$W enc(L(uw))[1, W — i]
have a prefix #"%~%. This implies that f=+, and the edge (x,y) already exists in E’ (under the as-
sumption that there are no vertices with in-degree zero in V).

e Case: the implicit label of y is

So = enc(L(w)[i, W1$" enc(L(u)# !

1 < i< W+ 1.* Then, any potential x must have an implicit label

BS = B enc(Lw)li, W1$" enc(L(u))# 2.

Because the only implicit labels with the substring $" enc(L(x)) have a prefix consisting of some suffix
of enc(L(u)), this implies f=enc(L(u))[i — 1], and (x, y) already exists in E’.
¢ Case: the implicit label of y is

S = $" " enc(L(u)#" enc(LM)[1, i]

1 <i < W. Then, any potential x must have an implicit label

BS = p$" " enc(Lw)#" enc(Lw)[1, i — 1].

In the case i < W, f=$ and the edge (x, y) already exists in E’. In the case where i =W, the only implicit
label with a suffix of the form enc(L(u))#" enc(L(v))[1, W — 1] has a prefix $, and the edge (x, y)
already exists in E'.

¢ Case: the implicit label of y is

So = enc(La)[i, WI#" enc(L(v)$ ™!

1 < i < W+1. Then, any potential x must have an implicit label

BS = B enc(L(w)[i, W1#Y enc(L(v)$ 2.

*Recall enc(L(u))[W + 1, W] is the empty string.
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FIG. 5. (Top) A graph before the reduction is applied to it. (Bottom) The transformed graph. Implicit labels for
marked vertices are shown, and the path directions are annotated by arrows beside each path.

Because the only implicit labels with the substring #"enc(L(v)) have a prefix consisting of some suffix
of enc(L(u')) where the edge (', v)is in D, the edge (x, y) already exists in E’. This is an interesting case,
as merges can happen, that is, f enc(L(w))[i, W] = enc(L('))[i — 1, W], where u’ # u.

e Case: the implicit label of y is

So. = #Y =" enc(L(v)$" enc(LM)[1, i]

1 <i < W. Then, any potential x must have an implicit label
BS = p#" " enc(L(v)$" enc(L)(1, i — 1].

For i < W, f=# and the edge (x, y) already exists in E'. For i=W, this is equivalent to the first case.

We prove Property (iii) that all walks of length k—1 ending at the same vertex match the same string,
using induction on the number of edges transformed into paths. Our inductive hypothesis (IH) is that before
an edge being replaced by a path, Property (iii) holds for every vertex added to V' thus far. Let i denote the
number of edges transformed. For i=1, all vertices where there exists such a walk ending at them are on the
newly created path, and implicit labels are well defined.

For i > 1, we assume that the IH holds for all vertices created in the previous i — 1 steps of transforming
edges and merging. First, consider a new vertex x that is created by transforming the i edge (u;, v;).
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Starting with x=¢(u;), if x is merged with another transformed vertex x’ having the same implicit label,
then all length k— 1 walks ending at x’ match this implicit label, and thus, the TH holds for x after merging.
Using a secondary induction step, we assume that the IH holds post-merging for all vertices between ¢(u;)
and x (not including x) on the path ¢((u;, v;)). Let xpr, be the vertex on ¢((u;, v;)) before x. Since all length
k—1 walks ending at xprey match xpey’s implicit label, the length k—1 walks obtained by disregarding the
vertex at the start of these walks, and adding the vertex x at the end, all match the implicit label of x. At the
same time, any vertices merged with x, by the IH also have the same implicit label and hence the walks
ending at them match the implicit label of x. Hence, the IH holds for x after merging it with all vertices
having the same implicit label.

After processing all vertices on ¢((u;, v;)), we next consider a previously created vertex x”” € V' not in
¢((w;, v;)). Consider a newly created walk W of length k—1 ending at x’ so that W contains vertices in
¢((u;, v;)). Since all length k—1 walks ending at a vertex z in ¢((u;, v;)) match the same implicit label,
when disregarding some number of vertices at the start of a walk that ends at z and appending new vertices,
the resulting walk W matches the implicit label for x/, and the IH continues to hold for x”" as well. [

The correctness of the reduction remains to be shown. Lemmas 2—4 establish useful structural properties
of D', Lemma 5 proves that the existence of a Hamiltonian cycle in D implies an approximate matching in
D', and Lemmas 6-9 demonstrate the converse.

Lemma 2. Any walk between two marked vertices ¢(u) and ¢(v) containing no additional marked
vertices has length 4W. Hence, we can conclude any such walk is a path.

This is proven using induction on the number of edges transformed. It is shown that for every vertex, a
key property regarding the distances to its closest marked vertices continues to hold after vertices on any
newly created path are merged.

Proof. We first define forward distance and backward distance. Let x, y € V’. The forward distance
from x to y is defined as the minimum number of edges on any path from x to y (the usual distance in a
directed graph). The backward distance from x to y is defined as the minimum number of edges on any path
from y to x. We say a marked vertex ¢(u) is backward adjacent to x if there exists a walk from ¢(u) to x not
containing any other marked vertices, and ¢(v) is forward adjacent to x if there exists a walk from x to ¢(v)
not containing any other marked vertices.

We use induction on the number of edges transformed. Our IH will be that the length of all walks that
end at and contain only two marked vertices is 4W and that a vertex x created from an edge transformation
having an implicit label of the form:

1. enc(L(u"))[], wis" enc(L(u')# ', 1 < j < W, has backward distance j—1 from all its backward
adjacent marked vertices', and forward distance 4W—j+1 from all its forward adjacent marked
vertices;

2. ¢ enc(L(u)#Y enc(L(")))[1, jl, 0 < j < W, has backward distance W +; from all its backward
adjacent marked vertices, and forward distance 3W —j from all its forward adjacent marked vertices;

3. enc(L'))[j, WI#" enc(L(V))$ ', 1<j< W, has backward distance 2W+j—1 from all its
backward adjacent marked vertices, and forward distance 2W —j+1 from all its forward adjacent
marked verticesi;

4. #% I enc(L(v)))$" enc(L(V))[1, Jjl, 0 <j < W, has backward distance 3W +; from all its backward
adjacent marked vertices, and forward distance W —j from all its forward adjacent marked vertices.

The base case, i =1, is satisfied since there exists only one such path and all stated properties hold. Now,
for i > 1, let (u;, v;) be the i™ edge transformed. We assume that the TH holds for all vertices and walks
created in the first i — 1 edge transformations. First, observe that for any walk ending at, and containing only
two previously created marked vertices, for all vertices on this walk the distances from their forward
adjacent marked vertices and backward adjacent marked vertices will not be altered unless one of the
vertices on this walk is merged with a vertex on ¢((u;, v;)).

Td)(u’ ) is x’s only backward adjacent marked vertex, but this is unnecessary for the IH.
id)(v’) is x’s only forward adjacent marked vertex, but this is unnecessary for the IH.
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Also, all the stated properties in the IH also hold for ¢((u;, v;)) before merging any vertices. Now, let y be
a vertex on ¢((u;, v;)). Starting with y= ¢(u;), and continuing from ¢(u;) to ¢(v;), we merge y with existing
vertices when their implicit labels match. Because the stated distance properties hold for x and y before
merging, they continue to hold for the vertex created from merging x and y as well. Moreover, for vertices
on any walk containing this now merged vertex the distances from their forward adjacent and backward
adjacent marked vertices are unaltered. Because these distances are unaltered by merging, the IH continues
to hold for all vertices. ]

Lemma 3. For (uy, vi), (uz, v2) € E, unless u;=uy or vi=vy, ¢((u1, v1)) and ¢p((ua, v2)) share no
vertices.

Proof. In the case where {u;, vi} N {up, v2} = @ (Fig. 6, top), every implicit vertex label in
¢((u1, vy)) contains enc(L(u;)) or enc(L(vy)) (or both) and contains neither enc(L(u;)) nor enc(L(vs)).
Similarly, every implicit vertex label in ¢((u2, v2)) contains enc(L(u,)) or enc(L(v;)) (or both) and contains
neither enc(L(u;)) nor enc(L(vy)). This implies that none of the implicit labels match between the two paths;
thus, no vertices are merged.

In the case where v =u, and u; # v, (Fig. 6, bottom), the implicit labels of vertices ¢((uy, v;)) not
containing enc(L(u;)) have # symbols in different positions than implicit labels of vertices in ¢((u2, v2))
not containing enc(L(v;)). Also, since vy # v,, the implicit labels of vertices ¢((u1, v{)) not containing
enc(L(u;)) cannot match the implicit labels of vertices in ¢((u;, v2)) containing enc(L(v;)). However,
vertices in ¢((u;, v1)) with implicit labels containing enc(L(u;)) have # symbols in different positions than
implicit labels of vertices in ¢((uz, v2)) not containing enc(L(uy)), and, since u; # u,, cannot match the
implicit labels of vertices in ¢((uz, v2)) containing enc(L(u5)).

B(v1) é(v2)
A
enc(L(v4)) $W enc(L(v4)) * 7 enciLive) $W enclL(va)
#W enc(L(v,) 8V #V enc(L(vp) W
enc(L(up) MencLvi) /" enc(L(ug) #Venc(L(va))

W w
$" enc(L(uq)) # y $W enc(L(up)) #V

enc(L(u,)) $"enc(L(u,)) /
enc(L(uy)) $Wenc(L(up))

ﬁf’(ul)/ b(uz)

¢(v1) = d(uz)
enc(L(vy)) $" enc(L(v4)) A
X
#MencLv) W . §Wenc(L(u,) #WV
enc(L(uq)) #Venc(L(v1)) 2
P enc(L(up)) #Venc(L(v,))
gW enc(L(u4)) #W
#W enc(L(v,) $W
enc(L(u,)) $Venc(L(uy)) !
dbui) v enc(Livy) $" enc(L(vp))
¢(v2

FIG. 6. Examples where paths between marked vertex cannot share any vertex: (Top) The case where {u;, v;} N
{uz, v} =©. (Bottom) The case where v = up and u; # ;.
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FIG.7. In the proof of Lemma 4, we consider whether the path ¢((¢;, v;)) being added could potentially cause a path
between ¢(u) and ¢(v). The white circles connected by the thin dashed curve represent merged vertices.

The case u; =v, and u; # v, is symmetric and the case u; = v, and v; =u, cannot happen since, by the use
of our gadget in Figure 1, D cannot contain the edges (u;, vi) and (vy, up). O

Lemma 4. There exists a path from a marked vertex ¢p(u) € V' to a marked vertex ¢(v) € V' con-
taining no other marked vertices iff (u, v) € E.

Proof. Tt is clear from construction that if there is an edge (u, v) € E, then such a walk is in D'.

In the other direction, suppose for the sake of contradiction that there exists such a walk starting at ¢ (u)
and ending at ¢(v) with no other marked vertices between ¢(u) and ¢(v) on the walk, and (4, v) ¢ E. Let
the first such walk be created when transforming the i edge (1;, v;). The only way such a walk could exists
is if some vertex in ¢((u;, v;)) is merged with a vertex on a walk ¢((u, V")) for some V' # v, and some
vertex in ¢((u;, v;)) merged with a vertex in a walk ¢((«/, v)) for some ' # u. This is since, before
creating ¢((u;, v;)) all walks starting at ¢(u) encountered some other marked vertex, ¢(v'), before ¢p(v).
Similarly, there existed some set of marked vertices not including ¢(u) such that every walk containing a
marked vertex and ending at ¢(v) must include at least one vertex in this set, ¢p(u’). See Figure 7. We
consider all possible cases:

e u=u; and v/ =v;: This contradicts the assumption that (u;, v;) is transformed on the i step.

e u=u; and v' # v; (Fig. 8): By Lemma 3, since u;=u # ', ¢$((u;, v;)) and ¢((«/, v)) can only share a
vertex if v;=v. However, this implies the edge (u;, v;)=(u,v) € E, a contradiction.

* u# u; and V' # v;: We can directly use Lemma 3 to say no such merged vertices exists between
$((u,v")) and d((u;, v;)).

e u# u; and Vv =v; (Fig. 9): By Lemma 3, if u; # /, then ¢((u;, v;)) and ¢((«', v)) can only share a
vertex v=v;. However, this would imply v=1/, a contradiction.

The more interesting case is if u;=u’ (Fig. 10). Any vertex y having an implicit label containing
enc(L(u1')) and occurring in ¢((u;, v;)) and ¢((v', v)) occurs before (has smaller backward distance to
¢(u)) any vertex with implicit label containing enc(L(v")). At the same time, any vertex x occurring in
¢((u,v')) and ¢((u;, v;)) must have an implicit label containing enc(L(V')) because u # u;. Since the

..... Q---=rm=mmmm== > B(v;)
_______ o) o
$lu) = ¢loa) "‘ #) 9() -----;,-,-.-'5-» 6(v)
- é()

FIG. 8. In the proof of Lemma 4, the case where u = u; and v/ # v;.
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FIG. 9. In the proof of Lemma 4, the case where u # u;, v/ = v;, and u; # u'.

vertex x occurs later in ¢((u;, v;)) than any shared vertex y in ¢((u;, v;)) and ¢((i', v)), the only way any
vertices in ¢((u;, v;)) are in a walk from ¢(u) to ¢(v) not containing any other marked vertices is if
there is walk from x to y not containing marked vertices; however, the cycle this creates contradicts
Lemma 2. O

Lemma 5. If D has a Hamiltonian cycle, then P can be matched in D' with at most 6 substitutions to
vertex labels of D'.

Proof. Let v;, ..., v; be a Hamiltonian cycle in D and suppose without loss of generality that v;, is
assigned 0 in the first step of our reduction. To obtain a walk in D', follow the cycle in D’ that traverses the
marked vertices ¢(v;,), ¢(vi,), d(vi,), ..., ¢(v;,), ¢(v;) in that order. By Lemma 4, each edge tra-
versed in D corresponds to a path in D’. While traversing these paths, modify the vertex labels in D' on
subpaths matching bin(i), 1 < i < n to match P. No conflicting label substitutions will be necessary. To
see this, consider the edges (u;, vi), (42, v2) € E used in the Hamiltonian cycle in D. We will never have
uy=u; or vi=v,. Hence, by Lemma 3, the sets of vertices on the paths ¢((u1, vi)) and ¢((uz, v7)) are
disjoint. At most 2¢(n— 1) substitutions are required overall. O

Lemma 6. If P can be matched in D' with at most 0 substitutions to vertex labels of D', then all $’s in P
are matched with non-substituted $’s in D' and all #’s in P are matched with non-substituted #’s in D'.
Consequently, we can assume that the only substitutions are to the vertex labels corresponding to bin(i)’s
within enc(i)’s.

To prove this, we establish the existence of a long non-branching path for every marked vertex that can
be traversed at most once when matching P. This, combined with maximal paths of, $, #, and 0/1-symbols,
all being of length W, makes it so that “‘shifting” P to match a portion of D forces the shift to occur
throughout the walk traversed while matching P. Utilizing the large Hamming distance between shifted
instances of two encodings, we can then show that not matching all non-0/1 symbols requires more than ¢
substitutions.

(w;) = $(u)
RS S W SR
v
Pu) besomnrnzzzennnanns > g() W) =) () - TTrmaeans > $(v)
‘\’ ¢() (?5() -

FIG. 10. In the proof of Lemma 4, the case where u # u;, vV = v;, and u; = u'.
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Proof. We first make the following observations: pre-substitution of any of the vertex labels in D':

1. For all vertices u € V, there is exactly one path in D’ that matches
enc(L(u)#" (0*1)*

and all vertices on this path have in-degree and out-degree one. In fact, the only vertices with in-degree
greater than one having implicit labels

enc(La)[i, WI#" enc(L()$ ",

where W—/¢ < i < W+1 (these vertices have vertex label $). And the vertices with out-degree greater
than one having implicit labels of the form

$" " enc(Lu)#" enc(LM)[1, il,

where W—/¢ < i < W (the last £ symbols in #" enc(L(v)). This path contains the marked vertex ¢(u).

Furthermore, all marked vertices are included on exactly one such path.

2. Every maximal walk containing only $ or # symbols is of length W, and the distance from the end of
any maximal walk consisting of only $ symbols (or # symbols) to the start of a maximal walk
consisting of only # (or $ symbols respectively) is W. This follows from the construction of D': every
vertex added in the construction has an implicit label where all maximal substrings consisting of non-
$ or non-# are of length W, and maximal substrings consisting of $ or # are of length W.

To see the ““local” number of substitutions caused by matching a # /$-symbol in D’ to a 0/1 symbol in
P, suppose the matching of enc(L(x)) in P is ‘“‘shifted left” by 1 < s < W so that the first s symbols of
some enc(L(«)) in P are matched against the last s symbols in some walk of $/#-symbols in D'. These last s
symbols require s substitutions. In addition, assuming s < 2/, due to the prefix (0%1)*, at least 2¢—1
substitutions that do not involve a # or $ symbol are needed as well.

We now look at the number of substitutions needed on a ‘‘global’” level due to shift of size
s < 2¢. From Lemma 2, every walk of length 4W contains a marked vertex. Hence, while matching
P’ at least L|P'|/4W] = 4Wn/4W = n times, a marked vertex is visited. Because every substring of
P’ = P[1,|P|—4W] of length 3W — ¢ is distinct, every path described in Observation 1 is traversed at most
once while matching P’. Since each marked vertex is on a unique path that can be traversed at most once
and we traverse at least n such paths, we traverse n distinct paths of the form described in Observation 1.
We can now use Observation 2 to infer that the substitutions needed to match the shifted patterns in P’ must
be repeated n times. Hence, to match P, the total number of substitutions involving $/# symbols is at least
sn. When s < 24, the total number of substitutions is at least

(s+20—Dn > 2n-1) = 0.

If 2¢ < s < W, then 2/ substitutions to match the substring (0”1)25 in P may not be needed, but the total
number of substitutions required is still greater than ¢ since sn > 2¢n > J. A symmetric argument can be
used for when the matching of P to D' is ““shifted right”” by s so that the last s symbols in enc(L(x)) in P are
matched against the first s symbols in some walk of $/#-symbols in D'.

For W < s < 4W, it still holds that all paths described in Observation 1 are traversed exactly once.
Combined with Observation 2, it can be seen that the substitution cost incurred when making a path of
length W originally matching #" match a substring of P without # is incurred at least n times. This results
in the total number of substitutions required being at least nW > 9. O

Post-substitution to vertex labels, we will refer to a vertex as newly marked if there exists a walk ending
at it that matches a string of the form

enc(L(u)$" enc(L(x))

for some u € V, where no such walk existed pre-substitution. Note that this definition does not require all
length k—1 walks ending at such a vertex to match the same string.
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Lemma 7. If P can be matched in D' with at most 6 substitutions to vertex labels of D', then no newly
marked vertices are created due to vertex substitutions.

Proof. Pre-substitution, only marked vertices have implicit labels of the form S1$WS2 where S
and S, contain no $ symbols. Hence, the only way that a vertex could have a walk ending at it that
matches a pattern of the form § 1$Ys, post-substitution is if either it was originally a marked vertex, or
some non-0/1-symbols were substituted in D’. However, by Lemma 6, the latter case cannot happen, and
only originally marked vertices have walks ending at them matching strings of the form 513", post-
substitution. O

Lemma 8. If P can be matched in D' with at most 6 substitutions to vertex labels of D', then each
marked vertex in D' is visited exactly once, except for an marked vertex at the end of a path matching
enc(O)$W enc(0) that is visited twice.

Proof. First, we show that all marked vertices, except the one with implicit label enc(0)$W enc(0), are
visited at most once. Pre-substitution, a marked vertex with implicit label enc(i)$W enc(i) is at the end of a
unique, branchless path of length W matching enc(i). By Lemma 6, the only substitutions to this path made
while matching P are substitutions making it match enc(i’), i’ # i. If this path were modified to match
enc(i’), i’ > 0, then the only way the marked vertex could be visited twice while matching P is if after
traversing the path, another path matching $" is taken back to the start of this enc(i’) path. However, any
edges leaving this marked vertex are labeled with #, making this impossible. By similar reasoning, the path
matching enc(0) ending at a marked vertex is visited at most twice.

We next show that each marked vertex is visited at least once. Suppose for sake of contradiction that
some marked vertex is not visited. By Lemma 7, no additional marked vertices are created. Hence, a
marked vertex ending a path matching enc(i), i > 0 is visited at least twice, or a marked vertex ending a
path matching enc(0) is visited at least three times, a contradiction. ]

Lemma 9. If P can be matched in D' with at most 0 substitutions to vertex labels of D', then D has a
Hamiltonian cycle.

Proof. By Lemma 4, the paths between marked vertices traversed while matching with P correspond to
edges between vertices in D. Combined with marked vertices being visited exactly once from Lemma 8
(except the marked vertex ending a path matching enc(0)), the walk matched by P in D’ corresponds to a
Hamiltonian cycle through D beginning and ending at the vertex labeled 0. O

This completes the proof of Theorem 1. We next show that k = @(log? |V'|). First, recall that |V/| is the
number of vertices in the original graph, where we assumed |E| = O(|V|). At most 4W|E| = O(k|V])
vertices are created in the reduction. Also, the proof of Lemma 6 establishes that there is a unique set of at
least ®(k) vertices for every marked vertex, each one corresponding to a vertex in the original graph.
Combining, we have that |V’| = @(k|V|). By construction, k = @(log? |V|), and since |V'| = O(k|V|), we
have k = @(log? |V'|) as well.

3. HARDNESS FOR PROBLEM 2 ON THE DE BRUILJN GRAPHS
3.1. Reduction

The OV problem is defined as follows: given two sets of binary vectors A,B C {0, 1}d, where
|A| = |B| = N, determine whether there exist vectors a € A and b € B such that their inner product is zero.
Conditioned on SETH, a standard reduction shows that this cannot be solved in time d®VN2~¢ for any
constant £ > 0 (Williams, 2015).

Let the given instance of OV consists of A, B C {0, 1} where |A| = [B| = N = 2™ for some natu-
ral number m. This makes rlog (N + D] = log N + 1 easing computation later. We also assume that
d > log N. This is reasonable, as if d < log N, then |A| and |B| would contain either all vectors of length d
or repetitions.

We will next provide a formal description of the graph D our reduction creates from the set
A={a, a3, ..., ay} and the pattern P it creates from the set B = {by, by, ..., by}. The reader may
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FIG. 11. An illustration of the reduction from orthogonal vectors to Problem 2.

find Figure 11 helpful. The graph will consist of four sections. We name these according to their function in
the reduction: the Selection fan-in, the Selection section, the Post-Selection Merge section, and the Syn-
chronization loop.

We start with the Selection fan-in. Let 2¢ be the smallest power of 2 such that 2¢ > N+ 1. The Selection
fan-in consists of a complete binary tree with 2¢ leaves, where all paths are directed away from the root.
The root is labeled 0 and the children of every node are labeled O and 1, respectively.

The Selection section consists of N+ 1 paths. We first define the mappings f4 and fz from {0, 1} to
sequences of length four as f4(0)=1100, f4(1)=1111, f3(0)=0110, and f3(1) =0000. These mappings have
the property that dp(f4(0), f5(0) = du(fa(0), fz(1)) = du(fa(1), f5(0)) = 2 and du(fa(l), fp(1)) = 4,
where dy(x, y) is the Hamming distance between strings x and y. We make the ith path for 1 <i < N, apath
of 4(d+1) vertices with labels matching the string fa(a;[11)fa(ai[2]) .. .fa(a:[d])f41(0). We make that the
(N+ D™ path has 4(d + 1) vertices and matches the string f4 (O)de(l). Let s; denoted the start vertex of path
i. We arbitrarily choose N +1 leaves, [y, l5, ..., Iy+1, from the Selection fan-in and add the edges (/;, s;) for
1<i<N+1.

We define the implicit label size as k = |—10g (N + 1) + 4(d + 1) and ¢=k—1. To construct the Post-
Selection Merge section, we start with N + 1 length £ — 1 paths, each matching the string 2. For every path
in the Selection section, we add an edge from the last vertex in the path to one of the paths matching 2¢.
This is done so that every path matching 2¢ in the Post-Selection Merge section is connected to exactly one
path from the Selection section. Next, we merge two vertices if they have the same implicit label. This is
repeated until all vertices in the Post-Selection Merge section have a unique implicit label.

To construct the Synchronization loop, we create a directed cycle with £+ 1=k vertices. One of these is
labeled with the symbol 3, and the rest with the symbol 2. Edges from each ending vertex in the Post-
Selection Merge section to the vertex labeled 3 are then added. A final edge from the vertex labeled 3 to the
root of the binary tree in the Selection fan-in completes the graph, which we denote as D.

Lett = 5d + |_10g (N + DI To complete the reduction, we make the pattern

P = 3y eV Dl b (1B [2]) ... fa(bild])fs(1)
@13y 2 eV Dl b, [1f(ba[2) .. fa(bald])fs(1)

@23y 2 e W Dle b [ fa(bu(2]) - .. fu(buldD)fs(1)

and the maximum number of allowed substitutions & = N[ log (N + l)-| +2(d+ 1)+ 2d + H(N - 1).
We call substrings in P of the form f(b;[1])f5(bi[2]) ... fe(bi[d])fz(1) and paths in D matching
strings of the form fi(a;[11)fa(ai[2]) ... fa(@[dDfa(0) vector gadgets. Note that |E| = O(dN) and
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m = |P| = O(d*N). Hence, an algorithm for approximate matching running in time O(m|E|'"* + m'~¢|E|)
for some & > 0 would imply an algorithm for OV running in time d®VN2~¢. This implies that once the
correctness of the reduction has been established, Theorem 2 follows.

3.2. Proof of correctness

Lemma 10. The graph D is a de Bruijn graph.

Proof. For each of the four graph sections discussed above, we will prove for each vertex in that section
that Properties (i)—(iii) from the proof of Lemma 1 hold. That is, for every vertex v, the implicit label of v is
well defined, unique, and there are no additional edges that should have v as their head.

* Selection fan-in:

¢ (well defined) For any vertex v in the Selection fan-in, there are two paths of length k—1 leading to v
(one containing vertices labeled with 2s from the Post-Selection Merge section and one containing
vertices labeled with 2s from the Synchronization loop). Both match the same string 2¢3B, where
¢’ < ¢ and B is a binary string of length at most [ log N +11.

* (unique) The binary string B could only possibly occur again as a suffix the Selection section.
However, all implicit labels occurring in that section contain longer binary strings. Hence, the implicit
label occurs only once in D.

¢ (no missing inbound edges) Let u be any vertex such that (u, v) is in D. A vertex v in the Selection fan-
in has an implicit label of the form

Sa = 23By[1, ],

where ¢/ < ¢, 1 <i<[logN1 and 0 <i < N+1. This implies that u has the implicit label
BS = 2°3Bi[1, i—1].
Based on the limited number of implicit labels present in D, it must be that f=2, and there exists only
one such u. Hence, the edge (u, v) already exists.
¢ Selection section:
¢ (well defined) For a vertex v in the Selection section, there are two length k— 1 paths leading to v (one

with 2s from the Post-Selection Merge section and one with 2s from the Synchronization loop). Both
match a string of the form

2“3Bufa(al1Dfa(@l2]) ... fa@liDIL, Al

where 0 < /¢ < /fand 1 < h <4,
* (unique) If v has a path of length k—1 matching

2°3Bifa(@l1Dfa(@l2]) ... (falaliDIL, i,

then it must be in the Selection section. The substring By following the prefix 2¢3 is distinct, hence this
implicit label only occurs once in the Selection section.
* (no missing inbound edges) Taking u and v as above, if the vertex v has an implicit label of the form

Sou=2"3Byfa(a;(1Dfa(@l2]) - .. falaliDIL, h]
1 < h <4, this implies that the any potential # has an implicit label

BS=PB2"3Bs[1, h— 1@ fa(@l2]) ... fa(aliDIl, h—1]

or
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BS=p2"3B;[1, h— 1fa(@ 1 Dfa(@l2]) .. falailj—1D).

In either case, f=2, and the edge (u, v) already exists.
If the vertex v has an implicit label of the form

Sou=Byfa(ai[1Dfa@i(2]) ... fa(aild]),
then any potential vertex u has an implicit label

BS=PBifaail1Dfa(ail2]) ... falaildDI1, 3],

where § must be 3, and the edge (u, v) already exists.

¢ Post-Selection Merge section:

¢ (well defined) For a vertex v in this section, all length k—1 paths ending at v match a string of the form
B2Y, where B is a binary string. By construction, the paths ending at v match the same string (they
were merged based on this condition).

* (unique) Again by construction, if another vertex V' in the Post-Selection merging section has a length
k—1 path ending at it that matches v’s implicit label v will be merged with v. At the same time,
vertices in the other sections of D will not have an implicit label of the form B2°.

* (no missing inbound edges) Taking u# and v as above, vertex v has an implicit label of the form
Su=B2", ' > 1, this implies that any potential vertex u has an implicit label fS=pB2"~'. Such a
vertex u is already in the Post-Selection Merge section or is a vertex at the end of a path in the
Selection section (if #/ =1). Since appending a 2 and removing 8 will make the implicit label of u equal
to the implicit label of v, the vertex at the head of the edge with tail # must have been merged with v.
Hence, the edge (u, v) already exists.

¢ Synchronization loop:

¢ (well defined) There are two length k— 1 paths to a vertex v in the Synchronization loop. Both match
the string 2¢32%", where ¢/ + ¢ =k—1=/, and ¢ depends on v’s position within the Synchronization
loop.

¢ (unique) An implicit label for a vertex in any other section contains a symbol that is not a 2 or a 3.
Within the Synchronization loop, each implicit label clearly occurs exactly once.

¢ (no missing inbound edges) Taking u# and v as above, vertex v has an implicit label of the form
So=2%32". This implies that any potential vertex u has an implicit label fS= 2321 If /' < ¢, it
must be that =2 and the edge (u,v) already exists. If instead ¢ =/, then for both fS=023 and
BS=12!3, there already exists an edge (i, v) as well. O

Lemma 11. In an optimal solution, 3s in P are matched with 3s in D.

Proof. Suppose that some 3 in P is not matched with 3 in D or with the final vertex in a path in the
Selection section. Since any walk between 3s in D has a length that is a multiple of k and 3 in P are k—1
symbols apart, all 3s must then not be matched with 3 in D. This requires at least ¢N substitutions within P.
However, when 3s in P are matched with 3s in D, there exists a solution requiring at most
4d(N + 1) + NI log (N + Dl Specifically, this is obtained by matching each vector gadget in P,
Fa(bi[11) ... fz(bild]) to the N+ 1™ path in the Selection section. Since

4
t=5d+[logN + )] > 4d + ﬁd + [ log(N + D]

for d=0(N) and N large enough, we can assume that tN > 4d(N+1) +N log (N + 1)—|. Hence, all 3sin P are
matched with the 3 in D or with some final vertex in a path in the Selection section.

Next, suppose some 3 in P is matched with the last vertex in a path in the Selection section. We consider
the first such occurrence. In the case where this occurrence of 3 in P is followed in P by a substring

2 oeW+DTe 1)) ... faladdlfs(1),

then a cost of at least 8(d+ 1) is incurred, first at least 4(d+ 1) from matching the substring 23 in P to a
path through the Selection fan-in and the Selection section, then an additional 4(d+ 1) from matching a
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vector gadget in P to a path of 2s in the Post-Selection Merge section. We could have instead matched the
Synchronization loop twice with a cost of only 4(d+ 1) substitutions, and started and ended at the same
vertex while still matching

2030 e WD le (1)) . fa(aldD)fs(1).

Hence, matching 3 in P with the last vertex in a path in the Selection section is suboptimal. In the case
where the occurrence of 3 in P is followed in P by 2¢3, then the cost incurred is only 4(d +1). However, we
could have instead matched 2°32¢3 with the Synchronization loop twice with a substitution cost of 0, and
again started and ended at the same vertex. Hence, matching 3 in P with the last vertex in a path in the
Selection section is again suboptimal. ]

Lemma 12. In an optimal solution, vector gadgets in P are matched with vector gadgets in D.

Proof. Suppose otherwise. By Lemma 11, this can only occur if some vector gadget in P is matched
against the Synchronization loop. This requires at least 4(d + 1) substitutions. We can instead match the
|_10g (N+1)]2s preceding the vector gadget in P with the Selection fan-in and the vector gadget in P with
the (N+1)™" path in the Selection section. Due to dgy(f4(0), f5(0)) = du(f1(0), fp(1)) = 2 and
d(fa(1), fg(1))=4, this requires rlog (N+ 1)—| + 2d + 4 substitutions in P. Since, log N < d < 2d we have
logN < 2d — 1. Using that N is some power of 2,

|_log(N+1)-|+2d+4:logN+1+2d+4<4d+4.

Hence, the cost decreases by matching the vector gadget in P to a vector gadget in D instead. U

Lemma 13. If there exists a vector a € A and b € B such that a - b=0, then P can be matched to D with
at most O substitutions.

Proof. Match the vector gadget for b in P with the vector gadget for a in the Selection section of D. This
costs 2(d+ 1) substitutions. Match the remaining N — 1 vector gadgets in P with the (N +1)" path in the
Selection section, requiring (2d +4) (N — 1) substitutions in total. The total number of substitutions of 2s in
P to match the Selection fan-in is N log (N + DI. Adding these, the total number of substitutions is
exactly 0. The Synchronization loop can be used for matching all additional symbols in P without any
further substitutions. ]

Lemma 14. If P can be matched in D with at most § substitutions, then there exist vectors a € A and
b € B such a-b=0.

Proof. By Lemma 12, we can assume vector gadgets in P are only matched against vector gadgets in D.
Suppose that there does not exist a pair of OV a € A and b € B. Then, whichever vector gadget in D we
choose to match a vector gadget in P to, matching the vector gadget requires at least 2d +4 substitutions.
Hence, the total cost is at least (2d +4)N +N| log (N + NEX proving the contrapositive. ]

4. DISCUSSION

We leave open several interesting problems. An NP-completeness proof for Problem 1 on the de Bruijn
graphs when k= ((log n) and the alphabet size is constant is still needed. Additionally, we need to extend
these hardness results to when substitutions are allowed in both the graph and the pattern, and when
insertions and deletions in some form are allowed in the graph and (or) the pattern. It seems unlikely that
adding more types of edit operations would make the problems computationally easier, and we conjecture
these variants are NP-complete on the de Bruijn graphs as well. It also needs to be determined whether
Problem 1 is NP-complete on the de Bruijn graphs with binary alphabets, or whether the SETH-based
hardness results hold for Problem 2 on binary alphabets.

A practical question is whether these problems are hard for small ¢ values on the de Bruijn graphs
[the problem for general graphs was proven to W[2] hard in terms of J in the study by Dondi et al (2020)].
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In applications, the allowed error thresholds are quite small. Clearly, the problems are slice-wise-
polynomial with respect to J, that is, for a constant 9, it is solvable in polynomial time via brute force, but
are they fixed-parameter-tractable in 6? The reduction presented in this study as well as the reductions
presented in the studies by Amir et al (2000) and Jain et al (2019) are based on the Hamiltonian cycle
problem, where a large § value is used. This makes the existence of such a fixed-parameter-tractable
algorithm a distinct possibility.
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