JOURNAL OF COMPUTATIONAL BIOLOGY Volume 29, Number 12, 2022 © Mary Ann Liebert, Inc.

Pp. 1377-1396

DOI: 10.1089/cmb.2022.0411

Open camera or QR reader and scan code to access this article and other resources online.

On the Hardness of Sequence Alignment on De Bruijn Graphs

DANIEL GIBNEY, SHARMA V. THANKACHAN, and SRINIVAS ALURU1

ABSTRACT

The problem of aligning a sequence to a walk in a labeled graph is of fundamental importance to Computational Biology. For an arbitrary graph G = (V, E) and a pattern P of length m, a lower bound based on the Strong Exponential Time Hypothesis implies that an algorithm for finding a walk in G exactly matching P significantly faster than $\mathcal{O}(|E|m)$ time is unlikely. However, for many special graphs, such as de Bruijn graphs, the problem can be solved in linear time. For approximate matching, the picture is more complex. When edits (substitutions, insertions, and deletions) are only allowed to the pattern, or when the graph is acyclic, the problem is solvable in $\mathcal{O}(|E|m)$ time. When edits are allowed to arbitrary cyclic graphs, the problem becomes NP-complete, even on binary alphabets. Moreover, NPcompleteness continues to hold even when edits are restricted to only substitutions. Despite the popularity of the de Bruijn graphs in Computational Biology, the complexity of approximate pattern matching on the de Bruijn graphs remained unknown. We investigate this problem and show that the properties that make the de Bruijn graphs amenable to efficient exact pattern matching do not extend to approximate matching, even when restricted to the substitutions only case with alphabet size four. Specifically, we prove that determining the existence of a matching walk in a de Bruijn graph is NP-complete when substitutions are allowed to the graph. We also demonstrate that an algorithm significantly faster than $\mathcal{O}(|E|m)$ is unlikely for the de Bruijn graphs in the case where substitutions are only allowed to the pattern. This stands in contrast to pattern-to-text matching where exact matching is solvable in linear time, such as on the de Bruijn graphs, but approximate matching under substitutions is solvable in subquadratic $O(n\sqrt{m})$ time, where n is the text's length.

Keywords: approximate pattern matching, computational complexity, de Bruijn graphs, sequence alignment.

¹School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA. ²Department of Computer Science, North Carolina State University, Raleigh, North Carolina, USA. An earlier draft of this manuscript was posted as a preprint at arXiv (https://arxiv.org/pdf/2201.12454.pdf).

1. INTRODUCTION

E Bruin Graphs Play an Essential role in Computational Biology. Their application to de novo assembly spans back to the 1980s (Pevzner, 1989) and has been the topic of extensive research since then (Chikhi et al, 2015; Chikhi and Rizk, 2013; Georganas et al, 2014; Lin et al, 2016; Peng et al, 2010, 2013; Ren et al, 2012; Zerbino and Birney, 2008). More recently, de Bruijn graphs have been applied in metagenomics and in the representation of large collections of genomes (Flick et al, 2017; Kamal et al, 2017; Li et al, 2015; Pell et al, 2012; Ye and Tang, 2016) and for solving other problems such as read error correction (Limasset et al, 2020; Morisse et al, 2018) and compression (Benoit et al, 2015; Holley et al, 2018).

This popularity of the de Bruijn graphs for the modeling of sequencing data makes having efficient algorithms to find *walks* in a de Bruijn graph matching (or approximately matching) a given query pattern important to numerous applications. For example, in metagenomics, such an algorithm can be used to quickly detect the presence of a particular species within genetic material obtained from an environmental sample. Or, in the case of read error correction, such an algorithm can be used to efficiently find the best mapping of reads onto a "cleaned" reference de Bruijn graph with low-frequency k-mers removed (Limasset et al, 2020). To facilitate such tasks, several algorithms and software tools that perform pattern matching on the de Bruijn (and sometimes general) graphs have been developed (Almodaresi et al, 2018; Heydari et al, 2018; Holley and Peterlongo, 2012; Kavya et al, 2019; Limasset et al, 2016; Liu et al, 2016; Navarro, 2000; Rautiainen and Marschall, 2017). These are often based on seed-and-extend heuristics.

With respect to theory, there has been a recent surge of interest in pattern matching on labeled graphs. This has led to many new fascinating algorithmic and computational complexity results. However, even with this improved understanding of the theory of pattern matching on labeled graphs, our knowledge is still lacking in many respects concerning specific, yet extremely relevant, classes of graphs, such as the de Bruijn graphs. An overview of the current state of knowledge is provided in Table 1.

For general graphs, we can consider exact and approximate matching. For exact matching, conditional lower bounds based on the Strong Exponential Time Hypothesis (SETH), and other conjectures in circuit complexity, indicate that an $\mathcal{O}(|E|m^{1-\varepsilon}+|E|^{1-\varepsilon}m)$ time algorithm with any constant $\varepsilon>0$, for a graph with |E| edges and a pattern of length m, is highly unlikely (as is the ability to shave more than a constant number of logarithmic factors from the $\mathcal{O}(|E|m)$ time complexity) (Equi et al, 2019; Gibney et al, 2021). These results hold for even very restricted types of graphs, for example, directed acyclic graphs (DAGs) with maximum total degree three and binary alphabets. For approximate matching, when edits are only allowed in the pattern, the problem is solvable in $\mathcal{O}(|E|m)$ time (Amir et al, 2000). If edits are also permitted in the graph, but the graph is a DAG, matching can be done in the same time complexity (Kavya et al, 2019).

However, the problem becomes NP-complete when edits are allowed in arbitrary cyclic graphs. This was originally proven in Amir et al (2000) for large alphabets and more recently proven for binary alphabets in Jain et al (2019). These results hold even when edits are restricted to only substitutions. The distinction between modifications to the graph and modifications to the pattern is important as these two problems are

TABLE 1. THE COMPUTATIONAL COMPLEXITY OF PATTERN MATCHING ON LABELED GRAPHS

	Exact matching	Approximate matching
Easy	Solvable in linear time	Solvable in $\mathcal{O}(E m)$ time
	Wheeler Graphs (Gagie et al, 2017) (e.g., de Bruijn graphs, NFAs for multiple strings)	DAGs: Substitutions/edits to graph (Kavya et al, 2019)
		General graphs: Substitutions/edits to pattern (Amir et al, 2000)
		de Bruijn graphs: Substitutions to pattern No strongly sub- $\mathcal{O}(E m)$ algorithm (this study)
Hard	No strongly sub- $\mathcal{O}(E m)$ algorithm	NP-complete
	General graphs (Equi et al, 2019; Gibney et al, 2021) (including DAGs with total degree \leq 3)	General graphs: Substitutions/edits to graph (Amir et al, 2000; Jain et al, 2019) de Bruijn Graphs: Substitutions to vertex labels (this study)

DAGs, directed acyclic graphs; NFA, nondeterministic finite automation.

fundamentally different. When changes are made to cyclic graphs, the same modification can be encountered multiple times while matching a pattern with no additional cost [see section 3.1 in Jain et al (2019) for a detailed discussion]. Furthermore, algorithmic solutions appearing in the studies by Kavya et al (2019), Navarro (2000), and Rautiainen and Marschall (2017) are for the case where modifications are performed only to the pattern.

The de Bruijn graphs are an interesting class of graphs from a theoretical perspective. They fall within a more general class of graphs that allow for the extension of the Burrows–Wheeler Transformation-based techniques that enable efficient pattern matching. Sufficient conditions for doing this are captured by the definition of Wheeler graphs, introduced in the study of Gagie et al (2017) and further studied in Alanko et al (2020, 2019), Egidi et al (2020), Gagie (2021), and Gibney and Thankachan (2019). The de Bruijn graphs are themselves Wheeler graphs, which in turn implies that exact pattern matching is solvable in linear time on a de Bruijn graph. However, the complexity of approximate matching in the de Bruijn graphs when permitting modifications to the graph or modifications to the pattern remained open (Jain et al, 2019).

We make two important contributions, which are indicated in Table 1. First, we prove that for the de Bruijn graphs, despite exact matching being solvable in linear time, the approximate matching problem with vertex label substitutions is NP-complete. Second, we prove that a strongly subquadratic time algorithm for the approximate pattern matching problem on the de Bruijn graphs, where substitutions are only allowed to the pattern, is not possible under the SETH. Note that, in contrast, pattern-to-text matching (under substitutions) can be solved in subquadratic $\tilde{\mathcal{O}}(n\sqrt{m})$ time, where n is the text's length (Abrahamson, 1987). This result establishes the optimality of the known quadratic time algorithms up to polynomial factors. To the best of our knowledge, these are the first such results for any type of Wheeler graph.

1.1. Technical preliminaries

- 1.1.1. Notation for edges. For a directed edge from a vertex u to a vertex v, we will use the notation (u, v). Additionally, we will refer to u as the *tail* of (u, v), and v as the *head* of (u, v).
- 1.1.2. Walks versus paths. A distinction must be made between the concept of a walk and a path in a graph. A walk is a sequence of vertices v_1, v_2, \ldots, v_t such that for each $i \in [1, t-1]$, $(v_i, v_{i+1}) \in E$. Vertices can be repeated in a walk. A path is a walk where vertices are not repeated. The length of a walk is defined as the number of edges in the walk, t-1, or equivalently one less than the number of vertices in the sequence (counted with multiplicity). This work will be concerning the existence of walks, not paths.
- 1.1.3. Induced subgraphs. An induced subgraph of a graph G = (V, E) consists of a subset of vertices $V' \subseteq V$, and all edges $(u, v) \in E$ such that $u, v \in V'$. This is in contrast to an arbitrary subgraph of G, where an edge can be omitted from the subgraph, even if both of its incident vertices are included.
- 1.1.4. De Bruijn graphs. An order-k full de Bruijn graph is a compact representation of all k-mers (strings of length k) from an alphabet Σ of size σ . It consists of σ^k vertices, each corresponding to a unique k-mer (which we call as its *implicit label*) in Σ^k . There is a directed edge from each vertex with implicit label $s_1 s_2 \ldots s_k \in \Sigma^k$ to the σ vertices with implicit labels $s_2 s_3 \ldots s_k \alpha, \alpha \in \Sigma$. We will work with induced subgraphs of the full de Bruijn graphs in this article. We assign to every vertex v a label $L(v) \in \Sigma$, such that the implicit label of v is $L(u_1) L(u_2) \ldots L(u_{k-1}) L(v)$, where $u_1, u_2, \ldots, u_{k-1}, v$ is any length k-1 walk ending at v. This is equivalent to the notion of a de Bruijn graph constructed from k-mers commonly used in Computational Biology.
- 1.1.5. Strings and matching. For a string S of length n indexed from 1 to n, we use S[i] to denote the i^{th} symbol in S. We use S[i,j] to denote the substring S[i] S[i+1] ... S[j]. If j < i, then we take S[i,j] as the empty string. As mentioned above, we will consider every vertex v as labeled with a single symbol $L(v) \in \Sigma$. A pattern P[1, m] matches a walk $v_1, v_2, ..., v_m$ iff $P[i] = L(v_i)$ for every $i \in [1, m]$. With these definitions in hand, we can formally define our first problem.

Problem 1 (Approximate matching with vertex label substitutions). Given a vertex labeled graph D = (V, E) with alphabet Σ of size σ , pattern P[1, m], and integer $\delta \geq 0$, determine if there exists a walk in D matching P after at most δ substitutions to the vertex labels.

Theorem 1. Problem 1 is NP-complete on the de Bruijn graphs with $\sigma = 4$.

Theorem 1 is proven in Section 2. Intuitively, our reduction transforms a general directed graph into a de Bruijn graph that maintains key topological properties related to the existence of walks. The distinct problem of approximately matching a pattern to a *path* in a de Bruijn graph was shown to be NP-complete in the study by Limasset et al (2016). As mentioned by the authors of that work, the techniques used there do not appear to be easily adaptable to the problem for walks. Our approach uses edge transformations more closely inspired by those used in the study by Kapun and Tsarev (2013) for proving hardness on the paired de Bruijn sound cycle problem.

Problem 2 (Approximate matching with substitutions to the pattern). Given a vertex labeled graph D = (V, E) with alphabet Σ of size σ , pattern P[1, m], and integer $\delta \geq 0$, determine if there exists a walk in D matching P after at most δ substitutions to the symbols in P.

For Problem 2, we provide a hardness result based on the SETH, which is frequently used for establishing conditional optimality of polynomial time algorithms (Abboud et al, 2018; Backurs and Indyk, 2016; Equi et al, 2019; Gibney, 2020; Gibney et al, 2021; Hoppenworth et al, 2020). We refer the reader to the study of Williams (2015) for the definition of the SETH and for the reduction to the orthogonal vectors (OV) problem, which is utilized to prove Theorem 2.

Theorem 2. Conditioned on the SETH, for all constants $\varepsilon > 0$, there does not exist an $\mathcal{O}(|E|m^{1-\varepsilon} + |E|^{1-\varepsilon}m)$ time algorithm for Problem 2 on the de Bruijn graphs with $\sigma = 4$.

Note that the order, k, of the de Bruijn graphs used in ours proofs are $\Theta(\log^2 |V|)$ for Theorem 1 and $\Theta(\log |V|)$ for Theorem 2.

2. HARDNESS OF PROBLEM 1 ON THE DE BRULIN GRAPHS

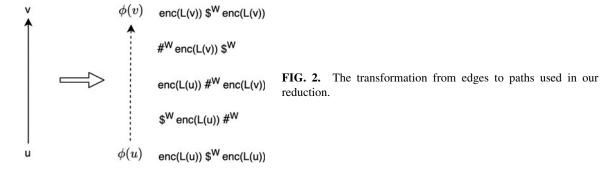
Our proof of NP-completeness uses a reduction from the Hamiltonian cycle problem on directed graphs, which is the problem of deciding if there exists a cycle through a directed graph that visits every vertex exactly once. The Hamiltonian cycle problem has been proven NP-complete, even when restricted to directed graphs where the number of edges is linear in the number of vertices (Plesník, 1979). To present our reduction, we introduce the concept of *merging* two vertices. To merge vertices u and v, we first create a new vertex v. We then take all edges with either u or v as their head and make v their new head. Next, we take all edges with either v or v as their tail and make v their new tail. This makes the edges v and v and v v v v or v v into self-loops for v. If identical self-loops are formed, we delete all but one of them. Finally, we delete the original vertices v and v.

2.1. Reduction

We start with an instance of the Hamiltonian cycle problem on a directed graph where the number of edges is linear in the number of vertices. We can assume that there are no self-loops or vertices with indegree or out-degree zero. To simplify the proof, we first eliminate any cycles of length 2 using the gadget in Figure 1. We denote the resulting graph as D = (V, E) and let n = |V|. We assign each vertex $v \in V$ a unique integer $L(v) \in [0, n-1]$. Let $\ell = \lceil \log n \rceil$, $\sin(i)$ be the standard binary encoding of i using ℓ bits and $\Sigma = \{\$, \#, 0, 1\}$. Define $\operatorname{enc}(i) = (0^{2\ell}1)^{2\ell}\operatorname{bin}(i)$, $W = |\operatorname{enc}(i)|$, and k = 3W.

We construct a new (de Bruijn) graph D' = (V', E') as follows: Initially, D' is the empty graph. For $i = 0, 1, \ldots, n - 1$, for each edge $(u, v) \in E$ where L(v) = i, create a new path whose concatenation of vertex labels is $\#^W \operatorname{enc}(i)\$^W \operatorname{enc}(i)$. The vertex u will correspond with a new vertex $\phi(u)$ at the start of this path, and the vertex v will correspond with a new vertex $\phi(v)$ at the end of this path. The vertex $\phi(v)$ has the implicit label $\operatorname{enc}(L(v))\$^W \operatorname{enc}(L(v))$. The vertex $\phi(u)$ is "temporarily assigned" the implicit label

FIG. 1. Gadget to remove cycles of length 2 from the initial input graph.



 $\operatorname{enc}(L(u))\W $\operatorname{enc}(L(u))$. See Figure 2. We call vertices with implicit labels of the form $\operatorname{enc}(L(\,\cdot\,\,))\W $\operatorname{enc}(L(\,\cdot\,\,))$ marked vertices. We use the notation $\phi((u,\,v))$ to denote the path created when applying this transformation to $(u,\,v)\in E$. After the path $\phi((u,\,v))$ is created, vertices in V' having the same implicit label are merged, and parallel edges are deleted (Figs. 3 and 4). See Figure 5 for a complete example. Finally, let $\delta=2\ell(n-1)$ and

$$P = \#^{W} \operatorname{enc}(0)\$^{W} \operatorname{enc}(0)\#^{W} \operatorname{enc}(1)\$^{W} \operatorname{enc}(1)\#^{W} \dots$$
$$\#^{W} \operatorname{enc}(n-1)\$^{W} \operatorname{enc}(n-1)\#^{W} \operatorname{enc}(0)\$^{W} \operatorname{enc}(0).$$

We will show that there exists a walk in D' matching P with at most δ vertex label substitutions iff D contains a Hamiltonian cycle.

2.1.1. Proof of correctness.

Lemma 1. The graph D' constructed as above is a de Bruijn graph.

Proof. There are three properties that must be proven: (i) Implicit labels are unique, meaning for every implicit label at most one vertex is assigned that label; (ii) There are no edges missing, that is, if the implicit label of $y \in V'$ is $S\alpha$ for some string S[1, k-1] and symbol $\alpha \in \Sigma$, and there exists a vertex $x \in V'$ with implicit label $\beta S[1, k-1]$ for some symbol $\beta \in \Sigma$, then $(x, y) \in E'$; (iii) Implicit labels are well defined, in that every walk of length k-1 ending at a vertex $x \in V'$ matches the same string (the implicit label of x).

Property (i) holds since after every edge transformation, vertices with the same implicit label are merged, making every implicit label occur at most once.

For Property (ii), consider the completed graph D' and an arbitrary vertex y on an arbitrary path $\phi((u, v))$. Regarding a possible edge $(x, y) \in E'$, we have the following cases:

• Case: the implicit label of y is

$$S\alpha = \text{enc}(L(u))\$^W \text{enc}(L(u)).$$

Then, any potential $x \in V'$ must have an implicit label

$$\beta S = \beta \operatorname{enc}(L(u))\$^{W} \operatorname{enc}(L(u))[1, W - 1].$$

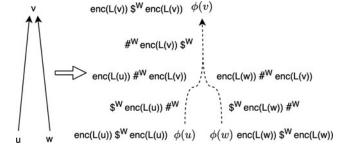
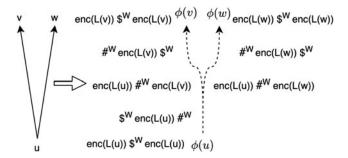


FIG. 3. Vertices with the same implicit label are merged while transforming D to D', causing edges with shared head vertex to become paths with multiple shared vertices.

FIG. 4. Vertices with the same implicit label are merged while transforming D to D', causing edges with shared tail vertex to become paths with multiple shared vertices.



However, the only implicit labels created that have a suffix of the form $\operatorname{enc}(L(u))\W $\operatorname{enc}(L(u))[1, W - i]$ have a prefix $\#^{W-i}$. This implies that $\beta = \#$, and the edge (x, y) already exists in E' (under the assumption that there are no vertices with in-degree zero in V).

• Case: the implicit label of y is

$$S\alpha = \operatorname{enc}(L(u))[i, W]\$^W \operatorname{enc}(L(u))\#^{i-1}$$

 $1 < i \le W + 1.*$ Then, any potential x must have an implicit label

$$\beta S = \beta \operatorname{enc}(L(u))[i, W]^{W} \operatorname{enc}(L(u))^{\#^{i-2}}.$$

Because the only implicit labels with the substring \S^W enc(L(u)) have a prefix consisting of some suffix of enc(L(u)), this implies $\beta = \text{enc}(L(u))[i-1]$, and (x, y) already exists in E'.

• Case: the implicit label of y is

$$S\alpha = \$^{W-i} \operatorname{enc}(L(u)) \#^{W} \operatorname{enc}(L(v))[1, i]$$

 $1 \le i \le W$. Then, any potential x must have an implicit label

$$\beta S = \beta \$^{W-i} \operatorname{enc}(L(u)) \#^{W} \operatorname{enc}(L(v))[1, i-1].$$

In the case i < W, $\beta = \$$ and the edge (x, y) already exists in E'. In the case where i = W, the only implicit label with a suffix of the form $\operatorname{enc}(L(u)) \#^W \operatorname{enc}(L(v))[1, W - 1]$ has a prefix \$, and the edge (x, y) already exists in E'.

• Case: the implicit label of y is

$$S\alpha = \operatorname{enc}(L(u))[i, W] \#^{W} \operatorname{enc}(L(v)) \$^{i-1}$$

 $1 < i \le W+1$. Then, any potential x must have an implicit label

$$\beta S = \beta \operatorname{enc}(L(u))[i, W] \#^{W} \operatorname{enc}(L(v)) \$^{i-2}$$

^{*}Recall $\operatorname{enc}(L(u))[W + 1, W]$ is the empty string.

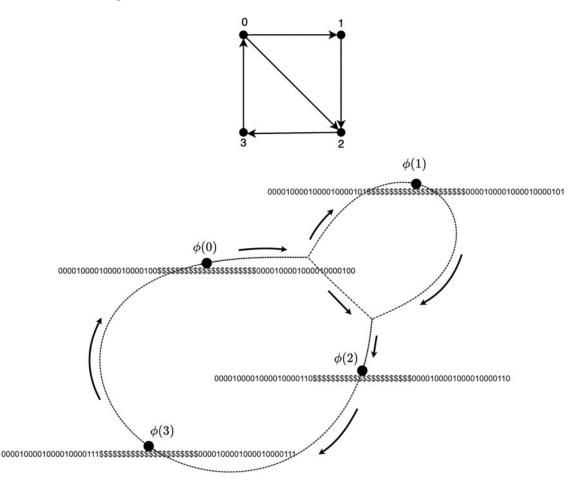


FIG. 5. (Top) A graph before the reduction is applied to it. (Bottom) The transformed graph. Implicit labels for marked vertices are shown, and the path directions are annotated by arrows beside each path.

Because the only implicit labels with the substring $\#^W \operatorname{enc}(L(v))$ have a prefix consisting of some suffix of $\operatorname{enc}(L(u'))$ where the edge (u', v) is in D, the edge (x, y) already exists in E'. This is an interesting case, as merges can happen, that is, $\beta \operatorname{enc}(L(u))[i, W] = \operatorname{enc}(L(u'))[i - 1, W]$, where $u' \neq u$.

• Case: the implicit label of y is

$$S\alpha = \#^{W-i} \operatorname{enc}(L(v))\$^W \operatorname{enc}(L(v))[1, i]$$

 $1 \le i \le W$. Then, any potential x must have an implicit label

$$\beta S = \beta \#^{W-i} \operatorname{enc}(L(v)) \$^W \operatorname{enc}(L(v)) [1, i-1].$$

For i < W, $\beta = \#$ and the edge (x, y) already exists in E'. For i = W, this is equivalent to the first case.

We prove Property (iii) that all walks of length k-1 ending at the same vertex match the same string, using induction on the number of edges transformed into paths. Our inductive hypothesis (IH) is that before an edge being replaced by a path, Property (iii) holds for every vertex added to V' thus far. Let i denote the number of edges transformed. For i=1, all vertices where there exists such a walk ending at them are on the newly created path, and implicit labels are well defined.

For i > 1, we assume that the IH holds for all vertices created in the previous i-1 steps of transforming edges and merging. First, consider a new vertex x that is created by transforming the ith edge (u_i, v_i) .

Starting with $x = \phi(u_i)$, if x is merged with another transformed vertex x' having the same implicit label, then all length k-1 walks ending at x' match this implicit label, and thus, the IH holds for x after merging. Using a secondary induction step, we assume that the IH holds post-merging for all vertices between $\phi(u_i)$ and x (not including x) on the path $\phi((u_i, v_i))$. Let x_{prev} be the vertex on $\phi((u_i, v_i))$ before x. Since all length k-1 walks ending at x_{prev} match x_{prev} 's implicit label, the length k-1 walks obtained by disregarding the vertex at the start of these walks, and adding the vertex x at the end, all match the implicit label of x. At the same time, any vertices merged with x, by the IH also have the same implicit label and hence the walks ending at them match the implicit label of x. Hence, the IH holds for x after merging it with all vertices having the same implicit label.

After processing all vertices on $\phi((u_i, v_i))$, we next consider a previously created vertex $x'' \in V'$ not in $\phi((u_i, v_i))$. Consider a newly created walk W of length k-1 ending at x'' so that W contains vertices in $\phi((u_i, v_i))$. Since all length k-1 walks ending at a vertex z in $\phi((u_i, v_i))$ match the same implicit label, when disregarding some number of vertices at the start of a walk that ends at z and appending new vertices, the resulting walk W matches the implicit label for x'', and the IH continues to hold for x'' as well. \square

The correctness of the reduction remains to be shown. Lemmas 2-4 establish useful structural properties of D', Lemma 5 proves that the existence of a Hamiltonian cycle in D implies an approximate matching in D', and Lemmas 6-9 demonstrate the converse.

Lemma 2. Any walk between two marked vertices $\phi(u)$ and $\phi(v)$ containing no additional marked vertices has length 4W. Hence, we can conclude any such walk is a path.

This is proven using induction on the number of edges transformed. It is shown that for every vertex, a key property regarding the distances to its closest marked vertices continues to hold after vertices on any newly created path are merged.

Proof. We first define forward distance and backward distance. Let $x, y \in V'$. The forward distance from x to y is defined as the minimum number of edges on any path from x to y (the usual distance in a directed graph). The backward distance from x to y is defined as the minimum number of edges on any path from y to x. We say a marked vertex $\phi(u)$ is *backward adjacent* to x if there exists a walk from $\phi(u)$ to x not containing any other marked vertices, and $\phi(v)$ is *forward adjacent* to x if there exists a walk from x to $\phi(v)$ not containing any other marked vertices.

We use induction on the number of edges transformed. Our IH will be that the length of all walks that end at and contain only two marked vertices is 4W and that a vertex x created from an edge transformation having an implicit label of the form:

- 1. $\operatorname{enc}(L(u'))[j, W]\$^W \operatorname{enc}(L(u'))\#^{j-1}, 1 \leq j \leq W$, has backward distance j-1 from all its backward adjacent marked vertices[†], and forward distance 4W-j+1 from all its forward adjacent marked vertices;
- 2. $\$^{W-j}$ enc $(L(u'))\#^W$ enc(L(v'))[1, j], $0 \le j \le W$, has backward distance W+j from all its backward adjacent marked vertices, and forward distance 3W-j from all its forward adjacent marked vertices;
- 3. $\operatorname{enc}(L(u'))[j, W] \#^W \operatorname{enc}(L(v')))\$^{j-1}$, $1 \le j \le W$, has backward distance 2W+j-1 from all its backward adjacent marked vertices, and forward distance 2W-j+1 from all its forward adjacent marked vertices[‡];
- 4. $\#^{W-j}$ enc(L(v')) \S^W enc(L(v')) [1, j], $0 \le j \le W$, has backward distance 3W+j from all its backward adjacent marked vertices, and forward distance W-j from all its forward adjacent marked vertices.

The base case, i=1, is satisfied since there exists only one such path and all stated properties hold. Now, for i>1, let (u_i,v_i) be the i^{th} edge transformed. We assume that the IH holds for all vertices and walks created in the first i-1 edge transformations. First, observe that for any walk ending at, and containing only two previously created marked vertices, for all vertices on this walk the distances from their forward adjacent marked vertices and backward adjacent marked vertices will not be altered unless one of the vertices on this walk is merged with a vertex on $\phi((u_i, v_i))$.

 $^{^{\}dagger}\phi(u')$ is x's only backward adjacent marked vertex, but this is unnecessary for the IH.

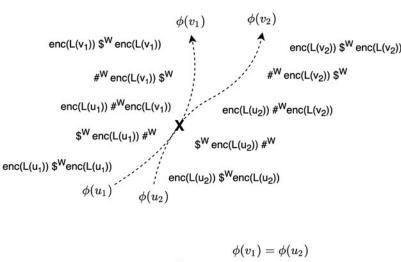
 $^{^{\}ddagger}\phi(v')$ is x's only forward adjacent marked vertex, but this is unnecessary for the IH.

Also, all the stated properties in the IH also hold for $\phi((u_i, v_i))$ before merging any vertices. Now, let y be a vertex on $\phi((u_i, v_i))$. Starting with $y = \phi(u_i)$, and continuing from $\phi(u_i)$ to $\phi(v_i)$, we merge y with existing vertices when their implicit labels match. Because the stated distance properties hold for x and y before merging, they continue to hold for the vertex created from merging x and y as well. Moreover, for vertices on any walk containing this now merged vertex the distances from their forward adjacent and backward adjacent marked vertices are unaltered. Because these distances are unaltered by merging, the IH continues to hold for all vertices.

Lemma 3. For (u_1, v_1) , $(u_2, v_2) \in E$, unless $u_1 = u_2$ or $v_1 = v_2$, $\phi((u_1, v_1))$ and $\phi((u_2, v_2))$ share no vertices.

Proof. In the case where $\{u_1, v_1\} \cap \{u_2, v_2\} = \emptyset$ (Fig. 6, top), every implicit vertex label in $\phi((u_1, v_1))$ contains $\operatorname{enc}(L(u_1))$ or $\operatorname{enc}(L(v_1))$ (or both) and contains neither $\operatorname{enc}(L(u_2))$ nor $\operatorname{enc}(L(v_2))$. Similarly, every implicit vertex label in $\phi((u_2, v_2))$ contains $\operatorname{enc}(L(u_2))$ or $\operatorname{enc}(L(v_2))$ (or both) and contains neither $\operatorname{enc}(L(u_1))$ nor $\operatorname{enc}(L(v_1))$. This implies that none of the implicit labels match between the two paths; thus, no vertices are merged.

In the case where $v_1 = u_2$ and $u_1 \neq v_2$ (Fig. 6, bottom), the implicit labels of vertices $\phi((u_1, v_1))$ not containing $\operatorname{enc}(L(u_1))$ have # symbols in different positions than implicit labels of vertices in $\phi((u_2, v_2))$ not containing $\operatorname{enc}(L(v_2))$. Also, since $v_1 \neq v_2$, the implicit labels of vertices $\phi((u_1, v_1))$ not containing $\operatorname{enc}(L(u_1))$ cannot match the implicit labels of vertices in $\phi((u_2, v_2))$ containing $\operatorname{enc}(L(v_2))$. However, vertices in $\phi((u_1, v_1))$ with implicit labels containing $\operatorname{enc}(L(u_1))$ have # symbols in different positions than implicit labels of vertices in $\phi((u_2, v_2))$ not containing $\operatorname{enc}(L(u_2))$, and, since $u_1 \neq u_2$, cannot match the implicit labels of vertices in $\phi((u_2, v_2))$ containing $\operatorname{enc}(L(u_2))$.



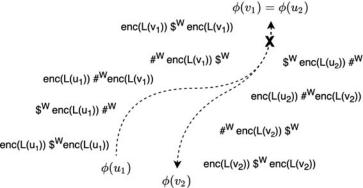


FIG. 6. Examples where paths between marked vertex cannot share any vertex: (Top) The case where $\{u_1, v_1\} \cap \{u_2, v_2\} = \emptyset$. (Bottom) The case where $v_1 = u_2$ and $u_1 \neq v_2$.

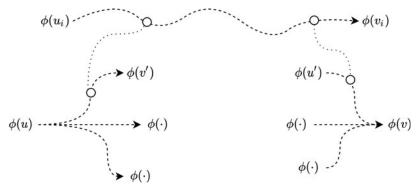


FIG. 7. In the proof of Lemma 4, we consider whether the path $\phi((u_i, v_i))$ being added could potentially cause a path between $\phi(u)$ and $\phi(v)$. The white circles connected by the thin dashed curve represent merged vertices.

The case $u_1 = v_2$ and $u_2 \neq v_1$ is symmetric and the case $u_1 = v_2$ and $v_1 = u_2$ cannot happen since, by the use of our gadget in Figure 1, D cannot contain the edges (u_1, v_1) and (v_1, u_1) .

Lemma 4. There exists a path from a marked vertex $\phi(u) \in V'$ to a marked vertex $\phi(v) \in V'$ containing no other marked vertices iff $(u, v) \in E$.

Proof. It is clear from construction that if there is an edge $(u, v) \in E$, then such a walk is in D'.

In the other direction, suppose for the sake of contradiction that there exists such a walk starting at $\phi(u)$ and ending at $\phi(v)$ with no other marked vertices between $\phi(u)$ and $\phi(v)$ on the walk, and $(u, v) \notin E$. Let the first such walk be created when transforming the i^{th} edge (u_i, v_i) . The only way such a walk could exists is if some vertex in $\phi((u_i, v_i))$ is merged with a vertex on a walk $\phi((u, v'))$ for some $v' \neq v$, and some vertex in $\phi((u_i, v_i))$ merged with a vertex in a walk $\phi((u', v))$ for some $u' \neq u$. This is since, before creating $\phi((u_i, v_i))$ all walks starting at $\phi(u)$ encountered some other marked vertex, $\phi(v')$, before $\phi(v)$. Similarly, there existed some set of marked vertices not including $\phi(u)$ such that every walk containing a marked vertex and ending at $\phi(v)$ must include at least one vertex in this set, $\phi(u')$. See Figure 7. We consider all possible cases:

- $u = u_i$ and $v' = v_i$: This contradicts the assumption that (u_i, v_i) is transformed on the i^{th} step.
- $u = u_i$ and $v' \neq v_i$ (Fig. 8): By Lemma 3, since $u_i = u \neq u'$, $\phi((u_i, v_i))$ and $\phi((u', v))$ can only share a vertex if $v_i = v$. However, this implies the edge $(u_i, v_i) = (u, v) \in E$, a contradiction.
- $u \neq u_i$ and $v' \neq v_i$: We can directly use Lemma 3 to say no such merged vertices exists between $\phi((u, v'))$ and $\phi((u_i, v_i))$.
- $u \neq u_i$ and $v' = v_i$ (Fig. 9): By Lemma 3, if $u_i \neq u'$, then $\phi((u_i, v_i))$ and $\phi((u', v))$ can only share a vertex $v = v_i$. However, this would imply v = v', a contradiction.

The more interesting case is if $u_i = u'$ (Fig. 10). Any vertex y having an implicit label containing $\operatorname{enc}(L(u'))$ and occurring in $\phi((u_i, v_i))$ and $\phi((u', v))$ occurs before (has smaller backward distance to $\phi(u')$) any vertex with implicit label containing $\operatorname{enc}(L(v'))$. At the same time, any vertex x occurring in $\phi((u_i, v_i))$ and $\phi((u_i, v_i))$ must have an implicit label containing $\operatorname{enc}(L(v'))$ because $u \neq u_i$. Since the

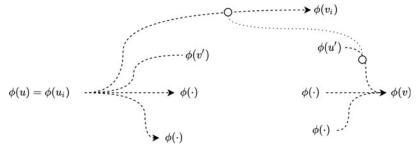


FIG. 8. In the proof of Lemma 4, the case where $u = u_i$ and $v' \neq v_i$.

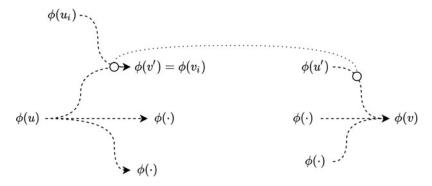


FIG. 9. In the proof of Lemma 4, the case where $u \neq u_i$, $v' = v_i$, and $u_i \neq u'$.

vertex x occurs later in $\phi((u_i, v_i))$ than any shared vertex y in $\phi((u_i, v_i))$ and $\phi((u', v))$, the only way any vertices in $\phi((u_i, v_i))$ are in a walk from $\phi(u)$ to $\phi(v)$ not containing any other marked vertices is if there is walk from x to y not containing marked vertices; however, the cycle this creates contradicts Lemma 2.

Lemma 5. If D has a Hamiltonian cycle, then P can be matched in D' with at most δ substitutions to vertex labels of D'.

Proof. Let v_{i_1}, \ldots, v_{i_n} be a Hamiltonian cycle in D and suppose without loss of generality that v_{i_1} is assigned 0 in the first step of our reduction. To obtain a walk in D', follow the cycle in D' that traverses the marked vertices $\phi(v_{i_n}), \phi(v_{i_1}), \phi(v_{i_2}), \ldots, \phi(v_{i_n}), \phi(v_{i_1})$ in that order. By Lemma 4, each edge traversed in D corresponds to a path in D'. While traversing these paths, modify the vertex labels in D' on subpaths matching bin(i), $1 \le i \le n$ to match P. No conflicting label substitutions will be necessary. To see this, consider the edges $(u_1, v_1), (u_2, v_2) \in E$ used in the Hamiltonian cycle in D. We will never have $u_1 = u_2$ or $v_1 = v_2$. Hence, by Lemma 3, the sets of vertices on the paths $\phi((u_1, v_1))$ and $\phi((u_2, v_2))$ are disjoint. At most $2\ell(n-1)$ substitutions are required overall.

Lemma 6. If P can be matched in D' with at most δ substitutions to vertex labels of D', then all \$'s in P are matched with non-substituted \$'s in D' and all #'s in P are matched with non-substituted #'s in D'. Consequently, we can assume that the only substitutions are to the vertex labels corresponding to bin(i)'s within enc(i)'s.

To prove this, we establish the existence of a long non-branching path for every marked vertex that can be traversed at most once when matching P. This, combined with maximal paths of, \$, #, and 0/1-symbols, all being of length W, makes it so that "shifting" P to match a portion of D forces the shift to occur throughout the walk traversed while matching P. Utilizing the large Hamming distance between shifted instances of two encodings, we can then show that not matching all non-0/1 symbols requires more than δ substitutions.

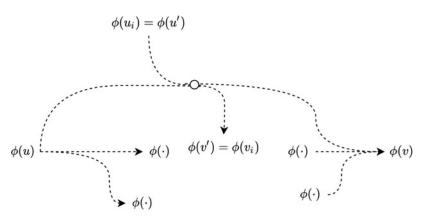


FIG. 10. In the proof of Lemma 4, the case where $u \neq u_i$, $v' = v_i$, and $u_i = u'$.

Proof. We first make the following observations: pre-substitution of any of the vertex labels in D':

1. For all vertices $u \in V$, there is exactly one path in D' that matches

$$\operatorname{enc}(L(u)) \#^{W} (0^{2\ell} 1)^{2\ell}$$

and all vertices on this path have in-degree and out-degree one. In fact, the only vertices with in-degree greater than one having implicit labels

$$\operatorname{enc}(L(u))[i, W] \#^{W} \operatorname{enc}(L(v))\$^{i-1},$$

where $W - \ell < i \le W + 1$ (these vertices have vertex label \$). And the vertices with out-degree greater than one having implicit labels of the form

$$\$^{W-i} \operatorname{enc}(L(u)) \#^{W} \operatorname{enc}(L(v))[1, i],$$

where $W - \ell \le i \le W$ (the last ℓ symbols in $\#^W$ enc(L(v)). This path contains the marked vertex $\phi(u)$. Furthermore, all marked vertices are included on exactly one such path.

2. Every maximal walk containing only \$ or # symbols is of length W, and the distance from the end of any maximal walk consisting of only \$ symbols (or # symbols) to the start of a maximal walk consisting of only # (or \$ symbols respectively) is W. This follows from the construction of D': every vertex added in the construction has an implicit label where all maximal substrings consisting of non-\$ or non-# are of length W, and maximal substrings consisting of \$ or # are of length W.

To see the "local" number of substitutions caused by matching a #/\$-symbol in D' to a 0/1 symbol in P, suppose the matching of $\operatorname{enc}(L(u))$ in P is "shifted left" by $1 \le s < W$ so that the first s symbols of some $\operatorname{enc}(L(u))$ in P are matched against the last s symbols in some walk of #/\$-symbols in D'. These last s symbols require s substitutions. In addition, assuming $s < 2\ell$, due to the prefix $(0^{2\ell}1)^{2\ell}$, at least $2\ell-1$ substitutions that do not involve a # or \$ symbol are needed as well.

We now look at the number of substitutions needed on a "global" level due to shift of size $s < 2\ell$. From Lemma 2, every walk of length 4W contains a marked vertex. Hence, while matching P' at least $\lfloor |P'|/4W \rfloor = 4Wn/4W = n$ times, a marked vertex is visited. Because every substring of P' = P[1, |P| - 4W] of length $3W - \ell$ is distinct, every path described in Observation 1 is traversed at most once while matching P'. Since each marked vertex is on a unique path that can be traversed at most once and we traverse at least n such paths, we traverse n distinct paths of the form described in Observation 1. We can now use Observation 2 to infer that the substitutions needed to match the shifted patterns in P' must be repeated n times. Hence, to match P', the total number of substitutions involving P' symbols is at least P' when P' the total number of substitutions involving P' symbols is at least P'. When P' the total number of substitutions is at least

$$(s+2\ell-1)n > 2\ell(n-1) = \delta.$$

If $2\ell \le s < W$, then 2ℓ substitutions to match the substring $(0^{2\ell}1)^{2\ell}$ in P may not be needed, but the total number of substitutions required is still greater than δ since $sn \ge 2\ell n > \delta$. A symmetric argument can be used for when the matching of P to D' is "shifted right" by s so that the last s symbols in enc(L(u)) in P are matched against the first s symbols in some walk of A-symbols in A.

For W < s < 4W, it still holds that all paths described in Observation 1 are traversed exactly once. Combined with Observation 2, it can be seen that the substitution cost incurred when making a path of length W originally matching $\#^W$ match a substring of P without # is incurred at least n times. This results in the total number of substitutions required being at least $nW > \delta$.

Post-substitution to vertex labels, we will refer to a vertex as *newly marked* if there exists a walk ending at it that matches a string of the form

$$\operatorname{enc}(L(u))$$
\$ W $\operatorname{enc}(L(u))$

for some $u \in V$, where no such walk existed pre-substitution. Note that this definition does not require all length k-1 walks ending at such a vertex to match the same string.

Lemma 7. If P can be matched in D' with at most δ substitutions to vertex labels of D', then no newly marked vertices are created due to vertex substitutions.

Proof. Pre-substitution, only marked vertices have implicit labels of the form $S_1 \$^W S_2$ where S_1 and S_2 contain no \$ symbols. Hence, the only way that a vertex could have a walk ending at it that matches a pattern of the form $S_1 \$^W S_2$ post-substitution is if either it was originally a marked vertex, or some non-0/1-symbols were substituted in D'. However, by Lemma 6, the latter case cannot happen, and only originally marked vertices have walks ending at them matching strings of the form $S_1 \$^W S_2$ post-substitution.

Lemma 8. If P can be matched in D' with at most δ substitutions to vertex labels of D', then each marked vertex in D' is visited exactly once, except for an marked vertex at the end of a path matching enc(0)\$^W enc(0) that is visited twice.

Proof. First, we show that all marked vertices, except the one with implicit label enc(0)\$ W enc(0), are visited at most once. Pre-substitution, a marked vertex with implicit label enc(i)\$ W enc(i) is at the end of a unique, branchless path of length W matching enc(i). By Lemma 6, the only substitutions to this path made while matching P are substitutions making it match enc(i'), $i' \neq i$. If this path were modified to match enc(i'), i' > 0, then the only way the marked vertex could be visited twice while matching P is if after traversing the path, another path matching P is taken back to the start of this enc(i') path. However, any edges leaving this marked vertex are labeled with H, making this impossible. By similar reasoning, the path matching enc(0) ending at a marked vertex is visited at most twice.

We next show that each marked vertex is visited at least once. Suppose for sake of contradiction that some marked vertex is not visited. By Lemma 7, no additional marked vertices are created. Hence, a marked vertex ending a path matching enc(i), i > 0 is visited at least twice, or a marked vertex ending a path matching enc(0) is visited at least three times, a contradiction.

Lemma 9. If P can be matched in D' with at most δ substitutions to vertex labels of D', then D has a Hamiltonian cycle.

Proof. By Lemma 4, the paths between marked vertices traversed while matching with P correspond to edges between vertices in D. Combined with marked vertices being visited exactly once from Lemma 8 (except the marked vertex ending a path matching enc(0)), the walk matched by P in D' corresponds to a Hamiltonian cycle through D beginning and ending at the vertex labeled 0.

This completes the proof of Theorem 1. We next show that $k = \Theta(\log^2 |V'|)$. First, recall that |V| is the number of vertices in the original graph, where we assumed $|E| = \mathcal{O}(|V|)$. At most $4W|E| = \mathcal{O}(k|V|)$ vertices are created in the reduction. Also, the proof of Lemma 6 establishes that there is a unique set of at least $\Theta(k)$ vertices for every marked vertex, each one corresponding to a vertex in the original graph. Combining, we have that $|V'| = \Theta(k|V|)$. By construction, $k = \Theta(\log^2 |V|)$, and since $|V'| = \Theta(k|V|)$, we have $k = \Theta(\log^2 |V'|)$ as well.

3. HARDNESS FOR PROBLEM 2 ON THE DE BRULJN GRAPHS

3.1. Reduction

The OV problem is defined as follows: given two sets of binary vectors $A, B \subseteq \{0, 1\}^d$, where |A| = |B| = N, determine whether there exist vectors $a \in A$ and $b \in B$ such that their inner product is zero. Conditioned on SETH, a standard reduction shows that this cannot be solved in time $d^{\Theta(1)}N^{2-\varepsilon}$ for any constant $\varepsilon > 0$ (Williams, 2015).

Let the given instance of OV consists of A, $B \subseteq \{0, 1\}^d$ where $|A| = |B| = N = 2^m$ for some natural number m. This makes $\lceil \log (N+1) \rceil = \log N + 1$ easing computation later. We also assume that $d > \log N$. This is reasonable, as if $d \le \log N$, then |A| and |B| would contain either all vectors of length d or repetitions.

We will next provide a formal description of the graph D our reduction creates from the set $A = \{a_1, a_2, \ldots, a_N\}$ and the pattern P it creates from the set $B = \{b_1, b_2, \ldots, b_N\}$. The reader may

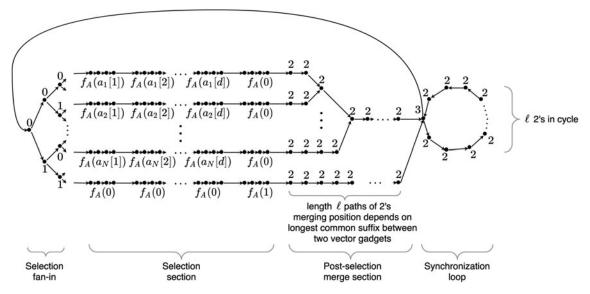


FIG. 11. An illustration of the reduction from orthogonal vectors to Problem 2.

find Figure 11 helpful. The graph will consist of four sections. We name these according to their function in the reduction: the Selection fan-in, the Selection section, the Post-Selection Merge section, and the Synchronization loop.

We start with the Selection fan-in. Let 2^c be the smallest power of 2 such that $2^c \ge N+1$. The Selection fan-in consists of a complete binary tree with 2^c leaves, where all paths are directed away from the root. The root is labeled 0 and the children of every node are labeled 0 and 1, respectively.

The Selection section consists of N+1 paths. We first define the mappings f_A and f_B from $\{0,1\}$ to sequences of length four as $f_A(0) = 1100$, $f_A(1) = 1111$, $f_B(0) = 0110$, and $f_B(1) = 0000$. These mappings have the property that $d_H(f_A(0), f_B(0)) = d_H(f_A(0), f_B(1)) = d_H(f_A(1), f_B(0)) = 2$ and $d_H(f_A(1), f_B(1)) = 4$, where $d_H(x, y)$ is the Hamming distance between strings x and y. We make the i^{th} path for $1 \le i \le N$, a path of 4(d+1) vertices with labels matching the string $f_A(a_i[1])f_A(a_i[2]) \dots f_A(a_i[d])f_A(0)$. We make that the $(N+1)^{th}$ path has 4(d+1) vertices and matches the string $f_A(0)^d f_A(1)$. Let s_i denoted the start vertex of path i. We arbitrarily choose N+1 leaves, l_1, l_2, \dots, l_{N+1} , from the Selection fan-in and add the edges (l_i, s_i) for $1 \le i \le N+1$.

We define the implicit label size as $k = \lceil \log(N+1) \rceil + 4(d+1)$ and $\ell = k-1$. To construct the Post-Selection Merge section, we start with N+1 length $\ell-1$ paths, each matching the string 2^{ℓ} . For every path in the Selection section, we add an edge from the last vertex in the path to one of the paths matching 2^{ℓ} . This is done so that every path matching 2^{ℓ} in the Post-Selection Merge section is connected to exactly one path from the Selection section. Next, we merge two vertices if they have the same implicit label. This is repeated until all vertices in the Post-Selection Merge section have a unique implicit label.

To construct the Synchronization loop, we create a directed cycle with $\ell + 1 = k$ vertices. One of these is labeled with the symbol 3, and the rest with the symbol 2. Edges from each ending vertex in the Post-Selection Merge section to the vertex labeled 3 are then added. A final edge from the vertex labeled 3 to the root of the binary tree in the Selection fan-in completes the graph, which we denote as D.

Let $t = 5d + \lceil \log(N + 1) \rceil$. To complete the reduction, we make the pattern

$$P = (2^{\ell}3)^{t} 2^{\lceil \log(N+1) \rceil} f_{B}(b_{1}[1]) f_{B}(b_{1}[2]) \dots f_{B}(b_{1}[d]) f_{B}(1)$$

$$(2^{\ell}3)^{t} 2^{\lceil \log(N+1) \rceil} f_{B}(b_{2}[1]) f_{B}(b_{2}[2]) \dots f_{B}(b_{2}[d]) f_{B}(1)$$

$$\dots$$

$$(2^{\ell}3)^{t} 2^{\lceil \log(N+1) \rceil} f_{B}(b_{N}[1]) f_{B}(b_{N}[2]) \dots f_{B}(b_{N}[d]) f_{B}(1)$$

and the maximum number of allowed substitutions $\delta = N \lceil \log(N+1) \rceil + 2(d+1) + (2d+4)(N-1)$. We call substrings in P of the form $f_B(b_i[1])f_B(b_i[2]) \dots f_B(b_i[d])f_B(1)$ and paths in D matching strings of the form $f_A(a_i[1])f_A(a_i[2]) \dots f_A(a_i[d])f_A(0)$ vector gadgets. Note that $|E| = \mathcal{O}(dN)$ and

 $m = |P| = \mathcal{O}(d^2N)$. Hence, an algorithm for approximate matching running in time $\mathcal{O}(m|E|^{1-\varepsilon} + m^{1-\varepsilon}|E|)$ for some $\varepsilon > 0$ would imply an algorithm for OV running in time $d^{\Theta(1)}N^{2-\varepsilon}$. This implies that once the correctness of the reduction has been established, Theorem 2 follows.

3.2. Proof of correctness

Lemma 10. The graph D is a de Bruijn graph.

Proof. For each of the four graph sections discussed above, we will prove for each vertex in that section that Properties (i)–(iii) from the proof of Lemma 1 hold. That is, for every vertex v, the implicit label of v is well defined, unique, and there are no additional edges that should have v as their head.

- Selection fan-in:
- (well defined) For any vertex v in the Selection fan-in, there are two paths of length k-1 leading to v (one containing vertices labeled with 2s from the Post-Selection Merge section and one containing vertices labeled with 2s from the Synchronization loop). Both match the same string $2^{\ell'}3B$, where $\ell' < \ell$ and B is a binary string of length at most $\lceil \log N + 1 \rceil$.
- (unique) The binary string B could only possibly occur again as a suffix the Selection section. However, all implicit labels occurring in that section contain longer binary strings. Hence, the implicit label occurs only once in D.
- (no missing inbound edges) Let u be any vertex such that (u, v) is in D. A vertex v in the Selection fanin has an implicit label of the form

$$S\alpha = 2^{\ell'} 3B_{i'}[1, i],$$

where $\ell' < \ell$, $1 \le i \le \lceil \log N \rceil$, and $0 \le i' \le N+1$. This implies that u has the implicit label

$$\beta S = \beta 2^{\ell'} 3B_{i'}[1, i-1].$$

Based on the limited number of implicit labels present in D, it must be that $\beta = 2$, and there exists only one such u. Hence, the edge (u, v) already exists.

- Selection section:
- (well defined) For a vertex v in the Selection section, there are two length k-1 paths leading to v (one with 2s from the Post-Selection Merge section and one with 2s from the Synchronization loop). Both match a string of the form

$$2^{\ell'}3B_{i'}f_A(a_i[1])f_A(a_i[2]) \dots f_A(a_i[j])[1, h],$$

where $0 \le \ell' < \ell$ and $1 \le h \le 4$.

• (unique) If v has a path of length k-1 matching

$$2^{\ell'} 3B_{i'} f_A(a_i[1]) f_A(a_i[2]) \dots (f_A(a_i[j])[1, i],$$

then it must be in the Selection section. The substring $B_{i'}$ following the prefix $2^{\ell'}3$ is distinct, hence this implicit label only occurs once in the Selection section.

• (no missing inbound edges) Taking u and v as above, if the vertex v has an implicit label of the form

$$S\alpha = 2^{\ell'} 3B_{i'} f_A(a_i[1]) f_A(a_i[2]) \dots f_A(a_i[j]) [1, h]$$

 $1 \le h \le 4$, this implies that the any potential u has an implicit label

$$\beta S = \beta 2^{\ell'} 3B_{i'}[1, h-1]f_A(a_i[1])f_A(a_i[2]) \dots f_A(a_i[j])[1, h-1]$$

$$\beta S = \beta 2^{\ell'} 3B_{i'}[1, h-1]f_A(a_i[1])f_A(a_i[2]) \dots f_A(a_i[j-1]).$$

In either case, $\beta = 2$, and the edge (u, v) already exists.

If the vertex v has an implicit label of the form

$$S\alpha = B_{i'}f_A(a_i[1])f_A(a_i[2]) \dots f_A(a_i[d]),$$

then any potential vertex u has an implicit label

$$\beta S = \beta B_{i'} f_A(a_i[1]) f_A(a_i[2]) \dots f_A(a_i[d])[1, 3],$$

where β must be 3, and the edge (u, v) already exists.

- Post-Selection Merge section:
- (well defined) For a vertex v in this section, all length k-1 paths ending at v match a string of the form $B2^{\ell'}$, where B is a binary string. By construction, the paths ending at v match the same string (they were merged based on this condition).
- (unique) Again by construction, if another vertex v' in the Post-Selection merging section has a length k-1 path ending at it that matches v's implicit label v' will be merged with v. At the same time, vertices in the other sections of D will not have an implicit label of the form $B2^{\ell}$.
- (no missing inbound edges) Taking u and v as above, vertex v has an implicit label of the form $S\alpha = B2^{\ell}$, $\ell' \ge 1$, this implies that any potential vertex u has an implicit label $\beta S = \beta B2^{\ell'-1}$. Such a vertex u is already in the Post-Selection Merge section or is a vertex at the end of a path in the Selection section (if $\ell' = 1$). Since appending a 2 and removing β will make the implicit label of u equal to the implicit label of u, the vertex at the head of the edge with tail u must have been merged with u. Hence, the edge u, u0 already exists.
- Synchronization loop:
- (well defined) There are two length k-1 paths to a vertex v in the Synchronization loop. Both match the string $2^{\ell'}32^{\ell''}$, where $\ell' + \ell'' = k 1 = \ell$, and ℓ' depends on v's position within the Synchronization loop.
- (unique) An implicit label for a vertex in any other section contains a symbol that is not a 2 or a 3. Within the Synchronization loop, each implicit label clearly occurs exactly once.
- (no missing inbound edges) Taking u and v as above, vertex v has an implicit label of the form $S\alpha = 2^{\ell'}32^{\ell''}$. This implies that any potential vertex u has an implicit label $\beta S = \beta 2^{\ell'}32^{\ell''-1}$. If $\ell' < \ell$, it must be that $\beta = 2$ and the edge (u, v) already exists. If instead $\ell' = \ell$, then for both $\beta S = 02^{\ell}3$ and $\beta S = 12^{\ell}3$, there already exists an edge (u, v) as well.

Lemma 11. In an optimal solution, 3s in P are matched with 3s in D.

Proof. Suppose that some 3 in P is not matched with 3 in D or with the final vertex in a path in the Selection section. Since any walk between 3s in D has a length that is a multiple of k and 3 in P are k-1 symbols apart, all 3s must then not be matched with 3 in D. This requires at least tN substitutions within P. However, when 3s in P are matched with 3s in D, there exists a solution requiring at most $4d(N+1)+N \lceil \log(N+1) \rceil$. Specifically, this is obtained by matching each vector gadget in P, $f_B(b_i[1]) \ldots f_B(b_i[d])$ to the $N+1^{th}$ path in the Selection section. Since

$$t = 5d + \lceil \log(N+1) \rceil > 4d + \frac{4d}{N} + \lceil \log(N+1) \rceil$$

for d = o(N) and N large enough, we can assume that $tN > 4d(N+1) + N \lceil \log(N+1) \rceil$. Hence, all 3s in P are matched with the 3 in D or with some final vertex in a path in the Selection section.

Next, suppose some 3 in P is matched with the last vertex in a path in the Selection section. We consider the first such occurrence. In the case where this occurrence of 3 in P is followed in P by a substring

$$2^{\lceil \log(N+1) \rceil} f_B(a_i[1]) \dots f_B(a_i[d]) f_B(1),$$

then a cost of at least 8(d+1) is incurred, first at least 4(d+1) from matching the substring $2^{\ell}3$ in P to a path through the Selection fan-in and the Selection section, then an additional 4(d+1) from matching a

vector gadget in P to a path of 2s in the Post-Selection Merge section. We could have instead matched the Synchronization loop twice with a cost of only 4(d+1) substitutions, and started and ended at the same vertex while still matching

$$2^{\ell} 32^{\lceil \log(N+1) \rceil} f_B(a_i[1]) \dots f_B(a_i[d]) f_B(1).$$

Hence, matching 3 in P with the last vertex in a path in the Selection section is suboptimal. In the case where the occurrence of 3 in P is followed in P by $2^{\ell}3$, then the cost incurred is only 4(d+1). However, we could have instead matched $2^{\ell}32^{\ell}3$ with the Synchronization loop twice with a substitution cost of 0, and again started and ended at the same vertex. Hence, matching 3 in P with the last vertex in a path in the Selection section is again suboptimal.

Lemma 12. In an optimal solution, vector gadgets in P are matched with vector gadgets in D.

Proof. Suppose otherwise. By Lemma 11, this can only occur if some vector gadget in P is matched against the Synchronization loop. This requires at least 4(d+1) substitutions. We can instead match the $\lceil \log{(N+1)} \rceil$ 2s preceding the vector gadget in P with the Selection fan-in and the vector gadget in P with the $(N+1)^{th}$ path in the Selection section. Due to $d_H(f_A(0), f_B(0)) = d_H(f_A(0), f_B(1)) = 2$ and $d(f_A(1), f_B(1)) = 4$, this requires $\lceil \log{(N+1)} \rceil + 2d + 4$ substitutions in P. Since, $\log{N} < d < 2d$ we have $\log{N} < 2d - 1$. Using that N is some power of 2,

$$\lceil \log(N+1) \rceil + 2d + 4 = \log N + 1 + 2d + 4 < 4d + 4.$$

Hence, the cost decreases by matching the vector gadget in P to a vector gadget in D instead.

Lemma 13. If there exists a vector $a \in A$ and $b \in B$ such that $a \cdot b = 0$, then P can be matched to D with at most δ substitutions.

Proof. Match the vector gadget for b in P with the vector gadget for a in the Selection section of D. This costs 2(d+1) substitutions. Match the remaining N-1 vector gadgets in P with the $(N+1)^{th}$ path in the Selection section, requiring (2d+4)(N-1) substitutions in total. The total number of substitutions of 2s in P to match the Selection fan-in is $N \lceil \log(N+1) \rceil$. Adding these, the total number of substitutions is exactly δ . The Synchronization loop can be used for matching all additional symbols in P without any further substitutions.

Lemma 14. If P can be matched in D with at most δ substitutions, then there exist vectors $a \in A$ and $b \in B$ such $a \cdot b = 0$.

Proof. By Lemma 12, we can assume vector gadgets in P are only matched against vector gadgets in D. Suppose that there does not exist a pair of OV $a \in A$ and $b \in B$. Then, whichever vector gadget in D we choose to match a vector gadget in P to, matching the vector gadget requires at least 2d+4 substitutions. Hence, the total cost is at least $(2d+4)N+N \log (N+1) > \delta$, proving the contrapositive. \square

4. DISCUSSION

We leave open several interesting problems. An NP-completeness proof for Problem 1 on the de Bruijn graphs when $k = \mathcal{O}(\log n)$ and the alphabet size is constant is still needed. Additionally, we need to extend these hardness results to when substitutions are allowed in both the graph and the pattern, and when insertions and deletions in some form are allowed in the graph and (or) the pattern. It seems unlikely that adding more types of edit operations would make the problems computationally easier, and we conjecture these variants are NP-complete on the de Bruijn graphs as well. It also needs to be determined whether Problem 1 is NP-complete on the de Bruijn graphs with binary alphabets, or whether the SETH-based hardness results hold for Problem 2 on binary alphabets.

A practical question is whether these problems are hard for small δ values on the de Bruijn graphs [the problem for general graphs was proven to W[2] hard in terms of δ in the study by Dondi et al (2020)].

In applications, the allowed error thresholds are quite small. Clearly, the problems are slice-wise-polynomial with respect to δ , that is, for a constant δ , it is solvable in polynomial time via brute force, but are they fixed-parameter-tractable in δ ? The reduction presented in this study as well as the reductions presented in the studies by Amir et al (2000) and Jain et al (2019) are based on the Hamiltonian cycle problem, where a large δ value is used. This makes the existence of such a fixed-parameter-tractable algorithm a distinct possibility.

AUTHOR DISCLOSURE STATEMENT

The authors declare they have no conflicting financial interests.

FUNDING INFORMATION

This research was supported in part by the U.S. National Science Foundation (NSF) grants CCF-1704552, CCF-1816027, and CCF-2112643.

REFERENCES

- Abboud A, Backurs A, Hansen TD, et al. Subtree isomorphism revisited. ACM Trans Algorithms 2018;14(3):27: 1–27:23; doi: 10.1145/3093239
- Abrahamson KR. Generalized string matching. SIAM J Comput 1987;16(6):1039-1051; doi: 10.1137/0216067
- Alanko J, D'Agostino G, Policriti A, et al. Wheeler languages. CoRR 2020; abs/2002.10303.
- Alanko JN, Gagie T, Navarro G, et al. Tunneling on wheeler graphs. In: Data Compression Conference, DCC 2019, Snowbird, UT, USA, March 26–29, 2019; 2019; pp. 122–131; doi: 10.1109/DCC.2019.00020
- Almodaresi F, Sarkar H, Srivastava A, et al. A space and time-efficient index for the compacted colored de Bruijn graph. Bioinformatics 2018;34(13):i169–i177; doi: 10.1093/bioinformatics/bty292
- Amir A, Lewenstein M, Lewenstein N. Pattern matching in hypertext. J Algorithms 2000;35(1):82–99; doi: 10.1006/jagm.1999.1063
- Backurs A, Indyk P. Which regular expression patterns are hard to match? In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9–11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA; 2016; pp. 457–466; doi: 10.1109/FOCS.2016.56
- Benoit G, Lemaitre C, Lavenier D, et al. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics 2015;16:288:1–288:14; doi: 10.1186/s12859-015-0709-7
- Chikhi R, Limasset A, Jackman S, et al. On the representation of de Bruijn graphs. J Comput Biol 2015;22(5):336–352; doi: 10.1089/cmb.2014.0160
- Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based on a bloom filter. Algorithms Mol Biol 2013;8:22; doi: 10.1186/1748-7188-8-22
- Dondi R, Mauri G, Zoppis I. Complexity issues of string to graph approximate matching. In: Language and Automata Theory and Applications: 14th International Conference, LATA 2020, Milan, Italy, March 4–6, 2020, Proceedings: 12038 (Lecture Notes in Computer Science). (Leporati A, Martín-Vide C, Shapira D, et al. eds.) Springer; 2020; pp. 248–259; doi: 10.1007/978-3-030-40608-0_17
- Egidi L, Louza FA, Manzini G. Space efficient merging of de Bruijn graphs and wheeler graphs. CoRR 2020; abs/ 2009.03675.
- Equi M, Grossi R, Mäkinen V, et al. On the complexity of string matching for graphs. In: 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9–12, 2019, Patras, Greece, 2019; pp. 55:1–55:15; doi: 10.4230/LIPIcs.ICALP.2019.55
- Flick P, Jain C, Pan T, et al. Reprint of "a parallel connectivity algorithm for de Bruijn graphs in metagenomic applications." Parallel Comput 2017;70:54–65; doi: 10.1016/j.parco.2017.09.002
- Gagie T. r-Indexing wheeler graphs. CoRR 2021; abs/2101.12341.
- Gagie T, Manzini G, Sirén J. Wheeler graphs: A framework for BWT-based data structures. Theor Comput Sci 2017; 698:67–78; doi: 10.1016/j.tcs.2017.06.016
- Georganas E, Buluç A, Chapman J, et al. Parallel de Bruijn graph construction and traversal for de novo genome assembly. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA, November 16–21, 2014, 2014; pp. 437–448; doi: 10.1109/SC.2014.41

- Gibney D. An efficient elastic-degenerate text index? not likely. In: String Processing and Information Retrieval—27th International Symposium, SPIRE 2020, Orlando, FL, USA, October 13–15, 2020, Proceedings, 2020; pp. 76–88; doi: 10.1007/978-3-030-59212-7 _6
- Gibney D, Hoppenworth G, Thankachan SV. Simple reductions from formula-sat to pattern matching on labeled graphs and subtree isomorphism. In: 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11–12, 2021, 2021; pp. 232–242; doi: 10.1137/1.9781611976496.26
- Gibney D, Thankachan SV. On the hardness and inapproximability of recognizing wheeler graphs. In 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11, 2019, Munich/Garching, Germany, 2019; pp. 51:1–51:16; doi: 10.4230/LIPIcs.ESA.2019.51
- Heydari M, Miclotte G, de Peer YV, et al. Browniealigner: Accurate alignment of illumina sequencing data to de Bruijn graphs. BMC Bioinformatics 2018;19(1):311:1–311:10; doi: 10.1186/s12859-018-2319-7
- Holley G, Peterlongo P. Blastgraph: Intensive approximate pattern matching in string graphs and de-Bruijn graphs. In: Holub J, Zdrek J (eds): Proceedings of the Prague Stringology Conference 2012, Prague, Czech Republic, August 27–28, 2012. Czech Technical University in Prague; Prague, Czech Republic. PSC 2012, 2012.
- Holley G, Wittler R, Stoye J, et al. Dynamic alignment-free and reference-free read compression. J Comput Biol 2018;25(7):825–836; doi: 10.1089/cmb.2018.0068
- Hoppenworth G, Bentley JW, Gibney D, et al. The fine-grained complexity of median and center string problems under edit distance. In: 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference), 2020; pp. 61:1–61:19; doi: 10.4230/LIPIcs.ESA.2020.61
- Jain C, Zhang H, Gao Y, et al. On the complexity of sequence to graph alignment. In: Research in Computational Molecular Biology—23rd Annual International Conference, RECOMB 2019, Washington, DC, USA, May 5–8, 2019, Proceedings; 2019; pp. 85–100; doi: 10.1007/978-3-030-17083-7 \ _6
- Kamal MS, Parvin S, Ashour AS, et al. de-Bruijn graph with mapreduce framework towards metagenomic data classification. Int J Inf Technol 2017;9(1):59–75.
- Kapun E, Tsarev F. On NP-hardness of the paired de Bruijn sound cycle problem. In: Algorithms in Bioinformatics—13th International Workshop, WABI 2013, Sophia Antipolis, France, September 2–4, 2013. Proceedings. 2013; pp. 59–69; doi: 10.1007/978-3-642-40453-5_6
- Kavya VNS, Tayal K, Srinivasan R, et al. Sequence alignment on directed graphs. J Comput Biol 2019;26(1):53–67; doi: 10.1089/cmb.2017.0264
- Li D, Liu C, Luo R, et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct *de Bruijn* graph. Bioinformatics 2015;31(10):1674–1676; doi: 10.1093/bioinformatics/btv033
- Limasset A, Cazaux B, Rivals E, et al. Read mapping on de Bruijn graphs. BMC Bioinformatics 2016;17:237; doi: 10.1186/s12859-016-1103-9
- Limasset A, Flot J, Peterlongo P. Toward perfect reads: Self-correction of short reads via mapping on de Bruijn graphs. Bioinformatics 2020;36(2):651; doi: 10.1093/bioinformatics/btz548
- Lin Y, Shen MW, Yuan J, et al. Assembly of long error-prone reads using de Bruijn graphs. In: Research in Computational Molecular Biology—20th Annual Conference, RECOMB 2016, Santa Monica, CA, USA, April 17–21, 2016, Proceedings. 2016; p. 265.
- Liu B, Guo H, Brudno M, et al. debga: Read alignment with de Bruijn graph-based seed and extension. Bioinformatics 2016;32(21):3224–3232; doi: 10.1093/bioinformatics/btw371
- Morisse P, Lecroq T, Lefebvre A. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph. Bioinformatics 2018;34(24):4213–4222; doi: 10.1093/bioinformatics/bty521
- Navarro G. Improved approximate pattern matching on hypertext. Theor Comput Sci 2000;237(1–2):455–463; doi: 10.1016/S0304-3975(99)00333-3
- Pell J, Hintze A, Canino-Koning R, et al. Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. Proc Natl Acad Sci USA 2012;109(33):13272–13277; doi: 10.1073/pnas.1121464109
- Peng Y, Leung HCM, Yiu S, et al. IDBA—A practical iterative de Bruijn graph de novo assembler. In: Research in Computational Molecular Biology, 14th Annual International Conference, RECOMB 2010, Lisbon, Portugal, April 25–28, 2010. Proceedings. 2010; pp. 426–440; doi: 10.1007/978-3-642-12683-3 \ _28
- Peng Y, Leung HCM, Yiu S, et al. Idba-tran: A more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 2013; 29(13):326–334; doi: 10.1093/bioinformatics/btt219
- Pevzner PA. 1-Tuple DNA sequencing: Computer analysis. J Biomol Struct Dyn 1989;7(1):63-73.
- Plesník J. The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf Process Lett 1979;8(4):199–201; doi: 10.1016/0020-0190(79)90023-1
- Rautiainen M, Marschall T. Aligning sequences to general graphs in o (v+ me) time. bioRxiv 2017; p. 216127.
- Ren X, Liu T, Dong J, et al. Evaluating de Bruijn graph assemblers on 454 transcriptomic data. PLoS One 2012; 7(12):e51188.

Williams VV. Hardness of easy problems: Basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk). In: 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, September 16–18, 2015, Patras, Greece, 2015; pp. 17–29; doi: 10.4230/LIPIcs.IPEC.2015.17

Ye Y, Tang H. Utilizing de Bruijn graph of metagenome assembly for metatranscriptome analysis. Bioinformatics 2016;32(7):1001–1008; doi: 10.1093/bioinformatics/btv510

Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18(5):821–829.

E-mail: daniel.j.gibney@gmail.com