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Abstract—The automatic generation control (AGC) is one of
the core control systems in power grids that regulate frequency
within the permissible range. However, its dependence on commu-
nication makes it highly vulnerable to cyber-attacks. An arbitrary
false data injection attack (FDIA) on AGC frequency and tie-line
flow measurements will likely be detectable by bad data detection
methods; however, if an attack can be launched optimally, it
often becomes stealthy. In this regard, we develop a framework
of optimal FDIAs (OFDIAs) to demonstrate the feasibility of
such attacks in the power system frequency control loop. We
propose a linearized formulation of discretized power systems’
dynamics in an optimization framework to model OFDIAs that
compromise the AGC system by corrupting tie-line flow and
generators’ frequency measurements. Using the proposed formal
modeling, we study the effects of two types of FDIAs, continuous
and time-limited, on the frequency behavior in power grids. The
results demonstrate that continuous OFDIAs can lead to severe
consequences on a power grid’s performance, such as frequency
instability. In contrast, the time-limited FDIAs can cause the
frequency to fluctuate beyond the acceptable range, which may
lead to the triggering of the frequency-based protection relays.

Index Terms—False data injection attack, automatic generation
control, frequency stability, dynamic modeling, optimization.

I. NOMENCLATURE

Sets and Indices

( .̃ ) Attack value.
d( . )

dt
Rate of change of a parameter.

A Set of generators participating in AGC.

Az Set of generators of area z participating in AGC.

B Set of areas of the power system.

i,j,z Indices.

k Discrete step.

C Set of discrete steps of AGC cycles

{W
h

, 2W
h

,...,CW
h

}.

G Set of generators.

Lz Set of tie-lines connected to area z.

N Set of buses.

O Set of generators equipped with the governor.

T Set of discrete steps in the optimization horizon

{1,2,...,CW
h

}.

Parameters and Variables

α Weighting factors.

δ Generator’s rotor angle.

ω Angular frequency.
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ωo Nominal angular frequency.

εω The slack term for frequency attack.

εf Slack term for over-frequency.

εtie Slack term for attack on tie-lines’ power flow

deviations.

∆ω Angular frequency deviation.

τω Bad data detection threshold for frequency

changes in two successive discrete steps.

τa Bad data detection threshold for ACE changes

in two successive discrete steps.

τf Over-frequency threshold.

τ tie Bad data detection threshold for tie-line power

deviations from the scheduled values in two

successive discrete steps.

∆P tie Tie-line power flow deviation from the scheduled

value.

h Discretization time-step size.

ACE Area control error of individual generator.

ACE Upper limit of individual generator area control

error.

ACE Lower limit of individual generator area control

error.

Bi,j Imaginary part of line admittance between bus i
and bus j.

C AGC cycles.

fo Nominal frequency.

H Inertia constant of synchronous generator.

KD Load damping factor.

KI Integral gain of AGC controller.

n Number of discretized steps in modeling.

P g Generator’s active power output.

P
g

The upper limit of generator active power.

P g Lower limit of generator active power.

Pm Mechanical input power of generator.

P
m

The upper limit of generator mechanical power.

Pm Lower limit of generator mechanical power.

P r Governor’s reference set-point.

P s Governor’s steady-state reference set-point.

R Governors’ speed droop.

Sb Base apparent power in MVA.

T Governors’ time constant.

W Time interval between two successive AGC cycles.

II. INTRODUCTION

S
MART grids are increasingly employing measurement and

communication technologies that bring several benefits to
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the system operations [1]. However, this technology enrich-

ment opens up new challenges, such as cyber-attacks, which

make the power grids vulnerable. Among various types of

cyber-attacks, false data injection attacks (FDIAs) have been

widely examined for power systems [2] due to real-world

FDIA incidents. One of such attacks is FDIA on distribution

grids in Ukraine in 2015 which left around 200 thousand

customers with no electricity for several hours [3]. Apart from

that, there have been some real attack incidents in recent years

such as the Stuxnet [4] and Dragonfly [5] that needed strong

knowledgeable attackers who have access to the real-time data

in the control centers to be successful. Injecting false control

signals, the Stuxnet worm attacked nuclear centrifuges and

manipulated the system states. Although these attacks did not

target power systems, such attacks with such a level of access

to data can be easily launched on power systems as well.

Generally speaking, there is evidence manifesting that the

danger of insider attackers is serious [3]. Besides, some of the

existing literature such as [6] showed that it is possible for the

adversaries to stealthily learn the impact of the attack, based

on sensor data and some of the power system constants that

are either publicly available or can be achieved, for instance,

via social engineering against employees in the control center

of the grid. Therefore, we aimed at studying FDIAs while the

attacker has full knowledge of the victim’s power system.

An FDIA in power grids entails manipulating the data

(measurements or control signals) transmitted between the

control center and the field devices or distributed controllers.

Here, an attacker infuses some wrong data into measure-

ments/control signals to mislead the control center/distributed

controllers’ actions [7]. It is crucial to ensure that the received

measurements/control signals are sound and accurate. Hence,

some bad data detection algorithms are considered in control

centers to classify the received data as normal or outlier [8].

The traditional bad data detection algorithms work based on

the residuals between estimated and observed measurements.

When the residual is not within the permissible range, the data

is categorized as bad data [9]. A stealthy FDIA can bypass

the control center’s bad data detection process and mislead

the operator to take a wrong control action, compromising the

operation of the smart grids [10], [11].

The grid frequency in power systems needs to be continu-

ously monitored and maintained. Any major fluctuations of the

frequency need to be corrected in order to keep it within the

permissible range (e.g., between 59.3 and 60 Hz.); otherwise,

it can lead to serious consequences including blackouts. For

example, there was a blackout in England and Wales in 2019

caused by a frequency decline that left about one million peo-

ple with no electricity [12]. The primary frequency response in

power systems, which includes automatic decentralized control

action of the active power output of generators, immediately

determines the grid frequency following any disturbances

in power systems. However, it is the automatic generation

control (AGC) system that maintains the frequency around the

nominal value, although in a slower time scale in comparison

to the primary frequency response.

Following any frequency oscillations in a power sys-

tem, AGC adjusts the reference set-points of the governors

equipped on the generators (communicating the control signal

from the control center) to bring the frequency back within

the permissible range. Therefore, AGC is dependent on the

communication and measurements where FDIAs may affect

the frequency stability of power systems [13]. As an exam-

ple of how FDIA on AGC can impact the power systems’

performance, let’s assume an attacker injecting false data into

tie-lines active power frequency measurements to mislead the

control center of a generation shortage. These faulty measure-

ments make the control center incorrectly estimate the area

control error (ACE) and update the governors’ reference set-

points. ACE is the criteria used to update governors’ reference

setpoints. Any non-zero ACE represents a load-generation

imbalance in the area that needs to be addressed by updating

the governors’ setpoints within the control area. According to

the new adjustment, the governor changes the mechanical input

power of the generators, and consequently, the load-generation

balance is not maintained. This imbalance causes fluctuations

in the power system’s frequency dynamics, which might lead

to frequency instability.

The impact of FDIAs on AGC has been studied by various

researchers [14]–[16], considering different types of attacks,

such as random noises, signal scaling, surges, and ramps. In a

similar study [17], the impacts of some predefined templates

of FDIAs (such as constant and random packet delays) are

investigated. In [18], the authors confirm that FDIAs may

lead to grid frequency deviations which can eventually trigger

load shedding relays. Similarly, impacts of FDIAs on rate-

of-change-of-frequency (RoCoF) relays are studied in [19].

FDIAs on local controllers of inertia-emulating loads and their

impacts on power systems’ frequency are evaluated in [20].

It is shown that the resulting oscillations in the system due

to the instability might cause the RoCoF relays to operate

and disconnect some of the generators from the grid. Despite

the abovementioned papers that only consider a single attack

model, [21] investigates a coordinated combination of FDIAs

on AGC. However, the FDIA model considered in these

works [14]–[21] are based on arbitrary or preset attack values.

An arbitrary FDIA can be successful, however, due to its

low probability, it will take a substantial amount of time to

satisfy the stealthiness criteria [22], [23]; thus, such attacks

are impractical in the real world.

Optimal FDIAs (OFDIAs), although not focused on AGC,

have also been explored in literature as they, if stealthy, can

defeat the control center’s defense mechanism [24], [25].

The authors of [26], [27] assess OFDIAs which leads to

transmission line outages. In [28], the authors present an opti-

mization framework to investigate the vulnerability and impact

of FDIAs on AC/HVDC (high-voltage DC) load frequency

control. The authors in [29] target studying a hybrid stealthy

attack on AGC as an optimization problem to disrupt the

normal operation of AGC. However, this work intends to find

the optimal multiplier in launching a combination of two types

of pre-selected attacks, under- and negative- compensation,

through an optimization process. Restricting the optimization

method to some pre-selected types of attacks might lead to an

inaccurately-designed optimization problem that can impact

the optimal output results. Similarly, the authors of [6] model
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rotor angles, and using the DC power flow formulations, the

power grid model becomes,

P g
i − P l

i =
∑

j∈N

Bi,j (δi − δj), ∀i ∈ N . (4)

The dynamic model (1)-(4) determines the primary fre-

quency response of power grids.

B. Area Control

AGC is a secondary control system to adjust the governors’

reference set-points in order to maintain the frequency at the

nominal value as well as keep the power exchange of each area

at its scheduled value. Based on the measured values of the

grid frequency deviation and the power exchange divination

from their nominal values, as shown in Fig. 1, ACE signal

for each generator is derived as follows [16],

ACEi = βi∆ωi +
∑

j∈Az

∆P tie
j , ∀z ∈ B, ∀i ∈ Az, (5)

βi =
1

Ri

+KD
i , ∀z ∈ B, ∀i ∈ Az, (6)

The control center may run the DC power flow (4) based on

measurements and obtain steady-state reference set-points as,

P s
i = P g

i , ∀i ∈ O. (7)

Therefore, the total reference set-point of the governor’s can

be written as,

P r
i = P s

i −

∫
KI

i ACEi, ∀i ∈ A, (8)

IV. PRELIMINARIES

FDIA model is developed considering the dynamics of

the power grid and actions of the control center in case of

any compromised measurements as shown in Fig. 1. Con-

sider that ∆P̃ tie
i , ∀ z ∈ B, ∀ i ∈ Az , and ω̃i, ∀ i ∈ A

denote the magnitude of the injected false data into the tie-

lines’ power deviation and AGC-participating buses frequency

measurements, respectively. The compromised measurements

utilized by the control center in generation of ACEs are

∆P tie
i + ∆P̃ tie

i , ∀ z ∈ B, ∀ i ∈ Az , and ωi + ω̃i, ∀ i ∈ A.

Therefore, the outcome of the AGC algorithm, which is cal-

culated based on compromised measurements, is compromised

ACEs for the governors. When these compromised ACEs are

sent to the governors, a load-generation imbalance will take

place in the system that leads to frequency violation or even

instability. Hence, the control center unknowingly participates

in the attacker’s plan to launch an attack on the load-frequency

control in power grids.

A. Attack on Measurements

In order to launch the attack, we assume that the attacker

targets two set of measurements, i.e., frequency of generators

participating in AGC and the tie-lines’ active power deviation

from the scheduled value. These attack on these measurements

can be modeled as following,

ωi[k] =

{
0 ∀ i /∈ A, ∀ k ∈ T ,

ω̃i[k] ∀ i ∈ A, ∀ k ∈ T ,
(9)

∆P tie
i [k] =





0 ∀ i /∈ A, ∀ k ∈ T ,

∆P̃ tie
i [k] ∀ z ∈ B, ∀ i ∈ Az,

∀ k ∈ T ,

(10)

B. Discretized Power Grid Frequency Dynamics

In this paper, we would like to model the dynamic behavior

of power systems in an optimization framework. To model

this dynamic behavior, we consider the continuous format of

equations that represent the major components (synchronous

generators and governors) of power systems in the dynamic

analysis of power systems. In order to be able to observe the

changes in synchronous generators’ rotor angles and assess

the frequency stability of power systems, we used the DC

power flow that gives us the new values of rotor angles for

any changes in power systems such as generators’ active power

output or the loads. However, all of the equations discussed

in Section III are in a continuous format, which is not im-

plementable in the optimization framework. To overcome this

issue, we discretize these equations using the Backward Euler

method [34] so that we can utilize them in the optimization

framework. The discretized version of the continuous dynamic

model can be modeled as,

ACEi[k] = (
1

Ri

+KD
i )(∆ωi[k] + ∆ω̃i[k])+ (11)

∑

j∈Az

(∆P tie
j +∆P̃ tie

j ), ∀i ∈ Az, ∀z ∈ B, ∀k ∈ T ,

P r
i [k + 1] = P r

i [k]−KI
i hACEi[j] + P s

i [k + 1], (12)

∀i ∈ A, ∀k ∈ T , ∀j ∈ C,

Pm
i [k + 1] = Pm

i [k] +
h

RiTi

(
P r
i [k + 1]−

∆ωi[k + 1]−RiP
m
i [k + 1]

)
, ∀i ∈ A, ∀k ∈ T , (13)

δi[k + 1] = δi[k] + h∆ωi[k + 1], ∀i ∈ N , ∀k ∈ T , (14)

ωi[k + 1] = ωi[k] +
h

2Hi

(
Pm
i [k + 1]− P g

i [k + 1]−

KD
i ∆ωi[k + 1]

)
, ∀i ∈ G, ∀k ∈ T , (15)

P g
i [k]− P l

i [k] =
∑

j∈N

Bi,j (δi[k]− δj [k]),

∀i ∈ N , ∀k ∈ T , (16)

Here, (11) and (12) model the ACE signals coming from

the control center to governors and the reference set-point

adjustment based on this signal, respectively. Equation (13)

models the behavior of mechanical input power to the gen-

erator. Equations (14) and (15) represent the synchronous

generators rotor angle and frequency dynamics, respectively.

The DC power flow is represented by equation (16).

V. OPTIMAL FALSE DATA INJECTION ATTACK

The proposed OFDIA in this paper is based on access to

system parameters and limited real-time data (tie-line mea-

surements only). System parameters include various factors
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or settings concerning generators, governors, and transmission

lines, which are constant and need to be obtained once.

The attacker can achieve these parameters through different

processes such as insider. The other type of data used in

OFDIA is real-time data that includes frequency and active

power measurements of tie-lines. Hence, to launch a successful

attack, the attacker needs access to a few real-time measure-

ments (tie-line measurements only, not all the measurements).

For instance, to attack the test bus system studied in this paper,

there are only five tie-lines (Fig. 2). Thus, the attacker needs

to know only the frequency and active power measurements of

these five lines. Attacking the frequency of AGC-participating

generators (ω̃) and the tie-line active power deviations (∆P̃ tie)

might lead to an over-frequency incident (the actual system

state) or instability in power systems. The injection of ω̃ and

∆P̃ tie into the measurements causes an error in calculation

of ACE in (11) by the control center. By sending these

ACEs from the control center to governors (see Fig. 1), the

governors’ reference set-points start to vary in (12), causing

some fluctuations in the mechanical input power of generators

in (13). This fluctuation of the mechanical input power leads

to changes in rotors’ speed, and consequently, rotors’ angle

in (13) and (14). Ultimately, the active power outputs of the

generators vary due to the rotor angle oscillations in (16).

In this paper, we consider that the estimated and observed

measurements are similar, i.e., the residual value is always

zero. This helps us capture the scenario where the attacker

is able to manipulate the measurement and bypass the BDD

algorithm with zero residual value of estimated and observed

measurements. However, there are some thresholds, defined

and explained in (22) through (30), that if not satisfied,

the BDD algorithm marks the measurements as abnormal.

Therefore, the thresholds are considered as constraints while

modeling the attack as an optimization problem. Moreover, as

mentioned before, we assume that the attacker is capable of

launching the attack on any measurements in such a way that

the residual of estimated and observed values is zero. This is

regardless of whether these measurements are tie-line power

measurements or any other measurements needed in launching

a successful attack. However, since the focus of this paper is

the frequency stability of power systems, given that AGC/LFC

has a direct impact on power systems frequency, we consider

the tie-line power measurements as ones that the attacker is

interested in manipulating.

Based on this, we develop OFDIA model that minimizes

the amount of the frequency attack values (ω̃) and the tie-

line active power deviations (∆P̃ tie) subject to the constraints

(12)-(16) and (18)-(30). We formulate the OFDIA as follows

to make the problem linear programming in nature that yields

a tractable formulation,

OFDIA:

Min α1

∑

k∈C
i∈A

εωi [k] + α2

∑

k∈C
i∈B

εtiei [k] + α3

∑

k∈T
i∈G

εfi [k] (17)

S. t.: Constraints (12)− (16),

εωi [k] ≥ 0, ∀i ∈ A, ∀k ∈ T , (18)

εfi [k] ≥ 0, ∀i ∈ G, ∀k ∈ T , (19)

εtiei [k] ≥ 0, ∀i ∈ B, ∀k ∈ T , (20)

ωi[k] + εfi [k] ≥ τf , ∀i ∈ A, ∀k ∈ T , (21)

εωi [k] ≥ ω̃i[k]− ω̃i[k + 1], ∀i ∈ A, k ∈ C, (22)

εωi [k] ≥ ω̃i[k + 1]− ω̃i[k], ∀i ∈ A, k ∈ C, (23)

εtiei [k] ≥ ∆P̃ tie
i [k + 1]−∆P̃ tie

i [k], ∀i ∈ B, k ∈ C, (24)

εtiei [k] ≥ ∆P̃ tie
i [k]−∆P̃ tie

i [k + 1], ∀i ∈ B, k ∈ C, (25)

Pm
i ≤ Pm

i [k] ≤ P
m

i , ∀i ∈ O, ∀k ∈ T , (26)

ACEi ≤ ACEi[k] ≤ ACEi, ∀i ∈ G, ∀k ∈ T , (27)

−τa ≤ ACEi[k + 1]−ACEi[k] ≤ τa, (28)

∀i ∈ A, ∀k ∈ C,

−τω ≤ (ωi[k + 1] + ω̃i[k + 1])− (ωi[k]+ (29)

ω̃i[k]) ≤ τω, ∀i ∈ A, ∀k ∈ C,

−τ tie ≤ (∆P tie
i [k + 1] + ∆P̃ tie

i [k + 1])− (30)

(∆P tie
i [k] + ∆P̃ tie

i [k]) ≤ τ tie, ∀i ∈ A, ∀k ∈ C,

The developed OFDIA model (17) attempts to minimize the

amount of the attack to be launched (the first two terms), along

with minimizing the time of the violation of the fluctuations

from the over-frequency thresholds that these attacks impose

on the power system’s frequency (the latter). The first two

terms
∑

k∈C
i∈A

εωi [k] and
∑

k∈C
i∈B

εtiei [k] minimize the variation

of the attack on the frequency of the buses participating in

AGC and the tie-lines’ active power deviation within two

consecutive AGC cycles, respectively. Note that in this paper

we intend to consider the worst-case scenario, that is, the

attacker has access to all the tie-lines’ measurements, and

does not need to attack a limited number of measurements.

Hence, we do not study the minimization of the number of

attackable measurements. However, to reduce the possibility of

the attack getting detected by the BDD algorithm, the attacker

needs to launch an attack with the minimum amount. Thus,

in this paper, we aim at minimizing the amount of attacks to

minimize the possibility of attack detection. On the other hand,

the attacker needs to launch an attack in the shortest time to

reduce the remaining time for the control center in taking any

possible remedial actions. To this end, the term
∑

k∈T
i∈G

εfi [k] in

(17) minimizes the sum of the frequency violations from the

threshold. This term combined with the other terms minimizes

the time period in which the frequencies of the attacked

buses violate the permissible upper limit. To have a better

understanding of how the third term participates in minimizing

the attack time, one should notice that in order to optimize the

objective function, the solver needs to minimize all of the first,

second, and third terms in (17). All of these terms, including

the third term, are a summation of positive values (refer to

(18), (19), and (20)). Therefore, the solver needs to minimize

each of these values to be able to minimize (17). The minimum

possible value for each of these slack terms is zero. More

specifically, talking about the third term, the solver will create

the over-frequency in the system as quickly as possible so that

there is no more need for these slack terms to possess non-

zero values (refer to (21)). In other words, the over-frequency
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methods due to their not optimal amounts. Consideration of the

proposed OFDIA helps improve the detection and mitigation

methods’ accuracy. In future work, we will show the model’s

scalability in a large-scale power grid and evaluate the impact

of other types of attacks like time delay on power systems’

frequency stability. In addition, we will develop detection

and mitigation methods capable of detecting and reducing the

impact of the proposed OFDIA in this paper.

REFERENCES

[1] A. R. Metke and R. L. Ekl, “Smart grid security technology,” in Proc.

Innov. Smart Grid Technol. Conf. (ISGT). IEEE, 2010, pp. 1–7.

[2] W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and
challenges,” Comput. Netw., vol. 57, no. 5, pp. 1344–1371, 2013.

[3] G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015
ukraine blackout: Implications for false data injection attacks,” IEEE

Trans. Power Syst., vol. 32, no. 4, pp. 3317–3318, 2016.

[4] S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical
system security,” in Proc. IECON 37th Annu. Conf. of the IEEE Ind.

Electron. Soc., 2011, pp. 4490–4494.

[5] “Hackers infiltrated power grids,” 2014. [Online]. Available: http:
//on.recode.net/1FpKP7Y

[6] R. Tan, H. H. Nguyen, E. Y. S. Foo, D. K. Y. Yau, Z. Kalbarczyk,
R. K. Iyer, and H. B. Gooi, “Modeling and mitigating impact of false
data injection attacks on automatic generation control,” IEEE Trans. Inf.

Forensics and Security, vol. 12, no. 7, pp. 1609–1624, 2017.

[7] M. Ahmed and A.-S. K. Pathan, “False data injection attack (FDIA):
an overview and new metrics for fair evaluation of its countermeasure,”
Complex Adaptive Sys. Modeling, vol. 8, pp. 1–14, 2020.

[8] L. Liu, M. Esmalifalak, Q. Ding, V. A. Emesih, and Z. Han, “Detecting
false data injection attacks on power grid by sparse optimization,” IEEE

Trans. Smart Grid, vol. 5, no. 2, pp. 612–621, 2014.

[9] A. Zakerian, A. Maleki, Y. Mohammadnian, and T. Amraee, “Bad data
detection in state estimation using decision tree technique,” in Proc.

Iranian Conf. on Electrical Engineering (ICEE), 2017, pp. 1037–1042.

[10] Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, “On false data-
injection attacks against power system state estimation: Modeling and
countermeasures,” IEEE Trans. Parallel and Distributed Sys., vol. 25,
no. 3, pp. 717–729, 2013.

[11] M. A. Rahman, E. Al-Shaer, and R. Kavasseri, “Security threat analytics
and countermeasure synthesis for state estimation in smart power grids,”
in Proc. 44th IEEE/IFIP Int. Conf. on Dependable Sys. and Netw. (DSN),
Jun 2014.

[12] “Technical report on the events of 9 August 2019,” Sep.
2019. [Online]. Available: https://www.nationalgrideso.com/document/
152346/download

[13] P. M. Anderson and A. A. Fouad, Power System Control and Stability.
John Wiley & Sons, 2008.

[14] A. Ashok, P. Wang, M. Brown, and M. Govindarasu, “Experimental
evaluation of cyber attacks on automatic generation control using a CPS
security testbed,” in Proc. IEEE Power Energy Soc. General Meeting,
2015, pp. 1–5.

[15] S. Sridhar and G. Manimaran, “Data integrity attacks and their impacts
on SCADA control system,” in Proc. IEEE Power Energy Soc. General

Meeting. IEEE, 2010, pp. 1–6.

[16] S. Sridhar and M. Govindarasu, “Model-based attack detection and
mitigation for automatic generation control,” IEEE Trans. Smart Grid,
vol. 5, no. 2, pp. 580–591, 2014.

[17] K. Tomsovic, D. E. Bakken, V. Venkatasubramanian, and A. Bose,
“Designing the next generation of real-time control, communication, and
computations for large power systems,” Proc. IEEE, vol. 93, no. 5, pp.
965–979, 2005.

[18] J. Chen, G. Liang, Z. Cai, C. Hu, Y. Xu, F. Luo, and J. Zhao, “Impact
analysis of false data injection attacks on power system static security
assessment,” J. of Modern Power Sys. and Clean Energy, vol. 4, no. 3,
pp. 496–505, 2016.

[19] Y. Wu, Z. Wei, J. Weng, X. Li, and R. H. Deng, “Resonance attacks on
load frequency control of smart grids,” IEEE Trans. Smart Grid, vol. 9,
no. 5, pp. 4490–4502, 2018.

[20] H. E. Brown and C. L. DeMarco, “Risk of cyber-physical attack via load
with emulated inertia control,” IEEE Trans. Smart Grid, vol. 9, no. 6,
pp. 5854–5866, 2017.

[21] X. He, X. Liu, and P. Li, “Coordinated false data injection attacks in
AGC system and its countermeasure,” IEEE Access, vol. 8, pp. 194 640–
194 651, 2020.

[22] M. Jafari, M. A. Rahman, and S. Paudyal, “False data injection attack
against power system small-signal stability,” in Proc. IEEE Power

Energy Soc. General Meeting, 2021, pp. 1–5.
[23] S. Prasad, “Counteractive control against cyber-attack uncertainties on

frequency regulation in the power system,” IET Cyber-Phys. Sys.: Theory

& Applications, vol. 5, no. 4, pp. 394–408, 2020.
[24] C. Chen, K. Zhang, K. Yuan, L. Zhu, and M. Qian, “Novel detection

scheme design considering cyber attacks on load frequency control,”
IEEE Trans. Industrial Informatics, vol. 14, no. 5, pp. 1932–1941, 2017.

[25] M. A. Rahman, E. Al-Shaer, and R. G. Kavasseri, “A formal model for
verifying the impact of stealthy attacks on optimal power flow in power
grids,” in Proc. ACM/IEEE Int. Conf. on Cyber-Phys. Sys. (ICCPS),
2014, pp. 175–186.

[26] L. Che, X. Liu, Z. Li, and Y. Wen, “False data injection attacks induced
sequential outages in power systems,” IEEE Trans. Power Syst., vol. 34,
no. 2, pp. 1513–1523, 2018.

[27] Z. Li, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “Bilevel
model for analyzing coordinated cyber-physical attacks on power sys-
tems,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2260–2272, 2015.

[28] K. Pan, E. Rakhshani, and P. Palensky, “False data injection at-
tacks on hybrid AC/HVDC interconnected systems with virtual in-
ertia—vulnerability, impact and detection,” IEEE Access, vol. 8, pp.
141 932–141 945, 2020.

[29] A. Ameli, A. Hooshyar, E. F. El-Saadany, and A. M. Youssef, “Attack
detection and identification for automatic generation control systems,”
IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4760–4774, 2018.

[30] P. Kundur, Power System Stability. CRC Press New York, NY, USA,
2007, vol. 10.

[31] M. Rahmani and N. Sadati, “Two-level optimal load-frequency control
for multi-area power systems,” Int. J. of Electrical Power & Energy Sys.,
vol. 53, pp. 540–547, 2013.

[32] R. Shankar, S. Pradhan, K. Chatterjee, and R. Mandal, “A comprehensive
state of the art literature survey on LFC mechanism for power system,”
Renewable and Sustain. Energy Reviews, vol. 76, pp. 1185–1207, 2017.

[33] I. C. Report, “Dynamic models for steam and hydro turbines in power
system studies,” IEEE Trans. Power App. and Sys., vol. PAS-92, no. 6,
pp. 1904–1915, 1973.

[34] B. P. Zeigler, A. Muzy, and E. Kofman, Theory of Modeling and

Simulation: Discrete Event & Iterative Sys. Computational Foundations.
Academic press, 2018.

[35] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language for
mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320,
2017.

[36] Gurobi Optimization, LLC, “Gurobi optimizer reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[37] M. Jafari, M. A. Rahman, and S. Paudyal, “Optimal improvement
of post-disturbance dynamic response in power grids,” in Proc. IEEE

Industry Applications Soc. Annu. Meeting, October 2022, [Accepted].
[38] Y. Li, R. Huang, and L. Ma, “False data injection attack and defense

method on load frequency control,” IEEE Internet of Things J., vol. 8,
no. 4, pp. 2910–2919, 2021.

[39] S. D. Roy and S. Debbarma, “A novel OC-SVM based ensemble learning
framework for attack detection in AGC loop of power systems,” Electric

Power Syst. Research, vol. 202, p. 107625, 2022.
[40] S. d. Roy and S. Debbarma, “Detection and mitigation of cyber-attacks

on AGC systems of low inertia power grid,” IEEE Sys. J., vol. 14, no. 2,
pp. 2023–2031, 2020.

[41] M. Khalaf, A. Youssef, and E. El-Saadany, “Joint detection and mitiga-
tion of false data injection attacks in AGC systems,” IEEE Trans. Smart

Grid, vol. 10, no. 5, pp. 4985–4995, 2019.
[42] A. Ameli, A. Hooshyar, A. H. Yazdavar, E. F. El-Saadany, and

A. Youssef, “Attack detection for load frequency control systems using
stochastic unknown input estimators,” IEEE Trans. Inf. Forensics and

Security, vol. 13, no. 10, pp. 2575–2590, 2018.
[43] A. Abbaspour, A. Sargolzaei, P. Forouzannezhad, K. K. Yen, and A. I.

Sarwat, “Resilient control design for load frequency control system
under false data injection attacks,” IEEE Trans. Ind. Electron., vol. 67,
no. 9, pp. 7951–7962, 2020.

[44] T. Huang, B. Satchidanandan, P. Kumar, and L. Xie, “An online detection
framework for cyber attacks on automatic generation control,” IEEE

Trans. Power Syst., vol. 33, no. 6, pp. 6816–6827, 2018.
[45] A. Sargolzaei, K. K. Yen, and M. N. Abdelghani, “Preventing time-delay

switch attack on load frequency control in distributed power systems,”
IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1176–1185, 2015.




