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Abstract Correspondence identification is a critical capa-
bility for multi-robot collaborative perception, which allows
a group of robots to consistently refer to the same objects
in their own fields of view. Correspondence identification
is challenging due to the existence of non-covisible objects
that cannot be observed by all robots, and due to uncertainty
in robot perception. In this paper, we introduce a novel prin-
cipled approach that formulates correspondence identifica-
tion as a graph matching problem under the mathematical
framework of regularized constrained optimization. We de-
velop a regularization term to explicitly address perception
uncertainties by penalizing the object correspondences with
a high uncertainty. We also introduce a second regularization
term to explicitly address non-covisible objects by penaliz-
ing the correspondences built by the non-covisible objects.
Our approach is evaluated in robotic simulations and real
physical robots. Experimental results show that our method
is able to address correspondence identification under uncer-
tainty and non-covisibility, and achieves the state-of-the-art
performance.
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1 Introduction

Multi-robot systems have been attracting a significant at-
tention over the past decades due to their reliability, par-
allelism, and scalability to address large-scale problems
(Brambilla, Ferrante, Birattari, and Dorigo, 2013; Chung,
Paranjape, Dames, Shen, and Kumar, 2018; Yan, Jouan-
deau, and Cherif, 2013). As one of the essential abili-
ties of multi-robot systems, collaborative perception en-
ables shared awareness and understanding of the surround-
ing environment among the robots, which plays an impor-
tant role in a variety of real-world applications, including
robot-assisted search and rescue (Lampert, Nickisch, and
Harmeling, 2014; Robin and Lacroix, 2016; Senanayake,
Senthooran, Barca, Chung, Kamruzzaman, and Murshed,
2016; Reily, Reardon, and Zhang, 2020), connected and au-
tonomous driving (Wei, Yu, Guo, Dan, and Shu, 2018), col-
laborative manufacture (Dogar, Spielberg, Baker, and Rus,
2019), and multi-robot localization and mapping (Aragues,
Montijano, and Sagues, 2011; Nguyen, Ben-Chen, Wel-
nicka, Ye, and Guibas, 2011).

Correspondence identification is a core task in collabo-
rative perception, with the goal of identifying the same ob-
jects (thus deciding the correspondences) observed by two
robots in their own fields of view (Frey, Steiner, and How,
2019; Kallasi, Rizzini, and Caselli, 2016; Leonardos, Zhou,
and Daniilidis, 2017; Tian, Liu, Ok, Tran, Allen, Roy, and
How, 2019; Gao, Reily, Paul, and Zhang, 2020b). For ex-
ample, as shown in Figure 1, if two connected vehicles want
to share information of other vehicles and road conditions,
they first need to identify street objects’ correspondence in
order to correctly refer to the same objects. In another ex-
ample, if a robot wants to acquire information of a tar-
get from another robot, correspondence must be identified
to ensure that both robots refer to the same target. Due to
the importance of correspondence identification, a variety
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Fig. 1 A motivating example of correspondence identification with non-covisible objects under uncertainty for multi-robot collaborative percep-
tion. Before two connected autonomous vehicles share information of street objects, they must identify the correspondence of these objects, while
addressing non-covisible objects and perception uncertainty, in order to correctly refer to the same objects from their own fields of view. Given a
pair of observations with detected objects, our approach performs regularized graph matching for correspondence identification of objects. Specifi-
cally, we represent each observation as a graph. Each node denotes an object’s attribute and edges describe the spatial relationships among objects.
Each correspondence is identified based on the attribute, and spatial (including distance and angle) similarities. Meanwhile, we design a new reg-
ularization term to penalize the correspondence constructed by the non-covisible objects, and we propose another regularization term to penalize
the correspondence of objects with high attribute and position uncertainties and promote the correspondence of objects with low uncertainties.

of methods were recently implemented to address this prob-
lem. The first category of methods decide correspondence
via calculating the appearance similarity of a pair of ob-
jects, e.g., based on visual features for appearance match-
ing (Chen, Zhu, and Gong, 2017; Gojcic, Zhou, Wegner,
and Wieser, 2019). The second category of methods employ
synchronization algorithms to identify circle-consistent as-
sociations among objects (Aragues, Montijano, and Sagues,
2011; Fathian, Khosoussi, Lusk, Tian, and How, 2019; Hu,
Huang, Thibert, and Guibas, 2018; Tron, Zhou, Esteves,
and Daniilidis, 2017), which synchronize associations of
the same objects observed from multiple views. The third
category of methods are based on spatial (e.g., distance or
angular) and geometric information, e.g., using linear as-
signment (Munkres, 1957), quadratic assignment (Cho, Lee,
and Lee, 2010; Leordeanu and Hebert, 2005), and high-
order graph matching (Chang, Fischer, Petit, Zambelli, and
Demiris, 2017; Duchenne, Bach, Kweon, and Ponce, 2011;
Nguyen, Gautier, and Hein, 2015).

Correspondence identification is a challenging task to
solve in collaborative perception, because robots often ob-
serve a part of the environment from different views, and
because multiple objects observed by these robots may look
similar or identical. Specifically, although previous meth-
ods demonstrated encouraging results, two challenges in
correspondence identification have not been well studied
yet. This first challenge is resulted from non-covisible ob-
jects, which are those objects that cannot be observed by all
robots, but are only observable by a subset of robots. Due

to occlusion and robot’s limited field of view, non-covisible
objects in collaborative perception are common. The non-
covisible objects often greatly affect correspondence identi-
fication, since not all objects observed by multiple robots
have a correspondence. The second challenge is resulted
from uncertainty in perception. For example, attributes (e.g.,
visual or semantic features) extracted to describe objects can
be noisy and ambiguious for correspondence identification.
In addition, object positions (e.g., estimated by depth esti-
mation algorithms (Kendall, Gal, and Cipolla, 2018)) used
to compute spatial relationships of the objects often show a
deviation from their real positions and are noisy.

In this paper, we introduce a novel regularized graph
matching method to address the task of correspondence
identification with non-covisible objects under uncertainty
for collaborative perception. We use a graph representation
to represent multiple objects observed by a robot. Each node
denotes an object and is associated with an attribute vector,
and the edges among the nodes are used to describe the spa-
tial relationships among the objects. Then, we formulate cor-
respondence identification as an optimization-based graph
matching problem. In order to address non-covisible ob-
jects, we design a new regularization term over the number
of identified correspondence to penalize the correspondence
constructed by the non-covisible objects. In order to address
uncertainty in the attributes and positions of the objects, we
propose another regularization term to penalize the corre-
spondence of objects with high attribute and position uncer-
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tainties and promote the correspondence of objects with low
uncertainties.

The key contribution of this paper is the introduction of
the first principled approach that addresses perception un-
certainty and non-covisible objects in a unified mathemati-
cal framework to perform correspondence identification in
collaborative perception. Specific novelties of the paper in-
clude:

– We introduce a novel regularized graph matching
method for correspondence identification under percep-
tion uncertainty with non-covisible objects. Our ap-
proach integrates perception uncertainty into the graph
representation, and uses two new regularization terms to
reduce the influence resulted from uncertainty and non-
covisibility.

– We implement an effective new optimization algorithm
to solve the formulated constrained optimization prob-
lem that is challenging to solve as the problem is non-
convex and contains two regularization terms.

As a practical contribution, we provide one of the first
datasets in order to study the problem of correspondence
identification with non-covisible objects in collaborative
perception.

A preliminary conference version of this work was pub-
lished at Robotics Science and System 2020 (Gao, Guo, Lu,
and Zhang, 2020a). We extend the previous conference work
as follows. In Section 3.1.1 and Section 3.1.2, we introduce
our feature extraction process for correspondence identifi-
cation. In Section 3.3.1 and Section 3.3.2, we introduce a
uncertainty quantification technique based on Monte Carlo
dropout to quantify attribute and position uncertainties for
the regularized graph matching. In Section 3.5, we design a
new approach for multi-robot collaborative object localiza-
tion based on the identified correspondences. In Section 4.5,
we perform a case study by implementing our approach with
a physical multi-robot system in the scenario of multi-robot
collaborative object localization.

2 Related Work

We review existing techniques for correspondence identifi-
cation in multi-robot collaborative perception. Specially, we
discuss the category of the existing correspondence identifi-
cation techniques, the definition of the traditional perception
uncertainty and the uncertainty quantification techniques in
robotic perception.

2.1 Correspondence Identification

Existing methods can be grouped into three categories based
on appearance, synchronization, and spatial relationship.

Appearance-based identification identifies correspon-
dences based on appearance similarities, which can be fur-
ther divided intro three subgroups using keypoints, visual
appearances and semantic attributes, respectively. Keypoint-
based methods are commonly used in matching adjacent
frames in simultaneous localization and mapping (SLAM)
using key-points SIFT (Engel, Schöps, and Cremers, 2014),
ORB (Mur-Artal, Montiel, and Tardos, 2015) and 3D key-
points (Boroson and Ayanian, 2019). Furthermore, to iden-
tify same individual objects with changing appearances, vi-
sual features (Zhao, Oyang, and Wang, 2016) and attribute
features (Zhao, Shen, Jin, Lu, and Hua, 2019) are used for
re-identification.

Synchronization-based identification recognizes corre-
spondences of objects from multiple views by satisfying the
circle-consistent constraint (Fathian, Khosoussi, Lusk, Tian,
and How, 2019). Synchronization-based methods can be di-
vided into three subgroups, based upon convex relaxation,
spectral relaxation and graph clustering. The convex relax-
ation methods formulate multi-view correspondence identi-
fication as a semidefinite problem (Boyd, Parikh, Chu, Pe-
leato, Eckstein et al., 2011), which can be relaxed to be con-
vex (Hu, Huang, Thibert, and Guibas, 2018) and solved us-
ing a convex optimization solver (Zhou, Zhu, and Daniilidis,
2015). The spectral relaxation methods also formulate it as a
semidefinite problem and compute approximated solutions
based upon top-rank eigen-vectors decomposed from the
original formulation (Maset, Arrigoni, and Fusiello, 2017;
Pachauri, Kondor, and Singh, 2013). The graph clustering
methods formulate the multi-view object correspondence
problem as graph clustering that is solved, e.g., by graph
cut (Fathian, Khosoussi, Lusk, Tian, and How, 2019) or k-
means (Yan, Ren, Zha, and Chu, 2016).

Spatial correspondence identification uses spatial rela-
tionships of objects to identify their correspondences. For
example, iterative closest points (ICP) is a technique com-
monly used to associate dense points (Sobreira, Costa,
Sousa, Rocha, Lima, Farias, Costa, and Moreira, 2019).
Correspondence identification is also formulated as a lin-
ear assignment problem solved by the Hungarian (Almo-
hamad and Duffuaa, 1993) or Sinkhorn algorithm (Wang,
Yan, and Yang, 2019), and a quadratic assignment problem
that considers distances between the objects (Cho, Lee, and
Lee, 2010; Leordeanu and Hebert, 2005). Recently, angu-
lar relationships among the objects are also used for corre-
spondence identification, with a formulation of hypergraph
matching that is solved by reweighted random walk (Chang,
Fischer, Petit, Zambelli, and Demiris, 2017; Lee, Cho, and
Lee, 2011), tensor block coordinate ascent (Nguyen, Gau-
tier, and Hein, 2015), and Monte Carlo Markov Chain
(MCMC) (Suh, Adamczewski, and Mu Lee, 2015).

The appearance and synchronization-based methods re-
quire that the object appearance in multiple views must be
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unique, which cannot well address the scenarios when mul-
tiple objects look identical or the same object looks differ-
ent from different views. Furthermore, most spatial-based
methods assume that non-covisible objects only exist in one
of the multiple views, but in not all views. Finally, exist-
ing methods cannot address perception uncertainty together
with non-covisible objects for correspondence identifica-
tion.

2.2 Uncertainty in Perception

Uncertainty in robot perception is traditionally computed as
the variance of probability distributions (Thrun, 2002). A
widely applied method to address uncertainty is to compen-
sate it by designing an uncertainty model, e.g., applying a
sensory uncertainty field for multi-camera tracking (Black
and Ellis, 2002), modeling odometry uncertainty with fuzzy
set for robot motion estimation (Buschka, Saffiotti, and
Wasik, 2000), adding uncertainty to robot joint positions to
improve reliability estimation (Carreras and Walker, 2001),
describing uncertainty in point clouds by Gaussian Mix-
ture Model (GMM) to compensate distortion (Hong, Yu,
and Lee, 2019; Li, Xiong, and Vidal-Calleja, 2017), ap-
plying a multi-variate Gaussian distribution to model hu-
man joints to improve pose prediction (Gundavarapu, Sri-
vastava, Mitra, Sharma, and Jain, 2019), and modeling un-
certainty of point cloud positions by regression for robot
inspection (Hollinger, Englot, Hover, Mitra, and Sukhatme,
2012). Such traditional uncertainty models are generally de-
signed for specific robotics tasks.

Recently, Bayesian neural network (BNN) is widely
adopted to perform machine perception and quantify its un-
certainty, in a variety of applications including monocu-
lar depth estimation and segmentation (Kendall, Gal, and
Cipolla, 2018), camera localization (Bertoni, Kreiss, and
Alahi, 2019; Kendall, Gal, and Cipolla, 2018), and object
classification (Kraus and Dietmayer, 2019). Uncertainty in
machine perception based on BNN is generally divided
in two categories (Der Kiureghian and Ditlevsen, 2009;
Kendall and Gal, 2017): epistemic uncertainty and aleatoric
uncertainty. Epistemic uncertainty is defined as the ambi-
guity in the BNN learning model e.g., the learning model
cannot explain all training data. The epistemic uncertainty
can be calculated as the variance of the posterior distribution
of BNN model parameters. Aleatoric uncertainty is defined
as the ambiguity in training data (Kendall and Gal, 2017)
(e.g. caused by over-exposed regions in images when per-
forming monocular depth estimation). The aleatoric uncer-
tainty is computed as the variance of the likelihood distribu-
tion of training data, which can be obtained by approximate
Bayesian inference.

In order to perform uncertainty quantification under
Bayesian framework, traditional methods focus on mod-

eling the posterior distribution over model parameters to
obtain the epistemic uncertainty (Neal, 2012; Richard and
Lippmann, 1991). Since the posterior distributions are in-
tractable, variational inference (Li and Gal, 2017) is pro-
posed to approximate the posterior distribution of model
parameters, such as Markov chain Monte Carlo (MCMC)
(Ding, Fang, Babbush, Chen, Skeel, and Neven, 2014), ex-
pectation propagation (Li, Hernández-Lobato, and Turner,
2015), stochastic gradient MCMC (Korattikara Balan,
Rathod, Murphy, and Welling, 2015) and Monte Carlo
dropout (Kendall, Badrinarayanan, and Cipolla, 2015a).

We follow the same definitions of perception uncertain-
ties, and, for the first time, address them along with non-
covisible objects in a principled framework in order to en-
able correspondence identification for multi-robot collabo-
rative perception.

3 The Proposed Approach

We present our novel regularized graph matching approach
for correspondence identification in collaborative percep-
tion, which explicitly addresses perception uncertainty and
non-covisibile objects in a unified mathematical frame-
work. Specifically, we discuss our feature extraction, prob-
lem formulation, addressing perception uncertainty and non-
covisibility.

Notation. We write matrices using boldface capital let-
ters, e.g., M = {Mi,j} ∈ Rn×m with Mi,j denoting the
element in the i-th row and j-th column of M. Similarly, we
also utilize boldface capital letters to represent tensors (i.e.,
3D matrices), i.e., T = {Ti,j,k} ∈ Rn×m×l. Vectors are
written as boldface lowercase letters v ∈ Rn. In addition,
the vectorized form of a matrix M ∈ Rn×m is represented
as m ∈ Rnm, which is a concatenation of each column in
M into a vector.

3.1 Feature Extraction

Compared with our previous work (Gao, Guo, Lu, and
Zhang, 2020a), we discuss the details on extracting appear-
ance and spatial features of objects from monocular observa-
tions (images) to perform multi-robot correspondence iden-
tification. An object’s appearance is represented as a distri-
bution of its classification category, which is obtained from
the instance-level segmentation. In addition, the location of
an object is obtained from the monocular depth estimation
technique.

3.1.1 Instance Segmentation

Instance segmentation is a problem of detecting and locat-
ing individual objects of interest appearing in images. Given
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an image observation with n objects, we perform the mask-
RCNN (He, Gkioxari, Dollár, and Girshick, 2017) to map
the raw observation into a 3-channel outputs, including the
classes, bounding boxes and masks of objects of interest.
Formally, the loss functions are defined as follows:

– The loss function for object classification is based on
cross entropy, which is defined as Lc = −âci log aci ,
where aci ∈ R denotes the confidence of the i-th object
belonging to the c-th class, which is obtained by Soft-
Max, and âci denotes the ground true confidence.

– The loss function for bounding box regression is defined
as Lb = f(bi − b̂i), where bi = [x2d, y2d, w2d, h2d]

denotes the predicted bounding box of the i-th object
with central point x2d, y2d, width w2d and height h2d in
2D image coordination, f denotes the smooth function
(Girshick, 2015).

– The loss function for mask generation is defined as
Lm = 1

K

∑K
k=1(mi◦m̂i), where ◦ denotes the element-

wise product, K is the number of pixels of the i-th ob-
ject, mi denotes the predicted mask and m̂i denotes the
ground truth in a binary form.

The final loss function is defined as Lis = Lc + Lb + Lm.
Minimising the loss function is equivalent to minimize the
error of the object classification, bounding box regression
and mask generation.

3.1.2 Monocular Depth Estimation

Monocular depth estimation is a task of estimating the depth
of the scene given a single image. Given an image obser-
vation, we perform the CNN-based depth estimation net-
work (Hu, Zhang, and Okatani, 2019) to estimate the pixel-
wise depth of individual objects. In the network, ResNet-50
(Laina, Rupprecht, Belagiannis, Tombari, and Navab, 2016)
is used to extract high-level features of raw images. The loss
function is defined as Lde = ||ẑ − z||22, where z denotes the
pixel-level depth value and ẑ denotes the ground true depth.

Given the results obtained from depth estimation and the
instance segmentation, we represent the attribute feature and
the 3D position of objects as follows:

– We represent the attribute feature of an object as ai =

[a1i , a
2
i , . . . , a

m
i ], where aci , c = 1, 2, . . . ,m denotes the

confidence of the i-th object belonging to the c-th class
and m denotes the number of categories for object clas-
sification.

– We represent the 3D position of an object as p =

[x, y, z], where z denotes the averaged depth of the
object, which is calculated by averaging all the pixel-
wise depth values of the object given its mask. x and
y denotes the location of the object in real-world co-
ordination, which is transformed from the 2D central
point x2d, y2d based on the intrinsic camera parameters
(Szeliski, 2010).

3.2 Problem Formulation

Based upon the attribute features and 3D positions of ob-
jects, we introduce a graph-based representation to ad-
dress correspondence identification. Given an observation
of the environment sensed by a robot, we represent it us-
ing an undirected graph G = {P,A,S}. The node set
P = {p1,p2, . . . ,pn} represents the positions of the ob-
jects, where pi = {x, y, z} denotes the 3D position of the
i-th object and n is the number of objects observed by the
robot. A = {a1,a2, . . . ,an} denotes the set of attributes
to encode appearance and semantic characteristics of the
objects, where ai is a vector of attributes of the i-th ob-
ject located at pi. S = {Sd,Sa} denotes the spatial rela-
tionships among the objects. Sd = {sdi,j} denotes the set
of distance relationships between a pair of nodes, where
sdi,j , i, j = 1, 2, . . . , n, i 6= j denotes the distance between
pi and pj . Sa = {sai,j,k} denotes the set of angular relation-
ships, where sai,j,k = [θi, θj , θk], i, j, k = 1, 2, . . . , n, i 6=
j 6= k is the angles of the triangle constructed by node
pi, pj and pk. We consider the angular relationship as it
is more robust to geometric variations (e.g., the deformation
of spatial relationships of objects, which is caused by sen-
sor noise) compared to the distance relationship (Duchenne,
Bach, Kweon, and Ponce, 2011).

In collaborative perception, the objects observed by a
pair of robots in their own fields of view can be respec-
tively represented with two graphs G = {P,A,S} and
G′ = {P ′,A′,S ′}. Given the graph representations, we can
compute the similarity of the objects’ appearance and spatial
relationships to facilitate correspondence identification.

– The attribute similarity is computed by

Ai,i′ =
ai · a′i′
‖ai‖‖a′i′‖

(1)

where Aii′ denotes the similarity between attribute vec-
tors ai ∈ A and a′i′ ∈ A′. The attribute similarities of
all objects represented by the two graphs can be denoted
as a matrix A = {Ai,i′} ∈ Rn×n′ , as shown in Figure
2(a).

– The distance similarity between two pairs of objects can
be calculated by

Dii′,jj′ = exp

(
− 1

γ
(sdi,j − sd

′

i′,j′)
2

)
(2)

where Dii′,jj′ is the similarity between distance sdi,j ∈
Sd and distance sd

′

i′,j′ ∈ Sd
′
. We use an exponential

function parameterized by γ to normalize Dii′,jj′ ∈
(0, 1]. The distance similarities of all pairs of objects
represented by two graphs are denoted by the matrix
D = {Dii′,jj′} ∈ Rnn′×nn′ , as shown in Figure 2(b).
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Fig. 2 Illustrations of the defined attribute similarity matrix A, distance similarity matrix D, angular similarity tensor T, and correspondence
matrix X, given two graphs that represent objects (e.g., UAVs and UGVs) observed by a pair of robots (Gao, Guo, Lu, and Zhang, 2020a).

– The angular similarity between two triangles con-
structed by three nodes in each graph is defined as fol-
lows:

Tii′,jj′,kk′ = exp

− 1

γ

∑
p∈i,j,k;q∈i′,j′,k′

∣∣cos(θp)− cos(θ′q)
∣∣

(3)

where Tii′,jj′,kk′ denotes the similarity between tri-
angle sai,j,k ∈ Sa and triangle sa

′

i′,j′,k′ ∈ Sa
′
. The

angular similarities of all objects encoded by the two
graphs are denoted by the tensor T = {Tii′,jj′,kk′} ∈
Rnn′×nn′×nn′ , as shown in Figure 2(c).

Then, we formulate correspondence identification as a
graph matching problem that integrates the similarities of
the object attributes and spatial relationships into a unified
optimization framework to identify correspondence of the
objects observed by a pair of robots in collaborative percep-
tion. Mathematically, the problem formulation can be ex-
pressed as follows:

max
X

A>x+ x>Dx+T⊗1 x⊗2 x⊗3 x

s.t. X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1 (4)

where X ∈ Rn×n′ is the correspondence matrix, x =

{xii′} ∈ {0, 1}nn
′

is the vectorized form of X, with xii′ =
1 indicating that the i-th object in G corresponds to the i′-th
object in G′ (otherwise xii′ = 0), ⊗ denotes tensor prod-
uct,⊗l, l = 1, 2, 3 denotes multiplication between x and the
mode-l matricization of T (Learning, Rabanser, Shchur, and
Günnemann, 2015), and 1 denotes a vector with all ones.

The objective function in Eq. (4) denotes the overall sim-
ilarity, given the correspondence matrix X. The first term
denotes the accumulated attribute similarity, the second term
denotes the accumulated distance similarity, and the third
term denotes the accumulated angular similarity of the ob-
jects encoded by the pair of graphs. The constraints in Eq.
(4) are introduced to enforce each row and column in X to
at most have one element equal to 1, thus guaranteeing one-
to-one correspondences.

3.3 Addressing Uncertainty and Non-Covisibility

Based on our problem formulation in Eq. (4) that formu-
lates correspondence identification as an optimization prob-
lem, we propose a novel solution by designing new regu-
larization terms to regularize the optimization in order to
explicitly address the challenges of uncertainty and non-
covisibility, which have not been well addressed for corre-
spondence identification. Compared with our previous work
(Gao, Guo, Lu, and Zhang, 2020a), we explicitly quantify
attribute and position uncertainties by designing segmenta-
tion and depth estimation neural networks under Bayesian
framework in this paper.

3.3.1 Attribute uncertainty representation

Mainly due to sensor resolution limit and noise, measure-
ment scenario variations, and perception model bias, uncer-
tainty always exists in robot perception.

The uncertainty in object attributes is defined as the av-
erage of the variances of individual elements in the attribute
vector. We can utilize Bayesian neural networks (BNN)
(Kendall and Gal, 2017) to directly estimate the attribute un-
certainty. Formally, we formulate the instance segmentation
neural network (mask-RCNN) from the Bayesian perspec-
tive as follows:

p(aci |Ii, T ) =
∫
Ws∈Ω

p(aci |Ii,Ws)p(Ws|T )dWs (5)

where Ii denotes the i-th image region that contains an ob-
ject, aci denotes the confidence the i-th image region belong-
ing to the c-th category, T denotes the training dataset with
input images and corresponding ground truth classes, and
Ws denotes the trainable parameter of the mask-RCNN in a
distribution form instead of taking fixed values. The param-
eter matrix Ws can be obtained by calculating the posterior
distribution of Eq. (5)

Since Eq. (5) is intractable (Li and Gal, 2017), we ap-
ply Monte Carlo dropout sampling to obtain the distribution-
form parameter matrix Ws by approximating the posterior
distribution. During training, by adding dropout technique
to the parameter matrix Ws, several parameters are dropped
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out based on Bernoulli distribution. When performing infer-
ence, we also enable dropout to sample Ws. Finally, the
distribution-form attribute inference is defined as follows:

p(aci |Ii, T ) ≈
1

T

T∑
t=1

p(a
c{t}
i |Ii,Ws),W(s) ∼ q(Ws) (6)

where T is the number of samplings, q(Ws) is the approx-
imated posterior distribution, which is obtained by mini-
mizing the Kullback-Leibler divergency (Kendall and Gal,
2017).

We define the final classification result as the expecta-
tion of the samplings sampled from Eq. (6). By sampling the
posterior distribution of the BNN model parameters, we can
compute the variance of the model parameters as the epis-
temic uncertainty that captures the ambiguity in the BNN
model. By sampling the likelihood distribution of the pre-
dicted semantic labels, we can calculate the variance of the
semantic labels as the aleotoric uncertainty that captures the
ambiguity in data. Then, the uncertainty of the semantic
attributes can be computed as a sum of the epistemic and
aleatoric uncertainties.

Formally, we use vi to denote the uncertainty of the
attribute vector ai of the i-th object computed as the av-
erage of the variances of individual elements in ai, and
v = [v1, v2, . . . , vn] to represent the attribute uncertainties
of all n objects encoded by graph G. Given v and v′ from
G and G′ respectively, the attribute uncertainty matrix V is
calculated as follows:

V = v ⊕ v′> (7)

where⊕ denotes the kronecker plus (Neudecker, 1969), and
V = {Vi,i′} ∈ Rn×n′ is the attribute uncertainty matrix,
with Vi,i′ = vi + vi′ indicating the uncertainty of using
ai and a′i′ to compute the attribute similarity Ai,i′ in Eq.
(1). We consider Ai,i′ to provide more important informa-
tion if its uncertainty Vi,i′ has a smaller value. Accordingly,
we compute a weight matrix Wa for the attribute similarity
matrix A based on V:

Wa = exp

(
− 1

σ
V

)
(8)

where σ denotes the parameter of the normalization func-
tion, and Wa = {Wa

i,i′} ∈ Rn×n′ is the weight matrix
with Wa

i,i′ indicating the importance (in terms of certainty)
of Ai,i′ .

3.3.2 Position uncertainty representation

The uncertainty in object positions is defined as the aver-
age of the variances of pixel-level depth values of an ob-
ject. When only monocular visual observations are avail-
able, BNNs can be used to estimate the depth values, which

are able to directly provide the uncertainty. Similarly, we ap-
ply Monte Carlo dropout technique to our depth estimation
network, the provided uncertainty is a combination of the
epistemic uncertainty in the BNN model and the aleotoric
uncertainty in the data.

Given the position uncertainties of objects, we define
u = [u1, u2, . . . , un] to represent the position uncertainties
of all objects encoded by graph G. Given u and u′ from
G and G′ respectively, the position uncertainty matrix U is
computed by:

U = u⊕ u′> (9)

where U = {Ui,i′} ∈ Rn×n′ with Ui,i′ = ui+ u′i′ indicat-
ing the position uncertainty of a pair of objects.

According to Eq. (2), we can compute the similarity
Dii′,jj′ between distance sdi,j ∈ Sd and distance sd

′

i′,j′ ∈ Sd
′

based on the object positions, and similarly, we assume that
Dii′,jj′ has a larger weight if it has a lower uncertainty. This
weight matrix Wd of the distance similarity matrix D can
be calculated as:

Wd = exp

(
− 1

σ

(
U⊕U>

))
(10)

where Wd = {Wd
ii′,jj′} ∈ Rnn′×nn′ , and Wd

ii′,jj′ repre-
sents the importance of Dii′,jj′ and is computed based on
two pairs of objects. Similarly, we compute the importance
tensor Wt of the angular similarity tensor T in Eq. (3) as
follows:

Wt = exp

(
− 1

σ

(
U⊕

(
U⊕U>

)>))
(11)

where Wt = {Wt
ii′,jj′,kk′} ∈ Rnn′×nn′×nn′ , and

Wt
ii′,jj′,kk′ is the weight (in terms of certainty) of the angu-

lar similarity Tii′,jj′,kk′ between triangles sai,j,k ∈ Sa and
sa
′

i′,j′,k′ ∈ Sa
′
.

3.3.3 Addressing uncertainty

Then, the weights Wa, Wd, and Wt are utilized to encode
the importance of the similarities in A, D, and T, in order
to make the method to rely more on the similarities with a
lower uncertainty for correspondence identification:

max
X

(A ◦Wa)>x+ x>(D ◦Wd)x

+T ◦Wt ⊗1 x⊗2 x⊗3 x

s.t. X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1 (12)

In addition, we introduce a new regularization term over the
correspondence matrix X to control the sum of uncertain-
ties. Intuitively, if two objects have larger uncertainties, it
may still be inappropriate to match them, even though they
have a large similarity score. This regularization term can be
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integrated into our problem formulation in the unified regu-
larized optimization framework:

max
X

(A ◦Wa)>x+ x>(D ◦Wd)x

+T ◦Wt ⊗1 x⊗2 x⊗3 x− λ1||(V +U) ◦X||2

s.t. X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1 (13)

where ◦ is entry-wise product. The regularization term
||(V +U) ◦X||2 denotes the overall attribute and position
uncertainty given X. The hyper-parameter λ1 is introduced
to balance the maximization of the overall similarity and the
minimization of the overall uncertainty.

3.3.4 Addressing non-covisibility

Non-covisible objects usually significantly increase the
number of incorrect correspondences, because an object ob-
served by one robot may not be observed by other robots
(e.g., due to limited field of view or occlusion), and thus
correspondences may not exist. In order to explicitly address
this issue, we introduce the regularization term ||X||2 to re-
duce the number of correspondences:

max
X

(A ◦Wa)>x+ x>(D ◦Wd)x

+T ◦Wt ⊗1 x⊗2 x⊗3 x− λ2||X||2

s.t. X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1 (14)

where λ2 is the hyper-parameter to balance the overall simi-
larity and the regularization term. When the number of iden-
tified object correspondences increases, both the value of
||X||2 and the overall similarity increase. One correspon-
dence is added to X only if the increase of the overall sim-
ilarity caused by the newly added correspondence is larger
than the penalty resulted from the regularization. Accord-
ingly, correspondences among non-covisible objects often
having smaller similarities are less likely to be added to X,
and co-visible objects that have larger similarities are more
likely to be added to X and identified.

In summary, after integrating both regularization terms
into the unified mathematical framework of regularized con-
strained optimization, our final graph matching formulation
to address correspondence identification with non-covisible
objects under uncertainty becomes:

max
X

(A ◦Wa)>x+ x>(D ◦Wd)x

+T ◦Wt ⊗1 x⊗2 x⊗3 x

− λ1||(V +U) ◦X||2 − λ2||X||2

s.t. X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1 (15)

3.4 Optimization Algorithm

Since the proposed constrained optimization formulation
in Eq. (15) is a non-convex problem and has regulariza-
tion terms, the commonly used optimization methods for
graph matching, e.g., based upon reweighted random walks
(Chang, Fischer, Petit, Zambelli, and Demiris, 2017; Lee,
Cho, and Lee, 2011), cannot be directly utilized to solve the
problem. Thus, we design a new heuristic optimization algo-
rithm based on Markov chain Monte Carlo (MCMC) sam-
pling (Suh, Adamczewski, and Mu Lee, 2015).

We construct a Markov chain on the state space Y =

{y|y ∈ {0, 1}n}, whose stationary distribution describes
the matching objects, and y denotes a subset of the objects
in graph G; if yi = 1, we set the i-th object as active and use
it for graph matching. Then, we convert the problem in Eq.
(15) to the following:

P (y) = exp((A ◦Wa)>π(y) + π(y)>(D ◦Wd)π(y)

+T ◦Wt ⊗1 π(y)⊗2 π(y)⊗3 π(y)

− λ1||(U+V) ◦ π(y)||2)− λ2||π(y)||2 (16)

where π(y) ∈ Rnn′ denotes the correspondences given ac-
tive nodes on Y , and P (y) denotes the overall similarity
given the correspondences. Formally, π(y) is computed as
follows:

π(y) = max
X

(A ◦Wa)>x+ x>(D ◦Wd)x

+T ◦Wt ⊗1 x⊗2 x⊗3 x

s.t.
∑
i

Xij = 1, if yi = 1∑
j

Xij = 0, if yi = 0

X1n′×1 ≤ 1n×1,X
>1n×1 ≤ 1n′×1 (17)

Given the active nodes encoded by y, the first two con-
straints restrict X to only include correspondences by the
active nodes, and the final correspondences is obtained from
solving π(y).

In order to select optimal active nodes encoded by state
y, we design the rule to iteratively update y:

q(y, ŷ) =
α exp

(
− 1
γ

(
ŷ> (v + u)

))
||ŷ||1 = ||y||1 + 1

(1− α) 1
||y||1 ||ŷ||1 = ||y||1 − 1

0 otherwise

(18)

where q(y, ŷ) denotes the transition distribution to update
y to ŷ, and ŷ is obtained by sampling from the distribution
q(y, ŷ). There are two modes to update ŷ based on q(y, ŷ),
including adding one active node ||ŷ||1 = ||y||1 + 1, and



Correspondence Identification for Collaborative Multi-robot Perception under Uncertainty 9

Algorithm 1: The proposed solver to solve the for-
mulated non-convex regularized constrained opti-
mization problem in Eq. (15).

Input : T ∈ Rnn′×nn′×nn′ , D ∈ Rnn′×nn′ , and
A,U,V ∈ Rn×n′

Output: x ∈ {0, 1}nn′

1: Initialize y ∈ {0, 1}n (belongs to G) and T ;
2: while T > Tf do
3: Compute the active node distribution q(y→ ŷ) in Eq.

(18);
4: Sample y from q;
5: Calculate the acceptance ratio α(y→ ŷ) in Eq. (19);
6: if α(y→ ŷ) > ε then
7: y→ ŷ;
8: if P (ŷ) > P (y) in Eq. (16) then
9: Calculate x∗ in Eq. (17);

10: Update state y = ŷ;
11: end
12: end
13: T = ξT ;
14: end
15: return x∗

deleting one active node ||ŷ||1 = ||y||1 − 1; otherwise the
probability equals to 0. The mode selection is controlled by
α, which is set to 0.5, meaning that there is a 50% probabil-
ity to add or delete one active node from y in each update.

When adding an active node, we select nodes with a
small uncertainty in order to use low-uncertainty nodes to
compute the correspondence. Accordingly, the attribute un-
certainty v and position uncertainty u are used to compute
the probability of adding an active node when updating ŷ.
If the uncertainties are high, the probability of updating to ŷ

is low. The probability of deleting a node from y follows a
uniform distribution decided by the number of active nodes,
meaning that all active nodes are treated equally during dele-
tion.

In addition, to ensure that the Markov chain converges to
a stable distribution, the state update in Markov chain should
be subject to the detailed balance condition (Brooks, Gel-
man, Jones, and Meng, 2011), which means the designed
Markov chain is reversible. According to (Suh, Adam-
czewski, and Mu Lee, 2015), the acceptance ratio of state
update is designed as:

α(y, ŷ) = min

(
P (ŷ)q(ŷ,y)

P (y)q(y, ŷ)
, 1

)
(19)

The proposed algorithm is shown in Algorithm 1. The
end condition is controlled by the annealing temperature T ,
and the algorithm stops if T reduces to a predefined value
Tf with the annealing rate ξ.

Complexity. The complexity to solve the optimization
problem in Eq. (13) is O(n6), which is dominated by T.
When we apply a nearest neighborhood search to compute
local matches, the complexity reduces to O(n2k), where k

is the number of nearest neighborhoods. In this paper, we set
k = n2 and reduce the complexity to O(n4).

3.5 Multi-robot Collaborative Object Localization based on
Identified Correspondences

Based on the identified correspondences of objects, we fur-
ther integrate multi-robot observations of the same object to
improve the accuracy of the measured positions of objects
(a.k.a, object localization). Specifically, given a multi-robot
system with N robots (N > 2), each robot has its own ob-
servations with detected objects. By performing the algo-
rithm 1 among pairs of observations, we identify the corre-
spondences between pairs of observations. Given the iden-
tified pairwise correspondences, post-processing can be ap-
plied to aggregate pairwise correspondence results by forc-
ing circle consistency Hu et al. (2018).

We assume that M objects are identified based on Al-
gorithm 1 and these objects can be observed by all the
N robots. We define the measured positions of objects as
Pn = {pn1 ,pn2 , . . . ,pnM}, n = 1, 2, . . . , N , where pni de-
notes the measured position of the i-th object obtained from
the n-th robot. Based on the identified correspondences,
pik ∈ Pi and pjk ∈ Pj denote the measured positions of
the same object obtained by both i-th and j-th robots. The
position uncertainties of objects are represented as Un =

{un1 , un2 , . . . , unM}, where uni denotes the position uncer-
tainty of pni .

In order to improve the accuracy of single-robot mea-
sured positions of objects, we propose a multi-robot fusion
gain to integrate multi-robot measurements, which is defined
as follows:

Mn
i =

 N∑
j=1

(Iuji )
−1

−1 (Iuni )−1 (20)

where Mn
i ∈ R3×3 denotes the measurement fusion gain

for the n-th robot’s measurement of the i-th object and
I ∈ R3×3 denotes an identity matrix. In addition, Mn

i fol-
lows the constraint

∑N
n=1 M

n
i = I. The fusion gain for each

robot represents the weight of each robot’s measurement in
all the multi-robot measurements given the normalized posi-
tion uncertainties. The final position estimation of an object
is defined as follows:

p̂ni = Mn
i p

n
i +

N∑
j=1,j 6=n

Mj
iσ(p

j
i ) (21)

where σ denotes the transformation function that transforms
the multi-robot measured positions to the n-th robot’s co-
ordinates based on camera extrinsic parameters (Zhang and
Pless, 2004). The camera extrinsic parameters can be ob-
tained through GPS or deep learning algorithm (Kendall,
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(a) Observations by one robot

(b) Observations by the other robot

Fig. 3 Illustrations of CAD, S-MRC, and R-MRC scenarios (Gao,
Guo, Lu, and Zhang, 2020a).

Grimes, and Cipolla, 2015b). p̂ni denotes the final position
estimation of the i-th object observed by the n-th robot,
which is computed by the sum of single-robot measured po-
sitions weighted by the fusion gains Mn

i . If a robot’s mea-
sured position of an object has large uncertainty (e.g., per-
ception uncertainty caused by occlusion), then its contribu-
tion will be heavily weakened during the fusion. The uncer-
tainty of the final position estimation is defined as follows:

ûni =

(
N∑
n=1

(uni )
−1

)−1
(22)

where ûni denotes the uncertainty of the final position esti-
mation x̂ni , which is obtained by integrating all the single-
robot position uncertainties.

4 Experiment

4.1 Experiment Setup

We utilize both robotics simulations and physical robots
to evaluate our method for correspondence identification
in multi-robot collaborative perception in the three sce-
narios, including simulated connected autonomous driving
(CAD), simulated multi-robot coordination (S-MRC), and
real-world multi-robot coordination (R-MRC)1. Each of the
datasets includes 50 pairs of video instances with each video
lasting around 5 seconds. Each video instance includes a
pair of monocular RGB images observed by two robots from
different viewpoints, as well as the ground truth of object
correspondence that is obtained from the simulations (CAD
and S-MRC) or the QR code (R-MRC). The QR code are
used only as ground truth for evaluation, but not used as in-
put in the experiment.

1 The datasets are available at: http://hcr.mines.edu/
project/civr.html.

We use mask-RCNN to do the instance segmentation
from the raw images, the results are presented in Figure
4(b). We use the attribute feature constructed from the dis-
tribution of classification results, which is defined in Section
3.1.1. Each element in the attribute feature vector denotes an
confidence of the object belonging to a specific class. The
uncertainty of the attribute feature are obtained from BNN
models, which is defined in Section 3.3.1. The attribute un-
certainties are presented in Figure 5(a). Object positions are
computed from depth estimation, which is defined in Sec-
tion 3.1.2, the results are shown in Figure 4(c). The position
uncertainties are defined in Section 3.3.2, which are shown
in Figure 5(b).

We implement the full version of our approach that in-
cludes both regularization terms to explicitly address uncer-
tainty and non-covisibility with hyper-parameters λ1 = 0.1

and λ2 = 0.4. They are decided using sensitive analysis
in our experiments. Intuitively, non-visibility is a more se-
vere challenge for correspondence identification, as non-
visibility results in missing data. Uncertainty is mainly
caused by noise in the input data, and is less severe than non-
visibility. This explains why λ2 is greater than λ1 in general.
In addition, we implement two baseline methods by setting
λ1 = 0 that only uses the non-covisibility regularization
without considering uncertainty, and by setting λ2 = 0 that
only uses the uncertainty regularization without considering
non-covisibility.

We adopt precision and recall as metrics to evaluate
the performance of correspondence identification, following
(Suh, Adamczewski, and Mu Lee, 2015; Zhang and Wang,
2016). Given the correspondences of covisible objects, pre-
cision is defined as the ratio of correspondences of co-visible
objects over all retrieved correspondences, and recall is de-
fined as the ratio of the retrieved correspondences of co-
visible objects over all ground truth correspondences of co-
visible objects.

Also, for comparison, we implement six previous cor-
respondence identification techniques based on object ap-
pearance or spatial information. In terms of the spatial-
based methods, we implement (1) pairwise graph matching
RRWM (Cho, Lee, and Lee, 2010) that uses the distance
similarity to identify correspondences, (2) iterative closest
point ICP (Besl and McKay, 1992) that iteratively mini-
mizes the distances of two graphs, two hypergraph matching
techniques, including (3) BCAGM (Nguyen, Gautier, and
Hein, 2015) and (4) RRWHM (Lee, Cho, and Lee, 2011)
that use angular spatial relationships of the objects to iden-
tify correspondences. To compare with the attribute-based
methods, (5) we implement a CNN-based attribute learning
and matching approach for object re-identification (ReId)
(Zhao, Shen, Jin, Lu, and Hua, 2019), and (6) an approach
based upon multi-order similarities (MOS) (Chang, Fischer,
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(a) Image observations

(b) Instance segmentation

(c) Depth estimation

Fig. 4 Illustration of the image observed by a vehicle in CAD (first row), instance segmentation (second row) and depth estimation (third row). In
Figure 4(c), a darker color within an object region indicates a closer distance.

0.151 0.011 0.0070.028

(a) Attribute uncertainty

  

2.837
7.461 6.8854.089

(b) Position uncertainty

Fig. 5 Illustration of the attribute uncertainty and position uncertainty.
The numbers in Figures 5(a) and 5(b) denote average attribute and po-
sition uncertainties for each object, respectively. (Gao, Guo, Lu, and
Zhang, 2020a).

Petit, Zambelli, and Demiris, 2017) that consider both ap-
pearance and spatial relationships.

4.2 Results on Connected Autonomous Driving
Simulations

Various street objects are contained in the CAD simulation,
including different vehicles, pedestrians, traffic lights, and
road signs. The views from both connected vehicles con-

tain strong occlusions and large numbers of non-covisible
objects.

The quantitative results are presented in Table 1. We
observe that our complete approach outperforms two base-
line methods, indicating the benefit of addressing both per-
ception uncertainty and non-covisibility. Comparisons with
the previous methods are also presented in Table 1. It is
observed that distance-based techniques (ICP and RRWM)
perform badly, because of spatial deformations of the spa-
tial distances resulted from the position uncertainty. The
angular-based techniques (BCAGM and RRWHM) achieve
improved performance, since the triangle relationships of
objects are more robust to perspective changes. ReId im-
proves the performance by using attribute features of ob-
jects, which is more robust to appearance variations. MOS
further improves the performance through integrating vi-
sual and spatial information of objects. Our approach sig-
nificantly outperforms the previous methods because of its
capability of integrating both attribute and spatial relation-
ships, as well as addressing uncertainty and non-covisible
objects.

The qualitative results of our approach in CAD are pre-
sented in Figure 6(c), which demonstrates that our approach
correctly identifies correspondences of street objects. For
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Table 1 Quantitative results of our approach, and comparisons with
previous and baseline methods in CAD, S-MRC and R-MRC. The re-
sults are presented as the mean value, which are computed by running
these methods five times in each scenario. (Gao, Guo, Lu, and Zhang,
2020a).

Method CAD S-MRC R-MRC
Precision Recall Precision Recall Precision Recall

RRWM 0.032 0.029 0.289 0.291 0.131 0.106
ICP 0.061 0.069 0.302 0.311 0.089 0.116
BCAGM 0.154 0.186 0.503 0.587 0.201 0.256
RRWHM 0.161 0.173 0.524 0.592 0.219 0.221
ReId 0.238 0.264 0.321 0.472 0.396 0.508
MOS 0.571 0.681 0.641 0.658 0.559 0.702
Ours, λ1 = 0 0.611 0.641 0.678 0.661 0.563 0.708
Ours, λ2 = 0 0.608 0.684 0.685 0.688 0.565 0.711
Ours 0.659 0.718 0.701 0.711 0.575 0.723

comparison, we also include the qualitative results obtained
by ReId and MOS in Figure 6(a) and Figure 6(b), respec-
tively. Since most objects in this situation have similar ap-
pearance and attributes (e.g., many white and gray vehicles),
ReId cannot well identify the object correspondences. Al-
though MOS can identify most correspondences of the ob-
jects, but the precision is low. The reason is because that
MOS always maximizes the number of correspondences to
obtain the highest similarity value, without considering the
non-covisible objects that cannot be matched.

In order to further evaluate the robustness of our ap-
proach, we manually increase perception uncertainty in at-
tributes and positions of the objects, and then evaluate the
result variations. Specifically, given a uncertainty rate (i.e.,
0-15%), we set the uncertainty value to uncertainty× (1+

uncertainty rate). The performance variations on preci-
sion and recall with respect to different attribute and position
uncertainty rate are demonstrated in Figure 7. It is observed
that the performance of our proposed approach gradually de-
creases with small fluctuations as the increase of the uncer-
tainty rate in attributes and positions. We also observe that
our method obtains robust performance with the uncertainty
rate within 10%.

When running our approach on a Linux machine with
an i7 3.0GHz CPU, 16G memory and no GPU, the execu-
tion speed is around 5Hz, if n = 15 and 200 samplings are
used. When parallel MCMC-sampling (Neiswanger, Wang,
and Xing, 2013) is applied, the execution speed can be fur-
ther improved to around 40Hz on an 8-cores CPU.

4.3 Results on Multi-robot Coordination Simulations

We evaluate our approach in multi-robot coordination simu-
lations. The object instances used in the simulations include
a team of Husky UGVs with identical appearances. The ob-
jects are observed by another two robots with partially over-
lapped views. This simulator is implemented by integrating

Unity for visualization with ROS for robot perception and
control.

The qualitative results in S-MRC are shown in Figure
6(f). It demonstrates that our approach is able to correctly
identifies correspondences of the UGVs from two views.
Comparisons with ReId and MOS are also presented in Fig-
ure 6. We observe that ReId does not work well since most
objects are identical; the identical objects are matched by
ReId purely based on their processing order in the approach.
The correspondence results obtained by MOS has low pre-
cision because of the uncertainty in positions. Our method
correctly identifies covisible objects’ correspondences under
uncertainty in the simulations.

The quantitative results in S-MRC are presented in Ta-
ble 1. The table shows that the baseline method using the un-
certainty regularization without considering non-covisibility
(λ2 = 0) obtains better performance compared with the
baseline method without applying the uncertainty regular-
ization (λ1 = 0) in this scenario. This is because uncer-
tainty is the main challenge in S-MRC, due to the low res-
olution of observed images, the low texture of the objects,
and their long distance for the cameras. By using both regu-
larization terms, our full approach can still improve perfor-
mance. Quantitative comparisons with previous techniques
are also presented in Table 1. It is observed that our proposed
approach outperforms the previous methods on both preci-
sion and recall. The results demonstrate that, because the
S-MRC scenarios contain significant uncertainty, explicitly
addressing the uncertainties in attributes and positions of the
objects is necessary.

4.4 Results on Real-world Multi-robot Coordination

We perform additional evaluation on multi-robot coordina-
tion using physical robots. In R-MRC, the object instances
are different robots observed from different perspectives
(overhead view and side view), in which most of the robots
have the same type with the identical appearance. The over-
head view from a drone can well observe the objects, but
the side view obtained by a ground robot has strong occlu-
sions and a smaller field of view. Also, since the objects can-
not be well observed from the side view, they are not well
perceived, and the estimated robot positions and attributes
include significant uncertainties.

The qualitative results in R-MRC are demonstrated in
Figure 6. The results indicate that ReId can identify unique
objects but can not identify the correspondences of iden-
tical objects. MOS obtains an improved performance, but
MOS still obtains incorrect correspondences caused by the
large uncertainty in the estimated object positions. By ad-
dressing both attribute and position uncertainties, our ap-
proach obtains the best results on object correspondence
identification in these experiments. The quantitative results
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(a) ReId (b) MOS (c) Our Approach

(d) ReId (e) MOS (f) Our Approach

(g) ReId (h) MOS (i) Our Approach

Fig. 6 Qualitative experimental results of our approach over CAD (first row), S-MRC (second row) and R-MRC (third row), and comparisons
with the ReId and MOS methods. Green solid lines denote correct correspondences, red dash lines denote incorrect correspondences (Gao, Guo,
Lu, and Zhang, 2020a).

0 5 10 15

Attribute Uncertainty Rate (%)

0

5

10

15

P
o
si

ti
o
n
 U

n
ce

rt
ai

n
ty

 R
at

e 
(%

)

(a) Precision

0 5 10 15

Attribute Uncertainty Rate (%)

0

5

10

15

P
o
si

ti
o
n
 U

n
ce

rt
ai

n
ty

 R
at

e 
(%

)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(b) Recall

Fig. 7 Robustness analysis of our approach with respect to the attribute
and depth uncertainties in the CAD simulations. The uncertainty rate
denotes the percentage of additional uncertainties added to object at-
tributes and positions (Gao, Guo, Lu, and Zhang, 2020a).

of correspondence identification in R-MRC are listed in Ta-
ble 1. Since there exist several robots with unique appear-
ances in R-MRC, ReId correctly identifies their correspon-
dences, thus obtaining an improved result compared to its
result in S-MRC. On the other hand, methods (RRWM, ICP,
BCAGM, and RRWHM) based upon spatial relationships
do not perform well, because of the large uncertainty in
object positions. MOS that combines the attribute informa-
tion with spatial relationships obtains an improved result. By
explicitly addressing perception uncertainties and the non-
covisible objects, our full approach obtains the best perfor-
mance in the experiments of multi-robot coordination using
physical robots.

Observer 1 Observer 2

Obstacle

Target

Scenario

Observer 1

Observer 2

Fig. 8 Illustrations of correspondence identification in the scenario of
multi-robot collaborative object localization. When two collaborative
robots (observer 1 and 2) collaboratively localize objects (target robots
or obstacles), they need to identify the correspondences of objects to
refer to the same object.

4.5 Case Study with Physical Multi-robot System

We finally perform a case study of our approach by imple-
menting it with a physical multi-robot system. The system
consists of four mobile robots (two observers and two dy-
namic targets) equipped with the RealSense D435 camera.
Each mobile robot is powered by a dual core 2.9GHz CPU
and lacks an onboard GPU. The ground truth locations and
correspondences are obtained by an Optitrack motion track-
ing system.

Similar to the settings in Section 4.3, the mobile robots
and obstacles used in this scenario have identical appear-
ances, as shown in Figure(8). The number of non-covisible
objects is twice as the number of objects that can be ob-
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Fig. 9 Qualitative results of our approach in the scenario of multi-robot
collaborative object localization. The red curve denotes the trajectory
recorded by observer 1, the green curve denotes the trajectory recorded
by observer 2, and the blue line denotes the correct correspondences of
the target robots identified between both observations.

served by both robots. In addition, there exist strong occlu-
sion in robot’s observations, which leads to large perception
uncertainty.

The qualitative results of our approach are presented in
Figure (9). Given the results, we can see that our approach
can well identify the correspondences of target robots be-
tween two robots’ fields of views. In addition, our approach
achieves 0.9986 precision and 0.7268 recall in this challeng-
ing scenario with large number of non-covisible objects and
strong perception uncertainty..

Based on the identified correspondences, we further
evaluate our proposed approach of multi-robot collabora-
tive object localization. Specifically, we compared our pro-
posed multi-robot collaborative object localization approach
with the baseline method that only uses single-robot obser-
vations. The qualitative results are shown in Figure 10. Com-
pared with single-robot observations, our approach signifi-
cantly improve the object localization results by integrating
multi-robot observations. We use displacement error to be
the evaluation metrics, which is defined as the Euclidean
distance between the estimated locations and the ground
truth locations. Based on the metrics, the baseline method
obtains 17.5322mm displacement error and our approach
obtains 12.0441mm displacement error, which significantly
improves the performance of object localization.

5 Conclusion

Correspondence identification is a critical ability for a group
of robots to consistently refer to the same objects within
their own fields of view. Perception uncertainties and non-
covisible objects are two of the biggest challenges to enable

(a) Single-robot Observations (b) Our Approach

Fig. 10 Qualitative results of our approach in the scenario of multi-
robot collaborative object localization. The blue curve denotes the
ground truth trajectory and the green curve denotes the estimated tra-
jectory.

this ability. We propose a novel regularized graph match-
ing approach that formulates correspondence identification
as an optimization-based graph matching problem with two
novel regularization terms to explicitly address uncertainty
and non-covisibility. Furthermore, a new sampling-based
optimization algorithm is implemented to solve the formu-
lated non-convex regularized constrained optimization prob-
lem. Based on the identified correspondences, we further de-
sign a new approach of multi-robot collaborative object lo-
calization to improve the object localization results by inte-
grating multi-robot observations. Extensive experiments are
conducted to evaluate our method both in robotics simu-
lations and using physical robots, in the scenarios of con-
nected autonomous driving, multi-robot coordination, and
multi-robot collaborative object localization. The experi-
mental results have shown that our approach obtains the
state-of-the-art performance for correspondence identifica-
tion with non-covisible objects under uncertainty, and also
that our approach can be well integrated with our proposed
state fusion algorithm for multi-robot collaborative object
localization.
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