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Abstract— We propose Deterministic Sequencing of Explo-
ration and Exploitation (DSEE) algorithm with interleaving
exploration and exploitation epochs for model-based RL prob-
lems that aim to simultaneously learn the system model, i.e., a
Markov decision process (MDP), and the associated optimal
policy. During exploration, DSEE explores the environment
and updates the estimates for expected reward and transition
probabilities. During exploitation, the latest estimates of the
expected reward and transition probabilities are used to obtain
a robust policy with high probability. We design the lengths
of the exploration and exploitation epochs such that the
cumulative regret grows as a sub-linear function of time.

I. INTRODUCTION

Reinforcement Learning (RL) is used in solving complex
sequential decision-making tasks in uncertain environments
such as motion planning for robots [1], [2], personalized web
services [3], [4], and the design of decision-support systems
for human-supervisory control [5], [6]. Markov decision pro-
cesses (MDPs) [7] provide a natural framework for optimal
decision-making under uncertainty and are used to model and
solve numerous model-based RL problems. The objective of
these problems is to simultaneously learn the system model
and the optimal policy. While MDP formulation accounts for
environment uncertainty by using stochastic models, MDP
policies are known to be sensitive to errors in these stochastic
models [8], [9].

In many safety-critical systems, robust MDPs [10], [11]
are used to mitigate performance degradation due to uncer-
tainty in the learned MDP. However, to reduce the system
uncertainty, the agent must explore the environment and
visit parts of the state space associated with high estimation
uncertainty. Most often, RL algorithms use simple random-
ized methods to explore the environment, e.g. applying ✏-
greedy policies [12] or adding random noise to continuous
actions [13]. The objective of the robust MDPs is conflicting
with the exploration objective, i.e., robust policy avoids the
unexplored regions of the state space to optimize the worst-
case performance while the objective of the exploration is to
reduce the system uncertainty by visiting unexplored regions
of the state space. Therefore, to balance the trade-off between
learning the MDP and designing a robust policy, we design
a Deterministic Sequencing of Exploration and Exploitation
(DSEE) algorithm, in which exploration and exploitation
epochs of increasing lengths are interleaved.
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There exist efficient algorithms for solving RL prob-
lems with provable bounds on the sample complexity [14,
Definition 1]. In [14], authors analyze the Model-based
Interval Estimation (MBIE) algorithm that applies confidence
bounds to compute an optimistic policy and show that the
algorithm is PAC-optimal [14, Definition 2]. They provide
an upper bound on the algorithm’s sample complexity given
by O

⇣
|S|2|A|

(1��)6✏3 log(�
�1)
⌘

which is the maximum number of
time steps until when the MBIE policy is not ✏�optimal with
at least probability 1� �, where |S|, |A|, are the cardinality
of the state space and action space, respectively, � is the
discount factor, and ✏, � 2 (0, 1) are pre-defined constants.
A similar bound on the sample complexity is obtained for
the R-max algorithm [15] which distinguishes the “known”
and “unknown” states based on how often they have been
visited. It explores by acting to maximize rewards under
the assumption that unknown states deliver the maximum
reward. UCRL2 algorithm [16] relies on optimistic bounds
on the reward functions and probability density functions
and enjoys near-optimal regret bounds. A review of model-
based RL algorithms with provable finite time guarantees
can be found in [17, Chapter 38]. A major drawback of
these algorithms is that they consider optimism in the face
of uncertainty and hence, are not robust to the estimation
uncertainties. Furthermore, these algorithms with random ex-
ploration might lead to a bad user experience in applications
in which the RL agent seeks to learn human preferences for
system optimization.

To address these shortcomings, we propose a DSEE algo-
rithm for model-based RL in which we design a deterministic
sequence of exploration and exploitation epochs. The DSEE
approach has been used in multi-arm bandit problems [18]–
[21] and multi-robot coordination [22]. It allows for differ-
entiation between exploration and exploitation epochs. The
announced exploration may lead to a better user experience
for the agents (especially for human agents) than random
exploration at any time. For example, many personalized
web services calibrate their recommendations intermittently
by announced exploration, i.e., through surveys and user
selection. Another advantage of the DSEE algorithm is that
it allows for efficient exploration of the environment in
multi-agent systems. Specifically, in multi-agent systems,
exploration can be well-planned to cover all regions of the
state-space through agent coordination which can be easily
arranged due to the deterministic structure of exploration and
exploitation.

We design the DSEE algorithm with alternating sequences
of exploration and exploitation. In exploration epochs, the



algorithm learns the MDP, while in exploitation epochs,
it uses a robust policy based on the learned MDP and
the associated uncertainty. We design the lengths of the
exploration and exploitation epochs such that the cumulative
regret grows as a sub-linear function of time.

The major contributions of this work are twofold: (i) we
propose a DSEE algorithm for model-based RL problems and
(ii) we design the lengths of the exploration and exploitation
epochs such that the cumulative regret for the DSEE algo-
rithm grows as a sub-linear function of time.

This manuscript is structured as follows: in Section II,
we provide background and formulate the problem. In Sec-
tion III, we provide an overview of the DSEE algorithm.
In Section IV, we analyze the DSEE algorithm and design
the exploration and exploitation epochs such that the cumu-
lative regret grows sub-linearly with time. We conclude in
Section V.

II. BACKGROUND AND PROBLEM FORMULATION

We focus on the model-based RL problems which aim
to simultaneously learn the system model, i.e., a Markov
decision process (MDP), and the associated optimal policy.
We seek to design policies that are robust to uncertainty in
the learned MDP. However, learning the MDP requires visit-
ing parts of the state space associated with high uncertainty
in estimates and has exactly the opposite effect of a robust
policy. Therefore, to balance the trade-off between learning
the MDP and designing a robust policy, we design a DSEE
algorithm, in which exploration and exploitation epochs of
increasing lengths are interleaved. In exploration epochs, the
algorithm learns the MDP, while in exploitation epochs, it
uses a robust policy based on the learned MDP and the
associated uncertainty.

Consider an MDP (S;A, R,P, �), where S is the state
space, A is the action space, reward R(s, a), for each (s, a) 2
S ⇥ A, is a random variable with support [0, Rmax], P :
S ⇥A! �|S| is the transition distribution, and � 2 (0, 1) is
the discount factor. Here, �|S| represents probability simplex
in R|S|, | · | represents the cardinality of a set. Let R(s, a)
be the expected value of R(s, a). We consider a finite MDP
setting in which |S| and |A| are finite.

We assume that the rewards R and the state transition dis-
tribution P are unknown a priori. Hence, during exploration,
we estimate R and P using online observations. Let (s, a) be
any state-action pair where s 2 S and a 2 A. At any time
t, let nt(s, a) be the number of times state-action pair (s, a)
is observed until time t. For each (s, a), the empirical mean
estimates R̂t(s, a) and P̂t(s0|s, a), s0 2 S are:

R̂t(s, a) =
1

nt(s, a)

nt(s,a)X

i=1

ri(s, a), and (1)

P̂t(s
0|s, a) = nt(s, a, s0)

nt(s, a)
, (2)

respectively, where ri(s, a) is the immediate reward obtained
in (s, a) during observation i 2 {1, . . . , nt(s, a)} until time
t and nt(s, a, s0) is the number of times the next state s

0 is
observed from (s, a) out of nt(s, a) times.

Oftentimes, the uncertainty in probability transition ma-
trices and mean reward function can be large, especially in
the initial stages of learning due to limited observation data,
which may lead to sub-optimal policies. Robust MDPs [10]
mitigate the sub-optimal performance arising from this un-
certainty by optimizing the worst-case performance over
given uncertainty sets for reward function and probability
transition matrices to obtain a robust policy. Given, at time
t, uncertainty sets RU

t and PU
t containing R and P, respec-

tively, the robust MDP solves the following robust Bellman
equation:

V
R
t (s) = max

a2A
min

R̃t2RU
t , P̃t2PU

t

n
R̃t(s, a)+

�

X

s0

P̃t(s
0|s, a)V R

t (s0)
o
, (3)

to obtain a robust policy ⇡̂
R
t = argmaxa2A V

R
t , which

optimizes the worst-case performance through minimization
with respect to the uncertainty sets RU

t and PU
t , where V

R
t

is the robust value function.
The choice of these uncertainty sets are critical for the

performance of the robust algorithm. A poor modeling choice
can increase the computational complexity and result in a
highly conservative policy [9], [23]. To avoid these issues,
during the exploitation epoch of the DSEE, we construct
these uncertainty sets based on the estimates R̂t and P̂t from
the previous exploration epochs and Hoeffding bounds [24]
for R̂t (Lemma 1) and P̂t (Lemma 2). Subsequently, we
utilize robust MDP to learn a policy that is robust to the es-
timation uncertainties with high probability. The convergence
of the robust MDP with uncertain transition matrices to the
uncertainty-free MDP can be shown under the assumption
that the uncertainty sets converge to singleton estimates
almost surely [9], [25].

Definition 1 (Instantaneous and Cumulative Regret):
For a discounted and ergodic RL [26], consider an algorithm
A that, at the end of the (t � 1)-th step, returns a policy
⇡t to be applied in the t-th step. For any state s 2 S , let
V

⇤(s) and V
⇡t(s) be the optimal value of the state and its

value under the policy ⇡t, respectively. At any time t, the
instantaneous regret R(t) of the algorithm A is given by:

R(t) = kV ⇤(s)� V
⇡t(s)k1, (4)

where k · k1 denotes the L
1-norm of a vector, and the

cumulative regret RT until time horizon T is given by:

RT =
TX

t=1

R(t) =
TX

t=1

kV ⇤(s)� V
⇡t(s)k1. (5)

We design the exploration and exploitation epochs of the
DSEE algorithm such that its cumulative regret grows as a
sub-linear function of time. In the next section, we provide
an overview of the DSEE algorithm.

III. DSEE ALGORITHM

We design the DSEE algorithm for model-based RL under
the following assumptions:
(A1) State space S and action space A are finite sets.



Algorithm 1 Deterministic Sequencing of Exploration and
Exploitation (DSEE)
Input: Set of states S , Set of actions A, Initial State s0;
Set: ⌘ > 1, Sequences {✏j}j2N, {�j}j2N, send

0 = s0, s = s0;
Set: t = 0, n(s, a) = 0, n(s, a, s0) = 0, S(s, a) = 0, 8s, a, s0;

1: for epoch j = 1, 2, . . . do
% Exploration phase:

2: ⇢j ✏j
4+ 2Rmax�

(1��)2

;

3: µ 2
h
log(2|S| � 2) + log

⇣
2|S||A|

�j

⌘i
;

4: Uj  max
n (Rmax)

2 log( 4|S||A|
�j

)

2⇢2
j

,
µ
⇢2
j

o

5: while n(s, a) < Uj , 8(s, a)
6: t t+ 1;
7: Pick a ⇠ UNIF(A) in current state s do
8: Observe reward R and the next state s

0

9: if send
j�1 has been visited in epoch j then

10: n(s, a) n(s, a) + 1;
11: n(s, a, s0) n(s, a, s0) + 1;
12: S(s, a) = S(s, a) + R;
13: end if
14: s s

0;
15: end while
16: s

end
j  s;

17: R̂t(s, a) =
S(s,a)
n(s,a) , 8(s, a);

18: P̂t(s0|s, a) = n(s,a,s0)
n(s,a) , 8(s, a);

% Exploitation phase:
19: Construct uncertainty sets RU

t and PU
t using (11);

20: Compute V
R
t (s) and ⇡̂

R
t using (3);

21: Implement ⇡̂R
t for d⌘je time steps;

22: t t+ d⌘je;
23: end for

(A2) The MDP is ergodic under the uniform policy ⇡, i.e.,
under a policy ⇡ that, in every state s, randomly selects
the actions from A with equal probability, the MDP
admits a unique stationary distribution �⇡(s) : S !
�|S|, with �⇡(s) > 0 for all s.

Ergodic MDP [26] (assumption (A2)) is a common as-
sumption. It ensures that the stationary distribution is inde-
pendent of the initial distribution and all states are recurrent,
i.e., each state s is visited infinitely often and �⇡(s) > 0.
We use this assumption to estimate the number of times each
state is visited in N time steps.

Algorithm 1 shows an overview of the DSEE algorithm.
In the DSEE algorithm, we design a sequence of alternat-
ing exploration and exploitation epochs. Let ↵i and �i be
the lengths of the i-th exploration and exploitation epoch,
respectively, where i 2 N. During an exploration epoch, we
uniformly sample the action in the current state and update
the estimates R̂t and P̂t. For a given sequence of {✏i}i2N
and {�i}i2N that we design in Section IV, the length of the
exploration epoch ↵i is determined to reduce the estimation
uncertainty such that P(kV ⇤(s) � V

⇡̂R
t (s)k1  ✏i) �

1 � �i after the epoch, where P(·) denotes the probability
measure, and V

⇡̂R
t (s) is the value of state s under the robust

policy ⇡̂
R
t . In DSEE, we choose exponentially increasing

lengths of the exploitation epochs �i. During the exploitation
epoch, we utilize the estimates R̂t and P̂t from previous
exploration epochs and construct the uncertainty sets RU

and PU at time t. We use these uncertainty sets with a
robust Bellman equation to learn a policy that is robust to
the estimation uncertainties with high probability. In next
section, we analyze the DSEE algorithm, and design the
sequence of {✏i}i2N and {�i}i2N, such that the cumulative
regret (5) grows as a sub-linear function of time.

IV. ANALYSIS OF DSEE ALGORITHM

We now characterize the regret of the DSEE algorithm
under the assumptions (A1-A2) and design the exploration
and exploitation epochs. The optimal value V

⇤(st) of the
state st is given by:

V
⇤(st) = R(st,⇡

⇤(st)) + �E[V ⇤(st+1)|st,⇡⇤(st)], (6)

where ⇡
⇤ is an optimal policy that satisfies:

⇡
⇤(st) = argmax

at

�
R(st, at) + �E[V ⇤(st+1)|st, at]

 
. (7)

We define an approximate optimal value function V̂t that
utilizes the estimates R̂t and P̂t at time t. Therefore, V̂t(st)
is given by:

V̂t(st) = R̂t(st, ⇡̂t(st)) + �Ê
h
V̂t(st+1)|st, ⇡̂t(st)

i
, (8)

where Ê
h
V̂t(st+1)|st, ⇡̂t(st)

i
is used to denote

P
st+1

P̂t(st+1|st, ⇡̂t(st))V̂t(st+1) and ⇡̂t is an optimal
policy for the approximate optimal value function given by:

⇡̂t(st) = argmax
at

n
R̂t(st, at) + �Ê

h
V̂t(st+1)|st, at

io
.

(9)
Theorem 1 (Concentration of robust value function):

Let k · k1 denote the L
1-norm of a vector. For any given

✏t, �t 2 (0, 1), there exists an n 2 O

⇣
|S|
✏2t

+ 1
✏2t

log
⇣

|S||A|
�t

⌘⌘

such that if each state-action pair (s, a) is observed
nt(s, a) � n times until time t, then for each state s, the
following inequality holds:

P
⇣
kV ⇤(s)� V

⇡̂R
t (s)k1  ✏t

⌘
� 1� �t, (10)

where V
⇡̂R
t (s) is the value of state s under the robust policy

⇡̂
R
t = argmaxa2A V

R
t . The robust value function V

R
t is

defined in (3) with ⇢t =
✏t
2

⇣
2 + Rmax�

(1��)2

⌘�1
and

RU
t =

n
R

U (s, a) : |RU (s, a)� R̂t(s, a)|  ⇢t, 8(s, a)
o
,

PU
t =

n
PU (s, a) :

���PU (s, a)� P̂t(s, a)
���
1
 ⇢t, 8(s, a)

o
.

(11)
We prove Theorem 1 using the following Lemmas 1-4.
Lemma 1 (Concentration of rewards): Suppose until

time step t, the state-action pair (s, a) is observed
nt(s, a) times and bounded immediate rewards ri(s, a),



i 2 {1, . . . , nt(s, a)}, are obtained at these instances. Then
the following inequality holds:

P
⇣���R(s, a)� R̂t(s, a)

���  ✏
R
t

⌘
� 1� �

R
t , (12)

where R̂t(s, a) is the empirical mean reward defined in (1)
and ✏

R
t =

q
(Rmax)2 log(2/�Rt )

2nt(s,a)
.

Proof: For brevity of notation, let ✏R and �R denote ✏
R
t

and �
R
t , respectively. For bounded random variables ri(s, a),

using the Hoeffding bounds [24], we have

P
⇣���R(s, a)� R̂t(s, a)

���  ✏R

⌘
� 1� 2e

� 2nt(s,a)✏2R
(Rmax)2 . (13)

Choosing �R = 2e
� 2nt(s,a)✏2R

(Rmax)2 , we get the desired result.
Lemma 2 (Concentration of transition probabilities):

Suppose until time step t, the state-action pair (s, a) is
observed nt(s, a) times and let P(s, a) 2 �|S| be the true
transition probability distribution for (s, a). Then for any
(s, a), the following inequality holds:

P
⇣���P(s, a)� P̂t(s, a)

���
1
 ✏

P
t

⌘
� 1� �

P
t , (14)

where k · k1 is the L
1 norm of a vector and P̂t(s, a) is

the empirical transition probability vector with components
P̂t(s0|s, a) defined in (2), and ✏

P
t =

q
2[log(2|S|�2)�log(�Pt )]

nt(s,a)
.

Proof: For brevity of notation, let ✏P and �P denote
✏
P
t and �

P
t , respectively. Using [27, Theorem 2.1], we have:

P
⇣���P(s, a)� P̂t(s, a)

���
1
 ✏P

⌘
� 1�(2|S|�2)e�

nt(s,a)✏2P
2 .

(15)
Setting �P = (2|S|� 2)e�

nt(s,a)✏2P
2 , yields the desired result.

Lemmas 1 and 2 provide concentration bounds on the
reward and transition probability based on how often a state-
action pair is visited.

Lemma 3: (Concentration of reward and transition prob-
ability functions) Let �

R
t = �

P
t = �t

2|S||A| . Then, for any

⇢t > 0, there exists an n 2 O

⇣
|S|
⇢2
t
+ 1

⇢2
t
log
⇣

|S||A|
�t

⌘⌘

such that when each state-action pair (s, a) is observed
nt(s, a) � n times, then the following statements hold for
any (s, a):

(i) P
⇣
|R(s, a)� R̂t(s, a)|  ⇢t

⌘
� 1� �t

2|S||A| ,

(ii) P
⇣���P(s, a)� P̂t(s, a)

���
1
 ⇢t

⌘
� 1� �t

2|S||A| .

Proof: Using Lemmas 1 and 2, we know that |R(s, a)�
R̂t(s, a)|  ⇢t and

���P(s, a)� P̂t(s, a)
���
1
 ⇢t holds for

any (s, a) with at least probability 1 � �t
2|S||A| for ⇢t �r

(Rmax)2 log( 4|S||A|
�t

)

2nt(s,a)
and ⇢t �

r
2[log(2|S|�2)�log( �t

2|S||A| )]
nt(s,a)

,
respectively. Hence, we have that

nt(s, a) � max

(
(Rmax)2 log(

4|S||A|
�t

)

2⇢2t
,
µ

⇢2t

)
, (16)

where µ = 2
h
log(2|S| � 2) + log

⇣
2|S||A|

�t

⌘i
, is suffi-

cient to guarantee that |R(s, a) � R̂t(s, a)|  ⇢t and

���P(s, a)� P̂t(s, a)
���
1
 ⇢t holds for any (s, a) with at

least probability 1 � �t
2|S||A| . Hence, we can choose n 2

O

⇣
|S|
⇢2
t
+ 1

⇢2
t
log
⇣

|S||A|
�t

⌘⌘
such that (16) holds, and hence,

the lemma follows.
Remark 1 (Concentration inequalities): The concentra-

tion inequalities in Lemmas 1, 2, and 3 use a deterministic
value of nt(s, a). However, these bound also apply if nt(s, a)
is a realization of a random process that is independent of
R̂t(s, a) and P̂t(s, a), which would be the case in this paper.

Remark 2 (Uncertainty set): Using union bounds over all
(s, a) and Lemma 3, it follows that uncertainty sets RU

t and
PU
t stated in Theorem 1 are ⇢t-level uncertainty sets for

R(s, a) and P(s, a), respectively, for each (s, a) 2 S ⇥ A
with at least probability 1 � �t. Thus, the policy obtained
at time t in an exploitation epoch is robust to estimation
uncertainties with at least probability 1� �t.

Lemma 4 (Loss in robust value function): Suppose
|R(s, a) � R̂t(s, a)|  ⇢t and

���P(s, a)� P̂t(s, a)
���
1
 ⇢t,

for any (s, a), at time t. Then Lt(s) = V
⇤(s) � V

⇡̂R
t (s)

satisfies:

Lt(s)  2⇢t

✓
2 +

Rmax�

(1� �)2

◆
, (17)

where V
⇡̂R
t (s) is the value of state s under the robust policy

⇡̂
R
t at time t.

Proof [Sketch]: The upper bound on the loss is obtained
by following a similar analysis as in [28] that provides an
upper bound on the loss by considering the uncertainty in P
only. The analysis in [28] can be extended by considering
the uncertainty in R as well. The details of the proof can be
found in [29].

Lemma 4 provides the bounds on the loss in robust value
function w.r.t. the optimal value function using the concen-
tration bounds on the rewards and transition probabilities.

Proof of Theorem 1: Using Lemma 3, we know
that when each state-action pair (s, a) is sampled n 2
O

⇣
|S|
⇢2
t
+ 1

⇢2
t
log
⇣

|S||A|
�t

⌘⌘
times, then the following inequal-

ities holds for any (s, a):

P
⇣
|R(s, a)� R̂t(s, a)|  ⇢t

⌘
� 1� �t

2|S||A| , (18)

P
⇣���P(s, a)� P̂t(s, a)

���
1
 ⇢t

⌘
� 1� �t

2|S||A| . (19)

Hence, using Lemma 4 and applying union bounds, we
obtain that the following holds with at least probability
1� (�Rt + �

P
t )|S||A|

V
⇤(s)� V

⇡̂R
t (s)  2⇢t

✓
2 +

Rmax�

(1� �)2

◆
. (20)

Setting ⇢t =
✏t
2

⇣
2 + Rmax�

(1��)2

⌘�1
and �

R
t = �

P
t = �t

2|S||A| ,

P
⇣
V

⇤(s)� V
⇡̂R
t (s)  ✏t

⌘
� 1� �t, 8s 2 S

=) P
⇣
kV ⇤(s)� V

⇡̂R
t (s)k1  ✏t

⌘
� 1� �t. (21)



Additionally, the order of n in terms of ✏t becomes n 2
O

⇣
|S|
✏2t

+ 1
✏2t

log
⇣

|S||A|
�t

⌘⌘
. ⌅

In Theorem 1, we obtain the number of times n each
state-action pair needs to be visited to reduce the estimation
uncertainty in rewards and transition probabilities to obtain
an ✏t-optimal policy with probability at least 1 � �t. Now
we estimate the total number of exploration steps that are
needed to ensure that each state-action pair is visited at least
n times.

Lemma 5 (Adapted from [30, Theorem 3]): For an er-
godic Markov chain with state space S and stationary
distribution �ss, let ⌧ = ⌧(�) be the �-mixing time1 with
�  1

8 . Let �0 be the initial distribution on S and let
k�0k�ss =

qP
s2S

�0(s)2

�ss(s)
. Let nvis(si, N) be the number

of times state si 2 S is visited until time N . Then, for any
0    1, there exists a constant c > 0 (independent of �

and ) such that:

P (nvis(si, N) � (1� )N�ss(si))

� 1� ck�0k�sse
�2N�ss(si)

72⌧ . (22)
Proof: See [30, Theorem 3] for the proof.

In the exploration epoch, at any state si 2 S , we choose
actions uniformly randomly. Consider the Markov chain on S
that is associated with the uniform action selection policy. Let
{�0(s)}s2S and {�ss(s)}s2S , respectively, be the associated
initial and stationary distribution. We can also consider an
equivalent lifted Markov chain on S⇥A with states (si, aj)
such that si 2 S and aj 2 A. The lifted Markov chain
has the initial and stationary distribution, �0(s, a) =

�0(si)
|A|

and �ss(s, a) = �ss(si)
|A| , respectively. Hence, we can apply

Lemma 5 to obtain the probability of visiting a state-action
pair (s, a) at least (1�)N�ss(s, a) times after N time steps
under the uniform action selection policy.

We now design a sequence of exploration and exploitation
epochs. Let ↵i and �i be the lengths of the i-th explo-
ration and exploitation epoch, respectively. Let �

min
ss :=

min(s,a)2S⇥A �ss(s, a) and Ni = N̄i
(1�)�min

ss
, where N̄i

is the upper bound in (16) associated with (✏i, �i). Let

�
↵i := ck�0k�sse

�2Ni�
min
ss

72⌧ . Note that the desired values of
(1 � )N�ss(si, aj) and �

↵i can be obtained by tuning N

and  in (22).
Theorem 2 (Regret bound for DSEE algorithm): Let

the length of exploitation epochs in DSEE be exponentially
increasing, i.e. �i = ⌘

i
, ⌘ > 1. Let ✏i = ⌘

� i
3 and �i = ⌘

� i
3

such that P(kV ⇤(s) � V
⇡̂R
t (s)k1  ✏i) � 1 � �i after

exploration epoch i. For any � 2 (0, 1), set �↵i = 6�
|S||A|⇡2i2 .

Then, the cumulative regret for the DSEE algorithm
RT 2 O((T )

2
3 log(T )) grows sub-linearly with time T with

probability at least 1� �.
Proof: We note that the system state at the start of the

i-th exploration epoch might be different from the final state
at the end of the (i�1)-th exploration epoch. Therefore, we

1�-mixing time for an ergodic Markov chain in the minimal time until
the distribution of Markov chain is �-close in total variation distance to its
steady state distribution [31].

remember the final state of the previous exploration epoch
and wait for the same state to restart the new exploration
epoch. For the ergodic MDP under the uniform action
selection policy (assumption A2), we know that the expected
hitting time is finite [32]. Let U 2 R>0 be a constant upper
bound on the expected hitting time to reach the final state
in the previous exploration epoch from an arbitrary initial
state in the current exploration epoch. Hence, the cumulative
regret during the i-th exploration epoch of length ↵i is upper-
bounded by (U + ↵i)Rmax, where Rmax = Rmax

1�� is the
maximum instantaneous regret.

Since at start of the exploitation epoch i of length �i,
P(kV ⇤(s) � V

⇡̂R
t (s)k1  ✏i) � 1 � �i, the expected

cumulative regret during the exploitation epoch is (1 �
�i)�i✏i + �i�iRmax. Therefore, the total cumulative regret
after k sequences of exploration and exploitation each is
upper bounded by:

RTk 
kX

i=1

((↵i + U)Rmax + (1� �i)�i✏i + �i�iRmax)


kX

i=1

((↵i + U)Rmax + �i✏i + �i�iRmax) . (23)

Let Ti be the time at the end of the i-th exploitation
epoch. Then,

Pk
j=1 �j < Tk 

Pk
j=1(↵j + U) +

Pk
j=1 �j .

We design the length of the exploitation epochs to be
exponentially increasing, i.e., �i = ⌘

i, for ⌘ > 1. Thus,
Tk 2 O(

Pk
j=1 ⌘

j) = O(⌘k). Let ✏i = ⌘
�di and �i = ⌘

�gi,
where d 2 (0, 1) and g 2 (0, 1) are constants that we design
later. Thus, (23) can be written as:

RTk  Rmax

 
kX

i=1

↵i + kU

!
+

kX

i=1

⌘
i(1�d)+

Rmax

kX

i=1

⌘
i(1�g)

. (24)

For a state-action pair (s, a), where s 2 S and a 2 A, let
�
↵i

(s,a) := ck�0k�sse
�2Ni�ss(s,a)

72⌧ . Therefore, using Lemma 5,
at the end of the i-th epoch,

P (nvis(s, a,Ni) � (1� )Ni�ss(s, a)) � 1� �
↵i

(s,a). (25)

Recall �
↵i := ck�0k�sse

�2Ni�
min
ss

72⌧ , where �
min
ss :=

min(s,a) �ss(s, a). Substituting Ni =
N̄i

(1�)�min
ss

in (25),

P
�
nvis(s, a,Ni) � N̄i

�
� 1�

|S||A|X

m=1

�
↵i , (26)

for each state-action pair (s, a). Therefore, in Ni time
steps of the lifted Markov chain, each (s, a) is visited at
least N̄i times with high probability. Thus, Ni is an upper
bound on

Pi
j=1 ↵j with probability in (26). Therefore, using

union bounds, with high probability 1�
Pk

j=1

P|S||A|
m=1 �

↵j ,Pk
j=1 ↵j  Nk = N̄k

(1�)�min
ss

, and hence,

RTk 
RmaxN̄k

(1� )�min
ss

+ kURmax +
kX

i=1

⌘
i(1�d)+



Rmax

kX

i=1

⌘
i(1�g)

. (27)

Using Theorem 1, N̄k 2 O

⇣
|S|
✏2k

+ 1
✏2k

log
⇣

|S||A|
�k

⌘⌘
.

Therefore,

RTk 
Rmax�

(1� )�min
ss

✓
|S|
✏2k

+
1

✏2k

log

✓
|S||A|
�k

◆◆
+

+ kURmax +
kX

i=1

⌘
i(1�d) +Rmax

kX

i=1

⌘
i(1�g)

 Rmax�

(1� )�min
ss

�
⌘
2dk|S|+ ⌘

2dk log
�
⌘
gk|S||A|

��
+

+ kURmax +
kX

i=1

⌘
i(1�d) +Rmax

kX

i=1

⌘
i(1�g)

,

(28)

for some constant �. Recall that Tk 2 O(⌘k), which implies
k 2 O(log(Tk)). Let Z be the right-hand side of (28). Then,
we have:

Z 2 O

⇣
(Tk)

2d + (Tk)
2d log(Tk) + (Tk)

(1�d) + (Tk)
(1�g)

⌘
.

2 O((Tk)
2
3 log(Tk)), (29)

by choosing d = g = 1
3 . Hence, the cumulative regret

RTk 2 O((Tk)
2
3 log(Tk)) grows sub-linearly with time Tk

with probability at least 1�
Pk

i=1

P|S||A|
m=1 �

↵i .
Setting �

↵i = 6�
|S||A|⇡2i2 , we have

Pk
i=1

P|S||A|
m=1 �

↵i  �.

V. CONCLUSIONS

We proposed a DSEE algorithm with interleaving explo-
ration and exploitation epochs for model-based RL problems
that aims to simultaneously learn the system model, i.e., an
MDP, and the associated optimal policy. During exploration,
we uniformly sample the action in each state and update the
estimates of the mean rewards and transition probabilities.
These estimates are used in the exploitation epoch to obtain
a robust policy with high probability. We designed the length
of the exploration and exploitation epochs such that the
cumulative regret grows as a sub-linear function of time.
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