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Finite generation for valuations computing

stability thresholds and applications to

K-stability
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Abstract

We prove that on any log Fano pair of dimension n whose stability

threshold is less than n+1

n
, any valuation computing the stability thresh-

old has a finitely generated associated graded ring. Together with earlier

works, this implies that (a) a log Fano pair is uniformly K-stable (resp. re-

duced uniformly K-stable) if and only if it is K-stable (resp. K-polystable);

(b) the K-moduli spaces are proper and projective; and combining with

the previously known equivalence between the existence of Kähler-Einstein

metric and reduced uniform K-stability proved by the variational approach,

(c) the Yau-Tian-Donaldson conjecture holds for general (possibly singular)

log Fano pairs.

1. Introduction

In recent years, the algebro-geometric study of the K-stability of Fano

varieties has made remarkable progress. See [Xu21a] for a comprehensive up-

to-date survey.

The theory has naturally driven people’s attention to valuations that are

not necessarily divisorial. In fact, to further advance the theory, one main

question is to show the finite generation property of the associated graded

rings for quasi-monomial valuations of higher (rational) rank that minimize

functions on the space of valuations arisen from K-stability theory.

While the finite generation property for divisorial valuations follows from

[BCHM10], the higher rank case posts a completely new problem. In fact,

there are very few studies on higher rank quasi-monomial valuations from the

viewpoint of the minimal model program (MMP), which is our fundamental

tool to study K-stability.
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In this paper, we prove that quasi-monomial valuations that compute

the stability thresholds (or δ-invariants) of log Fano pairs satisfy the finite

generation property (see [Xu21b, Conj. 1.2]).

Theorem 1.1 (Theorem 4.1, Higher Rank Finite Generation Conjecture).

Let (X,∆) be a log Fano pair of dimension n, and let r > 0 be an integer

such that r(KX + ∆) is Cartier. Assume that δ(X,∆) < n+1
n . Then for any

valuation v that computes δ(X,∆), the associated graded ring grvR, where

R =
⊕

m∈Z≥0
H0(X,−mr(KX +∆)), is finitely generated.

The assumption δ(X,∆) < n+1
n might look a bit surprising since the

original conjecture only assumes δ(X,∆) ≤ 1. However, the improvement

becomes quite natural using the trick of compatible divisors invented in [AZ20].

1.1. Corollaries of the main theorem. Together with many earlier works

in recent years, Theorem 1.1 solves some central questions in the field of

K-stability theory. Combining with [BLZ19], the first consequence we have

is the following, which says that any log Fano pair that is not uniformly K-

stable has an optimal destabilizing degeneration (in terms of preserving the

stability threshold).

Theorem 1.2 (Theorem 5.1, Optimal Destabilization Conjecture). Let

(X,∆) be a log Fano pair of dimension n such that δ(X,∆) < n+1
n . Then

δ(X,∆) ∈ Q and there exists a divisorial valuation E over X such that δ(X,∆)

=
AX,∆(E)
SX,∆(E) .

In particular, if δ(X,∆) ≤ 1, there exists a non-trivial special test config-

uration (X ,∆X ) with a central fiber (X0,∆0) such that δ(X,∆) = δ(X0,∆0),

and δ(X0,∆0) is computed by the Gm-action induced by the test configuration

structure.

The second main application of Theorem 1.1 is on the general construction

of the K-moduli space. Indeed, it is proved in [BHLLX21] that Theorem 1.2

implies that there is a Θ-stratification on the stack MFano
n,V,C of Q-Gorenstein

families of n-dimensional log Fano pairs (X,∆) → B with a fixed volume V and

C ·∆ being integral. By the general theory of Θ-stratification [AHLH18], this

yields the properness of the K-moduli space. We also conclude the projectivity

following [XZ20].

Theorem 1.3 (Theorem 5.3, Properness and Projectivity of K-moduli

spaces). The K-moduli space MKps
n,V,C is proper, and the CM line bundle on

MKps
n,V,C is ample.

Remark 1.4.When the base field k equals C and we restrict ourselves to the

component whose fibers parametrize Q-Gorenstein smoothable K-polystable

Fano varieties, then the properness follows from the analytic work of [DS14],
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[CDS15a], [CDS15b], [CDS15c], [Tia15] (see, e.g., [LWX19]). The ampleness

of the CM line bundle restricting to this component is a consequence of [XZ20]

combining with the analytic result in [Li22].

Remark 1.5. Theorem 1.3 is the last step in the general purely algebraic

construction of the K-moduli space. We briefly review the previously known

steps here:

A notion of a family of log pairs over a general base was introduced

in [Kol19]. The boundedness of K-semistable Fano varieties with a fix vol-

ume is proved in [Jia20] (which heavily relies on [Bir19], [Bir21]). A different

proof, which only uses the solution to Batyrev’s conjecture [HMX14], is given

in [XZ21]. Then using boundedness of complements, [Bir19], [BLX19] and

[Xu20] gave two different proofs for the openness of K-semistability, and as

a consequence the open subfunctor MKss
n,V,C ⊆ MFano

n,V,C parametrizing K-semi-

stable log Fano pairs yields an Artin stack of finite type, which is called the

K-moduli stack.

By [LWX21], [BX19] and [ABHLX20], we know that MKss
n,V,C admits a

separated good moduli space MKps
n,V,C that parametrizes K-polystable log Fano

pairs and is called the K-moduli space.

The remaining part is the properness and projectivity of the K-moduli

space. In [BHLLX21], it is proved that Theorem 1.2 implies the properness of

MKps
n,V,C , and in [XZ20], it is shown that Theorem 1.1 implies the ampleness of

the CM line bundle (introduced in [Tia97], [PT09]) on MKps
n,V,C .

The next major consequence of Theorem 1.1 is the complete solution of

the Yau-Tian-Donaldson conjecture for log Fano pairs, including singular ones.

Theorem 1.6 (Theorem 5.2, Yau-Tian-Donaldson Conjecture). A log

Fano pair (X,∆) is uniformly K-stable (resp. reduced uniformly K-stable) if

and only if it is K-stable (resp. K-polystable). In particular, when the base

field k = C, (X,∆) admits a weak Kähler-Einstein (KE) metric if and only if

it is K-polystable.

Remark 1.7. In this generality, the direction that says that the existence

of KE metrics implies K-polystability was settled in [Ber16].

For the converse direction, [BBJ21] initiated a variational approach to the

Yau-Tian-Donaldson conjecture, and the analytic side of this approach was

completed in [LTW21], [Li22], which shows that a log Fano pair (X,∆) admits a

weak KE metric if and only if it is reduced uniformly K-stable. Therefore, what

remains to be shown is the purely algebro-geometric statement that K-poly-

stability is equivalent to reduced uniform K-stability.

When |Aut(X,∆)| < ∞, this means that for any log Fano pair (X,∆)

that is not uniformly K-stable, i.e., δ(X,∆) ≤ 1, we need to show it is also
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not K-stable by producing a degeneration that destabilizes the log Fano pair.

In [BLX19] (see also [BLZ19]), a step toward constructing such a degeneration

was made. More precisely, it was shown that the valuation that computes

δ(X,∆)(≤ 1) is quasi-monomial, and the degeneration should be the Proj of

the graded ring associated to this valuation, provided it is finitely generated.

Theorem 1.1 addresses the finite generation, and then it follows that the sought

degeneration as in Theorem 1.2 exists. As a consequence, it establishes the

equivalence between K-stability and uniform K-stability. In the more general

case when the automorphism group is positive dimensional, it is shown in

[XZ20] that Theorem 1.1 implies the equivalence between K-polystability and

reduced uniformK-stability, by refining the argument from [BLX19] and finding

a quasi-monomial valuation that is not induced by a one parameter subgroup

of Aut(X,∆), which yields a non-product type degeneration.

We note that when X is smooth and ∆ = 0, the above theorem was

first proved in [CDS15a], [CDS15b], [CDS15c], [Tia15] using Cheeger-Colding-

Tian theory, which seems difficult to generalize to the case of general (possibly

singular) log Fano pairs.

We also prove the following statement, which is a (necessarily) modified

version of a conjecture first raised by Donaldson in [Don12, Conj. 1] (see also

[Szé13] and [BL22, §7] for some further discussions of the problem).

Theorem 1.8 (Theorem 5.4). Let (X,∆) be a log Fano pair such that

δ := δ(X,∆) < 1. For any sufficiently divisible integer m > 0 and any general

member D0 of the linear system | −m(KX + ∆)|, if we take D = 1
mD0, then

the pair (X,∆+ (1− δ)D) is K-semistable. In particular, (X,∆+ (1− δ′)D)

is uniformly K-stable for any 0 ≤ δ′ < δ.

For a smooth Fano manifold X, the above theorem was essentially im-

plied by a combination of [Zhu21] with analytic results in [CDS15a], [CDS15b],

[CDS15c], [Tia15]. We also note that, as one can easily see from our proof of

Theorem 5.4, the integer m can be chosen uniformly for any bounded family

(X,∆) → S of log Fano pairs, e.g., the family of all smooth Fano manifolds

with a fixed dimension.

1.2. Outline of the proof of Theorem 1.1. Recall that by [BLX19], any val-

uation computing δ(X,∆) ≤ 1 is an lc place of a Q-complement Γ, and every

divisorial lc place w of the complement (parametrized by the rational points of

the dual complex DMR(X,∆+ Γ)) induces a weakly special degeneration of

the log Fano pair. In addition, if finite generation holds for a quasi-monomial

valuation v, it is observed in [LX18] (see also Lemma 4.4) that as the val-

uation w in the minimal rational affine space containing v gets sufficiently

close to v, the central fibers of the induced degenerations would be isomor-

phic to each other and, in particular, are bounded. Our first observation is
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that the converse of this implication is true; namely, if the central fibers of

the degenerations induced by nearby rational valuations belong to a bounded

family, then indeed the associated graded ring is finitely generated. This is

achieved in Theorem 4.5. In fact, we consider the expected vanishing order

function w → S(w) on a minimal rational affine space containing v. It is easy

to show this function is concave, and the boundedness assumption implies that

there exists a uniform M such that MS(w) is integer, if w is an integral point.

An elementary Diophantine approximation argument implies that S is linear

in a neighborhood of v. Given two arbitrary valuations v0 and v1, there is

another natural construction (which is called the geodesic ray) of filtrations Ft

connecting Fv0 and Fv1 . It always satisfies S(Ft) = (1 − t)S(v0) + tS(v1). If

v0 and v1 are two valuations on a simplex, then for the natural valuation vt
on the ray connecting v0 and v1 on the simplex, Fλ

t R ⊆ Fλ
vtR for any λ. In

general this implies S(Ft) ≤ S(Fvt). So our assumption of the boundedness

of the degeneration implies that S(Ft) = S(Fvt) as S(vt) is linear on t. When

t ∈ Q and v0, v1 are lc places of a fixed Q-complement, one can show that Ft

arises from a weakly special test configuration. Using the explicit description

of filtrations that correspond to weakly special test configurations in [BLX19],

it is then not hard to deduce from S(Ft) = S(Fvt) that Ft = Fvt for all t; i.e.,

the filtration induced by vt is the same as Ft, which is finitely generated.

Therefore, in order to prove Theorem 1.1, the remaining main technical

goal is to construct a specific Q-complement Γ with the given minimizer v as

an lc place and to show that in a neighborhood of v in the rational affine sub-

space in the dual complex DMR(X,∆+ Γ), the degenerations corresponding

to the rational points have bounded central fibers. The construction of the

complement Γ is indeed tricky, and the argument takes several steps.

In the first step, using compatible basis type divisors as first introduced

in [AZ20], we prove an improvement of [BLX19] that the complement Γ can be

chosen to contain some fixed multiple of any effective divisorD ∼Q −(KX+∆).

This allows us to extend the bound in our assumption from δ(X,∆) ≤ 1 to

δ(X,∆) < n+1
n . Another improvement of [BLX19] is that we prove any quasi-

monomial v that computes δ(X,∆) < n+1
n is an lc place of a Q-complement,

using the global ACC Conjecture proved in [HMX14] (but not the boundedness

of complements proved in [Bir19]).

Next, starting with a fixed log resolution π : (Y,E) → (X,∆) such that v ∈

QM(Y,E), we run the construction in the previous step to get a Q-complement

Γ ∼Q −(KX +∆) containing a multiple of the pushforward of some generally

positioned ample Q-divisor G on Y . The key idea is to look at the intersection

QM(Y,E)∩DMR(X,∆+Γ). It consists of valuations that we call monomial lc

places of special Q-complements (with respect to the log resolution (Y,E)); see

Definition 3.3 for the precise definition. The advantages of the valuations in the
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above intersections are twofold: firstly, rational points in this new dual complex

corresponds simply to weighted blowups on the fixed log smooth model Y ,

which are easier to analyze; secondly and more importantly, any rational point

w ∈ QM(Y,E)∩DMR(X,∆+Γ) corresponds to special divisors Fw; i.e., they

induce klt degenerations of the log Fano pair. (This follows from a tie-breaking

argument; see Lemma 3.5.) For general complements, the second property is

hard to come by. As it turns out in the end (see Theorem 4.2), a valuation

satisfies the finite generation property and induces a klt degeneration of the log

Fano pair if and only if it is a monomial lc place of some special Q-complement.

Recall that we have reduced the finite generation property of v to the

boundedness of the central fibers of the degenerations induced by nearby ra-

tional valuations in QM(Y,E)∩DMR(X,∆+Γ). Given that the degenerations

have klt central fibers in this case, we can invoke results from [Jia20], [XZ21]

to prove the boundedness once we establish a uniform positive lower bound on

the α-invariants of the central fibers.

The α-invariants of the central fibers can be detected on (X,∆) without

writing down the explicit degeneration; see Lemma 4.9. For our purpose,

it suffices to show that there exists a uniform α > 0 such that for any w

sufficiently close to v, and any effective Q-divisor D ∼Q −KX − ∆, we can

find another effective Q-divisor D′ such that (X,∆ + αD + (1 − α)D′) is log

canonical and w is an lc place. This guarantees that the α-invariants of central

fibers are bounded from below by α.

Let us consider the special case where w(D) = AX,∆(w). (It is not hard

to see that this implies the general case, see the proof of Lemma 4.11.) In

this case, we necessarily have w(D′) = AX,∆(w) in order for w to be an lc

place. For simplicity, let us also assume that w is centered at a closed point

on X. By [BCHM10], there exists a plt blowup ρ : Xw → X that extracts

the Kollár component Ew that corresponds to the divisorial valuation w. If

the complementary divisor D′ as above exists, then by adjunction the pair

(Ew,∆w + αDw + (1 − α)D′
w) has to be log canonical. (Here the divisors

∆w = DiffEw(ρ
−1
∗ ∆) and Dw = ρ−1

∗ D|Ew etc. are what we naturally get by

doing adjunction along Ew.) In particular, (Ew,∆w + αDw) needs to be lc.

Therefore, we should first guarantee that the α-invariant of the Kollár compo-

nent (Ew,∆w) is at least bounded from below from α.

This is still not enough as the complementary divisor D′ adds another

component (1 − α)D′
w to the pair (Ew,∆w + αDw), potentially making its

singularities worse. However, this is not a serious problem if a significant

proportion ofD′
w comes from a basepoint-free linear system. The easiest way to

make this happen is to impose the condition that −ρ∗(KX+∆)−εAX,∆(Ew)Ew

is nef for some fixed constant ε > 0. If D′′ is the pushforward of a general

divisor in the Q-linear system |−ρ∗(KX +∆)− εAX,∆(Ew)Ew|Q, then D′′
w has
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no contribution to the singularities. With some extra work, we can absorb D′′

into D′ while keeping the singularities mild. For more details, see Lemma 4.11.

With the above discussions, we are reduced to showing that the α-invariant

of the Kollár component and the nef threshold as above have uniform lower

bounds that are independent of w. This is not hard to see if Ew is a weighted

blowup at a smooth point of X, as the Kollár component Ew is simply a

weighted projective space and both the α-invariant and the nef threshold can

be controlled explicitly. In general, we do not know what the map ρ : Xw → X

or the Kollár component Ew look like, but at least we have a log smooth model

(Y,E) and Ew can be extracted by a weighted blowup on Y . The last key idea

of the proof is to transfer all the local lower bound statement to the log reso-

lution (Y,E), where things are easier to verify using the explicit geometry of

the weighted blowup, and then descend to the original log Fano pair (X,∆)

using the Kollár-Shokurov connectedness theorem. These are the final techni-

cal steps of the proof; see Lemma 4.12 (for the lower bounds of α-invariants

of divisors over Y ), Lemma 4.14 (for the nef thresholds) and Lemma 4.11 (for

the descent to X).
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2. Preliminaries

Throughout this paper, we work over an algebraically closed field k of

characteristic 0. We follow the standard terminology from [KM98], [Kol13].

Definition 2.1. A pair (X,∆) is a normal variety X together with an

effective Q-divisor ∆ such that KX +∆ is Q-Cartier. A log Fano pair (X,∆)

is a pair such that X is proper, −KX −∆ is ample, and (X,∆) is klt. When

∆ = 0, X is also called a Q-Fano variety. A normal variety X is said to be

of Fano type if there exists an effective Q-divisor ∆ such that (X,∆) is a log

Fano pair.

A log smooth model (Y,E) over a pair (X,∆) consists of a log resolution

π : Y → (X,∆) and a reduced divisor E on Y , such that E + Ex(π) + π−1
∗ ∆

has simple normal crossing (SNC) support.

2.1. Valuations. In this subsection, we assume that X is a normal variety.

Definition 2.2. A valuation v onX is a R-valued valuation v : K(X)× → R

such that v has a center on X and v|k× = 0. By convention, we set v(0) = +∞.

We denote by ValX the set of all valuations on X. Recall that the center of
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v on X, denoted by cX(v), is a scheme-theoretic point ζ ∈ X such that v ≥ 0

on OX,ζ , and v > 0 on the maximal ideal mX,ζ . Let CX(v) := cX(v). Since

X is separated, a center of v on X is unique if it exists. If, in addition, X is

proper, then every valuation v has a center on X. The trivial valuation vtriv
is defined as vtriv(f) = 0 for any f ∈ K(X)×.

For a valuation v ∈ ValX , we define its valuation ideal sheaf ap(v) for

p ∈ R≥0 as
ap(v) := {f ∈ OX | v(f) ≥ p}.

We also define the valuation ideal sequence of v as a•(v) := (am(v))m∈Z≥0
.

For a section s of a line bundle L on X and a valuation v on X, we fix an

isomorphism φ : L|U ∼= OU for some open set U containing cX(v). We define

v(s) := v(f), where f = φ(s|U ) ∈ Γ(OU ). It is clear that this does not depend

on the choice of the trivialization φ or the open set U .

For a valuation v ∈ ValX , we define its valuation semigroup Φ+
v := {v(f) |

f ∈ OX,cX(v) \ {0}} and its valuation group Φv := {v(f) | f ∈ K(X)×}. The

rational rank of v is defined as rat.rk(v) := rankZΦv.

Definition 2.3. Let π : Y → X be a proper birational morphism where

Y is normal. A prime divisor E on Y is called a prime divisor over X. It

induces a valuation ordE : K(X)× → Z by taking the vanishing order along E.

A valuation v ∈ ValX is called divisorial if v = c · ordE for some prime divisor

E over X and some c ∈ R≥0.

Definition 2.4. Let π : Y → X be a birational morphism where Y is

normal. Let η ∈ Y be a scheme-theoretic point such that Y is regular at η.

For a regular system of parameters (y1, . . . , yr) of OY,η and α ∈ Rr
≥0, we define

a valuation vα as follows. For f ∈ OY,η \ {0}, we may write f in ‘OY,η
∼=

κ(η)Jy1, . . . , yrK as f =
∑

β∈Zr
≥0

cβy
β , where cβ ∈ κ(η) and yβ = yβ1

1 · · · yβr
r

with β = (β1, . . . , βr). We set

vα(f) := min{〈α, β〉 | cβ 6= 0}.

A valuation v ∈ ValX is called quasi-monomial if v = vα as above for some

π : Y → X, η, (y1, . . . , yr) and α. It is proven in [ELS03] that a valuation v

is quasi-monomial if and only if it is an Abhyankar valuation; i.e., v satisfies

tr.deg(v) + rat.rk(v) = dimX, where tr.deg(v) is the transcendental degree

of v. From the above definition, we have that for any f ∈ OY,η \ {0}, the

function α 7→ vα(f) is piecewise rational linear and is concave; i.e.,

vtα1+(1−t)α2
(f) ≥ t · vα1

(f) + (1− t) · vα2
(f)

for any 0 ≤ t ≤ 1 and any α1, α2 ∈ Rr
≥0. In particular, for any non-trivial effec-

tive Q-Cartier divisor D (resp. graded sequence a• of ideals) on X, the function

α 7→ vα(D) (resp. α 7→ vα(a•)) is piecewise rational linear and concave. This

fact will be frequently used in this paper.
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If, in addition, π : (Y,E =
∑l

i=1Ei) → X is a log smooth model where

(yi = 0) = Ei for 1 ≤ i ≤ r as an irreducible component of E, then we denote

the set {vα | α ∈ Rr
≥0} by QMη(Y,E). We also set QM(Y,E) := ∪ηQMη(Y,E)

where η runs through all generic points of ∩i∈JEi for some non-empty subset

J ⊆ {1, . . . , l}. For later reference, we note that if v is a quasi-monomial

valuation and q is its rational rank, then the log resolution π : Y → X can be

chosen (by passing to a further blowup) such that v ∈ QMη(Y,E) for some

codimension q point η.

2.2. Stability thresholds. We first define the log discrepancy function for

valuations.

Definition 2.5 ([JM12], [BdFFU15]). For a pair (X,∆), we define the log

discrepancy function AX,∆ : ValX → R ∪ {+∞} as follows:

(1) If v = c · ordE is divisorial, then

AX,∆(v) := c ·AX,∆(E) = c(1 + coeffE(KY − π∗(KX +∆))).

(2) If v = vα is quasi-monomial for a log smooth model (Y,E) over (X,∆),

then

AX,∆(v) :=
r
∑

i=1

αi ·AX,∆(Ei).

It is clear that AX,∆ is linear on QMη(Y,E).

(3) According to [JM12], there is a retraction map rY,E : ValX → QM(Y,E)

for any log smooth model π : (Y,E) → (X,∆) satisfying Supp(Ex(π) +

π−1
∗ ∆) ⊆ E. For any v ∈ ValX , we define

AX,∆(v) := sup{AX,∆(rY,E(v)) | (Y,E) is a log smooth model over (X,∆)}.

From the definition, we know thatAX,∆(λv) = λ·AX,∆(v) for any λ ∈ R≥0.

Note that a pair (X,∆) is lc (resp. klt) if and only if AX,∆(v) ≥ 0 (resp. > 0)

for all valuations v ∈ ValX \ {vtriv}. We also set

Val◦X := {v ∈ ValX | v 6= vtriv and AX,∆(v) < +∞}.

Then it is clear that Val◦X contains all non-trivial quasi-monomial valuations

on X. If (X,∆) is lc, then v ∈ ValX is an lc place of (X,∆) if AX,∆(v) = 0. If

(Y,E) is a log smooth model over an lc pair (X,∆) satisfying Supp(Ex(π) +

π−1
∗ ∆) ⊆ E, then by [JM12, Cor. 5.4] we know that the set of all lc places of

(X,∆) coincides with QM(Y,E′) where E′ is the sum of irreducible components

Ei of E satisfying AX,∆(Ei) = 0. In particular, any lc place of (X,∆) is a

quasi-monomial valuation in QM(Y,E).

In the rest of this subsection, we assume that (X,∆) is a log Fano pair.

Let r be a positive integer such that L := −r(KX + ∆) is Cartier. Then the

section ring of (X,L) is given by

R(X,L) := R =
⊕

m∈Z≥0

Rm =
⊕

m∈Z≥0

H0(X,OX(mL)).



516 YUCHEN LIU, CHENYANG XU, and ZIQUAN ZHUANG

Definition 2.6 ([FO18]). Let m be a positive integer such that Nm :=

h0(X,OX(mL)) > 0. An m-basis type divisor D on X is a divisor of the

following form:

D =
1

mrNm

Nm
∑

i=1

(si = 0),

where (s1, . . . , sNm) is a basis of the vector space Rm = H0(X,OX(mL)). It

is clear that D ∼Q −(KX +∆).

Definition 2.7 ([BJ20]). Let v ∈ Val◦X be a valuation. Let m be a positive

integer. We define the invariants

Tm(v) := max{ 1
mrv(s) | s ∈ Rm \ {0}},

Sm(v) := max{v(D) | D is of m-basis type}.

We define the T -invariant and S-invariant of v as

TX,∆(v) := sup
m∈Z>0

Tm(v) and SX,∆(v) := lim
m→∞

Sm(v).

Note that the above limit exists as finite real numbers by [BJ20, Cor. 3.6].

Definition 2.8 ([FO18, BJ20]). Letm be a positive integer. Then we define

δm(X,∆) := inf{lct(X,∆;D) | D is of m-basis type}.

The above infimum is indeed a minimum since m-basis type divisors are

bounded, and lct takes finitely many values on a bounded Q-Gorenstein family

[Amb16, Cor. 2.10]. In particular, there exists some divisor E over X such that

δm(X,∆) =
AX,∆(E)
Sm(E) .

The stability threshold (also called δ-invariant) of a log Fano pair (X,∆)

is defined as

δ(X,∆) := lim
m→∞

δm(X,∆).

Equivalently, we have

δ(X,∆) = inf
v∈Val◦X

AX,∆(v)

SX,∆(v)
.

We say that δ(X,∆) is computed by a valuation v ∈ Val◦X if δ(X,∆) =
AX,∆(v)
SX,∆(v) .

Theorem 2.9 (Fujita-Li valuative criterion; see [Fuj19b], [Li17], [BX19]).

Let (X,∆) be a log Fano pair. Then (X,∆) is K-semistable (resp. uniformly

K-stable) if and only if δ(X,∆) ≥ 1 (resp. δ(X,∆) > 1), and (X,∆) is K-stable

if and only if AX,∆(E) > SX,∆(E) for all divisorial valuations E.

Remark 2.10. The original definitions of K-stability notions of a log Fano

pair (X,∆) use test configurations and Futaki invariants (see Definitions 2.22

and 2.23). In this paper, we will mostly use the equivalent characterization
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given by Theorem 2.9. So one can take this as the definitions of corresponding

concepts. See Lemma 2.26 for the connection.

When Aut(X,∆) is positive dimensional and T ⊆ Aut(X,∆) is a torus,

there is also a reduced version δT (X,∆). See [XZ20, App. A] for more discus-

sions.

Definition 2.11 ([Tia87], [CS08], [BJ20]). The α-invariant of a log Fano

pair (X,∆) is defined as

α(X,∆) := inf{lct(X,∆;D) | D ∈ | −KX −∆|Q}.

Equivalently, we have

α(X,∆) = inf
v∈Val◦X

AX,∆(v)

TX,∆(v)
.

Definition 2.12. More generally, for any projective klt pair (X,∆) and

any effective Q-Cartier Q-divisor G on X, we define

lct(X,∆; |G|Q) := inf{lct(X,∆;D) | D ∈ |G|Q}.

For any valuation v ∈ Val◦X , if we let

T (G; v) = sup{ 1
mv(s) | m ∈ N sufficiently divisible, s ∈ H0(X,OX(mG))},

then as above we have

lct(X,∆; |G|Q) = inf
v∈Val◦X

AX,∆(v)

T (G; v)
.

In our argument later, we need the following theorem.

Theorem 2.13. Fix positive integers n,C and three positive numbers

V, α0, δ0. If we consider the set P of all n-dimensional log Fano pairs {(X,∆)}

such that C · ∆ is integral, then (−KX − ∆)n = V and α(X,∆) ≥ α0 (resp.

δ(X,∆) ≥ δ0). Then P is bounded.

Proof. When ∆ = 0, this is first proved in [Jia20], which heavily relies on

[Bir19], [Bir21]. See also [Che20]. Later a proof that only uses the boundedness

result from [HMX14] was given in [XZ21]. �

2.3. Filtrations and compatible basis type divisors. In this subsection, we

assume that (X,∆) is a log Fano pair, and L = −r(KX + ∆) is an ample

Cartier divisor for some r ∈ Z>0. Let R = ⊕m∈Z≥0
H0(X,OX(mL)) be the

section ring of (X,L).

Definition 2.14. A filtration F on R is a collection of vector subspaces

FλRm ⊆ Rm for any m ∈ Z≥0 and λ ∈ R≥0 satisfying the following properties:

(1) FλRm ⊆ Fλ′

Rm if λ ≥ λ′;
(2) FλRm = ∩λ′<λF

λ′

Rm if λ > 0;
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(3) F0Rm = Rm and FλRm = 0 for λ � 0;

(4) FλRm · Fλ′

Rm′ ⊆ Fλ+λ′

Rm+m′ .

A filtration F induces a function ordF : Rm → R≥0 as ordF (s) := max{λ |

s ∈ FλRm}. By convention, we set ordF (0) = +∞.

In this paper, we are mainly interested in the following two types of fil-

trations coming from valuations or divisors.

Example 2.15. Any valuation v ∈ ValX induces a filtration Fv on R as

Fλ
v Rm := {s ∈ Rm | v(s) ≥ λ}.

Any non-zero effective Q-divisor G on X induces a filtration FG on R as

Fλ
GRm := {s ∈ Rm | (s = 0) ≥ λG}.

Definition 2.16. Let F be a filtration on R. The associated graded ring

grFR of F is defined as

grFR :=
⊕

m∈Z≥0

⊕

λ∈R≥0

grλFRm, where grλFRm := FλRm/ ∪λ′>λ Fλ′

Rm.

We say that F is finitely generated if grFR is a finitely generated k-algebra.

For a valuation v ∈ ValX , we define the associated graded ring of v by grvR :=

grFv
R. Note that the grading of grvR can be chosen as (m,λ) ∈ Z≥0 × Φ+

v ,

where Φ+
v is the valuation semigroup of v.

Definition 2.17. Let F be a filtration on R. A basis (s1, . . . , sNm) of Rm

is said to be compatible with F if FλRm is spanned by some of the si’s for

every λ ∈ R≥0. An m-basis type divisor D = 1
mrNm

∑Nm

i=1(si = 0) is said to be

compatible with F if (s1, . . . , sNm) is compatible with F . By abuse of notation,

we will say that an m-basis type divisor D is compatible with a valuation v

(resp. an effective Q-divisor G) if D is compatible with the filtration induced

by v (resp. G).

From the definition, it is easy to see that for any v ∈ Val◦X , we have

v(D) = Sm(v) for any m-basis type divisor D that is compatible with v.

Another useful fact about compatible divisors is the following.

Lemma 2.18 ([AZ20, Lemma 3.1]). Let F and G be two filtrations of R.

Then for any m ∈ Z>0, there exists an m-basis type divisor that is compatible

with both F and G.

Definition 2.19. Let F be a filtration of R. We define the T -invariant of

F as

TX,∆(F) := sup
m∈Z>0

Tm(F) ∈ [0,+∞], where Tm(F) := max{ λ
mr | FλRm 6= 0}.

By Fekete’s lemma, we know that TX,∆(F) = limm→∞ Tm(F). We say that F

is linearly bounded if TX,∆(F) < +∞.
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Definition 2.20. Let F be a linearly bounded filtration. Let (s1, . . . , sNm)

be a basis of Rm that is compatible with F . We define the invariant

Sm(F) :=
1

mrNm

Nm
∑

i=1

ordF (si).

It is clear that Sm(F) does not depend on the choice of the compatible basis.

The S-invariant of F is defined as

SX,∆(F) := lim
m→∞

Sm(F).

Note that the above limit exists as finite real numbers by [BJ20, Lemma 2.9].

In fact, by loc. cit., we have

(2.1) SX,∆(F) =
1

(−KX −∆)n

∫ ∞

0

vol(F (t)R)dt,

where vol(F (t)R) := limm→∞
dimFmrtRm

(mr)n/n! .

By [BJ20, Lemma 3.1], any valuation v ∈ Val◦X induces a linearly bounded

filtration Fv. From our definitions, it is easy to see that each invariant from Tm,

Sm, TX,∆, and SX,∆ has the same value for v and Fv. For an effective nonzero

Q-divisor G on X, we define Sm(G) := Sm(FG) and SX,∆(G) := SX,∆(FG).

As before, we note that D ≥ Sm(G) ·G for any m-basis type divisor D that is

compatible with G. The following calculation is also very useful for us.

Lemma 2.21. Let λ ∈ Q>0, and let G ∼Q −λ(KX + ∆) be an effective

Q-divisor. Then SX,∆(G) = 1
λ(n+1) , where n = dimX .

Proof. We have vol(F
(t)
G R) = vol(−KX−∆−tG) = (1−λt)nvol(−KX−∆);

thus the result follows from (2.1). �

2.4. Special divisors and complements. Let (X,∆) be a log Fano pair. We

first recall the concepts of (weakly) special test configurations. Note that we

omit the polarization in the following definition, because (weakly) special test

configurations are naturally anti-canonically polarized.

Definition 2.22. A weakly special test configuration (X ,∆X ) of (X,∆)

consists of the following data:

• a normal variety X together with a flat proper morphism π : X → A1;

• a Gm-action on X such that π is Gm-equivariant with respect to the standard

Gm-action on A1 by multiplication;

• X \X0 is Gm-equivariantly isomorphic to X×(A1\{0}) where the Gm-action

on X is trivial;

• an effective Q-divisor ∆X on X such that ∆X is the component-wise closure

of ∆× (A1 \{0}) under the identification between X \X0 and X× (A1 \{0});
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• −(KX +∆X ) is Q-Cartier and π-ample;

• (X ,X0 +∆X ) is log canonical.

A weakly special test configuration (X ,∆X ) of (X,∆) is special if (X ,X0 +∆X )
is plt. The central fiber (X0,∆0) of a special (resp. weakly special) test con-

figuration (X ,∆X ) is called a special (resp. weakly special) degeneration of

(X,∆). A weakly special test configuration is trivial if X is Gm-equivariantly

isomorphic to X × A1 where the Gm-action on X is trivial.

Definition 2.23. For a weakly special test configuration (X ,∆X ) of an

n-dimensional log Fano pair (X,∆), we consider its gluing with (X,∆) ×

(P1 \ {0}) → P1 \ {0} to get a Gm-equivariant family π : (X ,∆X ) → P1. Then

we define

Fut(X ,∆X ) := −
(−KX/P1 −∆X )

n+1

(n+ 1)(−KX −∆)n
.

It is well known from [LX14] that, to test K-stability of a log Fano pairs,

it suffices to consider weakly special test configurations or even special test

configurations, and in this paper we will not need more general test configura-

tions.

Definition 2.24. We define (X,∆) to be K-polystable if and only for any

weakly special test configuration (X ,∆X ) of (X,∆), we have Fut(X ,∆X ) ≥ 0

and the equality holds if and only if (X ,∆X ) is a product test configuration;

i.e., (X ,∆X ) ∼= (X,∆)× A1.

Definition 2.25. Let E be a prime divisor over X. We say that E is

weakly special (resp. special) over (X,∆) if there exists a weakly special (resp.

special) test configuration (X ,∆X ) with integral central fiber X0, such that the

restriction of the valuation ordX0
to the subfield K(X) ⊆ K(X )(= K(X×A1))

is equal to b · ordE for some b ∈ Z>0. By abuse of notation, we will say that

ordE or any valuation v proportional to ordE is weakly special (resp. special) if

E is weakly special (resp. special).

Lemma 2.26 ([Fuj19b, Th. 6.13]). Using notation from Definition 2.25,

we have

Fut(X ,∆X ) = b(AX,∆(E)− SX,∆(E)).

If E is a weakly special divisor over (X,∆) such that ordX0
|K(X) = b·ordE ,

then the central fiber (X0,∆0) is uniquely determined by E up to isomorphism,

and X0
∼= Proj grER (see, e.g., [Xu21a, §3.6 and Lemma 3.7]).

Definition 2.27. A Q-complement of (X,∆) is an effective Q-Cartier Q-

divisorD ∼Q −KX−∆ such that (X,∆+D) is log canonical. A Q-complement

D is called an N -complement for N ∈ Z>0 if N(KX + ∆ + D) ∼ 0, and

N(∆ +D) ≥ Nb∆c+ b(N + 1){∆}c, where {∆} := ∆− b∆c.
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For any Q-complement D of (X,∆), the dual complex of (X,∆ + D) is

defined as

DMR(X,∆+D) := {v ∈ Val◦X | AX,∆+D(v) = 0 and AX,∆(v) = 1}.

(The notation DMR comes from [dFKX17].) In particular, the space of all lc

places of (X,∆+D) is a cone over DMR(X,∆+D). By abuse of notation,

we often write v ∈ DMR(X,∆+D) if v is an lc place of (X,∆+D).

A log resolution (Y,E) over (X,∆ + D) will yield a rational piecewise

linear (PL) structure of DMR(X,∆ + D) (see [dFKX17]). More generally,

for any v ∈ DMR(X,∆ + D) and any log smooth model (Y,E) over (X,∆)

such that v is contained in the interior of QM(Y,E), since AX,∆ is linear on

QM(Y,E), the function v 7→ v(D) is piecewise rational linear and concave (see

Definitions 2.4 and 2.5), and AX,∆(v) ≥ v(D), the intersection

QM(Y,E) ∩ DMR(X,∆+D) = {v ∈ QM(Y,E) | AX,∆(v) = 1 = v(D)}

is convex and spans a rational linear subset of QM(Y,E). We call QM(Y,E)∩

DMR(X,∆ + D) the minimal rational PL subspace of DMR(X,∆ + D) in

QM(Y,E) containing v.

As in the previous section, let R =
⊕

m∈NH0(X,−mr(KX +∆)) for some

integer r > 0 such that r(KX +∆) is Cartier. The following fact will be used

throughout this paper.

Lemma 2.28. Assume v is an divisorial lc place of some Q-complement.

Then grvR is finitely generated.

Proof. We may assume that v = ordE for some prime divisor E over X.

LetD be a Q-complement that realizes E as an lc place. Since (X,∆+(1−ε)D)

is log Fano and AX,∆+(1−ε)D(E) < 1 for 0 < ε � 1, by [BCHM10, Cor. 1.4.3]

there exists a projective birational morphism π : Y → X that extracts E as

the unique exceptional divisor. Moreover, we have π∗(KX +∆+ (1− ε)D) =

KY + Γ for some Γ ≥ 0 such that (Y,Γ) is klt and −(KY + Γ) is nef and

big, thus Y is of Fano type. It then follows from [BCHM10, Cor. 1.3.1] that
⊕

m,k∈NH0(−mrπ∗(KX+∆)−kE) is finitely generated. As grvR is a quotient

of this algebra, we conclude that grvR is also finitely generated. �

Theorem 2.29 ([BLX19, Ths. 3.5 and A.2]). There exists N ∈ Z>0 de-

pending only on dim(X) and Coeff(∆) such that the following statements are

equivalent for a prime divisor E over X :

(1) E is a weakly special divisor over (X,∆);

(2) E is an lc place of a Q-complement of (X,∆);

(3) E is an lc place of an N -complement of (X,∆).

The equivalences (2) and (3) of the above characterization largely rely on

the existence of bounded complements established in [Bir19].
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The following observation is made by the third named author (see [Xu21a,

Th. 4.12]).

Theorem 2.30. The following statements are equivalent for a prime di-

visor E over X :

(1) E is a special divisor over (X,∆);

(2) AX,∆(E) < TX,∆(E), and there exists a Q-complement D′ of (X,∆) such

that, up to rescaling, E is the only lc place of (X,∆+D′);
(3) there exist an effective Q-divisor D ∼ −KX −∆ and t ∈ (0, 1) such that

(X,∆+ tD) is lc with E as the only lc place (up to rescaling).

3. Log Fano pairs with δ(X,∆) < n+1
n

In this section, for a valuation v that computes δ(X,∆), we carefully

construct a Q-complement Γ such that v is an lc place of (X,∆+Γ). In fact, Γ

satisfies a number of other technical properties (we call it a special complement

— see Definition 3.3 for its definition), which are indispensable for our proof

of Theorem 1.1.

As a by-product, in Section 3.2, we show that the various results in

[BLX19] can be improved using the construction of compatible basis type di-

visors introduced in [AZ20] (see Definition 2.17).

3.1. Complements for higher rank valuations. Recall that when δ(X,∆)

≤ 1, any valuation computing δ(X,∆) is an lc place of a Q-complement

[BLX19, Th. A.7]. Using compatible divisors, we first generalize this result

to log Fano pairs with δ(X,∆) < n+1
n and investigate the degree of freedom

when choosing such complements.

Lemma 3.1. Let (X,∆) be a log Fano pair of dimension n such that

δ(X,∆) = δ < n+1
n , and let v be a valuation that computes δ(X,∆). Let α ∈

(0,min{ δ
n+1 , 1−

nδ
n+1}) ∩Q. Then for any effective divisor D ∼Q −(KX +∆),

there exists some Q-complement Γ of (X,∆) such that Γ ≥ αD and v is an lc

place of (X,∆+ Γ).

Proof. Up to rescaling, we may assume that AX,∆(v) = 1. By [BJ20,

Prop. 4.8(ii)] and [Xu20, Th. 1.1], the valuation v is quasi-monomial. Let

r be the rational rank of v. Let π : Y → X be a log resolution such that

v lies in the interior of QMη(Y,E) for some simple normal crossing divisor

E = E1 + · · · + Er on Y where η = cY (v) is the generic point of a connected

component of ∩r
i=1Ei. By [LX18, Lemma 2.7], for any ε > 0, there exist

divisorial valuations v1, . . . , vr ∈ QMη(Y,E) and positive integers q1, . . . , qr
such that

• v is in the convex cone generated by vi;

• for all i = 1, . . . , r, the valuation qivi is Z-valued and has the form ordFi
for

some divisor Fi over X; and



FINITE GENERATION FOR VALUATIONS AND K-STABILITY 523

• |vi−v| < ε
qi

for all i = 1, . . . , r — here |vi−v| denotes the Euclidean distance

of vi and v in QMη(Y,E) ∼= Rr
≥0.

We claim that when ε is sufficiently small, there exists aQ-complement Γ ≥ αD

of (X,∆) that has all vi as lc places. Taking this for granted, let us finish the

proof of the lemma. Recall that AX,∆ is linear on QMη(Y,E), while v 7→ v(Γ)

is concave (see the remarks in Definitions 2.4 and 2.5), hence v 7→ AX,∆+Γ(v) =

AX,∆(v)− v(Γ) is convex. Since the vi’s are lc places, we have AX,∆+Γ(vi) = 0

and hence as v is contained in their convex hull, we get AX,∆+Γ(v) ≤ 0. As

(X,∆+Γ) is lc, this implies that v is an lc place of (X,∆+Γ), and therefore

the statement of the lemma follows.

Back to the proof of the claim, we first argue as in [LX18, Lemma 2.51].1

Let a• be the graded sequence of valuation ideals of v, i.e., am = am(v).

By the same argument as above, we know that the log discrepancy function

w 7→ AX,∆+a•(w) is convex on QMη(Y,E). In particular, it is Lipschitz in a

neighborhood of v, hence there exist some constants C > 0 and ε1 > 0 such

that

|AX,∆+a•(w)−AX,∆+a•(v)| ≤ C|w − v|

for any w in the closed convex cone generated by {vi}
r
i=1 and any 0 < ε ≤ ε1.

Applying this to the divisorial valuations vi above, we find

AX,∆+a•(Fi) = qiAX,∆+a•(vi) ≤ Cqi|vi − v| ≤ Cε.

Therefore, for some 0 < ε0 � 1 (depending on ε), we have

(3.1) A
X,∆+a

1−ε0
•

(Fi) < 2Cε

for all 1 ≤ i ≤ r. Let 0 ≤ D′ ∼Q −(KX+∆) be general (so that it does not con-

tain the center of v in its support). Now for anym ∈ N such that −m(KX +∆)

is very ample, let G = βD′ + (1− β)D where β = max{0, (n+1)(δ−1)
δ }, and let

Dm be an m-basis type Q-divisor that is compatible with both G and v. Then

we have Dm ≥ Sm(G) ·G and v(Dm) = Sm(v).

Let

D′
m := Dm − Sm(G) · βD′ ∼Q −(1− βSm(G))(KX +∆).

Note that G ∼Q −(KX + ∆), thus limm Sm(G) = SX,∆(G) = 1
n+1 (see

Lemma 2.21) and limm→∞(1 − βSm(G)) = min{1, 1δ} by a direct calculation.

It follows that we can choose a sequence of rational numbers δm > 0 (m ∈ N)

such that δm < δm(X,∆), limm→∞ δm = δ and δm(1− βSm(G)) < 1 for all m.

1There is a small error in the proof of [LX18, Lemma 2.51], where the log discrepancy

function AX,∆+a
c

•
(·) was treated as a linear function on QMη(Y,E); nonetheless it is Lipschitz

(since it is convex), and that is enough for the argument there.
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In particular, (X,∆ + δmD′
m) is log Fano, and by our assumption on α, we

have

δmD′
m ≥ (1− β)δmSm(G) ·D ≥ αD

as m � 0.

Since v computes δ(X,∆) and D′ is general, we also see that as m � 0,

δmv(D′
m) = δmv(Dm) ≥ (1− ε0)δ(X,∆)SX,∆(v) = (1− ε0)AX,∆(v) = 1− ε0.

Combined with (3.1) we obtain AX,∆+δmD′
m
(Fi) ≤ A

X,∆+a
1−ε0
•

(Fi) < 2Cε < 1

as long as ε < min{ 1
2C , ε1}. By [BCHM10, Cor. 1.4.3] we know that there exists

a Q-factorial birational model p : ‹X → X that extracts exactly the divisors Fi.

Let ‹D denote the strict transform of a divisor D on X. Let

K‹X + ‹∆+ δm‹D′
m +

r
∑

i=1

(1− ai)Fi = p∗(KX +∆+ δmD′
m)

be the crepant pullback. Then ai ∈ (0, 2Cε), and as (X,∆ + δmD′
m) is log

Fano, we see that (‹X,‹∆+ α‹D +
∑r

i=1(1− ai)Fi) has a Q-complement.

By the following Lemma 3.2, if ε is sufficiently small (depending only on

C, ε1, and the coefficients of ∆ and αD), then (‹X,‹∆+α‹D+
∑r

i=1 Fi) also have

a Q-complement. Pushing it forward to X, we obtain a Q-complement Γ ≥ αD

of (X,∆) that realizes all Fi as lc places. The proof is now complete. �

We have used the following well-known consequence of [HMX14] in the

proof above.

Lemma 3.2. Let (X,∆) be a projective pair, and let G be an effective

Q-Cartier Q-divisor on X . Assume that X is of Fano type. Then there exists

some ε > 0 depending only on the dimension of X and the coefficients of ∆

and G such that if (X,∆ + (1 − ε)G) has a Q-complement, then the same is

true for (X,∆+G).

Proof. This should be well known to experts (see, e.g., [Bir21, Proof of

Prop. 3.4]), but we provide a proof for the readers’ convenience.

Replacing X by a small Q-factorial modification, we may assume that X

itself is Q-factorial. Let n = dimX, and let I ⊆ Q+ be the coefficient set of ∆

and G. By the ACC of log canonical thresholds and global ACC of log Calabi-

Yau pairs [HMX14, Ths. 1.1 and 1.5], we know that there exists some rational

constant ε > 0 depending only on n, I that satisfies the following property: for

any projective pair (X,∆) of dimension at most n and any Q-Cartier divisor G

on X such that the coefficients of ∆ and G belong to I, we have that (X,∆+G)

is lc as long as (X,∆+(1− ε)G) is lc; if, in addition, there exists some divisor

D with (1− ε)G ≤ D ≤ G such that KX +∆+D ∼Q 0, then D = G.
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Now let (X,∆+ (1− ε)G) be a pair with a Q-complement Γ. As X is of

Fano type, we may run the −(KX +∆+G)-MMP f : X 99K X ′. Let ∆′, G′,Γ′

be the strict transforms of ∆, G,Γ. Note that by construction,

KX +∆+G ≤ f∗(KX′ +∆′ +G′),

hence (X,∆ + G) has a Q-complement if and only if (X ′,∆′ + G′) has one.

Since

KX +∆+ (1− ε)G+ Γ ∼Q 0,

the MMP is crepant for the lc pair (X,∆+(1−ε)G+Γ), thus (X ′,∆′+(1−ε)G′

+Γ′) is also lc. It follows that (X ′,∆′+(1−ε)G′) is lc, hence by our choice of ε,

(X ′,∆′+G′) is lc as well. Suppose thatX ′ is Mori fiber space g : X ′ → S. Then

KX′ +∆′+G′ is g-ample. Since KX′ +∆′+(1−ε)G′ ∼Q −Γ′ ≤ 0 and ρ(X ′) =
ρ(S) + 1, there exists some ε′ ∈ (0, ε] such that KX′ +∆′ + (1− ε′)G′ ∼g,Q 0.

But if we restrict the pair to the general fiber of X ′ → S, we would get a

contradiction to our choice of ε. Thus X ′ is a minimal model and −(KX′ +∆′

+G′) is nef. As X ′ is also of Fano type, we see that −(KX′ +∆′+G′) is semi-

ample, hence (X ′,∆′ + G′) has a Q-complement. By the previous discussion,

this implies that (X,∆+G) has a Q-complement as well. �

To proceed, we make the following definition. Recall that a log smooth

model (Y,E) over (X,∆) consists of a log resolution π : Y → (X,∆) and a

reduced divisor E on Y such that E + Ex(π) + π−1
∗ ∆ has SNC support (see

Definition 2.1).

Definition 3.3. A Q-complement Γ of (X,∆) will be called special with

respect to a log smooth model π : (Y,E) → (X,∆) if ΓY = π−1
∗ Γ ≥ G for some

effective ample Q-divisor G on Y whose support does not contain any stratum

of (Y,E). Any valuation v ∈ QM(Y,E)∩DMR(X,∆+Γ) is called a monomial

lc place of the special Q-complement Γ with respect to (Y,E).

The following immediate consequence of Lemma 3.1 says a valuation com-

puting δ(X,∆) when δ(X,∆) < n+1
n is a monomial lc place of a special com-

plement. Later we will show for a (possibly higher rank) valuation that if it

is a monomial lc place of a special complement, its associated graded ring is

finitely generated (see Theorem 4.2).

Corollary 3.4. Let (X,∆) be a log Fano pair of dimension n such that

δ(X,∆) = δ < n+1
n , and let v be a valuation that computes δ(X,∆). Then

there exist a log smooth model π : (Y,E) → (X,∆) and a special Q-complement

0 ≤ Γ ∼Q −(KX + ∆) with respect to (Y,E), such that v ∈ QM(Y,E) ∩

DMR(X,∆+ Γ).

Proof. Since v is quasi-monomial, we may find a log smooth model π: (Y,E)

→ (X,∆) whose exceptional locus supports a π-ample divisor F such that
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v ∈ QM(Y,E). Choose some 0 < ε � 1 such that L := −π∗(KX +∆) + εF is

ample, and let G be a general divisor in the Q-linear system |L|Q whose support

does not contain any stratum of (Y,E). Let D = π∗G ∼ −(KX +∆), and let

α < min{ δ
n+1 , 1 − nδ

n+1} be a fixed rational positive number. By Lemma 3.1,

there exists some complement Γ of (X,∆) such that Γ ≥ αD and v is an lc place

of (X,∆+Γ). Replace G by αG. By construction, the strict transform of Γ is

larger or equal to G, so Γ is a special Q-complement with respect to (Y,E). �

To help understand the importance of special complements, we prove the

following statement. In Section 4, we will need a stronger version of it (see

Theorem 4.8).

Lemma 3.5. Let Γ be a special Q-complement of a log Fano pair (X,∆)

with respect to a log smooth model (Y,E). Denote by Π := QM(Y,E) ∩

DMR(X,∆ + Γ) the set of monomial lc places. Then every divisorial val-

uation v ∈ Π is special (see Definition 2.25).

Proof. Fix v ∈ Π(Q). By Theorem 2.30, it suffices to find an effective

divisor D ∼Q −(KX + ∆) such that λ = lct(X,∆;D) ∈ (0, 1) and such that

(up to rescaling) v is the unique lc place of (X,∆ + λD). To see this, let

W = CY (v). If W has codimension at least two in Y , we let ρ : Z → Y be

the weighted blowup corresponding to v, so that v = c · ordF for some c > 0,

where F is the exceptional divisor of ρ. Otherwise (i.e., W is an irreducible

component of E) we let Z = Y , ρ = id, and F = W .

By assumption, there exists an effective ample Q-divisor G on Y such that

ΓY ≥ G and CY (v) 6⊆ Supp(G). Since (Y,E) is log smooth, it is clear that F

is a weighted projective space bundle over the smooth center W and −F is ρ-

ample. In particular, there exists some ε > 0 such that ρ∗G−εF is ample on Z.

Let G1 be a general divisor in the Q-linear system |ρ∗G − εF |Q and consider

the effective divisor D ∼Q −(KX +∆) on X satisfying ρ∗π∗D = ρ∗(π∗Γ−G)+

G1 + εF . (This is possible since the right-hand side is ∼Q −ρ∗π∗(KX + ∆).)

We claim that this divisor D satisfies the desired conditions.

Let KY +∆Y = π∗(KX+∆) and KZ+∆Z = ρ∗(KY +∆Y ) be the crepant

pullbacks. We first show that the above claim is a consequence of the following

two properties:

(1) (Y,∆Y + π∗Γ−G) is sub-lc and v is an lc place of this sub-pair;

(2) F is the only divisor that computes lct(Y,∆Y ; ρ∗(G1 + εF )).

This is because (1) implies that

AX,∆(w) = AY,∆Y
(w) ≥ w(π∗Γ−G)

for all valuations w ∈ Val◦X , and equality holds when w is proportional to v;

on the other hand, if we let µ = lct(Y,∆Y ; ρ∗(G1 + εF )) > 0, then (2) implies
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that

AX,∆(w) = AY,∆Y
(w) ≥ µ · w(ρ∗(G1 + εF ))

for all valuations w ∈ Val◦X , and equality holds if and only if w is proportional

to v. Combining the two inequalities we have

w(D) = w(π∗D) = w(π∗Γ−G+ ρ∗(G1 + εF )) ≤ (1 + µ−1)AX,∆(w)

for all valuations w ∈ Val◦X , and equality holds if and only if w is proportional

to v. In particular, lct(X,∆;D) = 1
1+µ−1 ∈ (0, 1) and up to rescaling, v is the

unique lc place that computes this lct, which is exactly what we want.

It remains to prove the two properties above. Point (1) is quite straightfor-

ward since by assumption, v is an lc place of the sub-lc sub-pair (Y,∆Y +π∗Γ)
and G does not contain CY (v). To see point (2), we note that by assumption,

∆Y has simple normal crossing support, b∆Y c ≤ 0 (as (X,∆) is klt), and

therefore one can easily check that the sub-pair (Z,∆Z ∨ F ) is plt. Here we

denote by D1∨D2 the smallest Q-divisor D such that D ≥ Di for i = 1, 2. Let

t =
AY,∆Y

(F )

ε . Then

ρ∗(KY +∆Y + tρ∗(G1 + εF )) = KZ +∆Z ∨ F + tG1

by construction. Since G1 is general, the pair (Z,∆Z ∨ F + tG1) is also plt.

This proves (2). The proof is now complete. �

3.2. Minimizers and constructibility. The existence of a valuation com-

puting δ(X,∆) is proved to exist in [BJ20] if the ground field k is uncountable,

and in [BLX19] when δ(X,∆) ≤ 1 for a general ground field, where it is also

shown that in this case any minimizer is an lc place of a Q-complement. Here

we extend these results to the case when δ(X,∆) is bounded by n+1
n .

Theorem 3.6. Let (X,∆) be a log Fano pair of dimension n such that

δ(X,∆) < n+1
n . Then

(1) there exists a valuation computing δ(X,∆); and

(2) there exists a positive integer N depending only on dim(X) and the co-

efficients of ∆ such that for any valuation v computing δ(X,∆), there

exists an N -complement D of (X,∆) that satisfies that v is an lc place of

(X,∆+D).

Proof. First we prove (1). For any sufficiently divisible m ∈ N, let δm :=

δm(X,∆), and let Em be a divisor over X such that
AX,∆(Em)
Sm(Em) = δm.

Fix a positive integer m0 such that −m0(KX +∆) is a very ample Cartier

divisor. For each sufficiently divisible m ∈ N, let Hm be a smooth divisor in

the linear system | − m0(KX + ∆)| that does not contain the center of Em.

For any such m, we can find an m-basis type divisor Dm that is compatible
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with both Em and Hm by Lemma 2.18. We write Dm = Γm + amHm where

Supp(Γm) does not contain Hm. Note that by Definition 2.20,

am =
1

m dimH0(−m(KX +∆))

∞
∑

j=1

dimH0(X,−m(KX +∆)− jHm)

=
1

m dimH0(−m(KX +∆))

∞
∑

j=1

dimH0(X,−(m− jm0)(KX +∆))

does not depend on the choice of Hm and, in particular, limm→∞ am = 1
m0(n+1)

by Lemma 2.21. We know that

lct(X,∆;Dm) ≤
AX,∆(Em)

ordEm(Dm)
=

AX,∆(Em)

Sm(Em)
= δm,

where the equality ordEm(Dm) = Sm(Em) follows from the fact that Dm is

chosen to be compatible with Em. However, we have lct(X,∆;Dm) ≥ δm by

the definition of δm. Thus lct(X,∆;Dm) = δm and the lct is computed by Em.

Since Hm does not contain the center of Em, it follows that (X,∆+ δmΓm) is

lc and Em is an lc place of this pair.

Note that limm→∞ δm = δ(X,∆) < n+1
n . So for sufficiently largem, we get

δmΓm = δm(Dm − amHm) ∼Q −λm(KX +∆),

where λm = δm(1−m0am) ∈ (0, 1). Thus Em is an lc place of a Q-complement.

The rest of the proof is the same as in [BLX19, Ths. 4.6 and A.7]: we know

that Em is indeed an lc place of an N -complement for some N that only de-

pends on dim(X) and Coeff(∆). Therefore, after passing to a subsequence, we

can find an N -complement D, together with lc places Fm of (X,∆+D), such

that
AX,∆(Em)
SX,∆(Em) =

AX,∆(Fm)
SX,∆(Fm) for all sufficiently divisible m ∈ N+. If we take v to

be the limit of (A(X,∆)(Fm))−1ordFm in DMR(X,∆ + D), then v computes

δ(X,∆), as

AX,∆(v)

SX,∆(v)
= lim

m→∞
AX,∆(Fm)

SX,∆(Fm)
= lim

m→∞
AX,∆(Em)

SX,∆(Em)
= lim

m→∞
δm = δ(X,∆).

For (2), it follows immediately from Lemma 3.1 that v is an lc place of a

Q-complement Γ. There exists a log smooth model (Y,E) → (X,∆+ Γ) such

that every component Ei (i = 1, . . . , q) of E is an lc place of (X,∆ + Γ) and

every prime divisor on Y with log discrepancy 0 with respect to (X,∆ + Γ)

is contained in E. In particular, v ∈ QM(Y,E). By [BCHM10, Cor. 1.4.3],

there exists a Q-factorial birational model µ : ‹X → X that extracts exactly

the divisors Ei and Y 99K ‹X is isomorphic at the generic point of any com-

ponent of all non-empty intersections of
⋂

i∈J Ej for J ⊂ {1, . . . , q}. Let

ai = CoeffEi
(∆) if Ei is a prime divisor on X, otherwise let ai = 0. Then

we can argue as in the proof of [BLX19, Lemma 3.2 and Th. 3.5]: ‹X is of
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Fano type, (‹X,µ−1
∗ ∆ +

∑q
i=1(1 − ai)Ei) has a Q-complement and therefore

also has an N -complement, whose pushforward on X gives an N -complement

D of (X,∆) that has all Ei (i = 1, . . . , q) as lc places. In particular, it also has

v as an lc place (as in the proof of Lemma 3.1). �

Combining Theorem 3.6 with the argument in [BLX19, §4], we get the

following generalization of [BLX19, Th. 1.1].

Corollary 3.7. For a Q-Gorenstein family of log Fano pairs (X,∆)→S

over a normal base, the function

t ∈ S 7→ min

ß
n+ 1

n
, δ(Xt̄,∆t̄)

™

is lower semi-continuous and constructible, where (Xt̄,∆t̄) is the base change

to the algebraic closure of k(t).

Remark 3.8. It is proved in [Zhu21] that

min{δ(Xt̄,∆t̄), 1} = min{δ(Xt,∆t), 1}.

However, in general we may have δ(Xt̄,∆t̄)<δ(Xt,∆t) (see [CP21, Rem. 4.16]).

4. Finite generation

In this section, we prove the following finite generation result.

Theorem 4.1. Let (X,∆) be a log Fano pair of dimension n, and let

r > 0 be an integer such that r(KX +∆) is Cartier. Let

R =
⊕

m∈Z≥0

H0(X,−mr(KX +∆)).

Assume that δ(X,∆) < n+1
n . Then for any valuation v that computes δ(X,∆),

the associated graded ring grvR is finitely generated.

To tackle Theorem 4.1, we need some finite generation criterion for lc

places of complements. As shown by the examples in [AZ20, Th. 1.4] and

Section 6, one needs extra assumptions on the valuation and the complement.

It turns out that the special complements as defined in Definition 3.3 will be

the correct ones for proving Theorem 4.1. In other words, monomial lc places

of special complements have finitely generated associated graded rings (see

Theorem 4.2).

To prove this, we will show that in a neighborhood of a monomial lc place

of a special complement, the divisorial ones induce degenerations to log Fano

pairs whose alpha invariants are bounded from below by a positive constant (see

Theorem 4.8), and this is sufficient for the finite generation (see Theorem 4.5).

4.1. Finite generation criterion. The next statement gives us the finite

generation criterion. Clearly, it implies Theorem 4.1 by Corollary 3.4.
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Theorem 4.2. Let (X,∆) be a log Fano pair, and let v be a quasi-

monomial valuation on X . Let R =
⊕

m∈NH0(X,−mr(KX + ∆)) for some

integer r > 0 such that r(KX+∆) is Cartier. Then the following are equivalent :

(1) The associated graded ring grvR is finitely generated, and the central fiber

(Xv,∆v) of the induced degeneration is klt.

(2) The valuation v is a monomial lc place of a special Q-complement Γ with

respect to some log smooth model (Y,E) (see Definition 3.3).

We explain some notation in the above theorem. Assuming the finite

generation of grvR, we define Xv := Proj grvR, and ∆v is the induced degen-

eration of ∆ to Xv. More precisely, suppose ∆ =
∑l

i=1 ai∆i, where ∆i is a

prime divisor on X and ai ∈ Q≥0. Let I∆i
⊆ R be the graded ideal of ∆i.

Let in(I∆i
) ⊆ grvR be the initial ideal of I∆i

. Then ∆v :=
∑l

i=1 ai∆v,i, where

∆v,i is the divisorial part of the closed subscheme V (in(I∆i
)) ⊆ Xv; i.e., ∆v,i

and V (in(I∆i
)) coincide away from a codimension 2 subset of Xv. See [BX19,

p. 648] for a similar definition.

The remaining part of this section will be devoted to the proof of this theo-

rem. In this subsection, we reduce the proof to showing the boundedness of the

degenerations induced by divisorial valuations that are sufficiently closed to v.

We first prove the easier direction in Theorem 4.2.

Lemma 4.3. Assume that grvR is finitely generated and (Xv,∆v) is klt.

Then v is a monomial lc place of a special Q-complement.

Proof. Let q be the rational rank of v. Let π : (Y,E) → (X,∆) be a log

smooth model such that v ∈ QMη(Y,E) for some codimension q point η ∈ Y .

Let D ∼Q −(KX +∆) be the divisor constructed in the proof of Corollary 3.4

so that the strict transform G = π−1
∗ D is ample. We have D = 1

m0r
{f = 0}

for some m0 ∈ N and some f ∈ H0(X,−m0r(KX + ∆)). By assumption,

there exists some f0 := f, f1, . . . , f` ∈ R whose restrictions form a (finite)

set of generators f̄0, . . . , f̄` of grvR. (In particular, f0, . . . , f` generates R.)

By enlarging the set of generators, we may also assume that all I∆i
⊆ R are

generated by the restrictions of some elements from f0, . . . , f`.

By assumption, (Xv,∆v+εDv) is klt for some rational constant 0 < ε � 1,

thus by Lemma 4.4, (Xw,∆w+εDw) ∼= (Xv,∆v+εDv) is also klt for divisorial

valuations w in a sufficiently small neighborhood U ⊆ Σ := QMη(Y,E) of v.

In particular, since v lies in the interior of Σ (by construction), we may assume

that the closure Ū is a compact subset of int(Σ). By Theorem 2.29, there exists

an integer N that only depends on (X,∆+ εD) such that any divisorial valu-

ation w0 ∈ U is an lc place of an N -complement 0 ≤ Γ0 ∼Q −(KX +∆+ εD).

Recall that v(f) is computed as the smallest weight of monomials in the power

series expansion of f at the point η. As Γ varies among the N -complements
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and w varies in a small neighborhood of v, we have a·multηπ
∗Γ ≤ w(Γ) < C for

some constant a, C > 0 that only depends on v. Since there are only finitely

many monomials with bounded multiplicity, we conclude that the value of

w(Γ) is determined by only finitely many such monomials. Hence by shrinking

the neighborhood U , we may assume that whenever Γ is an N -complement

of (X,∆ + εD) and v(Γ) 6= AX,∆+εD(v), then w(Γ) 6= AX,∆+εD(w) for any

w ∈ U . In particular, since w0(Γ0) = AX,∆+εD(w0) for the N -complement Γ0

we constructed above, we have v(Γ0) = AX,∆+εD(v), and therefore v is also an

lc place of (X,∆+Γ′), where Γ′ = εD+Γ0. Since π
−1
∗ Γ′ ≥ εG and G is ample,

it is a special Q-complement with respect to (Y,E) by construction. In other

words, v is a monomial lc place of a special Q-complement as desired. �

The following lemma follows from the proof of [LX18, Lemma 2.10], which

we reproduce here for the reader’s convenience.

Lemma 4.4. Let q be the rational rank of v. Let π : (Y,E) → (X,∆) be

a log smooth model such that v ∈ QMη(Y,E) for some codimension q point

η ∈ Y . Assume that grvR is finitely generated by the restrictions of homoge-

neous elements f0, . . . , f` ∈ R. Then for all valuations w ∈ Σ := QMη(Y,E)

that are sufficiently close to v, we have an isomorphism grwR
∼= grvR sending

the restrictions of f0, . . . , f` in grvR to their respective restrictions in grwR.

Proof. Since f̄0, . . . , f̄` generate grvR, we have a surjection πv : k[x0, . . . , x`
→ grvR sending xi to f̄i. Similarly we have a homomorphism πw : k[x0, . . . , x`]

→ grwR sending xi to the restriction of fi. Let us first show that πw factors

through grvR when w is sufficiently close to v.

The map πv is easily seen to be a doubly graded homomorphism if we

set deg(xi) = (mi, v(fi)) where fi ∈ Rmi
. Let Φ1, . . . ,Φp be homogeneous

generators of its kernel. Let (y1, . . . , yq) be a regular system of parameters

of OY,η, and let α ∈ R
q
+ be such that v = vα. By construction, we have

v(Φi(f0, . . . , f`)) > wtα(Φi) where we set wtα(xi) = vα(fi), and it induces

a natural weight on every polynomial in k[x0, . . . , x`]. Each fi has a local

expansion fi =
∑

β∈Zq
≥0

c
(i)
β yβ at η, where we use the same notation from

Definition 2.4. Since v has rational rank q, for any homogeneous element f ∈ R,

we have v(f) = 〈α, βf 〉 for some uniquely determined βf ∈ Z
q
≥0. In particular,

we have v(fi) = 〈α, βi〉 for some βi ∈ Z
q
≥0; moreover, for any other β ∈ Z

q
≥0

with c
(i)
β 6= 0, we have 〈α, β〉 > v(fi). It follows that if α′ ∈ Σ is sufficiently

close to α, then w = vα′ satisfies w(fi) = 〈α′, βi〉. Using a similar argument, we

also see that if α′ is sufficiently close to α, then w(Φi(f0, . . . , f`)) > wtα′(Φi).

This implies that the Φi’s are contained in the kernel of πw; in particular, the

map πw factors through grvR.

Denote by ϕ : grvR → grwR the induced map. We proceed to show that ϕ

is an isomorphism. First we show that it is injective. For this it suffices to show
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that for any Φ ∈ k[x0, . . . , x`] such that the monomials in Φ have the same

weight with respect to wtα′ and that πv(Φ) 6= 0, we have πw(Φ) 6= 0. After

disregarding monomials in Φ with zero image under πv, we may further write

Φ = Φ′ +Φ′′ where πv(Φ
′) 6= 0. All monomials in Φ′ have wtα = wtα(Φ) while

the ones in Φ′′ have wtα > wtα(Φ). Let g = Φ(f0, . . . , f`), and let ui = c
(i)
βi
yβi

be the monomial in the local expansion of fi that computes v(fi). We aim to

show w(g) = wtα′(Φ), which is equivalent to saying πw(Φ) 6= 0.

As πv(Φ
′) 6= 0 (i.e., v(g) = wtα(Φ

′)), we must have Φ′(u0, . . . , u`) 6= 0;

this is the only monomial in the local expansion (at η ∈ Y ) of g that can

have weight wtα(Φ). (Here we used the fact that v = vα has rational rank q.)

Since the monomial Φ′(u0, . . . , u`) appears in the expansion of Φ(u0, . . . , u`),

therefore w(Φ(u0, . . . , u`)) ≤ w(Φ′(u0, . . . , u`)) = wtα′(Φ′) = wtα′(Φ). (The

last equality holds since all monomials in Φ have the same wtα′ .)

Since w(fi − c
(i)
βi
yβi) > w(fi) = w(ui) by our choice of w, then

w(Φ(f0, . . . , f`)− Φ(u0, . . . , u`)) > wtα′(Φ).

(Again we use the assumption that all monomials in Φ have the same wtα′ .)

So we have

w(g) = w(Φ(u0, . . . , u`)) ≤ wtα′(Φ).

On the other hand, we necessarily have w(g) ≥ wtα′(Φ). So w(g) = wtα′(Φ)

and therefore πw(Φ) 6= 0. This proves that ϕ : grvR → grwR is injective.

But ϕ is a graded homomorphism, and both grvR and grwR have the same

dimensions (= dimRm) in degree m, so ϕ is also surjective. Clearly ϕ sends

the restrictions of f0, . . . , f` in grvR to their respective restrictions in grwR.

This finishes the proof of the lemma. �

The reverse direction of Theorem 4.2 is much harder. To this end, we

drop the assumptions on the complements and prove a weaker finite generation

criterion.

Theorem 4.5. Let (X,∆) be a log Fano pair. Let 0≤Γ ∼Q−(KX+∆) be a

Q-complement, let v0 be an lc place of (X,∆+Γ), and let Σ ⊆ DMR(X,∆+Γ)

be the minimal rational PL subspace containing v0 induced by a fixed log smooth

model of (X,∆) (see Definition 2.27). Then the following are equivalent :

(1) the associated graded ring grv0R is finitely generated ;

(2) there exists an open neighborhood v0 ∈ U ⊆ Σ such that the set

{(Xv,∆v) | v ∈ U(Q) := U ∩ Σ(Q)}

is bounded ;

(3) the S-invariant function

v 7→ SX,∆(v)
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is linear on a neighborhood of v0 in Σ.

We first handle the implication (3) ⇒ (1). This is done in the next two

lemmas by studying the concavity of the S-invariant function.

Lemma 4.6. Let 0 ≤ Γ ∼Q −(KX+∆) be a Q-complement of the log Fano

pair (X,∆). Let v0, v1 ∈ DMR(X,∆+Γ) be divisorial valuations in the same

simplex determined by a fixed log smooth model (Y,E). There exists a natural

linear map [0, 1] → QM(Y,E) sending 0 7→ v0 and 1 7→ v1. For t ∈ (0, 1), we

then denote vt to be the valuation corresponding to t. Then

(1) SX,∆(vt) ≥ (1− t)SX,∆(v0) + tSX,∆(v1).

(2) When equality holds, we have

Fλ
vtRm = Span{s ∈ Rm | (1− t)v0(s) + tv1(s) ≥ λ}

for all λ ∈ R and all m ∈ N. In particular, the filtration Fvt is finitely

generated.

Proof. Let F0 = Fv0 , F1 = Fv1 , and let Ft be the filtration given by

Fλ
t Rm = Span{s ∈ Rm | (1− t)v0(s) + tv1(s) ≥ λ}.

We claim that S(Ft) = (1− t)S(v0)+ tS(v1) and that grv0(grv1R) ∼= grFt
R for

any t ∈ (0, 1), where by abuse of notation we denote by grv0(grv1R) the graded

ring associated to the filtration on grv1R that is induced by Fv0 on R. (In fact,

both claims hold even without assuming that v0, v1 are divisorial.) To see this,

we note that

grαv0gr
β
v1R

∼=
Fα
0 R ∩ Fβ

1 R

(F>α
0 R ∩ Fβ

1 R) + (Fα
0 R ∩ F>β

1 R)

naturally maps to gr
(1−t)α+tβ
Ft

R. This induces the map ϕ : grv0(grv1R) →

grFt
R. Let us check that this is an isomorphism. Since both sides are N-graded

and have the same dimensions (= dimRm) in degree m, it suffices to check

that ϕ is surjective; but this is clear from the definition of Ft. Hence ϕ is

an isomorphism. We next pick a basis s1, . . . , sNm of Rm that is compatible

with both F0 and F1 by Lemma 2.18. It is straightforward to check (using

grv0grv1R
∼= grFt

R) that this basis is also compatible with Ft, thus

Sm(Ft) =
1

mrNm

Nm
∑

i=1

((1− t)v0(si) + tv1(si)) = (1− t)Sm(v0) + tSm(v1).

The claim then follows by letting m → ∞. Clearly Fλ
t Rm ⊆ Fλ

vtRm, hence

S(vt) ≥ S(Ft) = (1− t)S(v0) + tS(v1), which proves (1).
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Next assume that equality holds for some t ∈ (0, 1). Then by concavity

it holds for all t ∈ (0, 1). By the above proof we also have vol(F
(λ)
vt R) =

vol(F
(λ)
t R) for all λ ∈ R. Assume for the moment that t ∈ Q. We claim that

Claim. The filtration Ft is finitely generated and induces a weakly special

degeneration of (X,∆).

To see this, let o ∈ (X ′,∆′ + Γ′) be the affine cone over (X,∆+ Γ) using

the polarization −r(KX + ∆). Note that (X ′,∆′) is klt and (X ′,∆′ + Γ′) is

lc by [Kol13, Lemma 3.1]. Let wi (i = 0, 1) be the divisorial valuation over

(X ′,∆′ + Γ′) given by wi(s) = m + vi(s) where s ∈ Rm, and let Ei (i = 0, 1)

be the corresponding prime divisor over X ′. Then wi are both lc place of

(X ′,∆′ + Γ′) that are centered at the vertex o. Let

am = amAX′,∆′ (w0)(w0) ∩ amAX′,∆′ (w1)(w1)

for some sufficiently divisible integer m > 0. Then am is mo-primary. As

OX′(−mΓ′) ⊆ am and (X ′,∆′ + Γ′) is log canonical, it follows that (X ′,∆′ +

a
1/m
m ) is lc and has both w0, w1 as lc places. By [Xu21b, Th. 3.5 and Prop. 3.6],

we then have a G2
m-equivariant locally stable family (X,∆X) over A

2 = A2
t0,t1

with general fiber (X ′,∆′) given by

X = Spec
⊕

(i0,i1)∈Z2

(ai0(ordE0
) ∩ ai1(ordE1

))t−i0
0 t−i1

1 .

In particular, the above algebra (denoted by A) is finitely generated. On the

other hand, we have A/(t0, t1) ∼= grv0(grv1R) ∼= grFt
R, hence grFt

R is finitely

generated. For suitable a, b ∈ N, the base change (X,∆X)×A2 A1 via the map

A1 → A2 : s 7→ (sa, sb) is the test configuration induced by Ft. Indeed, by the

definition of Ft it is not hard to see that one can choose a, b such that

X×A2 A1 ∼= Spec
⊕

j∈Z
s−jFλj

t R

for some λ ∈ Q+, and this determines the test configuration. Since (X,∆X)×A2

A1 is a locally stable family with normal general fiber, we see that X×A2 A1 is

normal, thus the algebra on the above right-hand side is integrally closed. In

particular, for any p ∈ N+, we have

(4.1) f ∈ Fλ
t Rm ⇐⇒ fp ∈ Fλp

t Rmp.

As (X,∆X) is a locally stable family, its central fiber

(Spec A/(t0, t1),∆X,(0,0)) = (Spec(grFt
R),∆X,(0,0))

is slc. Since this is an orbifold cone over the central fiber of the test configura-

tion induced by Ft, we deduce from [Kol13, Lemma 3.1] (see also [Kol04]) that

the test configuration induced by Ft is weakly special. This proves the claim.
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Next, let q > 0 be the smallest integer such that the valuation qvt is

Z-valued; it is also the smallest integer such that the set of jumping numbers

Ft lies in
1
qZ. By the above claim and (the proof of) [BLX19, Th. A.2], there

exist some Z-valued divisorial valuations wi (i = 1, . . . , `) and some ai ∈ Q

such that

Fλ
t Rm = {f ∈ Rm |wi(f) ≥ λq +mai for all 1 ≤ i ≤ `}.

Indeed, by [BHJ17, Prop. 2.15], the above equality holds at least for sufficiently

divisible m; but then it holds for every m ∈ N by (4.1). Suppose that Ft 6= Fvt .

Then there exists some f ∈ Rm such that vt(f) = µ > 0 and f ∈ Fλ
t Rm \

F>λ
t Rm for some λ < µ. In particular, λ ∈ 1

qZ, and for at least one of the

valuations wi, say w1, we have w1(f) = λq +ma1. Let ε ∈ Q+ be sufficiently

small so that η := (µ− λ)q + εma1 > 0. Then for sufficiently divisible integer

k ∈ N, the kernel of the map

Rεmk
·fk

−→ Fµk
vt R(1+ε)mk/F

µk
t R(1+ε)mk

is contained in Fηk
w1Rεmk. It follows that

dim(Fµk
vt R(1+ε)mk/F

µk
t R(1+ε)mk) ≥ dim(Rεmk/F

ηk
w1
Rεmk),

and thus dividing out by kn/n! and letting k → ∞ we deduce from [BHJ17,

Lemma 5.13] that

vol(F (λ′)
vt R)− vol(F

(λ′)
t R) > 0 where λ′ =

µ

(1 + ε)m
,

a contradiction. Hence the two filtrations Ft and Fvt coincides when t ∈ Q.

In general, for any fixed m ∈ N, a, b ∈ Q and any irrational t ∈ (0, 1), we

have

(4.2) F
(1−t)a+tb
t Rm = F

(1−t′)a+t′b
t′ Rm and F (1−t)a+tb

vt Rm = F (1−t′)a+t′b
vt′

Rm

for some t′ ∈ Q that is sufficiently close to t. Indeed, recall that s1, . . . , sNm is

a basis of Rm that is compatible with both F0 and F1, and Fλ
t Rm is spanned

by those si with (1− t)v0(si) + tv1(si) ≥ λ. As t 6∈ Q, we have (1− t)v0(si) +

tv1(si) = (1 − t)a + tb if and only if v0(si) = a and v1(si) = b, thus for these

si’s we necessarily have (1−t′)v0(si)+t′v1(si) = (1−t′)a+t′b for all t′ ∈ (0, 1).

For the remaining si’s, as t
′ is sufficiently close to t, we may assume

(1− t′)v0(si) + t′v1(si) < (resp. >) (1− t′)a+ t′b

if (1 − t)v0(si) + tv1(si) < (resp. >) (1 − t)a + tb. Hence F
(1−t)a+tb
t Rm and

F
(1−t′)a+t′b
t′ Rm are spanned by the same set of si’s, and we get the first equality

in (4.2). The second equality in (4.2) can be proved in a similar fashion as

in Lemma 4.3, noting that as t′ stays close to t, the monomial that computes

vt(s) (where s ∈ Rm) also computes vt′(s) (and there are only finitely many
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such monomials to consider). Thus since Ft = Fvt when t ∈ Q, it follows that

Ft = Fvt for irrational t as well. Since grFt
R ∼= grv0(grv1R) and the right-hand

side is finitely generated by the above discussion, the same holds for Fvt . The

proof is now complete. �

Lemma 4.7. Let 0 ≤ Γ ∼Q −(KX + ∆) be a Q-complement of the log

Fano pair (X,∆), let (Y,E) be a log smooth model of (X,∆), and let P be a

convex subset in QM(Y,E)∩DMR(X,∆+Γ). Assume that the linear span of

P is rational, and SX,∆(·) is linear on P . Then for any v ∈ P , the associated

filtration Fv is finitely generated.

Proof. We first claim that for any valuations v0, v1 ∈ P and any t ∈ (0, 1),

we have

(4.3) Fλ
vtRm = Span{s ∈ Rm | (1− t)v0(s) + tv1(s) ≥ λ},

where vt = (1 − t)v0 + tv1. As in the proof of Lemma 4.6, (4.3) is equivalent

to saying that for any basis s1, . . . , sNm of Rm that is compatible with both v0
and v1, we have

(4.4) vt

(

Nm
∑

i=1

aisi

)

= min{(1− t)v0(si) + tv1(si) | ai 6= 0}

for any a1, . . . , aNm ∈ k. As in the proof of (4.2), we know that the basis

s1, . . . , sNm is also compatible with divisorial valuations in the minimal rational

PL subspace containing v0 (resp. v1) that are sufficiently close to v0 (resp. v1).

By assumption, these divisorial valuations are necessarily contained in P . By

Lemma 4.6, the equality (4.3) (and hence (4.4)) holds when v0, v1 are divisorial.

Thus as the function v 7→ v(s) is continuous for any fixed s ∈ Rm, we conclude

that (4.4) (and hence (4.3)) holds for all vi ∈ P and t ∈ (0, 1).

Now for any v ∈ P , we may find some t ∈ (0, 1) and some valuation

v′1 ∈ P such that v′t = (1− t)v + tv′1 is divisorial. By (4.3) and the discussions

in Lemma 4.6, we see that grv′1(grvR) ∼= grv′tR. Since v′t is divisorial, the

associated graded ring grv′tR is finitely generated by Lemma 2.28. It follows

that grv′1(grvR) is finitely generated, hence the same holds for grvR by lifting

the generators of grv′1(grvR). Thus Fv is finitely generated as desired. �

We now present the proof of Theorem 4.5.

Proof of Theorem 4.5. (1) ⇒ (2): In fact in a suitable neighborhood U ,

all (Xv,∆v) are isomorphic; see [LX18, Lemma 2.10] or Lemma 4.4. (3) ⇒ (1)

follows by Lemma 4.7. So it remains to prove (2) ⇒ (3). The key point is that

if a concave function takes rational values with linearly bounded denominators

on rational points, then it is linear.
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Denote by (Y,E) the log smooth model of (X,∆) that appears in the defi-

nition of Σ. By Lemma 4.6, the S-invariant function is concave on the simplex

of QM(Y,E) containing v0. In particular, it is Lipschitz in a neighborhood of

v0 in Σ, and we may find some constant C > 0 such that

(4.5) |SX,∆(v)− SX,∆(v0)| ≤ C|v − v0|

for any v in a neighborhood of v0 in Σ. Let S0 = SX,∆(v0). By [LX18,

Lemma 2.7], for any ε > 0, there exist divisorial valuations v1, . . . , v` ∈ Σ,

rational numbers S1, . . . , S` and positive integers q1, . . . , q` such that

• (v0, S0) is in the convex cone generated by (vi, Si), i.e., there exists some

λi > 0 such that v0 =
∑`

i=1 λivi and S0 =
∑`

i=1 λiSi;

• (qivi, qiSi) is an integer vector for all i = 1, . . . , `;

• |vi − v0|+ |Si − S0| <
ε
qi

for all i = 1, . . . , `.

In particular, by the last condition, we may assume that vi ∈ U , where U ⊆ Σ

is the open neighborhood of v0 in condition (2).

Since the set {(Xv,∆v) | v ∈ U(Q)} is bounded, there exists some integer

M > 0 such that M(KX +∆) is Cartier and such that M ·FutXv ,∆v(ξ) ∈ Z for

any v ∈ U(Q) and any one parameter subgroup ξ : Gm → Aut(Xv,∆v). If we

let q be an integer such that qv is integral, then Mq ·AX,∆(v) ∈ Z. Note that qv

induces a one parameter subgroup ξv : Gm → Aut(Xv,∆v) with FutXv ,∆v(ξv) =

q ·βX,∆(v). It follows that Mq ·SX,∆(v) ∈ Z for any v ∈ U(Q) and any integer

q such that qv is integral. In particular, we have Mqi · SX,∆(vi) ∈ Z.

On the other hand, by (4.5) we have |SX,∆(vi)− S0| ≤
Cε
qi
, and hence

|Mqi ·SX,∆(vi)−MqiSi| ≤ Mqi · |SX,∆(vi)−S0|+Mqi · |Si−S0| ≤ (C+1)Mε.

Note that the constants C andM are independent of the choice of ε. Thus if we

take ε = 1
2(C+1)M , then as Mq · SX,∆(v) and qiSi are both integers, we deduce

that SX,∆(vi) = Si. But as SX,∆(·) is concave on U and v0 =
∑`

i=1 λivi, we

also have

∑̀

i=1

λiSX,∆(vi) ≤ SX,∆(v0) = S0 =
∑̀

i=1

λiSi =
∑̀

i=1

λiSX,∆(vi).

Hence the first inequality is an equality, which forces SX,∆(·) to be linear on

the cone generated by v1, . . . , v`. In particular, it is linear in a neighborhood

of v0 in Σ. �

4.2. Estimate of alpha invariants. We next proceed to check the condition

of Theorem 4.5(2) when the complement is special. In order to control the

boundedness of (Xv,∆v) for v ∈ Σ(Q), we wish to apply the boundedness

result as in Theorem 2.13. In light of Lemma 3.5, we already know (Xv,∆v)

is klt. Then we need to further analyze the α-invariant of (Xv,∆v).

The following theorem is our main result in this section.
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Theorem 4.8. Let (X,∆) be a log Fano pair, and let Γ be a special com-

plement with respect to a log smooth model (Y,E) (see Definition 3.3). Let

K ⊂ DMR(X,∆ + Γ) be a compact subset that is contained in the interior

of a simplicial cone in QM(Y,E). Then there exists some constant α > 0

such that for all rational points v ∈ K , the alpha invariants α(Xv,∆v) of the

induced degenerations (Xv,∆v) are bounded from below by α.

Our main tool is the following characterization of α-invariants.

Lemma 4.9. Let v be a divisorial valuation such that grvR is finitely gen-

erated, and let α ∈ (0, 1) be a rational number. Then α(Xv,∆v) ≥ α if and

only if for all 0 ≤ D ∼Q −(KX +∆), there exists some 0 ≤ D′ ∼Q −(KX +∆)

such that (X,∆+ αD + (1− α)D′) is lc and has v as an lc place.

For ease of notation, we call such D′ an (α, v)-complement of D.

Proof. Note that (Xv,∆v) has an induced Gm-action. By taking the limit

under the Gm-action, we see that any effective Q-divisor G ∼Q −(KXv +∆v)

degenerates to some Gm-invariant divisor G0. By the semi-continuity of log

canonical thresholds, we have lct(Xv,∆v;G)≥ lct(Xv,∆v;G0), thus α(Xv,∆v)

≥ α if and only if lct(Xv,∆v;G0) ≥ α for all Gm-invariant divisors G0 ∼Q

−(KXv +∆v). Any such G0 is also the specialization of some divisor 0 ≤ D ∼Q

−(KX + ∆) on X, and lct(Xv,∆v;G0) ≥ α means that v induces a weakly

special degeneration of (X,∆+ αD). By Theorem 2.29, this is the case if and

only if for all ε ∈ Q, 0 < ε � 1, the valuation v is an lc place of a Q-complement

of the klt pair (X,∆+ (α− ε)D); i.e., D has an (α− ε, v)-complement. (Note

that (X,∆ + αD) is only lc so we cannot directly apply Theorem 2.29.) We

claim that this is equivalent to saying thatD has an (α, v)-complement. Clearly

only the forward direction needs a proof. We may write v = c · ordE . Let

a = AX,∆(E). Since v is an lc place of Q-complement, there exists a birational

model π : Y → X that extracts E as the only possible exceptional divisor (by

[BCHM10, Cor. 1.4.3]), and Y is of Fano type. Moreover, it follows from the

existence of (α − ε, v)-complement that the pair (Y, π−1
∗ (∆ + (α − ε)D) ∨ E)

has a Q-complement for all 0 < ε � 1. By Lemma 3.2, this implies that

(Y, π−1
∗ (∆ + αD) ∨ E) also has a Q-complement, whose pushforward to X is

an (α, v)-complement of D. This proves the claim and also the statement of

the lemma. �

Corollary 4.10. Let v be a divisorial valuation that is an lc place of a

Q-complement of (X,∆). Then

α(Xv,∆v) ≤ 1−
AX,∆(v)

TX,∆(v)
.

Proof. We may assume that α(Xv,∆v) > 0; otherwise, since v is an lc

place of some Q-complement, we have TX,∆(v) ≥ AX,∆(v) and the result is
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clear. Let α = α(Xv,∆v). Note that α(Xv,∆v) < 1 since otherwise it cannot

have any non-trivial Gm-action by [LZ22, Cor. 3.6]. (The same proof in loc. cit.

works for pairs.) Choose some effective divisor D ∼Q −(KX + ∆) whose

support does not contain CX(v). By Lemma 4.9, there exists some 0 ≤ D′ ∼Q

−(KX+∆) such that v is an lc place of (X,∆+αD+(1−α)D′). In particular,

(1 − α)v(D′) = v(αD + (1 − α)D′) = AX,∆(v), which implies AX,∆(v) ≤

(1− α)TX,∆(v). In other words, α(Xv,∆v) ≤ 1−
AX,∆(v)
TX,∆(v) . �

In order to construct (α, v)-complements for some uniform constant α

(and therefore produce a uniform lower bound for α(Xv,∆v) by Lemma 4.9),

our strategy is to refine the proof of Lemma 3.5 using the alpha invariants and

nef thresholds of the corresponding exceptional divisors F . This is done in the

next three lemmas.

To this end, we introduce some notation. Under the notation and assump-

tions of Theorem 4.8, we fix an effective ample Q-divisor G on Y that does

not contain any stratum of E such that ΓY ≥ G. For any divisorial valuation

v ∈ DMR(X,∆+Γ)∩QM(Y,E), let ρ : Z → Y be the corresponding weighted

blowup, F the exceptional divisor (i.e., v = c ·ordF ), and (Z,∆Z), (Y,∆Y ) the

crepant pullbacks as in the proof of Lemma 3.5. Let ∆+ := ∆Z ∨ 0 ∨ F . Note

that (Z,∆+) is plt. By adjunction we may write KF +Φ = (KZ +∆+)|F . Let

L := −ρ∗π∗(KX +∆)−AX,∆(F ) · F.

Since v = c ·ordF is an lc place of (X,∆+Γ), F is not contained in the support

of ρ∗π∗Γ − AX,∆(F ) · F ∼Q L; thus the Q-linear system |L|F |Q is non-empty

and we may define

αv := lct(F,Φ; |L|F |Q).

We also let

εv := sup{t ≥ 0 | ρ∗G− tAX,∆(F ) · F is nef}.

Note that as −F is ρ-ample, we have εv > 0 and for any t ∈ (0, εv), the divisor

ρ∗G− tAX,∆(F ) · F is ample.

Lemma 4.11. Let a, b > 0 be constants. Then there exists some constant

α > 0 depending only on a, b, (X,∆) and Γ such that α(Xv,∆v) ≥ α as long

as αv > a and εv > b.

Proof. We may assume that a < 1. By Lemma 4.9, it is enough to find

some constant α > 0 such that an (α, v)-complement exists for any 0 ≤ D ∼Q

−(KX +∆).

As a reduction step, we first show that it suffices to check the existence

of an (α, v)-complement for those D such that v(D) = AX,∆(v). Indeed, as G

is ample, we may find some constant 0 < λ � 1 such that G+ λπ∗(KX +∆)
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remains ample. It follows that T (G; v) ≥ λ · TX,∆(v), thus

TX,∆(v) = T (π∗Γ; v) ≥ v(π∗Γ−G) + T (G; v)

≥ v(Γ) + λ · TX,∆(v) = AX,∆(v) + λ · TX,∆(v),

or (1− λ)TX,∆(v) ≥ AX,∆(v). On the other hand, α(X,∆)TX,∆(v) ≤ AX,∆(v)

by the definition of alpha invariants.

We claim there exists some constant µ ∈ (0, 1) depending only on λ and

α(X,∆) such that for any 0 ≤ D ∼Q −(KX + ∆), we can always find some

0 ≤ D1 ∼Q −(KX +∆) and ν ≥ µ such that νv(D)+ (1− ν)v(D1) = AX,∆(v).

In fact, since the possible values of v(D1) are dense between 0 and TX,∆(v),

this is a consequence of the following elementary fact: if 0 < α ≤ A
T ≤ 1 − λ,

then there exists µ > 0 depending only on α and λ, such that for any p ∈ [0, T ],

we can find some q ∈ [0, T ) and some ν ≥ µ such that νp+ (1− ν)q = A.

Clearly if an (α, v)-complement exists for νD + (1 − ν)D1, then (αµ, v)-

complement exists for D. This proves the reduction.

Next we fix a sufficiently small t ∈ (0, 1) such that s := (1−a)t
1−t < b. By

assumption, ρ∗G − sAX,∆(F ) · F is ample. Fix any 0 ≤ D ∼Q −(KX + ∆)

with v(D) = AX,∆(v), let H ′ be a general member of the Q-linear system

|ρ∗G− sAX,∆(F ) · F |Q, and let H = ρ∗H ′.
We claim that along ρ(F ) the pair

Å
Y,∆Y + a · π∗D +

1− t

t
H

ã

is lc and has F as its unique lc place. To see this, first we have

AY,∆Y
(F )− ordF

Å
a · π∗D +

1− t

t
H

ã

= AX,∆(F )− aAX,∆(F )− (1− a)AX,∆(F ) = 0.

Then let

D′ = ρ∗π∗D − ordF (D) · F = ρ∗π∗D −AX,∆(F ) · F ∼Q L.

By assumption, (F,Φ + aD′|F ) is klt; hence since H ′ is general, we see that

(F,Φ + aD′|F + 1−t
t H ′|F ) is also klt. By inversion of adjunction, (Z,∆+ +

aD′+ 1−t
t H ′) is plt along F . Since ∆+ ≥ ∆Z ∨F , we deduce that (Z,∆Z ∨F +

aD′ + 1−t
t H ′) is also plt along F . By construction and the above calculation,

we can check that

KZ +∆Z ∨ F + aD′ +
1− t

t
H ′ = ρ∗

Å
KY +∆Y + a · π∗D +

1− t

t
H

ã
.

Thus (Y,∆Y + a · π∗D + 1−t
t H) is lc along ρ(F ) and F is the only lc place

there, proving the previous claim.
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We also know that (Y,∆Y +π∗Γ−G) is lc and F is an lc place of the pair.

Taking convex linear combination as in the proof of Lemma 3.5, it follows that
Å
Y,∆Y + t

Å
a · π∗D +

1− t

t
H

ã
+ (1− t)(π∗Γ−G)

ã

=
(

Y,∆Y + at · π∗D + (1− t)(π∗Γ−G+H)
)

is lc along ρ(F ) and F is the only lc place of the pair in a neighborhood of

ρ(F ). In particular, ρ(F ) is a connected component of the non-klt locus of the

pair. Note that

KY +∆Y + at · π∗D + (1− t)(π∗Γ−G+H)

= π∗(KX +∆+ atD + (1− t)(Γ− π∗G+ π∗H)).

Thus (X,∆ + atD + (1 − t)(Γ − π∗G + π∗H)) is lc along CX(v) = π(ρ(F ))

and CX(v) is a connected component of its non-klt locus, since otherwise in

some neighborhood of π−1CX(v) there would be another non-klt center of

(Y,∆Y +at·π∗D+(1−t)(π∗Γ−G+H)) that is disjoint from ρ(F ), contradicting

the Kollár-Shokurov connectedness theorem (see, e.g., [Kol92, 17.4 Th.]).

Similarly, as

−(KX +∆+ atD + (1− t)(Γ− π∗G+ π∗H)) ∼Q −(1− a)t(KX +∆)

is ample, we deduce that (X,∆+ atD + (1− t)(Γ− π∗G+ π∗H)) is indeed lc

everywhere, as otherwise there would be some non-klt center of the pair that

is disjoint from CX(v), contradicting Kollár-Shokurov connectedness. Since by

construction v = c ·ordF is an lc place of (X,∆+atD+(1−t)(Γ−π∗G+π∗H)),

we may add some general divisor 0 ≤ D1 ∼Q −(1 − a)t(KX + ∆) to the pair

and conclude that D has an (at, v)-complement. Since D is arbitrary and t

only depends on a, b, this completes the proof. �

The argument for the following lemma is similar to the one in [Zhu20].

Lemma 4.12. Using notation as above, let K ⊆ DMR(X,∆ + Γ) be a

compact subset that is contained in the interior of some simplicial cone in

QM(Y,E). Then there exist some constants a > 0 such that αv ≥ a for all

divisorial valuations v ∈ K .

Proof. Let Ei (i = 1, . . . , r) be the irreducible components of E so that

W = E1 ∩ · · · ∩ Er is the common center of valuations in K on Y . Any

divisorial valuation v ∈ K corresponds to a weighted blowup atW with weights

wt(Ei) = ai for some integers ai > 0 such that gcd(a1, . . . , ar) = 1. Since K is

compact, there exists some constant C > 0 such that ai
aj

< C for all 1 ≤ i, j ≤ r.

To describe the weighted blow up in more details, if locally around a point

x ∈ W , Ei is given by the equation ei = 0, then the weighted blow up is given
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by

(4.6) ProjOY
(OY ⊕ I1 ⊕ I2 ⊕ · · · ),

where Id around x is generated by monomials ed11 · · · edrr such that
∑

aidi ≥ d.

The exceptional divisor F is a weighted projective space bundle over W with

fiber F0 isomorphic to Ar \ {0}/Gm with the action

λ · (y1, . . . , yr) = (λa1y1, . . . , λ
aryr).

The corresponding well-formed weighted projective space is given in the fol-

lowing way: let qi = gcd(a1, . . . , âi, . . . , ar), q = q1 · · · qr, and a′i =
aiqi
q . Then

F0
∼= P(a′1, . . . , a

′
r), which is well formed (see [IF00, Lemma 5.7]).

Let ci = AX,∆(Ei) > 0, bi = max{0, ordEi
(∆Y )} < 1. Then we have the

following facts (with notation as in the paragraph before Lemma 4.11):

(1) AX,∆(F ) =
∑r

i=1 aiAX,∆(Ei) = a1c1 + · · ·+ arcr;

(2) LF0
:= L|F0

∼Q
AX,∆(F )

q L0, where L0 is the class of O(1) on P(a′1, . . . , a
′
r);

(3) ΦF0
:= Φ|F0

=
∑r

i=1
qi−1+bi

qi
{xi = 0}, where x1, . . . , xr are the weighted

homogeneous coordinates on P(a′1, . . . , a
′
r);

(4) bm := ρ∗OZ(−mF )/ρ∗OZ(−(m+1)F ) ∼=
⊕

OW (−(m1E1 + · · ·+mrEr)),

where the direct sum runs over all (m1, . . . ,mr) ∈ Nr such that a1m1 +

· · ·+ armr = m,

Remark 4.13. All these facts can easily be seen if we view the weighted

blow up as a (Deligne-Mumford) stack (see, e.g., [ATW19, §3]). Then the

stacky exceptional divisor F is a weighted projective stack bundle over W

with the fiber P(a1, . . . , ar) := [(Ar \ {0})/Gm] as a Deligne-Mumford stack

where Gm acts diagonally on Ar by weights (a1, . . . , ar) (see, e.g., [RT11, §2.3]),

and O(−F)|P(a1,...,ar)
∼= O(1). The natural morphism

P(a1, . . . , ar) → P(a′1, . . . , a
′
r)

maps the Deligne-Mumford stack to its coarse space, with an orbifold divisor

of the form (1 − 1
qi
)(xi = 0) along the i-th coordinate hyperplane (xi = 0) of

P(a′1, . . . , a
′
r) (see [RT11, §2.5]).

Now claim (2) follows from the fact that O(−F) is O(1) on P(a1, . . . , ar),

and the pullback of O(1) on P(a′1, . . . , a
′
r) to P(a1, . . . , ar) is O(q). In fact, for

the map

P(λ1, . . . , λi, . . . , λn) → P

Å
λ1

λ
, . . . , λi, . . . ,

λn

λ

ã
,

where

λ = gcd(λ1, . . . , λ̂i, . . . , λr),

the pullback of the divisor given by the section xi of OP(
λ1
λ
,...,λi,...,

λn
λ

)
(λi) is

λ-multiple of the orbifold divisor given by the section yi of OP(λ1,...,λi,...,λn)(λi).
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For (3), the birational transform of Ei restricting on P(a1, . . . , ar) is {yi = 0}

on P(a1, . . . , ar) with coordinates yi. Then KP(a1,...,ar) +
∑

bi{yi = 0} is the

pullback ofKP(a′1,...,a
′
r)
+
∑r

i=1
qi−1+bi

qi
{xi=0} as the morphism P(a1, . . . , ar) →

P(a′1, . . . , a
′
r) precisely has codimension one orbifold components along (yi = 0)

with degree qi. (Alternatively, (3) can also be derived through a direct cal-

culation of the different, noting that Z has a cyclic quotient singularity of

order qi along the codimension 2 component {xi = 0} ⊆ F .) Finally, let

cm =
⊕

OW (−(m1E1 + · · · + mrEr)) be the direct sum that appears in (4).

Since ρ∗(OY (−(m1E1 + · · ·+mrEr)) ⊂ OZ(−mF ) if
∑

aimi = m, then

OY (−(m1E1 + · · ·+mrEr)) ⊂ ρ∗OZ(−mF ) = Im.

Therefore, we have a natural map cm → bm. A local computation shows that

both two sides are generated as free module by the image of em1

1 · · · emr
r with

a1m1 + · · ·+ armr = m. Thus (4) follows.

By (1) and (4), for any m ∈ N such that mL is Cartier, we have

ρ∗OF (mL) ∼= OY (−mπ∗(KX +∆))

⊗ ρ∗OZ(−mAX,∆(F ) · F )/ρ∗OZ(−(mAX,∆(F ) + 1)F )

∼=
⊕

(m1,...,mr)

OW

(

−mπ∗(KX +∆)− (m1E1 + · · ·+mrEr)
)

,

the direct sum running over all
∑r

i=1 aimi = m
∑r

i=1 aici. Recall that
ai
aj

< C

for all 1 ≤ i, j ≤ r, thus m1 + · · ·+mr ≤ C0m, where C0 = dC
∑r

i=1 cie. If we

choose a very ample line bundle H0 such that H0 +Ei (1 ≤ i ≤ r) are all very

ample and H0 + π∗(KX + ∆) is ample, then for sufficiently divisible m, each

direct summand in ρ∗OF (mL) admits an inclusion

OW

(

−mπ∗(KX +∆)− (m1E1 + · · ·+mrEr)
)

↪→ OW

(

(m+m1 + · · ·+mr)H0

)

↪→ OW

(

(C0 + 1)mH0

)

.

Therefore for H = (C0 + 1)H0 and sufficiently divisible m, we have

ρ∗OF (mL) ↪→ OW (mH)⊕Nm

for some integer Nm (= rank(bmAX,∆(F ))).

Since F0 is toric, by [BJ20, Th. F] we know that lct(F0,ΦF0
; |LF0

|Q) is

computed by one of torus invariant divisors {xi = 0}. Thus by (1) (2) and (3),

we get

lct(F0,ΦF0
; |LF0

|Q) =
min1≤i≤r ai(1− bi)

a1c1 + · · ·+ arcr
≥ a

for some constants a > 0 that only depend on bi, ci and C. Let ∆W :=

(∆Y ∨ 0 −
∑r

i=1 biEi)|W . Note that (W,∆W ) is klt and ρ∗∆W is the vertical
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part of Φ. We have lct(W,∆W ; |H|Q) > 0 by Izumi’s inequality (see, e.g.,

[Li18, Th. 1.2] or [BL21, Th. 20]), since there exists constant M > 0 such

that multwD ≤ M for any effective divisor D ∼Q H and any w ∈ W . Thus

after replacing a by a smaller positive number, we may further assume that

lct(W,∆W ; |H|Q) ≥ a. We claim that αv ≥ a.

To see this, let t ∈ (0, a) and let Φ′ ∼Q L|F be an effective divisor. Suppose

that (F,Φ+tΦ′) is not lc. Then since (F,Φ+tΦ′) is lc along the general fiber of

F → W by our choice of a, we know that there exists a divisorial valuation v0
over F such that AF,Φ+tΦ′(v0) < 0 and the center of v0 does not dominate W .

By [Zhu20, Lemma 2.1], v0 restricts to a divisorial valuation w on W .

Let g : W1 → W be a birational morphism such that the center of w is a

divisor Q on W1, let F1 = F ×W W1, Φ1 = g∗(Φ − ρ∗∆W ) (i.e., the pullback

of the horizontal part of Φ; here we also denote the projection F1 → F by g),

and let P be the preimage of Q in F1.

Since F → W is locally a trivial product F0 × W , it is not hard to see

that the formation of ρ∗OF (mL) commutes with the base change W1 → W .

Thus by the projection formula, we see that

H0(F1,OF1
(g∗mL− kP )) = H0(W1, g

∗ρ∗OF (mL)⊗OW1
(−kQ)).

Since ρ∗OF (mL) ↪→ OW (mH)⊕Nm for any sufficiently divisible m, we have

H0(F1,OF1
(g∗mL− kP )) 6= 0 ⇒ H0(W1,OW1

(mg∗H − kQ)) 6= 0

for any k ∈ N, which implies

ordP (Φ
′) ≤ sup

H′∈|H|Q
ordQ(H

′).

Since lct(W,∆W ; |H|Q) ≥ a,

a · sup
H′∈|H|Q

ordQ(H
′) ≤ AW,∆W

(Q) = AF,Φ(P ).

Since t < a, we combine the above inequalities to conclude that t · ordP (Φ
′) <

AF,Φ(P ). It follows that if we write

g∗(KF +Φ+ tΦ′) = KF1
+Φ1 + λP +D

where P 6⊆ Supp(D), then λ ≤ 1.

On the other hand, since the divisor P is vertical, over a general fiber of

P → Q (which we still denote by F0), we have D|F0
∼Q tg∗Φ′|F0

∼Q tL|F0
.

Thus by our choice of a, (P, (Φ1+D)|P ) is lc along the general fibers of P → Q,

and hence by inversion of adjunction we see that (F1,Φ1 + λP +D) is also lc

along the general fibers of P → Q. In particular, it is lc at the center of v0, a

contradiction. Thus (F,Φ+ tΦ′) is always lc and αv ≥ a as desired. �
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Lemma 4.14. Using notation as above, let K ⊆ DMR(X,∆ + Γ) be a

compact subset that is contained in the interior of some simplicial cone in

QM(Y,E). Then there exist some constants b > 0 such that εv ≥ b for all

divisorial valuations v ∈ K .

Proof. We continue to use the notation from the proof of Lemma 4.12. Let

am := ρ∗OZ(−mAX,∆(F ) · F ).

Since ai
aj

< C for all 1 ≤ i, j ≤ r, there exists some constant M ∈ N such that

1

AX,∆(F )
ordF (f) ≥

1

M
multW (f)

for all regular functions f around the generic point of W . In particular,

IMm
W ⊆ am for all m ∈ N.

Claim 4.15. We can find a sequence of ideals

(4.7) OY ⊇ IW ⊇ · · · ⊇ am ⊇ · · · ⊇ IMm
W

on Y such that the quotients of consecutive terms are all isomorphic to

OW (−n1E1 − · · · − nrEr)

for some (n1, . . . , nr) ∈ Nr with
∑r

i=1 ni < Mm.

The key point in this claim is that am appears in this sequence. (The

remaining terms in the middle do not matter too much to us.)

Proof. We know

Ip
W /Ip+1

W = Symp(IW /I2
W ) ∼=

⊕

n1+···+nr=p,(n1,...,nr)∈Nr

OW (−n1E1−· · ·−nrEr).

Therefore we can find a sequence of ideals

J0(= OY ) ⊇ J1(= IW ) ⊇ · · · Jk ⊇ · · · ⊇ IMm
W ,

such that Jk/Jk+1
∼= OW (−n1E1 − · · · − nrEr) for some n1 + · · · + nr <

Mm, (n1, . . . , nr) ∈ Nr and all such (n1, . . . , nr) appear precisely once as a

subquotient. Indeed, if we order Nr such that (n1, . . . , nr) ≺ (n′
1, . . . , n

′
r) if

and only if n1 + · · ·+ nr < n′
1 + · · ·+ n′

r or n1 + · · ·+ nr = n′
1 + · · ·+ n′

r and

(n1, . . . , nr) < (n′
1, . . . , n

′
r) in the lexicographic order, then we can choose Jk

so that around any x ∈ W it is locally generated by the monomials ed11 · · · edrr ,

where ei = 0 is the local equation of Ei and (d1, . . . , dr) ∈ Nr is at least the

(k + 1)-th smallest under the above ordering. We claim that

(am ∩ Jk)/(am ∩ Jk+1)

=

{

OW (−n1E1 − · · · − nrEr) if a1n1 + · · ·+ arnr ≥ mAX,∆(F ),

0 if a1n1 + · · ·+ arnr < mAX,∆(F ).
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In fact, (am ∩Jk)/(am ∩Jk+1) is isomorphic to the image of am ∩Jk in Jk →

Jk/Jk+1, and a local calculation then gives that the image is 0 if en1

1 · · · enr
r

6∈ am and OW (−n1E1 − · · · − nrEr) if e
n1

1 · · · enr
r ∈ am.

Similarly,

(am + Jk)/(am + Jk+1)

=

{

0 if a1n1 + · · ·+ arnr ≥ mAX,∆(F ),

OW (−n1E1 − · · · − nrEr) if a1n1 + · · ·+ arnr < mAX,∆(F ).

Then we construct the sequence (4.7) as follows: first we enumerate all ideals of

the form Jk+am, as long as (am+Jk)/(am+Jk+1) 6= 0; next comes am, followed

by all ideals of the form Jk ∩ am, as long as (am ∩ Jk)/(am ∩ Jk+1) 6= 0. �

We next choose some sufficiently large and divisible integer m0, p > 0 such

that

(1) The line bundles p
MG and ( p

MG − Ei)|W are globally generated for all

i = 1, . . . , r.

(2) H i(W,OW (mpG − n1E1 − · · · − nrEr)) = 0 for all i,m ∈ N+ and all

(n1, . . . , nr)∈N with
∑r

i=1 ni≤Mm. (This is possible by Fujita vanishing.)

(3) OY (mpG)⊗ IMm
W is globally generated and Hj(Y,OY (mpG)⊗ IMm

W ) = 0

for m ≥ m0, j ∈ N+. (This holds as long as m0 � 0 and p · h∗G −M · E

is ample on the blowup h : Y ′ → Y along W with exceptional divisor E.)

Consider the filtration (4.7). Let I1 ⊇ I2 be two consecutive terms. Then we

have the exact sequence

0 → OY (mpG)⊗ I2 → OY (mpG)⊗ I1 → OW (mpG|W )⊗ (I1/I2) → 0.

Since (I1/I2) ∼= OW (−n1E1 − · · · − nrEr) for some (n1, . . . , nr) ∈ Nr and
∑

ni ≤ Mm, then by (2),

H i(W,OW (mpG|W )⊗ (I1/I2)) = 0 any i > 0,

and thus if H i(Y,OY (mpG)⊗ I2) = 0 for i > 0, then

H i(Y,OY (mpG)⊗ I1) = 0 any i > 0.

If, moreover, OY (mpG) ⊗ I2 is globally generated, then as OW (mpG|W ) ⊗

(I1/I2) is globally generated by (1), we know that OY (mpG) ⊗ I2 is globally

generated by diagram chasing and the vanishing H1(Y,OY (mpG)⊗ I2) = 0.

Therefore, working inductively and starting from IMm
W by (3), we conclude

that for any ideal sheaf I ⊆ OY that appears in the sequence (4.7), the sheaf

OY (mpG)⊗I is globally generated andH i(Y,OY (mpG)⊗I) = 0 for any i ∈ N+

and any m ≥ m0. In particular, OY (mpG) ⊗ am is globally generated for all

m ≥ m0, which implies that pρ∗G−AX,∆(F ) ·F is nef. In other words, εv ≥ 1
p

and we are done since the integer p does not depend on the valuation v. �
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Proof of Theorem 4.8. The result now follows from a combination of Lem-

mas 4.11, 4.12 and 4.14. �

We now have all the ingredients to prove Theorems 4.2 and 4.1.

Proof of Theorem 4.2. By Lemma 4.3 we already have (1) ⇒ (2), so it

remains to prove (2) ⇒ (1). Let v be a valuation that satisfies (2).

We first show that grvR is finitely generated. To this end, let Σ ⊆

QM(Y,E)∩DMR(X,∆+Γ) be the smallest rational PL subspace containing v,

and let U ⊆ Σ be a small open neighborhood of v such that the closure of U

is contained in the interior of the simplicial cone in QM(Y,E) that contains v.

By Theorem 4.5, it is enough to show that the set {(Xw,∆w) |w ∈ U(Q)}

is bounded. By Theorem 2.13, this is true if α(Xw,∆w) ≥ α for some con-

stant α > 0 that does not depend on w ∈ U(Q), which then follows from

Theorem 4.8. Next, by Lemma 4.4, we have (Xv,∆v) ∼= (Xw,∆w). Since

α(Xw,∆w) ≥ α > 0 and, in particular, (Xw,∆w) is klt, we see that (Xv,∆v)

is also klt. This finished the proof. �

Proof of Theorem 4.1. This follows immediately from Theorem 4.2 and

Corollary 3.4. �

5. Applications

In this section we present some applications of the finite generation results

from the previous section. As we mentioned, combining with earlier works,

Theorem 1.1 solves a number of major questions on the study of K-stability of

Fano varieties.

5.1. Optimal degeneration.

Theorem 5.1 (Optimal Destabilization Conjecture). Let (X,∆) be a log

Fano pair of dimension n such that δ(X,∆) < n+1
n . Then δ(X,∆) ∈ Q, and

there exists a divisorial valuation E over X such that δ(X,∆) =
AX,∆(E)
SX,∆(E) .

In particular, if δ(X,∆) ≤ 1, there exists a non-trivial special test config-

uration (X ,∆X ) with a central fiber (X0,∆0) such that δ(X,∆) = δ(X0,∆0),

and δ(X0,∆0) is computed by the Gm-action induced by the test configuration

structure.

Proof. Let v be a valuation onX that computes δ(X,∆). By Corollary 3.4,

there exists some complement Γ of (X,∆) such that v ∈ DMR(X,∆+Γ). Let

Σ ⊆ DMR(X,∆+ Γ) be the smallest rational PL subspace containing v. By

Theorems 4.1 and 4.5, the S-invariant function w 7→ SX,∆(w) on Σ is linear in

a neighborhood of v. As v computes δ(X,∆), we have

AX,∆(v) = δ(X,∆)SX,∆(v).
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Since the log discrepancy function w 7→ AX,∆(w) is linear in a neighborhood

of v ∈ Σ and by the definition of stability thresholds we have

AX,∆(w) ≥ δ(X,∆)SX,∆(w)

for all w ∈ Σ, we see that

AX,∆(w) = δ(X,∆)SX,∆(w)

in a neighborhood U ⊆ Σ of v. In particular, any divisorial valuation w ∈ U(Q)

also computes δ(X,∆). Since w is a divisorial lc place of a complement, it

induces a weakly special test configuration of (X,∆) by [BLX19, Th. A.2].

By [Li17, Proof of Th. 3.7] or [Fuj19b, Th. 5.2] we know that βX,∆(w) =

AX,∆(w)− SX,∆(w) is rational. Since AX,∆(w) is clearly rational, we see that

δ(X,∆) is also rational.

The last part follows from [BLZ19, Th. 1.1], as the conjectural assumption

there is verified by the first part. �

Theorem 5.2 (Yau-Tian-Donaldson conjecture). A log Fano pair (X,∆)

is uniformly K-stable if and only if it is K-stable; and it is reduced uniformly

K-stable if and only if it K-polystable. In particular, (X,∆) admits a weak KE

metric if and only if it is K-polystable.

Proof. Suppose first that δ(X,∆) ≤ 1. Then by Theorem 5.1, the stability

threshold is computed by some divisor E over X. By [BX19, Th. 4.1], this

implies that (X,∆) is not K-stable. In other words, if (X,∆) is K-stable, then

δ(X,∆) > 1; i.e., (X,∆) is uniformly K-stable.

Suppose next that (X,∆) is K-polystable. Let T ⊆ Aut(X,∆) be a max-

imal torus. We show that δT(X,∆) > 1. Suppose not. Then by [XZ20,

App. A], we know that δT(X,∆) = 1 and δ(X,∆) is computed by some

T-invariant quasi-monomial valuation v that is not of the form wtξ for any

ξ ∈ Hom(Gm,T)⊗ZR. Moreover, v is an lc place of a complement. Let m ∈ N

be sufficiently divisible, and consider the T-invariant linear system

M := {s ∈ H0(−m(KX +∆)) | v(s) ≥ m ·AX,∆(v)}.

Let D0 ∈ |M| be a general member, and let D = 1
mD0. Then (X,∆+ 1

mM)

has the same set of lc places as (X,∆ + D), and thus by construction v ∈

DMR(X,∆ + D). Since T is a connected algebraic group, every lc place of

the T-invariant pair (X,∆+ 1
mM) is automatically T-invariant. In particular,

DMR(X,∆+D) consists only of T-invariant valuations.

By the same argument as in the proof of Theorem 5.1, we see that δ(X,∆)

is also computed by some divisorial valuations w ∈ DMR(X,∆+D) that are

sufficiently close to v (in particular, w 6= wtξ as well). Since w is T-invariant,

by [BX19, Th. 4.1], w induces a T-equivariant special test configuration (X ,D)

of (X,∆) with Fut(X ,D) = 0. Since T ⊆ Aut(X,∆) is a maximal torus and
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w 6= wtξ for any ξ ∈ Hom(Gm,T)⊗Z R, we deduce that (X ,D) is not a prod-

uct test configuration. But this contradicts the K-polystability assumption of

(X,∆). Therefore, we must have δT(X,∆) > 1 and (X,∆) is reduced uniformly

K-stable.

When k = C, the existence of a KE metric now follows from this equiva-

lence and [Li22, Th. 1.2] (see also [BBJ21], [LTW21]). �

Theorem 5.3 (K-moduli conjecture).The K-moduli spaceMKps
n,V,C is proper,

and the CM line bundle on MKps
n,V,C is ample.

Proof. The properness follows from Theorem 5.1 and [BHLLX21, Cor. 1.4].

The ampleness of the CM line bundle follows from Theorem 5.2 and [XZ20,

Th. 1.1]. �

5.2. Twisted stability by adding a general boundary. Our final application

is the proof of a modified version of a conjecture of Donaldson (see [Don12,

Conj. 1], [Szé13] and [BL22, §7]). Using the Optimal Degeneration Theo-

rem 1.2, we can reduce the calculations to a maximal degeneration of the log

Fano pair. Nevertheless, we still need a subtle analysis of valuations in a

neighborhood of the δ-minimizers.

Theorem 5.4. Let (X,∆) be a log Fano pair such that δ := δ(X,∆) < 1.

Then (X,∆ + (1 − δ)D) is K-semistable for any sufficiently divisible integer

m ∈ N and any general D ∈ 1
m |−m(KX+∆)|. In particular, (X,∆+(1−δ′)D)

is uniformly K-stable for any 0 ≤ δ′ < δ.

For the proof, we first need a few auxiliary lemmas.

Lemma 5.5. Let (X,∆) be a log Fano pair, and let D ∼Q −(KX +∆) be

an effective Q-divisor such that (X,∆+D) is klt. Assume that (X,∆+ tD) is

K-semistable for some t ∈ (0, 1). Then (X,∆+ sD) is uniformly K-stable for

all s ∈ (t, 1).

Proof. This simple interpolation result is well known. We include it here

for the sake of completeness.

By assumption, for any valuation v on X with AX,∆(v) < ∞, we have

AX,∆+tD(v) = AX,∆(v)− t · v(D) > (1− t)v(D)

and AX,∆+tD(v) ≥ SX,∆+tD(v) = (1 − t)SX,∆(v). Thus for any s ∈ (t, 1), we

have

AX,∆+sD(v) = AX,∆+tD(v)− (s− t)v(D) >
1− s

1− t
AX,∆+tD(v)

≥ (1− s)SX,∆(v) = SX,∆+sD(v)

for any valuation v ∈ Val◦X . Hence (X,∆+ sD) is uniformly K-stable. �
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Lemma 5.6. Let X be a normal projective variety with an ample line

bundle L. Let Z ⊆ X × U be a bounded flat family of positive dimensional

normal subvarieties of X over a normal variety U . Let Γ be an effective Q-

divisor on Z that does not contain any Zu (so the restriction Γu := Γ|Zu is

well defined as a Q-divisor on Zu). Assume that KZ/U + Γ is Q-Cartier and

(Zu,Γu) is klt for all u ∈ U .

Then there exists some constant a > 0 such that for all sufficiently large

m ∈ N, a general member D ∈ |mL| does not contain any Zu and (Zu,Γu +

aDu) is lc for all u ∈ U .

Proof. For any closed point y ∈ Y of a variety Y and any effective Cartier

divisor G = (g = 0) on Y , we define the order of vanishing of G at y as

ordy(G) = max{j ∈ N | g ∈ m
j
y}.

By the family version of the Izumi type inequality (see, e.g., [BL21, Th. 20]),

there exists some constant K0 > 0 depending only on the family (Z,Γ) → U

such that

v(Du) ≤ K0 ·AZu,Γu(v) · ordx(Du)

for any u ∈ U , any effective Cartier divisor Du on Zu, and any v ∈ Val◦Zu
such

that x = CZu(v) is a closed point. In particular, this implies

(5.1) lctx(Zu,Γu;Du) ≥
1

K0 · ordx(Du)

for all x ∈ Zu and all effective Cartier divisors Du on Zu.

Let m ∈ N be large enough so that the restrictions

ϕu,x : H
0(X,OX(mL)) → H0(Zu,OZu(mL))

→ H0(Zu,OZu(mL)⊗ (OZu/m
dimZ+1
x ))

are surjective for any closed point u ∈ U and x ∈ Zu. (This is possible since

L is ample.) Since dimZu ≥ 1, we have h0(OZu(mL) ⊗ (OZu/m
dimZ+1
x )) =

h0(OZu/m
dimZ+1
x ) > dimZ. A simple dimension count using the incidence

variety

W = {(x, f) ∈ Z ×H0(X,mL) |x ∈ Zu, ϕu,x(f) = 0} ⊆ Z ×H0(X,mL)

shows that the second projection W → H0(X,mL) is not surjective.

Hence if D ∈ |mL| is a general member, then ordx(Du) ≤ dimZ for all

u ∈ U and x ∈ Zu. By (5.1), this implies lct(Zu,Γu;Du) ≥
1

K0·dimZ . Thus if

we take a = 1
K0·dimZ , then (Zu,Γu + aDu) is lc for all u ∈ U . �

Next consider the following setup. Let (X,∆) be a log Fano pair. Let T <

Aut(X,∆) be a maximal torus, let N = Hom(Gm,T) be the co-weight lattice,
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and let M = Hom(T,Gm) be the weight lattice. For sufficiently divisible r, we

have a weight decomposition

R :=
⊕

m∈N
H0(X,−mr(KX +∆)) =

⊕

(m,α)∈N×M

Rm,α.

For each ξ ∈ NR, we set λξ := inf(m,α){
〈ξ,α〉
mr |Rm,α 6= 0}. Since R is finitely

generated, the function ξ 7→ λξ is piecewise linear with rational coefficients.

Moreover, for sufficiently divisible m, λξ = infα{
〈ξ,α〉
mr |Rm,α 6= 0}. Then the

valuation wtξ is given by wtξ(s) = 〈ξ, α〉 − λξmr for all 0 6= s ∈ Rm,α. In

fact, let s∗ ∈ Rm,α such that wtξ(s
∗) = λξmr. Then the trivialization of

−rm(KX +∆) around CX(wtξ) is given by s → s
s∗ , and thus

wtξ(s) = wtξ(
s

s∗
· s∗) = wtξ(

s

s∗
) = 〈ξ, α〉 − λξmr.

Lemma 5.7. Let V ⊆ NR be a convex subset where ξ 7→ λξ is linear. Then

the functions

ξ 7→ AX,∆(wtξ) and ξ 7→ SX,∆(wtξ)

are both linear on V .

Proof. We choose a basis s1, . . . , sNm of Rm such that each si ∈ Rm,αi
for

some αi ∈ M . In other words, {s1, . . . , sNm} is a disjoint union of bases of

Rm,α over all α ∈ M . From the definition of wtξ we know that Fλ
wtξ

Rm is a

direct sum of some of the Rm,α’s for every λ ∈ R≥0. Thus the basis s1, . . . , sNm

is compatible with wtξ for every ξ ∈ NR. Hence we have

Sm(wtξ) =
1

mrNm

Nm
∑

i=1

wtξ(si) =
1

mrNm

Nm
∑

i=1

(〈ξ, αi〉 − λξmr).

Since ξ 7→ λξ is linear on V , the above equation implies that ξ 7→ Sm(wtξ) is

also linear on V . Therefore, ξ 7→ S(X,∆)(wtξ) is linear on V as S(X,∆)(wtξ) =

limm→∞ Sm(wtξ). Since AX,∆(wtξ) − SX,∆(wtξ) = Fut(ξ) is always linear on

NR, the lemma follows. �

Since R = ⊕(m,α)∈N×MRm,α is finitely generated, the sub-semigroup Λ :=

{(m,α) ∈ N×M | Rm,α 6= 0} of N×M is also finitely generated. As a result,

λξ is equal to the minimum of finitely many rational linear functions in ξ of

the form 〈ξ,α〉
mr . Thus λξ is a rational piecewise linear function in ξ on NR. We

may decompose NR into a fan consisting of finitely many rational simplicial

cones such that ξ 7→ λξ is linear on each cone.

For each cone σ of the fan (other than the origin), we choose some ξσ ∈ NR

in its interior and let Zσ := CX(wtξσ).
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Claim. Zσ does not depend on the choice of ξσ, and Zσ ⊆ Zτ if σ ⊇ τ .

Next, we prove the claim. Let Λξ := {(m,α) ∈ Λ | 〈ξ, α〉 > λξmr}. We

first show that

(5.2) CX(wtξ) =
⋂

(m,α)∈Λξ

Bs(Rm,α),

where Bs(·) denotes the base locus of a linear system. By the definition of

wtξ, we know that wtξ(s) > 0 for any s ∈ Rm,α with (m,α) ∈ Λξ. Thus the

“⊆” direction of (5.2) is clear. For the “⊇” direction of (5.2), let Iξ ⊂ OX be

the ideal sheaf of CX(wtξ) with reduced scheme structure. Since −r(KX +∆)

is an ample line bundle, we fix a sufficiently large m1 ∈ N such that Iξ ⊗

OX(−m1r(KX +∆)) is globally generated. Clearly,

H0(X, Iξ⊗OX(−m1r(KX+∆))) = {s ∈ Rm1
| wtξ(s) > 0} =

⊕

(m1,α)∈Λξ

Rm1,α.

Thus the global generation of Iξ ⊗OX(−m1r(KX +∆)) implies

CX(wtξ) = Bs(
⊕

(m1,α)∈Λξ

Rm1,α) =
⋂

(m1,α)∈Λξ

Bs(Rm1,α) ⊇
⋂

(m,α)∈Λξ

Bs(Rm,α).

This finishes the proof of (5.2).

Back to the proof of claim. Recall that ξσ belongs to the interior of σ.

To prove the claim, it suffices to show that CX(wtξσ) ⊆ CX(wtξ′) whenever

ξ′ ∈ σ. By (5.2), this reduces to showing Λξσ ⊇ Λξ′ . Let (m,α) ∈ Λ \Λξσ , i.e.,

〈ξσ, α〉 = λξσmr. Since the function ξ 7→ 〈ξ, α〉−λξmr is linear and nonnegative

on σ, its vanishing at an interior point ξσ of σ implies that it vanishes on

the whole of σ. Thus 〈ξ′, α〉 = λξ′mr, which implies that (m,α) ∈ Λ \ Λξ′ .

Therefore, we have shown Λ \ Λξσ ⊆ Λ \ Λξ′ , i.e., Λξσ ⊇ Λξ′ . This finishes the

proof of the claim.

As a consequence of the claim, when σ varies in the fan, Zσ enumerates

the center of wtξ for all ξ ∈ NR.

Since wtξσ induces a product test configuration of (X,∆) that is special,

by Theorem 2.30 there exist some γσ ∈ (0, 1) and some Gσ ∼Q −γσ(KX +∆)

such that (X,∆+ Gσ) is lc and wtξσ is its unique lc place. In particular, Zσ

is the minimal lc center of (X,∆ + Gσ). Choose some 0 < εσ � 1 and some

general G′
σ ∈ | − KX − ∆|Q. By Kawamata subadjunction [Kaw98], we may

write

(KX +∆+Gσ + εσG
′
σ)|Zσ ∼Q KZσ + Γσ

for some divisor Γσ ≥ 0 on Zσ such that (Zσ,Γσ) is klt. Moreover, if D ≥ 0

is a Q-Cartier divisor on X whose support does not contain Zσ, then (X,∆+

Gσ + D) is lc in a neighborhood of Zσ if (Zσ,Γσ + D|Zσ) is lc. (For a more

precise version, see [HMX14, Proof of Th. 4.2].) For any g ∈ Aut(X,∆), let
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(Zσ,g,Γσ,g) = (g ·Zσ, g ·Γσ). We will eventually apply Lemma 5.6 to the family

(Zσ,g,Γσ,g).

For now we state a technical result that is needed in our proof of Theo-

rem 5.4.

Lemma 5.8. Assume that dimZσ ≥ 1. Let τ be a cone of the fan on NR

such that σ ⊆ τ . Let ξ0 ∈ σ, ξ1 ∈ τ , and let ξt = (1 − t)ξ0 + tξ1 for t ∈ [0, 1].

Then for any 0 6= s ∈ Rm such that Zσ is not contained in the support of

D = (s = 0), we have

wtξt(s) ≤
t ·AX,∆(wtξ1)

lct(Zσ,Γσ;D|Zσ)
.

Proof. For ease of notation, let vt = wtξt , ξ = ξσ ∈ σ, G = Gσ, Z = Zσ,

and Γ = Γσ. Using the weight decomposition, we may write s =
∑

α∈M sα and

by definition

(5.3) vt(s) = min{vt(sα) | sα 6= 0}.

Let Ms := {α ∈ M | sα 6= 0 and 〈ξ, α〉 = λξmr}. Let s1 :=
∑

α∈Ms
sα.

Note that by the definition and the linearity of λξ on σ, for each α ∈ Ms, we

necessarily have

(5.4) 〈ξ0, α〉 = λξ0mr

as well. By assumption, we have Ms 6= ∅ and s1 6= 0, as otherwise Z ⊆

Supp(D). Since λξ is linear in τ and ξ0, ξ1 ∈ τ , we know that t 7→ λξt is linear

for t ∈ [0, 1]. Thus for each α ∈ Ms and t ∈ [0, 1], we have
(5.5)

vt(sα) = 〈ξt, α〉−λξtmr = (1−t)(〈ξ0, α〉−λξ0mr)+t(〈ξ1, α〉−λξ1mr) = tv1(sα),

where the last equality follows from (5.4). Let D1 = (s1 = 0). Then we have

D1|Z = D|Z and

(5.6) vt(s) ≤ vt(s1) = t · v1(s1),

where the first inequality follows from (5.3), and the second equality uses (5.5)

and the fact that

vt(s1) = min
α∈Ms

{vt(sα)} and v1(s1) = min
α∈Ms

{v1(sα)}.

Thus to prove the lemma, by (5.6) it suffices to show that

v1(s1) ≤
AX,∆(v1)

lct(Z,Γ;D1|Z)
, or equivalently lct(Z,Γ;D1|Z) ≤

AX,∆(v1)

v1(D1)
.

But as CX(v1) ∩ Z ⊇ Zτ is non-empty, by subadjunction we have

lct(Z,Γ;D1|Z) ≤ lctZ(X,∆+G;D1) ≤ lctZ(X,∆;D1) ≤
AX,∆(v1)

v1(D1)
,

where the two log canonical thresholds in the middle are taken in a neighbor-

hood of Z, and we are done. �
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We are now ready to present the proof of Theorem 5.4.

Proof of Theorem 5.4. First note that if (X,∆) has a special degeneration

to some log Fano pairs (X0,∆0) with δ(X0,∆0) = δ and the theorem holds

for (X0,∆0), then it also holds for (X,∆) by the openness of K-semistability

[BLX19], [Xu20]. The following claim shows that the process of special de-

generations preserving the stability threshold will stabilize after finitely many

steps.

Claim. Any sequence of special degenerations

(X,∆) =: (X(0),∆(0)) (X(1),∆(1)) (X(2),∆(2)) · · · (X(i),∆(i)) · · ·

satisfying that δ(X(i),∆(i)) = δ and (X(i),∆(i)) 6∼= (X(i+1),∆(i+1)) for every

i ≥ 0 must terminate after finitely many steps.

Assuming the claim, there exists a finite sequence of special degenerations

(X,∆)  · · ·  (X(k),∆(k)) preserving stability thresholds such that any

special degeneration (X(k),∆(k))  (X(k+1),∆(k+1)) preserving the stability

threshold is of product type, i.e., (X(k),∆(k)) ∼= (X(k+1),∆(k+1)). Thus from

the above argument using openness of K-semistability, we may replace (X,∆)

by (X(k),∆(k)).

Next, we prove the claim. Since the set of log Fano pairs with fixed volume,

finite rational coefficient set, and δ-invariant is bounded by Theorem 2.13,

we can embed every (X(i),∆(i)) into a common projective space PN using

a common multiple of its anti-log-canoncial divisor, such that each special

degeneration (X(i),∆(i))  (X(i+1),∆(i+1)) is induced by a one parameter

subgroup of G := PGLN+1. Let P denote a locally closed subscheme of the

relative Hilbert-Chow scheme of PN such that P is of finite type, and each

Hilbert-Chow point zi := [(X(i),∆(i))] belongs to P; see, e.g., [BLZ19, §6]

or [BHLLX21, §4.1] for details. Then by construction, we know that zi+1 ∈

G · zi \G · zi. This implies that G · zi+1 ( G · zi as closed subsets of P. Since

P is of finite type by boundedness, it is a Noetherian topological space. As a

result, the sequence G · z0 ) G · z1 ) · · · must terminate after finitely many

steps. Thus the proof of the claim is finished.

Thanks to the claim, in the rest of the proof we may assume that any spe-

cial degeneration (X0,∆0) of (X,∆) with δ(X0,∆0) = δ satisfies (X0,∆0) ∼=
(X,∆); i.e., the degeneration is induced by a one parameter subgroup of

Aut(X,∆). Let m ∈ N be sufficiently large and divisible, and let Dm ∈
1
m | −m(KX +∆)| be general. Since (X,∆+mDm) is lc by Bertini’s theorem,

we have

AX,∆(v) ≥ AX,∆+(1−δ)Dm
(v)

= AX,∆(v)− (1− δ)v(Dm) ≥ AX,∆(v)−
1− δ

m
AX,∆(v)
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for any valuation v on X. Since SX,∆+(1−δ)Dm
(v) = δ · SX,∆(v), this implies

that

1−
1− δ

m
=

Å
1−

1− δ

m

ã
δ−1 · δ(X,∆)

≤ δ(X,∆+ (1− δ)Dm) ≤ δ−1 · δ(X,∆) = 1.

By Theorem 5.1, there is a special degeneration,

(X,∆+ (1− δ)Dm) (Xm,∆m + (1− δ)Gm)

induced by some special divisorial valuation vm, such that

(5.7) δ(Xm,∆m + (1− δ)Gm) = δ(X,∆+ (1− δ)Dm) ≥ 1−
1− δ

m
.

This implies

AXm,∆m(v) ≥ AXm,∆m+(1−δ)Gm
(v) ≥

Å
1−

1− δ

m

ã
SXm,∆m+(1−δ)Gm

(v)

=

Å
1−

1− δ

m

ã
δ · SXm,∆m(v)

for all valuation v over Xm, and hence

(5.8) δ(Xm,∆m) ≥

Å
1−

1− δ

m

ã
δ

is bounded from below by some constants that only depend on δ. By Theo-

rem 2.13, we see that (Xm,∆m) belongs to a bounded family.

Since the δ-invariant function (more precisely, min{δ(X,∆), 1}) is lower

semi-continuous and constructible in a bounded family [BLX19, Th. 1.1], we

have δ(Xm,∆m) = δ when m is sufficiently large by (5.8). Thus by our as-

sumption on (X,∆) at the beginning of the proof, we see that vm is induced

by a one-parameter subgroup of Aut(X,∆). It follows that in order to prove

the K-semistability of (X,∆ + (1 − δ)Dm) for m � 0, it is enough to show

AX,∆+(1−δ)Dm
(v) ≥ SX,∆+(1−δ)Dm

(v), or equivalently,

AX,∆(v) ≥ (1− δ)v(Dm) + δ · SX,∆(v)

for all v ∈ ValX that are induced by one-parameter subgroups of Aut(X,∆).

Fix a maximal torus T of Aut(X,∆). Since all maximal tori are conjugate

and the functions AX,∆, SX,∆ are Aut(X,∆)-invariant, it suffices to show that

(5.9) AX,∆(v) ≥ (1− δ)v(g ·Dm) + δ · SX,∆(v)

for all v ∈ ValX of the form wtξ (ξ ∈ NR) and all g ∈ Aut(X,∆).

By [Zhu21, Th. 1.5], there exists an Aut(X,∆)-invariant closed subva-

riety W of X such that W is contained in CX(v) for any valuation v com-

puting δ(X,∆). Consider the simplicial fan structure on NR induced by the

piecewise linear function ξ 7→ λξ as before. By Bertini’s theorem we may as-

sume that (X,∆ + mDm) is lc and W 6⊆ Supp(Dm). This also implies that

(X,∆+m(g ·Dm)) is lc and W 6⊆ Supp(g · Dm). By applying Lemma 5.6
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to the effective Cartier divisors mDm and the families of pairs (Zσ,g,Γσ,g)

parametrized by U = Aut(X,∆) for all σ such that dimZσ ≥ 1, we also

know that there exists some constant a > 0 independent of m such that

lct(Zσ,g,Γσ,g;Dm|Zσ,g) ≥ ma, or equivalently,

(5.10) lct(Zσ,Γσ; g ·Dm|Zσ) ≥ ma

for all σ satisfying dimZσ ≥ 1 and all g ∈ Aut(X,∆).

Let τ1, . . . , τk be the cones of maximal dimension in the fan of NR. We

shall analyze the behavior of AX,∆, SX,∆, and v(g ·Dm) on each cone τi. For

each i = 1, . . . , k, let

σi = {ξ ∈ τi |AX,∆(wtξ) = δ · SX,∆(wtξ)}.

By Lemma 5.7 and the fact that AX,∆(v) ≥ δ · SX,∆(v) for all v ∈ Val◦X , we

see that σi is a face of τi. Let σ′
i ⊆ τi be the smallest face such that τi is the

convex hull of σi and σ′
i. (Such σ′

i exists since τi is simplicial.) In particular,

we have σi∩σ′
i = {0}, and therefore there exists some constant ε0 ∈ (0, 1) such

that

(5.11) AX,∆(wtξ) ≥
δ

1− ε0
· SX,∆(wtξ)

for all i = 1, . . . , k and all ξ ∈ σ′
i.

We now proceed to prove that (5.9) holds for all m ≥ max{1−δ
ε0

, 1−δ
aε0

}. Let

ξ ∈ NR, and let v = wtξ. Let τi be a cone that contains ξ. There are three

cases to consider:

Case 1: σi = {0}. Then σ′
i = τi. Since (X,∆+m(g ·Dm)) is lc, combined

with (5.11) we have

AX,∆(v)− δ · SX,∆(v) ≥ ε0 ·AX,∆(v) ≥ mε0 · v(g ·Dm) ≥ (1− δ)v(g ·Dm)

for any g ∈ Aut(X,∆). Thus (5.9) holds in this case.

Case 2: σi 6= {0} and Zσi
is a point. Then we necessarily have Zσi

= W

and since Zτi ⊆ Zσi
, we have Zτi = W as well. Since W 6⊆ Supp(g ·Dm), we

deduce that wtξ(g ·Dm) = 0 for any ξ ∈ τi and any g ∈ Aut(X,∆). Thus (5.9)

clearly holds in this case.

Case 3: σi 6= {0} and dimZσi
≥ 1. We can write ξ = (1− t)ξ0 + t · ξ1 for

some ξ0 ∈ σi and ξ1 ∈ σ′
i. Then by Lemma 5.8 and (5.10), we know that

v(g ·Dm) ≤
t

ma
·AX,∆(v1)

for any g ∈ Aut(X,∆), where v1 = wtξ1 . On the other hand, since AX,∆ and

SX,∆ are linear on τi by Lemma 5.7, we have

AX,∆(v)− δ · SX,∆(v) ≥ tε0 ·AX,∆(v1)
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by (5.11). Combining the two inequalities above we get

AX,∆(v)− δ · SX,∆(v) ≥ maε0 · v(g ·Dm) ≥ (1− δ)v(g ·Dm)

for all g ∈ Aut(X,∆). Thus (5.9) holds in this case as well.

Thus we have proved that (5.9) holds for all v = wtξ. As explained

earlier, this implies the K-semistability of (X,∆ + (1 − δ)Dm) when m � 0.

The remaining part of the theorem follows from Lemma 5.5. �

6. Examples

It is still natural to ask which lc places of a given Q-complement induce

finitely generated associated graded rings. Unlike the divisorial case, where

the finite generation is guaranteed essentially by [BCHM10], in the higher rank

case, the associated graded ring could generally be non-finitely generated. In

fact, it was first discovered in [AZ20, Th. 4.16] that on every smooth cubic

surface there exist lc places of complements whose associated graded rings are

not finitely generated.

In this section, we give a complete picture of the finite generation prob-

lem in an explicit example, that is, lc places of (P2, C) where C is an irre-

ducible nodal cubic curve. As one will see, even in this simple set-up, the locus

of finitely generated lc places is fairly complicated, and there are infinitely

many special degenerations of P2. In addition, both non-finitely generated

and finitely generated non-divisorial rational rank two lc places appear in the

same simplex (given by a dlt modification of (P2, C)). This also illustrates the

importance of considering special complements in previous discussions. It will

be an interesting question to understand better how to locate the valuations

on a dual complex with a finitely generated associated graded ring.

We fix the following notation. Let o be the node of C. Choose an analytic

coordinate (z, w) of P2 at o such that the analytic local equation of C is given

by (zw = 0). For t ∈ R>0, let vt be the monomial valuation of weights (1, t)

in the coordinate (z, w). Since C is normal crossing, we know that any lc

place of (P2, C) is a multiple of vt or ordC . Let R := R(P2,OP2(3)) be the

anti-canonical ring of P2. We also denote X := P2.

Theorem 6.1. With the above notation, the associated graded ring grvtR is

finitely generated if and only if t ∈ Q>0∪(
7−3

√
5

2 , 7+3
√
5

2 ). Moreover, Proj grvtR

is a Q-Fano variety if and only if t ∈ (7−3
√
5

2 , 7+3
√
5

2 ). For a detailed description

of these special degenerations of P2, see Remark 6.6.

The proof of Theorem 6.1 is divided into several parts. We first recall a

useful lemma.
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Lemma 6.2 ([Fuj19a, Claim 4.3]). Suppose a, b are coprime positive inte-

gers. Let µ : ‹X → X = P2 be an (a, b)-weighted blow up at a smooth point with

exceptional divisor E. Let εX(E) := max{λ ∈ R≥0 | µ∗(−KX) − λE is nef}.

Then we have

(6.1) TX(E) · εX(E) = 9ab and SX(E) =
TX(E) + εX(E)

3
.

Proposition 6.3. If t ≥ 7+3
√
5

2 and t 6∈ Q, then grvtR is not finitely

generated.

Proof. By Theorem 4.5, it suffices to show that the function t 7→ SX(vt) is

not linear in any sub-interval of [7+3
√
5

2 ,+∞). We first compute the S-invariant

for vt when t = b
a > 7+3

√
5

2 , where a, b are coprime positive integers. Let

µ : ‹X → X = P2 be the (a, b)-weighted blow up at o in the analytic coordinates

(z, w). Let E be the µ-exceptional divisor. Then easy computation shows that
‹C := µ−1

∗ C ∼ π∗(−KX)− (a+ b)E and (‹C2) = 9− (a+b)2

ab < 0. Hence [‹C] is ex-

tremal in NE(‹X) by [KM98, Lemma 1.22]. Thus we have the pseudo-effective

threshold TX(E) = ordE(C) = a + b, which implies SX(E) = (a+b)2+9ab
3(a+b) by

(6.1). Since vt =
1
aordE , for any rational t > 7+3

√
5

2 we have

(6.2) SX(vt) =
1

a
SX(E) =

t2 + 11t+ 1

3(t+ 1)
.

Since the S-invariant is continuous in the dual complex [BLX19, Prop. 2.4],

(6.2) holds for any t ∈ [7+3
√
5

2 ,+∞). Thus t 7→ SX(vt) is not linear in any

sub-interval. �

Next we turn to proving finite generation of grvtR for t ∈ [1, 7+3
√
5

2 ). The

idea is to find a sequence of increasing rational numbers 1 = t0 < t1 < · · · <

tn < · · · with limn→∞ tn = 7+3
√
5

2 such that the function t 7→ SX(vt) is linear

in each interval [tn, tn+1].

Let (dn)n≥0 be the following sequence of integers, where d0 = 1, d1 = 1,

d2 = 2, and dn+1 = 3dn − dn−1. The sequence of (dn)n≥0 goes as 1, 1, 2, 5, 13,

34, 89, . . . . It is easy to see that (dn) satisfies the following properties:

• each dn is not divisible by 3;

• dn = F2n−1, where (Fn) is the Fibonacci sequence;

• (1, dn, dn+1) is a Markov triple, i.e., 1 + d2n + d2n+1 = 3dndn+1;

• d2n + 1 = dn−1dn+1.

Let tn := dn+1

dn−1
for n ≥ 1 and t0 := 1. Then it is easy to see that (tn) is a

strictly increasing sequence whose limit is 7+3
√
5

2 .
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Proposition 6.4. We have SX(vt) =
dn+1

dn
+ dn

dn+1
t for t ∈ [tn, tn+1] and

n ≥ 0.

In order to prove Proposition 6.4, in the following lemma we find a se-

quence of very singular plane curves Dn of degree dn such that they compute

the T -invariant for vtn . Note that D3 is precisely the singular plane quintic

with an A12-singularity (see, e.g., [ADL19, §7.1]).

Lemma 6.5. For each n > 0, there exists an integral plane curve Dn such

that deg(Dn) = dn and the Newton polygon of the defining function of Dn in

(z, w) at o is the line segment joining (dn+1, 0) and (0, dn−1).

Proof. Let µn : ‹Xn → X be the (dn−1, dn+1)-weighted blow-up in (z, w)

at o. Let En be the µn-exceptional divisor, so ordEn = dn−1vtn . It is clear

that h0(P2,O(dn)) = d2n+3dn+2
2 . Using Pick’s theorem, it is easy to compute

that colength(adn−1dn+1
(ordEn)) = d2n+3dn

2 . Thus we have h0(P2,O(dn)) >

colength(adn−1dn+1
(ordEn)), which implies the existence of a plane curve Dn of

degree dn with ordEn(Dn) ≥ dn−1dn+1.

Next, we show that the curve Dn is integral. Assume the contrary.

Then there exists an integral plane curve D of degree d < dn, such that
ordEn (D)

d ≥
ordEn (Dn)

dn
≥ dn−1dn+1

dn
. In fact, we always have

ordEn (D)
d > dn−1dn+1

dn

since dn−1dn+1

dn
= dn + 1

dn
and d < dn. Clearly D 6= C since

ordEn (C)
3 =

dn−1+dn+1

3 = dn < dn−1dn+1

dn
. Computing local intersection numbers, yields

(D · C)o ≥ ordEn(D)
Ä

1
dn−1

+ 1
dn+1

ä
> d(dn−1+dn+1)

dn
= 3d. On the other hand,

Bezout’s theorem implies (D · C)o ≤ (D · C) = 3d, a contradiction. Thus Dn

is integral.

Finally, we show the Newton polygon statement. Suppose the Newton

polygon of Dn passes through (p, 0) and (0, q). Then by computing local in-

tersection numbers, we know that 3dn = (Dn · C) ≥ (Dn · C)o = p + q. On

the other hand, ordEn(Dn) ≥ dn−1dn+1 implies that p ≥ dn+1 and q ≥ dn−1.

Hence we must have p = dn+1 and q = dn−1. �

Proof of Proposition 6.4. We first treat the case when n = 0, i.e., t ∈ [1, 2].

Choose suitable projective coordinates [x0, x1, x2] of P
2 such that C = (x0x

2
2 =

x31+x0x
2
1) and o = [1, 0, 0]. In the affine chart [1, x1, x2] of P

2, let z′ := x1−x2
and w′ := x1 + x2. Then after possibly rescaling and switching (z, w), we may

assume that ordo(z − z′) ≥ 2 and ordo(w − w′) ≥ 2. Let ut be the monomial

valuation of weights (1, t) in the coordinate (z′, w′). We will show that vt = ut
for any t ∈ [1, 2]. Since ut(z

′) = 1 ≤ 2t = ut(w
′2) and ut(w

′) = t ≤ 2 = ut(z
′2),

we know that ut(z) = ut(z
′) = 1 and ut(w) = ut(w

′) = t. Hence for any

p, q ∈ Z≥0, we have vt(z
pwq) = p + tq = ut(z

pwq). Then for any non-zero

function f ∈ OP2,o \ {0} with a Taylor expansion f =
∑

(p,q)∈Z2
≥0

cp,qz
pwq, we
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have

vt(f) = min{p+ tq | cp,q 6= 0} = min{ut(z
pwq) | cp,q 6= 0} ≤ ut(f).

By switching (z, w, vt) and (z′, w′, ut), similar arguments show that ut(f) ≤

vt(f). Thus we have vt = ut for any t ∈ [1, 2]. Since ut is toric in the

affine coordinate (z′, w′), a standard toric computation shows that SX(vt) =

SX(ut) = 1 + t.

From now on we may assume n ≥ 1. By Lemma 6.5, we know that (‹D2
n) =

(D2
n)+ (dn+1dn−1)

2(E2
n) = −1, where ‹Dn := (µn)

−1
∗ Dn. Thus [‹Dn] is extremal

in NE(‹Xn) by [KM98, Lemma 1.22]. Hence TX(ordEn) = 3
dn
ordEn(Dn) =

3dn−1dn+1

dn
. Thus Lemma 6.2 implies that SX(vtn) =

1
dn−1

SX(En) =
dn+1

dn
+ dn

dn−1
.

So t = tn satisfies the statement of Proposition 6.4.

Let t′n :=
d2n+1

d2n
for n ≥ 1. Then we have tn < t′n < tn+1. Let µ

′
n : ‹X ′

n → X

be the (d2n, d
2
n+1)-weighted blow-up in (z, w) at o with exceptional divisor E′

n.

Then using Lemma 6.5, similar computation shows (‹D′2
n ) = 0, where ‹D′

n :=

(µ′
n)

−1
∗ Dn. Hence [‹D′

n] lies in the boundary of NE(‹X ′
n) by [KM98, Lemma

1.22]. Thus TX(ordE′
n
) = 3

dn
ordE′

n
(Dn) = 3dndn+1, and Lemma 6.2 implies

that t = t′n also satisfies the statement of Proposition 6.4. Since S-invariant is

concave by Lemma 4.6, the proof is finished. �

Proof of Theorem 6.1. Choose the projective coordinates [x0, x1, x2] of P
2

as in the proof of Proposition 6.4. Then the automorphism σ of (P2, C) given

by σ([x0, x1, x2]) := [x0, x1,−x2] interchanges the two analytic branches of C at

o = [1, 0, 0]. Thus σ∗vt = t·vt−1 , which implies that vt−1 and vt have isomorphic

associated graded rings after a grading shift. So we may assume t ∈ [1,+∞)

from now on. The non-finite generation of grvtR when t ∈ [7+3
√
5

2 ,+∞) \ Q

is proven in Proposition 6.3. For t ∈ (7+3
√
5

2 ,+∞) ∩ Q, Theorem 2.29 and

Corollary 4.10 imply that grvtR is finitely generated whose Proj is not klt

as AX(vt) = TX(vt). The finite generation of grvtR for t ∈ [1, 7+3
√
5

2 ) =

∪n≥0[tn, tn+1] follows from Theorem 4.5 and Proposition 6.4.

Finally, we show that Proj grvtR is a Q-Fano variety for t ∈ [tn, tn+1].

When n = 0, i.e., t ∈ [1, 2], we know from the proof of Proposition 6.4 that vt
is toric in the projective coordinate [x0, x1 − x2, x1 + x2]. Thus ProjvtR

∼= P2.

Thus we may assume n ≥ 1 in the rest of the proof. From computations

in the proof of Proposition 6.4, we know that AX(En) = εX(En) < TX(En)

and AX(E′
n) < εX(E′

n) = TX(E′
n). Since both ‹Xn and ‹X ′

n are of Fano type,

we know that −K‹Xn
− En and −K‹X′

n
− E′

n are nef and hence semiample.

Thus by Bertini’s theorem we can find Q-complements Gn and G′
n of (‹Xn, En)

and (‹X ′
n, E

′
n) respectively, such that (‹Xn, En + Gn) and (‹X ′

n, E
′
n + G′

n) are

plt. Hence Theorem 2.30 implies that both En and E′
n are special divisors as
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they satisfy A < T , and the desired Q-complements of plt type are given by

(µn)∗Gn and (µ′
n)∗G

′
n. Since vtn is a rescaling of ordEn , it induces a special

degeneration of P2. By the last paragraph of the proof of Lemma 4.7, we know

that grvtR
∼= grvt′n

R ∼= grE′
n
R for any t ∈ (tn, tn+1). Thus Proj grvtR is a

Q-Fano variety as E′
n is special. �

Remark 6.6. Using similar arguments to [ADL19, Proof of Prop. 7.4], one

can show that Proj grvtnR for n ≥ 1 is isomorphic to the weighted hypersurface

(x0x3 = x
dn+1

1 + x
dn−1

2 ) ⊂ P(1, dn−1, dn+1, d
2
n).

Such a Manetti surface is a common partial smoothing of P(1, d2n−1, d
2
n) and

P(1, d2n, d
2
n+1). Similarly, for any t ∈ (tn, tn+1), one can show that Proj grvtR

∼=
Proj grvt′n

R ∼= P(1, d2n, d
2
n+1). This provides infinitely many special degenera-

tions of P2 which are unbounded.
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[JM12] M. Jonsson and M. Mustaţă, Valuations and asymptotic invariants for

sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 no. 6 (2012), 2145–

2209 (2013). MR 3060755. Zbl 1272.14016. https://doi.org/10.5802/aif.

2746.

[Kaw98] Y. Kawamata, Subadjunction of log canonical divisors. II, Amer. J.

Math. 120 no. 5 (1998), 893–899. MR 1646046. Zbl 0919.14003. https:

//doi.org/10.1353/ajm.1998.0038.

[Kol92] J. Kollár, Flips and abundance for algebraic threefolds, in Papers from

the Second Summer Seminar on Algebraic Geometry held at the Univer-

sity of Utah, Salt Lake City, Utah, August 1991, Astérisque 211, Soc.
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