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Finite generation for valuations computing
stability thresholds and applications to
K-stability

By YUCHEN Liu, CHENYANG XU, and ZIQUAN ZHUANG

Abstract

We prove that on any log Fano pair of dimension n whose stability

threshold is less than "T"'l7 any valuation computing the stability thresh-

old has a finitely generated associated graded ring. Together with earlier
works, this implies that (a) a log Fano pair is uniformly K-stable (resp. re-
duced uniformly K-stable) if and only if it is K-stable (resp. K-polystable);
(b) the K-moduli spaces are proper and projective; and combining with
the previously known equivalence between the existence of Kahler-Einstein
metric and reduced uniform K-stability proved by the variational approach,
(c) the Yau-Tian-Donaldson conjecture holds for general (possibly singular)
log Fano pairs.

1. Introduction

In recent years, the algebro-geometric study of the K-stability of Fano
varieties has made remarkable progress. See [Xu2la] for a comprehensive up-
to-date survey.

The theory has naturally driven people’s attention to valuations that are
not necessarily divisorial. In fact, to further advance the theory, one main
question is to show the finite generation property of the associated graded
rings for quasi-monomial valuations of higher (rational) rank that minimize
functions on the space of valuations arisen from K-stability theory.

While the finite generation property for divisorial valuations follows from
[BCHM10], the higher rank case posts a completely new problem. In fact,
there are very few studies on higher rank quasi-monomial valuations from the
viewpoint of the minimal model program (MMP), which is our fundamental
tool to study K-stability.
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In this paper, we prove that quasi-monomial valuations that compute
the stability thresholds (or d-invariants) of log Fano pairs satisfy the finite
generation property (see [Xu2lb, Conj. 1.2]).

THEOREM 1.1 (Theorem 4.1, Higher Rank Finite Generation Conjecture).
Let (X,A) be a log Fano pair of dimension n, and let r > 0 be an integer
such that r(Kx + A) is Cartier. Assume that §(X,A) < L. Then for any
valuation v that computes §(X,A), the associated graded ring gr,R, where
R=®cz., HY(X,—mr(Kx + A)), is finitely generated.

The assumption §(X,A) < "TH might look a bit surprising since the
original conjecture only assumes 6(X,A) < 1. However, the improvement
becomes quite natural using the trick of compatible divisors invented in [AZ20].

1.1. Corollaries of the main theorem. Together with many earlier works
in recent years, Theorem 1.1 solves some central questions in the field of
K-stability theory. Combining with [BLZ19], the first consequence we have
is the following, which says that any log Fano pair that is not uniformly K-
stable has an optimal destabilizing degeneration (in terms of preserving the
stability threshold).

THEOREM 1.2 (Theorem 5.1, Optimal Destabilization Conjecture). Let
(X,A) be a log Fano pair of dimension n such that §(X,A) < 2t Then

(X, A) € Q and there exists a divisorial valuation E over X such that §( X, A)
_ Axa(E)
~ Sxa(E)°

In particular, if 6(X,A) < 1, there exists a non-trivial special test config-
uration (X, Ay) with a central fiber (Xo,Ag) such that §(X,A) = §(Xo, Ay),

and 6(Xo, Ag) is computed by the G,-action induced by the test configuration

structure.

The second main application of Theorem 1.1 is on the general construction
of the K-moduli space. Indeed, it is proved in [BHLLX21] that Theorem 1.2
implies that there is a O-stratification on the stack Mgf‘{}f’c of Q-Gorenstein
families of n-dimensional log Fano pairs (X, A) — B with a fixed volume V" and
C' - A being integral. By the general theory of O-stratification [AHLH18], this
yields the properness of the K-moduli space. We also conclude the projectivity

following [XZ20].

THEOREM 1.3 (Theorem 5.3, Properness and Projectivity of K-moduli
spaces). The K-moduli space Mff"}sc is proper, and the CM line bundle on
MKpS ) b b

nv.o U ample.
Remark 1.4. When the base field k equals C and we restrict ourselves to the

component whose fibers parametrize Q-Gorenstein smoothable K-polystable
Fano varieties, then the properness follows from the analytic work of [DS14],
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[CDS15a], [CDS15b], [CDS15¢], [Tial5] (see, e.g., [LWX19]). The ampleness
of the CM line bundle restricting to this component is a consequence of [XZ20]
combining with the analytic result in [Li22].

Remark 1.5. Theorem 1.3 is the last step in the general purely algebraic
construction of the K-moduli space. We briefly review the previously known
steps here:

A notion of a family of log pairs over a general base was introduced
in [Koll19]. The boundedness of K-semistable Fano varieties with a fix vol-
ume is proved in [Jia20] (which heavily relies on [Bir19], [Bir21]). A different
proof, which only uses the solution to Batyrev’s conjecture [HMX14], is given
in [XZ21]. Then using boundedness of complements, [Birl9], [BLX19] and
[Xu20] gave two different proofs for the openness of K-semistability, and as
a consequence the open subfunctor /\/lffs‘ic C Mga{}oc parametrizing K-semi-
stable log Fano pairs yields an Artin stack of finite type, which is called the
K-moduli stack.

By [LWX21], [BX19] and [ABHLX20], we know that M5 admits a

separated good moduli space M:f ‘Pfc that parametrizes K-polystable log Fano
pairs and is called the K-moduli space.

The remaining part is the properness and projectivity of the K-moduli
space. In [BHLLX21], it is proved that Theorem 1.2 implies the properness of
M:f {fc, and in [XZ20], it is shown that Theorem 1.1 implies the ampleness of

the CM line bundle (introduced in [Tia97], [PT09]) on M ..

The next major consequence of Theorem 1.1 is the complete solution of
the Yau-Tian-Donaldson conjecture for log Fano pairs, including singular ones.

THEOREM 1.6 (Theorem 5.2, Yau-Tian-Donaldson Conjecture). A log
Fano pair (X, A) is uniformly K-stable (resp. reduced uniformly K-stable) if
and only if it is K-stable (resp. K-polystable). In particular, when the base
field k = C, (X, A) admits a weak Kdhler-Einstein (KE) metric if and only if
1t 1s K-polystable.

Remark 1.7. In this generality, the direction that says that the existence
of KE metrics implies K-polystability was settled in [Ber16].

For the converse direction, [BBJ21] initiated a variational approach to the
Yau-Tian-Donaldson conjecture, and the analytic side of this approach was
completed in [LTW21], [Li22], which shows that a log Fano pair (X, A) admits a
weak KE metric if and only if it is reduced uniformly K-stable. Therefore, what
remains to be shown is the purely algebro-geometric statement that K-poly-
stability is equivalent to reduced uniform K-stability.

When |[Aut(X,A)| < oo, this means that for any log Fano pair (X, A)
that is not wuniformly K-stable, i.e., 6(X,A) < 1, we need to show it is also
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not K-stable by producing a degeneration that destabilizes the log Fano pair.
In [BLX19] (see also [BLZ19]), a step toward constructing such a degeneration
was made. More precisely, it was shown that the valuation that computes
d(X,A)(< 1) is quasi-monomial, and the degeneration should be the Proj of
the graded ring associated to this valuation, provided it is finitely generated.
Theorem 1.1 addresses the finite generation, and then it follows that the sought
degeneration as in Theorem 1.2 exists. As a consequence, it establishes the
equivalence between K-stability and uniform K-stability. In the more general
case when the automorphism group is positive dimensional, it is shown in
[XZ20] that Theorem 1.1 implies the equivalence between K-polystability and
reduced uniform K-stability, by refining the argument from [BLX19] and finding
a quasi-monomial valuation that is not induced by a one parameter subgroup
of Aut(X,A), which yields a non-product type degeneration.

We note that when X is smooth and A = 0, the above theorem was
first proved in [CDS15a], [CDS15b], [CDS15¢]|, [Tial5] using Cheeger-Colding-
Tian theory, which seems difficult to generalize to the case of general (possibly
singular) log Fano pairs.

We also prove the following statement, which is a (necessarily) modified
version of a conjecture first raised by Donaldson in [Donl2, Conj. 1] (see also
[Szé13] and [BL22, §7] for some further discussions of the problem).

THEOREM 1.8 (Theorem 5.4). Let (X,A) be a log Fano pair such that
0 :=0(X,A) < 1. For any sufficiently divisible integer m > 0 and any general
member Do of the linear system | — m(Kx + A)|, if we take D = LDy, then
the pair (X, A+ (1 —8)D) is K-semistable. In particular, (X,A + (1 —4§")D)
is uniformly K-stable for any 0 < §' < 4.

For a smooth Fano manifold X, the above theorem was essentially im-
plied by a combination of [Zhu21] with analytic results in [CDS15a], [CDS15b],
[CDS15¢], [Tial5]. We also note that, as one can easily see from our proof of
Theorem 5.4, the integer m can be chosen uniformly for any bounded family
(X,A) — S of log Fano pairs, e.g., the family of all smooth Fano manifolds
with a fixed dimension.

1.2. Outline of the proof of Theorem 1.1. Recall that by [BLX19], any val-
uation computing 6(X,A) < 1 is an lc place of a Q-complement I', and every
divisorial lc place w of the complement (parametrized by the rational points of
the dual complex DMR(X, A +T')) induces a weakly special degeneration of
the log Fano pair. In addition, if finite generation holds for a quasi-monomial
valuation v, it is observed in [LX18] (see also Lemma 4.4) that as the val-
uation w in the minimal rational affine space containing v gets sufficiently
close to v, the central fibers of the induced degenerations would be isomor-
phic to each other and, in particular, are bounded. Our first observation is
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that the converse of this implication is true; namely, if the central fibers of
the degenerations induced by nearby rational valuations belong to a bounded
family, then indeed the associated graded ring is finitely generated. This is
achieved in Theorem 4.5. In fact, we consider the expected vanishing order
function w — S(w) on a minimal rational affine space containing v. It is easy
to show this function is concave, and the boundedness assumption implies that
there exists a uniform M such that M S(w) is integer, if w is an integral point.
An elementary Diophantine approximation argument implies that S is linear
in a neighborhood of v. Given two arbitrary valuations vg and vy, there is
another natural construction (which is called the geodesic ray) of filtrations F;
connecting F,,, and F,,. It always satisfies S(F;) = (1 —t)S(vo) + tS(v1). If
vg and v; are two valuations on a simplex, then for the natural valuation v
on the ray connecting vy and v; on the simplex, ]-?‘R C flf‘tR for any A. In
general this implies S(F;) < S(F,,). So our assumption of the boundedness
of the degeneration implies that S(F;) = S(F,,) as S(v) is linear on t. When
t € Q and vg, v are lc places of a fixed Q-complement, one can show that F;
arises from a weakly special test configuration. Using the explicit description
of filtrations that correspond to weakly special test configurations in [BLX19],
it is then not hard to deduce from S(F;) = S(F,,) that F, = F,, for all ¢; i.e.,
the filtration induced by v; is the same as F;, which is finitely generated.

Therefore, in order to prove Theorem 1.1, the remaining main technical
goal is to construct a specific Q-complement I' with the given minimizer v as
an lc place and to show that in a neighborhood of v in the rational affine sub-
space in the dual complex DMR (X, A +T'), the degenerations corresponding
to the rational points have bounded central fibers. The construction of the
complement I is indeed tricky, and the argument takes several steps.

In the first step, using compatible basis type divisors as first introduced
in [AZ20], we prove an improvement of [BLX19] that the complement I" can be
chosen to contain some fixed multiple of any effective divisor D ~qg —(Kx+A).
This allows us to extend the bound in our assumption from §(X,A) < 1 to
(X, A) < "TH Another improvement of [BLX19] is that we prove any quasi-
monomial v that computes 0(X,A) < ”T‘H is an lc place of a Q-complement,
using the global ACC Conjecture proved in [HMX14] (but not the boundedness
of complements proved in [Birl9]).

Next, starting with a fixed log resolution 7: (Y, E) — (X, A) such that v €
QM(Y, E'), we run the construction in the previous step to get a Q-complement
I' ~g —(Kx + A) containing a multiple of the pushforward of some generally
positioned ample Q-divisor G on Y. The key idea is to look at the intersection
QM(Y, E)NDMR(X,A+T). It consists of valuations that we call monomial lc
places of special Q-complements (with respect to the log resolution (Y, F)); see
Definition 3.3 for the precise definition. The advantages of the valuations in the
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above intersections are twofold: firstly, rational points in this new dual complex
corresponds simply to weighted blowups on the fixed log smooth model Y,
which are easier to analyze; secondly and more importantly, any rational point
w € QM(Y, E)NDMR(X,A+T) corresponds to special divisors F,; i.e., they
induce klt degenerations of the log Fano pair. (This follows from a tie-breaking
argument; see Lemma 3.5.) For general complements, the second property is
hard to come by. As it turns out in the end (see Theorem 4.2), a valuation
satisfies the finite generation property and induces a klt degeneration of the log
Fano pair if and only if it is a monomial lc place of some special Q-complement.

Recall that we have reduced the finite generation property of v to the
boundedness of the central fibers of the degenerations induced by nearby ra-
tional valuations in QM(Y, E)NDMR(X, A+T"). Given that the degenerations
have klt central fibers in this case, we can invoke results from [Jia20], [XZ21]
to prove the boundedness once we establish a uniform positive lower bound on
the a-invariants of the central fibers.

The a-invariants of the central fibers can be detected on (X, A) without
writing down the explicit degeneration; see Lemma 4.9. For our purpose,
it suffices to show that there exists a uniform « > 0 such that for any w
sufficiently close to v, and any effective Q-divisor D ~g —Kx — A, we can
find another effective Q-divisor D’ such that (X,A 4+ aD + (1 — «)D’) is log
canonical and w is an lc place. This guarantees that the a-invariants of central
fibers are bounded from below by «.

Let us consider the special case where w(D) = Ax a(w). (It is not hard
to see that this implies the general case, see the proof of Lemma 4.11.) In
this case, we necessarily have w(D') = Ax a(w) in order for w to be an lc
place. For simplicity, let us also assume that w is centered at a closed point
on X. By [BCHMI10], there exists a plt blowup p: X,, — X that extracts
the Kollar component F,, that corresponds to the divisorial valuation w. If
the complementary divisor D’ as above exists, then by adjunction the pair
(BEw, Ay + aDy, + (1 — a)D),) has to be log canonical. (Here the divisors
A, = Diffg, (p;'A) and D, = p;'D|g, etc. are what we naturally get by
doing adjunction along FE,,.) In particular, (Fy, A, + aD,,) needs to be lc.
Therefore, we should first guarantee that the a-invariant of the Kollar compo-
nent (Fy,A,) is at least bounded from below from «.

This is still not enough as the complementary divisor D’ adds another
component (1 — «)D), to the pair (Ey, Ay + aD,,), potentially making its
singularities worse. However, this is not a serious problem if a significant
proportion of D!, comes from a basepoint-free linear system. The easiest way to
make this happen is to impose the condition that —p*(Kx+A)—cAx A(Ew)Ey
is nef for some fixed constant ¢ > 0. If D” is the pushforward of a general
divisor in the Q-linear system | — p*(Kx + A) —eAx A(Eyw)Eyl|g, then D! has
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no contribution to the singularities. With some extra work, we can absorb D"
into D’ while keeping the singularities mild. For more details, see Lemma 4.11.

With the above discussions, we are reduced to showing that the a-invariant
of the Kollar component and the nef threshold as above have uniform lower
bounds that are independent of w. This is not hard to see if E,, is a weighted
blowup at a smooth point of X, as the Kollar component F,, is simply a
weighted projective space and both the a-invariant and the nef threshold can
be controlled explicitly. In general, we do not know what the map p: X,, — X
or the Kollar component E,, look like, but at least we have a log smooth model
(Y, E) and E,, can be extracted by a weighted blowup on Y. The last key idea
of the proof is to transfer all the local lower bound statement to the log reso-
lution (Y, E'), where things are easier to verify using the explicit geometry of
the weighted blowup, and then descend to the original log Fano pair (X, A)
using the Kollar-Shokurov connectedness theorem. These are the final techni-
cal steps of the proof; see Lemma 4.12 (for the lower bounds of a-invariants
of divisors over V'), Lemma 4.14 (for the nef thresholds) and Lemma 4.11 (for
the descent to X).
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2. Preliminaries

Throughout this paper, we work over an algebraically closed field k of
characteristic 0. We follow the standard terminology from [KM98], [Kol13].

Definition 2.1. A pair (X,A) is a normal variety X together with an
effective Q-divisor A such that Kx + A is Q-Cartier. A log Fano pair (X, A)
is a pair such that X is proper, —Kx — A is ample, and (X, A) is klt. When
A =0, X is also called a Q-Fano variety. A normal variety X is said to be
of Fano type if there exists an effective Q-divisor A such that (X, A) is a log
Fano pair.

A log smooth model (Y, E) over a pair (X, A) consists of a log resolution
7:Y — (X,A) and a reduced divisor E on Y, such that E + Ex(7) + 7, 1A
has simple normal crossing (SNC) support.

2.1. Valuations. In this subsection, we assume that X is a normal variety.

Definition 2.2. A valuation v on X is a R-valued valuation v : K(X)* — R
such that v has a center on X and v|x = 0. By convention, we set v(0) = +o0.
We denote by Valx the set of all valuations on X. Recall that the center of
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v on X, denoted by cx(v), is a scheme-theoretic point ¢ € X such that v > 0
on Ox¢, and v > 0 on the maximal ideal mx . Let Cx(v) := cx(v). Since
X is separated, a center of v on X is unique if it exists. If, in addition, X is
proper, then every valuation v has a center on X. The trivial valuation vy
is defined as viv(f) = 0 for any f € K(X)*.

For a valuation v € Valyx, we define its valuation ideal sheaf a,(v) for
pE RZO as

ap(v) :={f € Ox | v(f) > p}.

We also define the valuation ideal sequence of v as ae(v) := (0 (V))mezo,-

For a section s of a line bundle L on X and a valuation v on X, we fix an
isomorphism ¢: L|y = Oy for some open set U containing cx (v). We define
v(s) :=v(f), where f = ¢(s|y) € I'(Op). It is clear that this does not depend
on the choice of the trivialization ¢ or the open set U.

For a valuation v € Valy, we define its valuation semigroup ®;F := {v(f) |
J € Oxcxw) \ {0}} and its valuation group @, := {v(f) | f € K(X)*}. The

rational rank of v is defined as rat.rk(v) := rankz®,,.

Definition 2.3. Let m : Y — X be a proper birational morphism where
Y is normal. A prime divisor F on Y is called a prime divisor over X. It
induces a valuation ordg : K(X)* — Z by taking the vanishing order along F.
A valuation v € Valy is called divisorial if v = ¢ - ordg for some prime divisor
E over X and some ¢ € R>q.

Definition 2.4. Let w : Y — X be a birational morphism where Y is
normal. Let n € Y be a scheme-theoretic point such that Y is regular at n.
For a regular system of parameters (y1,...,yr) of Oy, and a € RY, we define

a valuation v, as follows. For f € Oy, \ {0}, we may write f in 63;7 o

kM y1,---,yr] as f = ZBEZEO cmﬁ, where cg € x(n) and yﬂ = ylﬁl-~~y,@r
with g = (B1,...,0r). We set

va(f) = min{(a, B) | c5 # 0},
A valuation v € Valy is called quasi-monomial if v = v, as above for some
m:Y = X, n, (y1,...,y) and a. It is proven in [ELS03] that a valuation v
is quasi-monomial if and only if it is an Abhyankar valuation; i.e., v satisfies
tr.deg(v) + rat.rk(v) = dim X, where tr.deg(v) is the transcendental degree
of v. From the above definition, we have that for any f € Oy, \ {0}, the
function a — v, (f) is piecewise rational linear and is concave; i.e.,

Vtag+(1—t)oo (f) >t vy (f) + (1 - t) * Vag (f)
for any 0 <t <1 and any oy, a2 € RY. In particular, for any non-trivial effec-
tive Q-Cartier divisor D (resp. graded sequence a, of ideals) on X, the function
a > vo(D) (resp. a — v,(ae)) is piecewise rational linear and concave. This
fact will be frequently used in this paper.
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If, in addition, 7 : (Y, E = Y._; E;) — X is a log smooth model where
(yi =0) = E; for 1 <14 <r as an irreducible component of E, then we denote
the set {vy [ @ € R%,} by QM, (Y, E). We also set QM(Y, E) := U,QM, (Y, E)
where 1 runs through all generic points of N;c s F; for some non-empty subset
J C {1,...,1}. For later reference, we note that if v is a quasi-monomial
valuation and q is its rational rank, then the log resolution 7: ¥ — X can be
chosen (by passing to a further blowup) such that v € QM, (Y, E) for some
codimension ¢ point 7.

2.2. Stability thresholds. We first define the log discrepancy function for
valuations.

Definition 2.5 ([JM12], [BAFFU15]). For a pair (X, A), we define the log
discrepancy function Ax A : Valy — R U {400} as follows:
(1) If v = ¢ - ordg is divisorial, then
Ax A(v) :=c- Ax aA(E) = c(1 + coeff g (Ky — 1" (Kx + A))).
(2) If v = v, is quasi-monomial for a log smooth model (Y, E) over (X,A),
then

A)QA(U) = Zai . AX,A(E’i)'
=1

It is clear that Ax A is linear on QM, (Y, E).

(3) According to [JM12], there is a retraction map ry g : Valy — QM(Y, E)
for any log smooth model 7 : (Y, E) — (X, A) satisfying Supp(Ex(7) +
7, 1A) C E. For any v € Valy, we define

Ax aA(v) :=sup{Ax a(ry,e(v)) | (Y,E) is a log smooth model over (X,A)}.

From the definition, we know that Ax a(Av) = X\-Ax a(v) for any A € Rxo.
Note that a pair (X, A) is lc (resp. klt) if and only if Ax a(v) > 0 (resp. > 0)
for all valuations v € Valx \ {vgriv}. We also set

Val := {v € Valx | v # viy and Ax a(v) < +00}.

Then it is clear that Valy contains all non-trivial quasi-monomial valuations
on X. If (X,A) is Ic, then v € Valy is an lc place of (X, A) if Ax a(v) =0. If
(Y, E) is a log smooth model over an lc pair (X, A) satisfying Supp(Ex(m) +
7, 1A) C E, then by [JM12, Cor. 5.4] we know that the set of all lc places of
(X, A) coincides with QM(Y, E’) where E’ is the sum of irreducible components
E; of E satisfying Ax A(F;) = 0. In particular, any lc place of (X,A) is a
quasi-monomial valuation in QM(Y, E).

In the rest of this subsection, we assume that (X, A) is a log Fano pair.
Let r be a positive integer such that L := —r(Kx + A) is Cartier. Then the
section ring of (X, L) is given by

R(X,L):=R= @ Rn= @ H(X,0x(mL)).

mEZZO ’VTLEZZO
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Definition 2.6 ([FO18]). Let m be a positive integer such that N, :=
hY(X,0x(mL)) > 0. An m-basis type divisor D on X is a divisor of the

following form:
N’"L

(S’i = 0)7
1
where (s1,...,5sy,,) is a basis of the vector space R,, = H°(X,Ox(mL)). Tt

is clear that D ~g —(Kx + A).
Definition 2.7 ([BJ20]). Let v € Valk be a valuation. Let m be a positive
integer. We define the invariants
Trn(v) := max{-Lv(s) | s € Ry, \ {0}},
S (v) := max{v(D) | D is of m-basis type}.

1
mrN,, =

D=

We define the T-invariant and S-invariant of v as

Txa(v):= sup Tp(v) and Sxa(v):= li_I)n Sm(v).

m€Z>0

Note that the above limit exists as finite real numbers by [BJ20, Cor. 3.6].
Definition 2.8 ([FO18, BJ20]). Let m be a positive integer. Then we define
Om (X, A) :=inf{lct(X, A; D) | D is of m-basis type}.

The above infimum is indeed a minimum since m-basis type divisors are
bounded, and Ict takes finitely many values on a bounded Q-Gorenstein family
[Amb16, Cor. 2.10]. In particular, there exists some divisor E over X such that

A E
Om(X, A) = 2210
The stability threshold (also called §-invariant) of a log Fano pair (X, A)
is defined as

5(X,A) = lim 6, (X,A).
m—0o0

Equivalently, we have

A
S(X,A) = inf Axa®)
veValg SX,A(U)
We say that §(X, A) is computed by a valuation v € Val§ if 6(X, A) = giz((g))

THEOREM 2.9 (Fujita-Li valuative criterion; see [Fuj19b], [Lil7], [BX19]).
Let (X, A) be a log Fano pair. Then (X,A) is K-semistable (resp. uniformly
K-stable) if and only if (X, A) > 1 (resp. §(X,A) > 1), and (X, A) is K-stable
if and only if Ax A(E) > Sx a(E) for all divisorial valuations E.

Remark 2.10. The original definitions of K-stability notions of a log Fano
pair (X, A) use test configurations and Futaki invariants (see Definitions 2.22
and 2.23). In this paper, we will mostly use the equivalent characterization
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given by Theorem 2.9. So one can take this as the definitions of corresponding
concepts. See Lemma 2.26 for the connection.

When Aut(X,A) is positive dimensional and 7' C Aut(X, A) is a torus,
there is also a reduced version 7 (X, A). See [XZ20, App. A] for more discus-
sions.

Definition 2.11 ([Tia87], [CS08], [BJ20]). The a-invariant of a log Fano
pair (X, A) is defined as

a(X,A) = inf{lct(X,A; D) | D € | — Kx — Alg).

Equivalently, we have

A
a(X,A)=inf M
vevaly Tx A(v)
Definition 2.12. More generally, for any projective klt pair (X, A) and
any effective Q-Cartier QQ-divisor G on X, we define

let(X, A;|Gg) = inf{lct(X,A; D) | D € |G|g}-
For any valuation v € Val%, if we let
T(G;v) = sup{2v(s) | m € N sufficiently divisible, s € HY(X,0x(mG))},

then as above we have

.. Axa(v
ICt(X, A, ‘G|Q) = el\rflaﬁo 11(G(U))
v >'e )

In our argument later, we need the following theorem.

THEOREM 2.13. Fiz positive integers n,C and three positive numbers
V, ap, 0. If we consider the set P of all n-dimensional log Fano pairs {(X,A)}
such that C - A is integral, then (—Kx — A)" =V and a(X,A) > o (resp.
(X,A) > ). Then P is bounded.

Proof. When A = 0, this is first proved in [Jia20], which heavily relies on
[Bir19], [Bir21]. See also [Che20]. Later a proof that only uses the boundedness
result from [HMX14] was given in [XZ21]. O

2.3. Filtrations and compatible basis type divisors. In this subsection, we
assume that (X, A) is a log Fano pair, and L = —r(Kx + A) is an ample
Cartier divisor for some r € Zsg. Let R = ®mez.,H(X,Ox(mL)) be the
section ring of (X, L). B

Definition 2.14. A filtration F on R is a collection of vector subspaces
F*R,, C R, for any m € Z>p and A € R> satisfying the following properties:
(1) FAR, € FN Ry if A > N
(2) FARyy = Ny eaFY Ry if A > 0;
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(3) F°R,, = R,,, and F*R,,, = 0 for A > 0;
(4) FA Ry - FN Ry € FMY Ry

A filtration F induces a function ordr : R, — R>¢ as ordz(s) := max{\ |
s € FAR,,}. By convention, we set ordx(0) = +o0.

In this paper, we are mainly interested in the following two types of fil-
trations coming from valuations or divisors.

Ezample 2.15. Any valuation v € Valx induces a filtration F, on R as
F)Rp :={s € Ry | v(s) > \}.
Any non-zero effective Q-divisor G on X induces a filtration Fg on R as

FARy :={s€ Ry | (s =0) > \G}.

Definition 2.16. Let F be a filtration on R. The associated graded ring
grrR of F is defined as

grrR:= @ @ gr}Rm, where gr}Rm = F R/ Unsa FN R,
meZ>o AeR>g
We say that F is finitely generated if grrR is a finitely generated k-algebra.
For a valuation v € Valy, we define the associated graded ring of v by gr, R :=
grz, R. Note that the grading of gr,R can be chosen as (m,\) € Zxg x @,
where ® is the valuation semigroup of v.

Definition 2.17. Let F be a filtration on R. A basis (s1,...,Sn,,) of Ry,
is said to be compatible with F if F R,, is spanned by some of the s;’s for
every A € R>g. An m-basis type divisor D = m S Vm(s; = 0) is said to be
compatible with F if (s1,...,sn,,) is compatible with F. By abuse of notation,
we will say that an m-basis type divisor D is compatible with a valuation v
(resp. an effective Q-divisor G) if D is compatible with the filtration induced
by v (resp. G).

From the definition, it is easy to see that for any v € Valg, we have
v(D) = Sp(v) for any m-basis type divisor D that is compatible with wv.
Another useful fact about compatible divisors is the following.

LEMMA 2.18 ([AZ20, Lemma 3.1]). Let F and G be two filtrations of R.
Then for any m € Z~g, there exists an m-basis type divisor that is compatible

with both F and G.

Definition 2.19. Let F be a filtration of R. We define the T -invariant of
F as
Tx A(F):= sup Ty(F) € [0,+00], where Tp,(F) := max{% | FAR,, # 0}
mEZ>()
By Fekete’s lemma, we know that T'x a(F) = limy,—y00 Tin(F). We say that F
is linearly bounded if Tx A(F) < +oc.
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Definition 2.20. Let F be a linearly bounded filtration. Let (si,...,sn,,)
be a basis of R, that is compatible with F. We define the invariant

N,
1 m
S (F) = N ;_1 ordr(s;).

It is clear that S,,(F) does not depend on the choice of the compatible basis.
The S-invariant of F is defined as
Sx,aA(F) = lim Sp(F).

m—ro0

Note that the above limit exists as finite real numbers by [BJ20, Lemma 2.9].
In fact, by loc. cit., we have

1

(2.1) Sx.a(F) = “Rx —A)

/ vol(FOR)dt,
0

where vol(FOR) := lim,,_y o0 %-

By [BJ20, Lemma 3.1}, any valuation v € Val% induces a linearly bounded
filtration F,,. From our definitions, it is easy to see that each invariant from 7,,,
Sms T'x A, and Sx A has the same value for v and F,,. For an effective nonzero
Q-divisor G on X, we define Sp,(G) := Sy (Fa) and Sx a(G) = Sx.a(Fa).
As before, we note that D > S,,,(G) - G for any m-basis type divisor D that is
compatible with G. The following calculation is also very useful for us.

LEMMA 2.21. Let A € Qso, and let G ~g —A(Kx + A) be an effective
Q-divisor. Then Sx a(G)

= ﬁ, where n = dim X.

Proof. We have vol(FY R) = vol(— K x —A—tG) = (1=At)™vol(—Kx—A);
thus the result follows from (2.1). O

2.4. Special divisors and complements. Let (X, A) be a log Fano pair. We
first recall the concepts of (weakly) special test configurations. Note that we
omit the polarization in the following definition, because (weakly) special test
configurations are naturally anti-canonically polarized.

Definition 2.22. A weakly special test configuration (X,Ay) of (X,A)
consists of the following data:

e a normal variety X' together with a flat proper morphism 7 : X — Al;

e a G,,-action on X such that 7 is G,,-equivariant with respect to the standard
G,p-action on A by multiplication;

o X\ A& is G,-equivariantly isomorphic to X x (A\ {0}) where the G,,-action
on X is trivial;

e an effective Q-divisor Ay on X such that Ay is the component-wise closure
of A x (A'\ {0}) under the identification between X\ Xy and X x (A'\ {0});
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e —(Kx + Ay) is Q-Cartier and m-ample;
o (X, X+ Ay) is log canonical.

A weakly special test configuration (X', Ayx) of (X, A) is special if (X, Xy + Ax)
is plt. The central fiber (Xp, Ag) of a special (resp. weakly special) test con-
figuration (X,Ay) is called a special (resp. weakly special) degeneration of
(X,A). A weakly special test configuration is trivial if X' is G,,-equivariantly
isomorphic to X x A! where the G,,-action on X is trivial.

Definition 2.23. For a weakly special test configuration (X,Ay) of an
n-dimensional log Fano pair (X, A), we consider its gluing with (X, A) x
(P1\ {0}) — P\ {0} to get a Gy,-equivariant family 7: (X, As) — P!. Then
we define
(—Kz/p — Ag)"™
(n+1)(-Kx — A)»’

It is well known from [LX14] that, to test K-stability of a log Fano pairs,
it suffices to consider weakly special test configurations or even special test

Fut(X,Ay) := —

configurations, and in this paper we will not need more general test configura-
tions.

Definition 2.24. We define (X, A) to be K-polystable if and only for any
weakly special test configuration (X, Ay) of (X, A), we have Fut(X,Ay) >0
and the equality holds if and only if (X, Ay) is a product test configuration;
ie., (X, Ax) = (X,A) x AL

Definition 2.25. Let E be a prime divisor over X. We say that F is
weakly special (resp. special) over (X, A) if there exists a weakly special (resp.
special) test configuration (X, Ayx) with integral central fiber Xp, such that the
restriction of the valuation ordy, to the subfield K (X) C K(X)(= K(X xAl))
is equal to b - ordg for some b € Z~(. By abuse of notation, we will say that
ordg or any valuation v proportional to ordg is weakly special (resp. special) if
E is weakly special (resp. special).

LEMMA 2.26 ([Fujl9b, Th. 6.13]). Using notation from Definition 2.25,
we have

Fut(Y, Ax) = b(Ax.a(E) — Sx.a(E)).

If E is a weakly special divisor over (X, A) such that ord, |g(x) = b-ordg,
then the central fiber (Xp, Ag) is uniquely determined by F up to isomorphism,
and Xp = ProjgrpR (see, e.g., [Xu2la, §3.6 and Lemma 3.7]).

Definition 2.27. A Q-complement of (X,A) is an effective Q-Cartier Q-
divisor D ~g —K x —A such that (X, A+ D) is log canonical. A Q-complement
D is called an N-complement for N € Z~g if N(Kx + A + D) ~ 0, and
N(A+D)> N|A]+ [(N+1){A}], where {A}:= A — |A].
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For any Q-complement D of (X, A), the dual complex of (X,A + D) is
defined as

DMR(X,A+ D) :={v e Valy | Ax ao+p(v) =0 and Ax a(v) = 1}.

(The notation DMTR comes from [dFKX17].) In particular, the space of all lc
places of (X, A + D) is a cone over DMR(X,A + D). By abuse of notation,
we often write v € DMR(X, A+ D) if v is an lc place of (X, A+ D).

A log resolution (Y, E) over (X,A + D) will yield a rational piecewise
linear (PL) structure of DMR(X,A + D) (see [dFKX17]). More generally,
for any v € DMR(X,A + D) and any log smooth model (Y, E) over (X, A)
such that v is contained in the interior of QM(Y, E), since Ax a is linear on
QM(Y, E), the function v — v(D) is piecewise rational linear and concave (see
Definitions 2.4 and 2.5), and Ax a(v) > v(D), the intersection

QM(Y, E) NDMR(X,A+ D) ={ve QM(Y,E) | Axa(v) =1=0v(D)}
is convex and spans a rational linear subset of QM(Y, E)). We call QM(Y, E)N

DMR(X,A + D) the minimal rational PL subspace of DMR(X,A + D) in
QM(Y, E) containing v.

As in the previous section, let R = @,,cny H° (X, —mr(Kx +A)) for some
integer r > 0 such that r(Kx + A) is Cartier. The following fact will be used
throughout this paper.

LEMMA 2.28. Assume v is an divisorial lc place of some Q-complement.
Then gr, R is finitely generated.

Proof. We may assume that v = ordg for some prime divisor F over X.
Let D be a Q-complement that realizes F as an lc place. Since (X, A+(1—¢)D)
is log Fano and Ax a4 (1—o)p(F) < 1 for 0 < e < 1, by [BCHM10, Cor. 1.4.3]
there exists a projective birational morphism 7: Y — X that extracts E as
the unique exceptional divisor. Moreover, we have 7*(Kx + A+ (1 —¢)D) =
Ky + T for some I' > 0 such that (Y,T') is klt and —(Ky + I') is nef and
big, thus Y is of Fano type. It then follows from [BCHM10, Cor. 1.3.1] that
@D ren HY(—mrm*(Kx +A)—kE) is finitely generated. As gr,R is a quotient
of this algebra, we conclude that gr, R is also finitely generated. (]

THEOREM 2.29 ([BLX19, Ths. 3.5 and A.2]). There ezists N € Zq de-
pending only on dim(X) and Coeff(A) such that the following statements are
equivalent for a prime divisor E over X:

(1) E is a weakly special divisor over (X, A);
(2) E is an lc place of a Q-complement of (X, A);
(3) E is an lc place of an N-complement of (X, A).

The equivalences (2) and (3) of the above characterization largely rely on
the existence of bounded complements established in [Bir19].



522 YUCHEN LIU, CHENYANG XU, and ZIQUAN ZHUANG

The following observation is made by the third named author (see [Xu21a,
Th. 4.12]).

THEOREM 2.30. The following statements are equivalent for a prime di-

visor E over X:

(1) E is a special divisor over (X, A);

(2) Axa(E) < Tx a(E), and there exists a Q-complement D" of (X, A) such
that, up to rescaling, E is the only lc place of (X,A+ D');

(3) there exist an effective Q-divisor D ~ —Kx — A and t € (0,1) such that
(X, A +tD) is lc with E as the only lc place (up to rescaling).

3. Log Fano pairs with §(X,A) < ”TH

In this section, for a valuation v that computes 6(X,A), we carefully
construct a Q-complement I' such that v is an lc place of (X, A+T). In fact, I’
satisfies a number of other technical properties (we call it a special complement
— see Definition 3.3 for its definition), which are indispensable for our proof
of Theorem 1.1.

As a by-product, in Section 3.2, we show that the various results in
[BLX19] can be improved using the construction of compatible basis type di-
visors introduced in [AZ20] (see Definition 2.17).

3.1. Complements for higher rank valuations. Recall that when §(X, A)
< 1, any valuation computing 6(X,A) is an lc place of a Q-complement
[BLX19, Th. A.7]. Using compatible divisors, we first generalize this result
to log Fano pairs with 6(X,A) < ”T‘H and investigate the degree of freedom
when choosing such complements.

LEMMA 3.1. Let (X,A) be a log Fano pair of dimension n such that
§(X,A) =6 <2t and let v be a valuation that computes 6(X,A). Let o €
(0, mim{n%_17 - nnTi;l}) NQ. Then for any effective divisor D ~g —(Kx + A),
there exists some Q-complement T' of (X, A) such that T' > aD and v is an lc

place of (X,A+T).

Proof. Up to rescaling, we may assume that Ax a(v) = 1. By [BJ20,
Prop. 4.8(ii)] and [Xu20, Th. 1.1], the valuation v is quasi-monomial. Let
r be the rational rank of v. Let m: Y — X be a log resolution such that
v lies in the interior of QM, (Y, E) for some simple normal crossing divisor
E=F,+---+ E, on Y where n = cy(v) is the generic point of a connected
component of N}_;F;. By [LX18, Lemma 2.7, for any ¢ > 0, there exist
divisorial valuations vi,...,v, € QM,(Y,F) and positive integers qi, ...,
such that
e v is in the convex cone generated by v;;

o forall i =1,...,r, the valuation ¢;v; is Z-valued and has the form ordp, for
some divisor F; over X; and
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* [vi—v| < ~foralli=1,...,7 — here |v;—v| denotes the Euclidean distance
of v; and v in QM, (Y, E) = RL,,.
We claim that when ¢ is sufficiently small, there exists a Q-complement I' > oD
of (X, A) that has all v; as lc places. Taking this for granted, let us finish the
proof of the lemma. Recall that Ax A is linear on QM, (Y, E), while v — v(T")
is concave (see the remarks in Definitions 2.4 and 2.5), hence v — Ax a4r(v) =
Ax a(v) —ov(I) is convex. Since the v;’s are Ic places, we have Ax ayr(v;) =0
and hence as v is contained in their convex hull, we get Ax a4r(v) < 0. As
(X,A+T) is lc, this implies that v is an lc place of (X, A +T'), and therefore
the statement of the lemma follows.
Back to the proof of the claim, we first argue as in [LX18, Lemma 2.51].1
Let ae be the graded sequence of valuation ideals of v, i.e., a, = a,(v).
By the same argument as above, we know that the log discrepancy function
w = Ax Ata,(w) is convex on QM, (Y, E). In particular, it is Lipschitz in a
neighborhood of v, hence there exist some constants C' > 0 and ¢; > 0 such
that

|Ax Atae (W) — Ax Agas (V)] < Clw — |

for any w in the closed convex cone generated by {v;};_; and any 0 < ¢ < ;.
Applying this to the divisorial valuations v; above, we find

Ax Atas(Fi) = ¢iAx Ata, (Vi) < Cgilvi —v| < Ce.
Therefore, for some 0 < g9 < 1 (depending on €), we have

(3.1) AX,A-i-ai_go (FZ) < 2Ce

foralll <i <r.Let0< D' ~g —(Kx+A) be general (so that it does not con-
tain the center of v in its support). Now for any m € N such that —m(Kx + A)
is very ample, let G = D' + (1 — ) D where 8 = max{0, %}, and let
D,,, be an m-basis type Q-divisor that is compatible with both G and v. Then
we have D, > S;,,(G) - G and v(D,,) = Sy (v).

Let

D, i= Dy — Sp(G) - BD' ~g —(1 — BSm(G))(Kx + A).

Note that G ~g —(Kx + A), thus lim,, S,,(G) = Sxa(G) = %H (see
Lemma 2.21) and limp, (1 — 85, (G)) = min{1, 3} by a direct calculation.
It follows that we can choose a sequence of rational numbers 6, > 0 (m € N)

such that d,, < 0, (X, A), limy, 00 0y = d and §,,(1 — £S5 (G)) < 1 for all m.

!There is a small error in the proof of [LX18, Lemma 2.51], where the log discrepancy
function Ax atag(-) was treated as a linear function on QM, (Y, E); nonetheless it is Lipschitz

(since it is convex), and that is enough for the argument there.
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In particular, (X, A + §,,D.,) is log Fano, and by our assumption on «, we
have

SmDy, > (1= B)6mSm(G) - D > aD

as m > 0.
Since v computes 6(X, A) and D’ is general, we also see that as m > 0,

Smv (D)) = 6mv(Dyy) > (1 —€0)8(X,A)Sx.a(v) = (1 —e0)Ax.a(v) =1 — &.

Combined with (3.1) we obtain Ax a4s,,pr, (F;) < AX A+a1—50(Fi) <20e <1
as long as e < min{45,e1}. By [BCHM10, Cor. 1.4.3] we know that there exists

a Q—fgctorial birational model p: X — X that extracts exactly the divisors Fj.
Let D denote the strict transform of a divisor D on X. Let

,
Kg+A+6,D), + > (1—a)F; = p*(Kx + A+ 6,,D,,)
i=1

be the crepant pullback. Then a; € (0,2Ce), and as (X, A + 6,,D),) is log
Fano, we see that (kv A+aD+ >i—1(1 = a;) F;) has a Q-complement.

By the following Lemma 3.2, if € is sufﬁmently small (depending only on
C, €1, and the coefficients of A and aD), then (X, A—l—ozD—FZZ 1 F3) also have
a Q-complement. Pushing it forward to X, we obtain a Q-complement I' > oD
of (X, A) that realizes all F; as lc places. The proof is now complete. O

We have used the following well-known consequence of [HMX14] in the
proof above.

LEMMA 3.2. Let (X,A) be a projective pair, and let G be an effective
Q-Cartier Q-divisor on X. Assume that X is of Fano type. Then there exists
some € > 0 depending only on the dimension of X and the coefficients of A
and G such that if (X,A+ (1 —¢)G) has a Q-complement, then the same is
true for (X,A+ G).

Proof. This should be well known to experts (see, e.g., [Bir21, Proof of
Prop. 3.4]), but we provide a proof for the readers’ convenience.

Replacing X by a small Q-factorial modification, we may assume that X
itself is Q-factorial. Let n = dim X, and let I C Q4 be the coefficient set of A
and G. By the ACC of log canonical thresholds and global ACC of log Calabi-
Yau pairs [HMX14, Ths. 1.1 and 1.5], we know that there exists some rational
constant € > 0 depending only on n, I that satisfies the following property: for
any projective pair (X, A) of dimension at most n and any Q-Cartier divisor G
on X such that the coefficients of A and G belong to I, we have that (X, A+GQG)
is lc as long as (X, A+ (1 —¢)G) is lc; if, in addition, there exists some divisor
D with (1 —¢)G < D < G such that Kx + A+ D ~g 0, then D = G.



FINITE GENERATION FOR VALUATIONS AND K-STABILITY 525

Now let (X, A+ (1 —¢)G) be a pair with a Q-complement I'. As X is of
Fano type, we may run the —(Kx + A+ G)-MMP f: X --» X'. Let A", G', T’
be the strict transforms of A, G,I". Note that by construction,

Kx +A+G< f"(Kx +A+G"),

hence (X,A + G) has a Q-complement if and only if (X', A’ + G’) has one.
Since
Kx+A+4+(1—-e)G+T ~q0,

the MMP is crepant for the lc pair (X, A+(1—¢)G+T), thus (X', A’+(1—¢)G’
+TI") is also lc. It follows that (X', A’+(1—¢)G’) is Ic, hence by our choice of ¢,
(X', A’+G") is lc as well. Suppose that X’ is Mori fiber space g: X’ — S. Then
Ky +A'+G" is g-ample. Since Kx/+ A"+ (1—¢)G’' ~g —I" <0 and p(X') =
p(S) + 1, there exists some ¢’ € (0,¢] such that Kx + A’ 4+ (1 —&')G’ ~4 ¢ 0.
But if we restrict the pair to the general fiber of X’ — S, we would get a
contradiction to our choice of . Thus X’ is a minimal model and — (K x/ + A’
+G’) is nef. As X' is also of Fano type, we see that —(Kx/ + A’ + G’) is semi-
ample, hence (X', A’ + G’) has a Q-complement. By the previous discussion,
this implies that (X, A + G) has a Q-complement as well. O

To proceed, we make the following definition. Recall that a log smooth
model (Y, F) over (X,A) consists of a log resolution 7 : ¥ — (X, A) and a
reduced divisor £ on Y such that E + Ex(7) + ;1A has SNC support (see
Definition 2.1).

Definition 3.3. A Q-complement I' of (X, A) will be called special with
respect to a log smooth model w: (Y, E) — (X,A) if 'y = 7, 'T' > G for some
effective ample Q-divisor G on Y whose support does not contain any stratum
of (Y, E). Any valuation v € QM(Y, E)NDMR(X,A+T) is called a monomial
le place of the special Q-complement I' with respect to (Y, E).

The following immediate consequence of Lemma 3.1 says a valuation com-
puting §(X, A) when §(X,A) < 2t is a monomial lc place of a special com-
plement. Later we will show for a (possibly higher rank) valuation that if it
is a monomial lc place of a special complement, its associated graded ring is
finitely generated (see Theorem 4.2).

COROLLARY 3.4. Let (X,A) be a log Fano pair of dimension n such that
§(X,A) =6 < ™t and let v be a valuation that computes 5(X,A). Then
there exist a log smooth model : (Y, E) — (X, A) and a special Q-complement
0 <T ~g —(Kx + A) with respect to (Y,E), such that v € QM(Y,E) N
DMR(X,A+T).

Proof. Since v is quasi-monomial, we may find a log smooth model 7: (Y, F)
— (X, A) whose exceptional locus supports a m-ample divisor F' such that
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v e QM(Y, E). Choose some 0 < ¢ < 1 such that L := —7*(Kx + A) +eF is
ample, and let G be a general divisor in the Q-linear system |L|g whose support
does not contain any stratum of (Y, E). Let D = m.G ~ —(Kx + A), and let

0 — "—5} be a fixed rational positive number. By Lemma 3.1,

o < minfily 1~ 22,
there exists some complement I' of (X, A) such that I' > a.D and v is an lc place
of (X,A+T). Replace G by aG. By construction, the strict transform of I is

larger or equal to G, so I is a special Q-complement with respect to (Y, E). O

To help understand the importance of special complements, we prove the
following statement. In Section 4, we will need a stronger version of it (see
Theorem 4.8).

LEMMA 3.5. Let T be a special Q-complement of a log Fano pair (X, A)
with respect to a log smooth model (Y,E). Denote by II := QM(Y,E) N
DMR(X,A +T) the set of monomial lc places. Then every divisorial val-
uation v € II is special (see Definition 2.25).

Proof. Fix v € II(Q). By Theorem 2.30, it suffices to find an effective
divisor D ~g —(Kx + A) such that A\ = lct(X,A; D) € (0,1) and such that
(up to rescaling) v is the unique lc place of (X, A + AD). To see this, let
W = Cy(v). If W has codimension at least two in Y, we let p: Z — Y be
the weighted blowup corresponding to v, so that v = ¢ - ordg for some ¢ > 0,
where F' is the exceptional divisor of p. Otherwise (i.e., W is an irreducible
component of E) welet Z =Y, p=1id, and F = W.

By assumption, there exists an effective ample Q-divisor G on Y such that
I'y > G and Cy(v) € Supp(G). Since (Y, E) is log smooth, it is clear that F
is a weighted projective space bundle over the smooth center W and —F' is p-
ample. In particular, there exists some € > 0 such that p*G—¢F' is ample on Z.
Let G be a general divisor in the Q-linear system |p*G — ¢F'|p and consider
the effective divisor D ~qg —(Kx +A) on X satisfying p*n*D = p*(7*I' — G) +
G1 + eF. (This is possible since the right-hand side is ~q —p*7*(Kx + A).)
We claim that this divisor D satisfies the desired conditions.

Let Ky +Ay = 7" (Kx+A) and Kz + Az = p*(Ky +Ay) be the crepant
pullbacks. We first show that the above claim is a consequence of the following
two properties:

(1) (Y,Ay + 7' — G) is sub-lc and v is an lc place of this sub-pair;
(2) F is the only divisor that computes lct(Y, Ay; p«(G1 + €F)).

This is because (1) implies that
Ax aA(w) = Ay ay (w) > w(n'T — G)

for all valuations w € Val, and equality holds when w is proportional to v;
on the other hand, if we let u = lct(Y, Ay; p«(G1 + €F)) > 0, then (2) implies
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that
Ax a(w) = Ayay (W) > p-w(ps(Gr +eF))

for all valuations w € Valk, and equality holds if and only if w is proportional
to v. Combining the two inequalities we have

w(D) = w(r*D) = w(m*T — G + pu(G1 +eF)) < (1 4+ p~HAxa(w)

for all valuations w € Val%, and equality holds if and only if w is proportional
to v. In particular, let(X, A; D) = ﬁ € (0,1) and up to rescaling, v is the
unique lc place that computes this lct, which is exactly what we want.

It remains to prove the two properties above. Point (1) is quite straightfor-
ward since by assumption, v is an lc place of the sub-lc sub-pair (Y, Ay 4+ 7*T)
and G does not contain Cy (v). To see point (2), we note that by assumption,
Ay has simple normal crossing support, |Ay| < 0 (as (X,A) is klt), and
therefore one can easily check that the sub-pair (Z,Az V F) is plt. Here we
denote by D1V Dy the smallest Q-divisor D such that D > D, for i = 1,2. Let

t= AY%Y(F). Then

p(Ky + Ay +tp(G1+eF)) =Kz + Az V F +1Gy

by construction. Since G is general, the pair (Z,Az V F + tG1) is also plt.
This proves (2). The proof is now complete. O

3.2. Minimizers and constructibility. The existence of a valuation com-
puting §(X, A) is proved to exist in [BJ20] if the ground field k is uncountable,
and in [BLX19] when 0(X,A) <1 for a general ground field, where it is also
shown that in this case any minimizer is an lc place of a Q-complement. Here
we extend these results to the case when §(X,A) is bounded by 2.

THEOREM 3.6. Let (X,A) be a log Fano pair of dimension n such that
§(X,A) < . Then

(1) there exists a valuation computing 6(X,A); and

(2) there exists a positive integer N depending only on dim(X) and the co-
efficients of A such that for any valuation v computing 6(X,A), there
exists an N-complement D of (X, A) that satisfies that v is an lc place of
(X, A+ D).

Proof. First we prove (1). For any sufficiently divisible m € N, let §,, :=

Oom(X,A), and let E,, be a divisor over X such that %}Ei’?) = Oy

Fix a positive integer mg such that —mgy(Kx + A) is a very ample Cartier
divisor. For each sufficiently divisible m € N, let H,, be a smooth divisor in
the linear system | — mo(Kx + A)| that does not contain the center of E,,.
For any such m, we can find an m-basis type divisor D,, that is compatible
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with both F,, and H,, by Lemma 2.18. We write D,, = I, + a,, H,, where
Supp(I';,) does not contain H,,. Note that by Definition 2.20,

— 1 > . 0 .
1 oo

= dm O (—m(Kx £ D)) ;dimHO(X, —(m — jmo)(Kx + A))

1

does not depend on the choice of H,,, and, in particular, lim,, o Gy = ot ET)

by Lemma 2.21. We know that

lct(X,A;Dm) < AX,A(Em) _ AX,A(Em)
ordg, (D) S (Em)

where the equality ordg, (D) = Sm(En) follows from the fact that D, is
chosen to be compatible with E,,. However, we have lct(X,A; D,,) > d,, by
the definition of d,,. Thus lct(X, A; D,,) = d,, and the Ict is computed by E,,.
Since H,, does not contain the center of E,,, it follows that (X, A + 6,,I'y,) is
lc and FE,, is an lc place of this pair.

Note that lim,, 00 0, = 0(X, A) < ”T‘H So for sufficiently large m, we get

5mFm = 5m(Dm - amHm) ~Q _)\m(KX + A)7

= Om,

where A\, = 6, (1—mopay,) € (0,1). Thus E,, is an lc place of a Q-complement.
The rest of the proof is the same as in [BLX19, Ths. 4.6 and A.7]: we know
that F,, is indeed an lc place of an N-complement for some N that only de-
pends on dim(X) and Coeff(A). Therefore, after passing to a subsequence, we

can find an N-complement D, together with lc places F, of (X, A+ D), such
that AX,A(Em) — AX,A(Fm)

SX,A (Em) SX,A(Fm)
be the limit of (A(x a)(Fn)) tordp, in DMR(X,A + D), then v computes

(X, A), as

AX,A(U) s AX,A(Fm) L AX,A(Em) . B
Sx.alv) s, Sxa(Fn) o Sxa(Em) im0, = 6(X, A).

for all sufficiently divisible m € N. If we take v to

For (2), it follows immediately from Lemma 3.1 that v is an lc place of a
Q-complement I'. There exists a log smooth model (Y, E) — (X, A +I') such
that every component E; (i = 1,...,q) of E is an lc place of (X,A +T) and
every prime divisor on Y with log discrepancy 0 with respect to (X, A + T
is contained in E. In particular, v € QM(Y, E). By [BCHM10, Cor. 1.4.3],
there exists a Q-factorial birational model u: X — X that extracts exactly
the divisors F; and Y --» X is isomorphic at the generic point of any com-
ponent of all non-empty intersections of (;c; E; for J C {1,...,q}. Let
a; = Coeffg,(A) if E; is a prime divisor on X, otherwise let a; = 0. Then
we can argue as in the proof of [BLX19, Lemma 3.2 and Th. 3.5]: X is of
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Fano type, (Y s TA + S7 (1 — a;)E;) has a Q-complement and therefore
also has an N-complement, whose pushforward on X gives an N-complement
D of (X,A) that has all E; (i = 1,...,q) as lc places. In particular, it also has
v as an lc place (as in the proof of Lemma 3.1). O

Combining Theorem 3.6 with the argument in [BLX19, §4], we get the
following generalization of [BLX19, Th. 1.1].

COROLLARY 3.7. For a Q-Gorenstein family of log Fano pairs (X, A)—S
over a normal base, the function
n+1
—, 0(X, AE)}

is lower semi-continuous and constructible, where (Xz, Ag) is the base change

tES»—>min{

to the algebraic closure of k(t).
Remark 3.8. 1t is proved in [Zhu21] that

min{d(Xz, A7), 1} = min{d (X, As), 1}.
However, in general we may have §(Xz, A7) <d(X¢, A¢) (see [CP21, Rem. 4.16]).

4. Finite generation
In this section, we prove the following finite generation result.

THEOREM 4.1. Let (X,A) be a log Fano pair of dimension n, and let
r >0 be an integer such that r(Kx + A) is Cartier. Let

R= P H'X,-mr(Kx+A)).

meZZQ

Assume that 6(X,A) < ”T‘H Then for any valuation v that computes 6(X, A),
the associated graded ring gr, R is finitely generated.

To tackle Theorem 4.1, we need some finite generation criterion for lc
places of complements. As shown by the examples in [AZ20, Th. 1.4] and
Section 6, one needs extra assumptions on the valuation and the complement.
It turns out that the special complements as defined in Definition 3.3 will be
the correct ones for proving Theorem 4.1. In other words, monomial lc places
of special complements have finitely generated associated graded rings (see
Theorem 4.2).

To prove this, we will show that in a neighborhood of a monomial lc place
of a special complement, the divisorial ones induce degenerations to log Fano
pairs whose alpha invariants are bounded from below by a positive constant (see
Theorem 4.8), and this is sufficient for the finite generation (see Theorem 4.5).

4.1. Finite generation criterion. The next statement gives us the finite
generation criterion. Clearly, it implies Theorem 4.1 by Corollary 3.4.
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THEOREM 4.2. Let (X,A) be a log Fano pair, and let v be a quasi-
monomial valuation on X. Let R = @,,en HY(X, —mr(Kx + A)) for some
integer r > 0 such that r(Kx+A) is Cartier. Then the following are equivalent:

(1) The associated graded ring gr, R is finitely generated, and the central fiber
(Xy, Ay) of the induced degeneration is klt.

(2) The valuation v is a monomial lc place of a special Q-complement T' with
respect to some log smooth model (Y, E) (see Definition 3.3).

We explain some notation in the above theorem. Assuming the finite
generation of gr, R, we define X,, := Proj gr, R, and A, is the induced degen-
eration of A to X,. More precisely, suppose A = 22:1 a;A;, where A; is a
prime divisor on X and a; € Q>9. Let In, € R be the graded ideal of A;.
Let in(Ia;) C gr, R be the initial ideal of Ia,. Then A, := Zlizl a; Ay, where
A, ; is the divisorial part of the closed subscheme V' (in(1a,)) € X,; i.e., Ay,
and V (in(Ia,)) coincide away from a codimension 2 subset of X,. See [BX19,
p. 648] for a similar definition.

The remaining part of this section will be devoted to the proof of this theo-
rem. In this subsection, we reduce the proof to showing the boundedness of the
degenerations induced by divisorial valuations that are sufficiently closed to v.

We first prove the easier direction in Theorem 4.2.

LEMMA 4.3. Assume that gr, R is finitely generated and (X,,A,) is kit.
Then v is a monomial lc place of a special Q-complement.

Proof. Let ¢ be the rational rank of v. Let 7: (Y, E) — (X, A) be a log
smooth model such that v € QM, (Y, E) for some codimension ¢ point n € Y.
Let D ~g —(Kx + A) be the divisor constructed in the proof of Corollary 3.4
so that the strict transform G = 7, 'D is ample. We have D = mlor{f = 0}
for some my € N and some f € H(X,—mor(Kx + A)). By assumption,
there exists some fy := f, fi,..., fr € R whose restrictions form a (finite)
set of generators fo,..., f; of gr,R. (In particular, fo,..., f, generates R.)
By enlarging the set of generators, we may also assume that all o, C R are
generated by the restrictions of some elements from fy, ..., fo.

By assumption, (X,, A,+eD,) is klt for some rational constant 0 < ¢ < 1,
thus by Lemma 4.4, (X, Ay +eDy) = (Xy, Ay +eD,) is also kit for divisorial
valuations w in a sufficiently small neighborhood U C % := QM, (Y, E) of v.
In particular, since v lies in the interior of X (by construction), we may assume
that the closure U is a compact subset of int(X). By Theorem 2.29, there exists
an integer N that only depends on (X, A 4+ D) such that any divisorial valu-
ation wg € U is an lc place of an N-complement 0 <T'g ~g —(Kx +A+¢eD).
Recall that v(f) is computed as the smallest weight of monomials in the power

series expansion of f at the point 7. As I' varies among the N-complements
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and w varies in a small neighborhood of v, we have a-mult,7*I' < w(I') < C for
some constant a,C' > 0 that only depends on v. Since there are only finitely
many monomials with bounded multiplicity, we conclude that the value of
w(T) is determined by only finitely many such monomials. Hence by shrinking
the neighborhood U, we may assume that whenever I' is an N-complement
of (X,A+eD) and v(I') # Ax a+ep(v), then w(I') # Ax atep(w) for any
w € U. In particular, since wo(I'g) = Ax atep(wo) for the N-complement I'y
we constructed above, we have v(I'g) = Ax Atep(v), and therefore v is also an
lc place of (X, A+T"), where I = eD +Ty. Since 7, 'I" > £G and G is ample,
it is a special Q-complement with respect to (Y, E') by construction. In other
words, v is a monomial lc place of a special (Q-complement as desired. O

The following lemma follows from the proof of [LX18, Lemma 2.10], which
we reproduce here for the reader’s convenience.

LEMMA 4.4. Let g be the rational rank of v. Let w: (Y, E) — (X,A) be
a log smooth model such that v € QM,?(Y, E) for some codimension q point
neY. Assume that gr,R is finitely generated by the restrictions of homoge-
neous elements fo,..., fo € R. Then for all valuations w € ¥ := QM, (Y, E)
that are sufficiently close to v, we have an isomorphism gr,, R = gr, R sending

the restrictions of fo,..., fo in gr,R to their respective restrictions in gr,,R.
Proof. Since fo, ..., fr generate gr, R, we have a surjection 7, : k[xo, ...,z
— gr, R sending x; to f;. Similarly we have a homomorphism 7, : k[zg, ..., x/]

— gr,, R sending z; to the restriction of f;. Let us first show that m, factors
through gr, R when w is sufficiently close to v.

The map 7, is easily seen to be a doubly graded homomorphism if we
set deg(z;) = (m;,v(f;)) where f; € Ry,,. Let ®1,...,®, be homogeneous
generators of its kernel. Let (y1,...,y4) be a regular system of parameters
of Oy, and let a € ]Ri be such that v = v,. By construction, we have
v(®i(fo,-.-, fr)) > wta(P;) where we set wto(z;) = vo(/fi), and it induces
a natural weight on every polynomial in k|xg,...,z. Each f; has a local
expansion f; = Zﬁez‘é . c(ﬂz)yﬁ at 1, where we use the same notation from
Definition 2.4. Since v has rational rank ¢, for any homogeneous element f € R,
we have v(f) = (a, 8y) for some uniquely determined 8y € Z%,. In particular,
we have v(f;) = (a, B;) for some f; € ZZ ; moreover, for any other 8 € Z

with c(ﬁl) # 0, we have (o, ) > v(f;). It follows that if o/ € ¥ is sufficiently
close to «, then w = v satisfies w(f;) = (/, B;). Using a similar argument, we
also see that if o/ is sufficiently close to «, then w(®;(fo,..., fr)) > Wta (D).
This implies that the ®;’s are contained in the kernel of m,; in particular, the
map 7, factors through gr, R.

Denote by ¢: gr, R — gr,, R the induced map. We proceed to show that ¢
is an isomorphism. First we show that it is injective. For this it suffices to show
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that for any ® € k[zo,..., 2] such that the monomials in ® have the same
weight with respect to wt, and that m,(®) # 0, we have m,(®) # 0. After
disregarding monomials in ® with zero image under m,, we may further write
¢ = &' + &” where m,(P’) # 0. All monomials in &' have wt, = wto(P) while
the ones in ®” have wt,, > wto(®). Let g = ®(fo,..., fe), and let u; = cgi)yﬁi
be the monomial in the local expansion of f; that computes v(f;). We aim to
show w(g) = Wty (®), which is equivalent to saying m,(®) # 0.

As m,(®') # 0 (ie., v(g) = Wta(P')), we must have @ (ug,...,up) # 0;
this is the only monomial in the local expansion (at n € Y) of g that can
have weight wt,(®). (Here we used the fact that v = v, has rational rank g.)
Since the monomial ®'(ug, ..., us) appears in the expansion of ®(uy,...,us),
therefore w(®(ug, . ..,ur)) < w(P (ug,...,ur)) = Wty (P') = Wty (®). (The
last equality holds since all monomials in ® have the same wt,,.)

Since w( f; — cgi)yﬂi) > w(f;) = w(u;) by our choice of w, then

w(@(fo, ... ,fg) — ‘I’(UO, RN UE)) > Wtw(@).

(Again we use the assumption that all monomials in ® have the same wt,.)
So we have

w(g) = w(P(up, ..., ur)) < Wty (P).

On the other hand, we necessarily have w(g) > wty/ (®). So w(g) = wty (P)
and therefore m,(®) # 0. This proves that ¢: gr,R — gr,R is injective.
But ¢ is a graded homomorphism, and both gr,R and gr, R have the same
dimensions (= dim R,,) in degree m, so ¢ is also surjective. Clearly ¢ sends
the restrictions of fy,..., fr in gr,R to their respective restrictions in gr, R.
This finishes the proof of the lemma. U

The reverse direction of Theorem 4.2 is much harder. To this end, we
drop the assumptions on the complements and prove a weaker finite generation
criterion.

THEOREM 4.5. Let (X, A) be a log Fano pair. Let 0<I' ~g—(Kx+A) be a
Q-complement, let vy be an lc place of (X, A+T"), and let ¥ C DMR(X, A+T)
be the minimal rational PL subspace containing vy induced by a fixed log smooth
model of (X, A) (see Definition 2.27). Then the following are equivalent:

(1) the associated graded ring gr, R is finitely generated;
(2) there exists an open neighborhood vo € U C ¥ such that the set

{(Xo,80) [0 € UQ) :=UNZ(Q)}

18 bounded;
(3) the S-invariant function

v Sx a(v)
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1s linear on a neighborhood of vy in X.

We first handle the implication (3) = (1). This is done in the next two
lemmas by studying the concavity of the S-invariant function.

LEMMA 4.6. Let0 <T ~qg —(Kx+A) be a Q-complement of the log Fano
pair (X, A). Let vg,v1 € DMR(X,A+T) be divisorial valuations in the same
simplex determined by a fized log smooth model (Y, E). There exists a natural
linear map [0,1] — QM(Y, E) sending 0 — vy and 1 — vy. Fort € (0,1), we
then denote vy to be the valuation corresponding to t. Then
(1) SX,A(Ut) > (1 — t)SX,A(Uo) + tSX7A(Ul).

(2) When equality holds, we have

For R = Span{s € Ry, | (1 — t)vg(s) + tvi(s) > A}
for all A € R and all m € N. In particular, the filtration F,, is finitely
generated.

Proof. Let Foy = Fy,, F1 = Fu,, and let F; be the filtration given by
F)R,, = Span{s € Ry, | (1 — t)vo(s) + tvi(s) > A}

We claim that S(F;) = (1 —1)S(vo) +tS(v1) and that gr, (gr, R) = grz, R for
any t € (0, 1), where by abuse of notation we denote by gr, (gr,, R) the graded
ring associated to the filtration on gr,, R that is induced by F,, on R. (In fact,
both claims hold even without assuming that vy, v; are divisorial.) To see this,
we note that

FSRNF/R
grﬁo grflR = > [30 . >0
(Fo*RNFIR) + (F§RNF{"R)
(1-t)a+ts f .
naturally maps to gry, R. This induces the map ¢: gr, (gr, R) —

grr, . Let us check that this is an isomorphism. Since both sides are N-graded
and have the same dimensions (= dim R,,) in degree m, it suffices to check
that ¢ is surjective; but this is clear from the definition of F;. Hence ¢ is
an isomorphism. We next pick a basis s1,...,sn,, of R, that is compatible

with both Fy and F; by Lemma 2.18. It is straightforward to check (using
8Ty, 8Ty, R = grz, R) that this basis is also compatible with 7, thus

N,
Sm(F) = —— > (1= t)oo(si) + tur(s) = (1 = )S(v0) + ESm(w0).
moi—1

The claim then follows by letting m — oco. Clearly F'R,, C ]:g‘tRm, hence
S(vy) > S(Fr) = (1 —t)S(vg) + tS(v1), which proves (1).
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Next assume that equality holds for some ¢ € (0,1). Then by concavity
it holds for all t € (0,1). By the above proof we also have Vol(]igf‘)R) =
VOI(]:t()\)R) for all A € R. Assume for the moment that ¢ € Q. We claim that

Claim. The filtration F; is finitely generated and induces a weakly special
degeneration of (X, A).

To see this, let 0 € (X', A’ +T") be the affine cone over (X, A +T') using
the polarization —r(Kx + A). Note that (X', A’) is kIt and (X', A" +T7) is
lc by [Koll3, Lemma 3.1]. Let w; (¢ = 0,1) be the divisorial valuation over
(X', A" +T") given by w;(s) = m + v;(s) where s € R,;,, and let E; (i = 0,1)
be the corresponding prime divisor over X’. Then w; are both lc place of
(X', A" +T") that are centered at the vertex o. Let

G = A, o (wo) (W0) N B o () (W1)

for some sufficiently divisible integer m > 0. Then a,, is m,-primary. As
Ox/(—=mI") C a,, and (X', A’ + 1) is log canonical, it follows that (X', A" +
a,l,{m) is Ic and has both wg, w; as lc places. By [Xu21b, Th. 3.5 and Prop. 3.6],
we then have a G2 -equivariant locally stable family (X, Ax) over A% = A%o,h

with general fiber (X', A’) given by
X = Spec @ (a;,(ordg,) N ail(ordEl))tgiOtl_il.
(’io,’i1)€Z2
In particular, the above algebra (denoted by A) is finitely generated. On the
other hand, we have A/(to,t1) = gr,,(gr,, R) = grz, R, hence grz, R is finitely
generated. For suitable a,b € N, the base change (X, Ax) x 2 Al via the map

Al — A% : s (5%, sP) is the test configuration induced by F;. Indeed, by the
definition of F; it is not hard to see that one can choose a,b such that

X xpo Al Spec@s_j}"f‘jR
JEL
for some A € Q4, and this determines the test configuration. Since (X, Ax) X 42
Al is a locally stable family with normal general fiber, we see that X x 42 Al is

normal, thus the algebra on the above right-hand side is integrally closed. In
particular, for any p € N, we have

(4.1) f € F)Ry < f? € F)? Ry
As (X, Ay) is a locally stable family, its central fiber
(Spec A/(to,t1), Ax,0,0)) = (Spec(grz R), Ax 0,0))

is slc. Since this is an orbifold cone over the central fiber of the test configura-
tion induced by F;, we deduce from [Koll3, Lemma 3.1] (see also [Kol04]) that
the test configuration induced by F; is weakly special. This proves the claim.
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Next, let ¢ > 0 be the smallest integer such that the valuation qu; is
Z-valued; it is also the smallest integer such that the set of jumping numbers
Fi lies in %Z. By the above claim and (the proof of) [BLX19, Th. A.2], there
exist some Z-valued divisorial valuations w; (i = 1,...,¢) and some a; € Q
such that

FMRyy = {f € Ry |wi(f) > A\q+ma; for all 1 <i < (}.

Indeed, by [BHJ17, Prop. 2.15], the above equality holds at least for sufficiently
divisible m; but then it holds for every m € N by (4.1). Suppose that F; # Fy,.
Then there exists some f € R, such that v,(f) = u > 0 and f € FPRy, \
]-"t>)‘Rm for some A < p. In particular, A € %Z, and for at least one of the
valuations w;, say w1, we have wi(f) = Ag + may. Let ¢ € Q4 be sufficiently
small so that 1 := (u — A)g 4+ ema; > 0. Then for sufficiently divisible integer
k € N, the kernel of the map

fk Lk Lk
Repp — -Fut R(l—&—e)mk/ft R(l—i—a)mk
is contained in FZ’ngmk. It follows that
dim(Fq}fth(l—i—a)mk/‘F#kR(H—a)mk) > dim(Rsmk/fg;]fRsmk)y

and thus dividing out by £"/n! and letting & — oo we deduce from [BHJ17,
Lemma 5.13] that

_*

(1+e)m’

a contradiction. Hence the two filtrations F; and F,, coincides when ¢ € Q.

vol(}"qgf/)R) - VOl(ft()\/)R) >0 where )\ =

In general, for any fixed m € N, a,b € Q and any irrational ¢ € (0,1), we

have
(4.2) ft(l—t)a+tme _ ft(’l_t/)a+tlem and }-zgft)athme _ ‘Fzgtllft’)aﬂ/me
for some ¢ € Q that is sufficiently close to t. Indeed, recall that sq,...,sy,, is

a basis of R,,, that is compatible with both Fy and F7, and ff‘Rm is spanned
by those s; with (1 — t)vg(s;) + tvi(s;) > A. Ast € Q, we have (1 — t)vg(s;) +
tv1(s;) = (1 —t)a + tb if and only if vy(s;) = a and vi(s;) = b, thus for these
si’s we necessarily have (1 —t")vg(s;)+t'vi(s;) = (1=t )a+t'b for all ' € (0,1).
For the remaining s;’s, as t’ is sufficiently close to ¢, we may assume

(1 —t)vo(s;) +t'vi(si) < (resp. >) (1 —t)a+t'b
if (1 —1t)vo(s;) + tvr(s;) < (resp. >) (1 — t)a + tb. Hence }"t(l_t)aHbR
Ft(,lft Jatt me are spanned by the same set of s;’s, and we get the first equality
in (4.2). The second equality in (4.2) can be proved in a similar fashion as

in Lemma 4.3, noting that as ¢’ stays close to t, the monomial that computes

m and

vi(s) (where s € R,,) also computes vy (s) (and there are only finitely many
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such monomials to consider). Thus since F; = F,, when t € Q, it follows that
Fi = Fy, for irrational ¢ as well. Since grz, R = gr, (gr,, R) and the right-hand
side is finitely generated by the above discussion, the same holds for F,. The
proof is now complete. O

LEMMA 4.7. Let 0 < T ~g —(Kx + A) be a Q-complement of the log
Fano pair (X, A), let (Y, E) be a log smooth model of (X,A), and let P be a
convez subset in QM(Y, EYNDMR(X,A+T). Assume that the linear span of
P is rational, and Sx aA(-) is linear on P. Then for any v € P, the associated
filtration F, is finitely generated.

Proof. We first claim that for any valuations vg,v; € P and any t € (0, 1),
we have

(4.3) Fo Ry, = Span{s € Ry, | (1 — t)vo(s) + tvi(s) > A},

where v; = (1 — t)vg + tvy. As in the proof of Lemma 4.6, (4.3) is equivalent
to saying that for any basis s, ..., sy, of R,, that is compatible with both vg
and v1, we have

Nm
(4.4) Vg (Z aisi> = min{(1 — t)vo(s;) + tvi(s;) | a; # 0}

i=1

for any ai,...,an,, € k. As in the proof of (4.2), we know that the basis
S1,...,8N,, is also compatible with divisorial valuations in the minimal rational
PL subspace containing vy (resp. v1) that are sufficiently close to vy (resp. vy).
By assumption, these divisorial valuations are necessarily contained in P. By
Lemma 4.6, the equality (4.3) (and hence (4.4)) holds when vy, v are divisorial.
Thus as the function v — v(s) is continuous for any fixed s € R,,,, we conclude
that (4.4) (and hence (4.3)) holds for all v; € P and ¢ € (0,1).

Now for any v € P, we may find some ¢ € (0,1) and some valuation
v} € P such that v; = (1 — t)v + tv] is divisorial. By (4.3) and the discussions
in Lemma 4.6, we see that gr,(gr,R) = gr,R. Since v; is divisorial, the
associated graded ring grvéR is finitely generated by Lemma 2.28. It follows
that gr,, (gr,R) is finitely generated, hence the same holds for gr,R by lifting
the generators of gry (gr,R). Thus F, is finitely generated as desired. (]

We now present the proof of Theorem 4.5.

Proof of Theorem 4.5. (1) = (2): In fact in a suitable neighborhood U,
all (X,,A,) are isomorphic; see [LX18, Lemma 2.10] or Lemma 4.4. (3) = (1)
follows by Lemma 4.7. So it remains to prove (2) = (3). The key point is that
if a concave function takes rational values with linearly bounded denominators
on rational points, then it is linear.
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Denote by (Y, E) the log smooth model of (X, A) that appears in the defi-
nition of ¥. By Lemma 4.6, the S-invariant function is concave on the simplex
of QM(Y, E) containing vg. In particular, it is Lipschitz in a neighborhood of
vg in ¥, and we may find some constant C' > 0 such that

(4.5) 1Sx.a(0) — Sx.a(v0)| < Clo— vl

for any v in a neighborhood of vy in ¥. Let Sy = Sx,a(vg). By [LXIS,
Lemma 2.7], for any ¢ > 0, there exist divisorial valuations vi,...,v, € 3,
rational numbers S1,..., Sy and positive integers qi, ..., qs such that

o (vg,Sp) is in the convex cone generated by (v;,S;), i.e., there exists some
Ai > 0 such that vo = Y% Mw; and Sp = S5 \iSi;

e (q;vi,q;S;) is an integer vector for all i =1,...,¢;
® [vi —wo| +[9i — So| < - foralli=1,... ¢
In particular, by the last condition, we may assume that v; € U, where U C X
is the open neighborhood of vy in condition (2).

Since the set {(Xy,Ay) |v € U(Q)} is bounded, there exists some integer
M > 0 such that M (Kx + A) is Cartier and such that M -Futx, a,(§) € Z for
any v € U(Q) and any one parameter subgroup &: G, — Aut(X,,A,). If we
let ¢ be an integer such that qv is integral, then Mq-Ax a(v) € Z. Note that qv
induces a one parameter subgroup &, : G,, — Aut(X,, A,) with Futx, A, (&) =
q-Bx,a(v). It follows that Mq-Sx a(v) € Z for any v € U(Q) and any integer
g such that qv is integral. In particular, we have Mg; - Sx a(v;) € Z.

On the other hand, by (4.5) we have |Sx a(v;) — So| < %, and hence

|Mg; - Sx a(vi) —Mq;Si| < Mg;-|Sx,a(vi) = So|+Mg;-|S; — So| < (C+1)Me.

Note that the constants C' and M are independent of the choice of €. Thus if we
take € = m, then as Mq- Sx a(v) and ¢;5; are both integers, we deduce
that Sx A(vi) = S;. But as Sx a(+) is concave on U and vy = Zle A\ivi, we

also have

l ¢ l
Z)\iSX,A(Ui) < Sx.a(vo) =Sy = Z AiSi = Z&‘SX,A(W).
i=1 i=1 i=1

Hence the first inequality is an equality, which forces Sx a(-) to be linear on
the cone generated by vi,...,vp. In particular, it is linear in a neighborhood
of vy in X. 0

4.2. FEstimate of alpha invariants. We next proceed to check the condition
of Theorem 4.5(2) when the complement is special. In order to control the
boundedness of (X,,A,) for v € ¥(Q), we wish to apply the boundedness
result as in Theorem 2.13. In light of Lemma 3.5, we already know (X,, A,)
is klt. Then we need to further analyze the a-invariant of (X,, A,).

The following theorem is our main result in this section.
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THEOREM 4.8. Let (X, A) be a log Fano pair, and let I be a special com-
plement with respect to a log smooth model (Y, E) (see Definition 3.3). Let
K C DMR(X,A +T) be a compact subset that is contained in the interior
of a simplicial cone in QM(Y, E). Then there exists some constant o > 0
such that for all rational points v € K, the alpha invariants o(X,, Ay) of the
induced degenerations (X,, A,) are bounded from below by a.

Our main tool is the following characterization of a-invariants.

LEMMA 4.9. Letv be a divisorial valuation such that gr R is finitely gen-
erated, and let o € (0,1) be a rational number. Then a(X,,A,) > o if and
only if for all0 < D ~qg —(Kx + A), there exists some 0 < D' ~qg —(Kx + A)
such that (X, A+ aD + (1 —a)D’) is lc and has v as an lc place.

For ease of notation, we call such D’ an («,v)-complement of D.

Proof. Note that (X,,A,) has an induced G,,-action. By taking the limit
under the G,,-action, we see that any effective Q-divisor G ~q —(Kx, + Ay)
degenerates to some Gy,-invariant divisor Gy. By the semi-continuity of log
canonical thresholds, we have let (X, Ay; G) >let (X, Ay; Go), thus a(X,, Ay)
> o if and only if let(X,, Ay; Go) > « for all Gy,-invariant divisors Gy ~q
—(Kx,+A,). Any such G is also the specialization of some divisor 0 < D ~q
—(Kx + A) on X, and lct(X,, Ay; Go) > « means that v induces a weakly
special degeneration of (X, A + aD). By Theorem 2.29, this is the case if and
only ifforalle € Q, 0 < € < 1, the valuation v is an lc place of a Q-complement
of the kit pair (X, A+ (o« —¢)D); i.e., D has an (a — ¢, v)-complement. (Note
that (X, A + aD) is only lc so we cannot directly apply Theorem 2.29.) We
claim that this is equivalent to saying that D has an («, v)-complement. Clearly
only the forward direction needs a proof. We may write v = ¢ - ordg. Let
a = Ax a(E). Since v is an lc place of Q-complement, there exists a birational
model 7: Y — X that extracts F as the only possible exceptional divisor (by
[BCHM10, Cor. 1.4.3]), and Y is of Fano type. Moreover, it follows from the
existence of (a — €, v)-complement that the pair (Y, 7;1(A + (o —€)D) V E)
has a Q-complement for all 0 < ¢ < 1. By Lemma 3.2, this implies that
(Y, 771 (A + aD) V E) also has a Q-complement, whose pushforward to X is
an (a,v)-complement of D. This proves the claim and also the statement of
the lemma. O

COROLLARY 4.10. Let v be a divisorial valuation that is an lc place of a
Q-complement of (X, A). Then
Ax.a()

XU;AU S 1- .
Oé( ) TX,A(U)

Proof. We may assume that «(X,,A,) > 0; otherwise, since v is an lc
place of some Q-complement, we have T'x A(v) > Ax a(v) and the result is
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clear. Let a = a(X,,A,). Note that a(X,,A,) < 1 since otherwise it cannot
have any non-trivial G,,-action by [LZ22, Cor. 3.6]. (The same proof in loc. cit.
works for pairs.) Choose some effective divisor D ~g —(Kx + A) whose
support does not contain Cx (v). By Lemma 4.9, there exists some 0 < D' ~q
—(Kx +A) such that v is an lc place of (X, A+aD+(1—a)D’). In particular,
(1 —a)u(D) = vaD + (1 — a)D’) = Ax a(v), which implies Ax a(v) <

A
(1 —a)Tx A(v). In other words, a(X,,A,) <1 — Tj:ﬁ((Zj)) O

In order to construct («,v)-complements for some uniform constant «
(and therefore produce a uniform lower bound for o(X,,A,) by Lemma 4.9),
our strategy is to refine the proof of Lemma 3.5 using the alpha invariants and
nef thresholds of the corresponding exceptional divisors F'. This is done in the
next three lemmas.

To this end, we introduce some notation. Under the notation and assump-
tions of Theorem 4.8, we fix an effective ample Q-divisor G on Y that does
not contain any stratum of F such that I'y > G. For any divisorial valuation
v € DMR(X,A+T)NQM(Y, E), let p: Z — Y be the corresponding weighted
blowup, F' the exceptional divisor (i.e., v = c¢-ordr), and (Z,Az), (Y, Ay) the
crepant pullbacks as in the proof of Lemma 3.5. Let AT := Az V0V F. Note
that (Z, A™) is plt. By adjunction we may write Kp +® = (Kz + A1)|p. Let

L:=—-p"nm"(Kx +A) — Ax A(F) - F.

Since v = ¢-ordp is an lc place of (X, A+T'), F' is not contained in the support
of p*m* ' — Ax A(F) - F' ~q L; thus the Q-linear system |L p|q is non-empty
and we may define
ay = 1ct(F, @; [ L plg)-
We also let
gy i =sup{t > 0| p*"G —tAx A(F) - F is nef}.

Note that as —F' is p-ample, we have ¢, > 0 and for any ¢ € (0, ¢,), the divisor
p*G —tAx A(F) - F is ample.

LEMMA 4.11. Let a,b > 0 be constants. Then there exists some constant
a > 0 depending only on a,b,(X,A) and T' such that a(X,,A,) > « as long
as a, > a and €, > b.

Proof. We may assume that a < 1. By Lemma 4.9, it is enough to find
some constant a > 0 such that an (o, v)-complement exists for any 0 < D ~q
—(Kx + A).

As a reduction step, we first show that it suffices to check the existence
of an (a,v)-complement for those D such that v(D) = Ax a(v). Indeed, as G
is ample, we may find some constant 0 < A\ < 1 such that G + \n*(Kx + A)
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remains ample. It follows that T'(G;v) > A - Tx a(v), thus

Txa(w) =T(r"T;v) > v(n*l — G) +T(G;v)
>o)+ A TX,A(U) = AX,A(U) + A TX,A(U),

or (1—=A)Tx a(v) > Ax a(v). On the other hand, a(X, A)Tx a(v) < Ax a(v)
by the definition of alpha invariants.

We claim there exists some constant o € (0,1) depending only on A and
a(X,A) such that for any 0 < D ~g —(Kx + A), we can always find some
0 < D; ~g —(Kx+A) and v > p such that vo(D)+ (1 —v)v(D1) = Ax a(v).
In fact, since the possible values of v(D;) are dense between 0 and T'x a(v),
this is a consequence of the following elementary fact: if 0 < a < % <1-—A
then there exists u > 0 depending only on v and A, such that for any p € [0, 7],
we can find some g € [0,7") and some v > u such that vp + (1 — v)q = A.

Clearly if an (o, v)-complement exists for vD + (1 — v)Dy, then (au,v)-
complement exists for D. This proves the reduction.

Next we fix a sufficiently small ¢ € (0,1) such that s := (llii)t < b. By
assumption, p*G — sAx A(F) - F is ample. Fix any 0 < D ~g —(Kx + A)
with v(D) = Ax a(v), let H be a general member of the Q-linear system
|p*G — sAx A(F) - Flg, and let H = p,H'.

We claim that along p(F') the pair

1—t
<Y,Ay—|—a-7r*D+7t H>
is Ic and has F' as its unique lc place. To see this, first we have

Ay ay (F) —ordp (a D + 1t_tH)
=AxA(F) —aAx aA(F)— (1 —a)Axa(F)=0.
Then let
D' =p*t*D —ordp(D) - F = p*1*D — Ax A(F) - F ~q L.

By assumption, (F,® + aD’|r) is klt; hence since H' is general, we see that
(F,® + aD'|p + 3L H'|F) is also klt. By inversion of adjunction, (Z, AT +
aD’ + %H/) is plt along F'. Since AT > Az V F, we deduce that (Z, Az V F +
aD' + %H "} is also plt along F. By construction and the above calculation,
we can check that

-1 1t
KZ+AZ\/F+GD/+TH/:/)* <Ky+Ay+a-7T*D+tH>.

Thus (Y,Ay + a - 7*D + 1LH) is lc along p(F) and F is the only lc place
there, proving the previous claim.
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We also know that (Y, Ay +7*I'—G) is lc and F' is an lc place of the pair.
Taking convex linear combination as in the proof of Lemma 3.5, it follows that

(Y, Ay +1 (a D+ ?H) (1= )T — G)>
= (Y,Ay +at-7m*D+ (1 —¢)(x'T — G + H))

is lc along p(F') and F is the only lc place of the pair in a neighborhood of
p(F). In particular, p(F') is a connected component of the non-klt locus of the
pair. Note that

Ky +Ay +at- 7D+ (1 —-t)(n"I' = G+ H)
=" (Kx+A+atD+ (1 —-t)(T — .G+ m.H)).

Thus (X,A + atD + (1 — t)(I" — m.G + 7. H)) is lc along Cx(v) = 7(p(F))

and Cyx(v) is a connected component of its non-klt locus, since otherwise in

some neighborhood of 7~ 'Cx(v) there would be another non-klt center of

(Y, Ay +at-m*D+(1—t)(7*T'—G+ H)) that is disjoint from p(F’), contradicting

the Kolldr-Shokurov connectedness theorem (see, e.g., [Kol92, 17.4 Th.]).
Similarly, as

—(Kx+A+atD+(1—-t)(I' =mG+mH)) ~g —(1 —a)t(Kx + A)

is ample, we deduce that (X, A+ atD + (1 — t)(I' — .G + . H)) is indeed lc
everywhere, as otherwise there would be some non-klt center of the pair that
is disjoint from C'x (v), contradicting Kollar-Shokurov connectedness. Since by
construction v = c-ordp is an lc place of (X, A+atD+(1—t)(I' —m.G+7.H)),
we may add some general divisor 0 < Dy ~g —(1 — a)t(Kx + A) to the pair
and conclude that D has an (at,v)-complement. Since D is arbitrary and ¢
only depends on a, b, this completes the proof. O

The argument for the following lemma is similar to the one in [Zhu20].

LEMMA 4.12. Using notation as above, let K C DMR(X,A+T) be a
compact subset that is contained in the interior of some simplicial cone in
QM(Y, E). Then there exist some constants a > 0 such that oy, > a for all
divisorial valuations v € K.

Proof. Let E; (i = 1,...,r) be the irreducible components of E so that
W = Ei1N---N E, is the common center of valuations in K on Y. Any
divisorial valuation v € K corresponds to a weighted blowup at W with weights
wt(E;) = a; for some integers a; > 0 such that ged(ay,...,a,) = 1. Since K is
compact, there exists some constant C' > 0 such that Z—; < Cforalll <i,j5 <r.

To describe the weighted blow up in more details, if locally around a point
x € W, FE; is given by the equation e; = 0, then the weighted blow up is given
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by
(4.6) PI‘OjOY (OY LIy d--- ),

where Z; around x is generated by monomials e‘li1 . e,ﬁlT such that > a;d; > d.
The exceptional divisor F' is a weighted projective space bundle over W with
fiber Fy isomorphic to A"\ {0}/G,,, with the action

A (3/17 s )yr) = ()‘alyl) .. '7)‘ary'r‘)'

The corresponding well-formed weighted projective space is given in the fol-
lowing way: let ¢; = ged(a,...,ai,...,ar), ¢ =q1 - qr, and a, = %. Then
Fo 2 P(d),...,a.), which is well formed (see [IF00, Lemma 5.7]).

Let ¢; = Ax a(E;) > 0, by = max{0,ordg, (Ay)} < 1. Then we have the
following facts (with notation as in the paragraph before Lemma 4.11):

(1) AX,A(F) = 22:1 aiAX,A(Ei) =aicy + -+ apcy
(2) Lp, := L|g, ~0 AX%(F)LO, where Ly is the class of O(1) on P(a},...,al);

» T

(3) ®r, = PR, = Diy %fbi{mi = 0}, where z1,...,z, are the weighted

homogeneous coordinates on P(af,...,al);
(4) by == pOz(—mF)/p.Oz(—(m+1)F) = @ Ow (—(m1E1 + - +my Ey)),
where the direct sum runs over all (mq,...,m,) € N” such that aym; +

co At army =m,

Remark 4.13. All these facts can easily be seen if we view the weighted
blow up as a (Deligne-Mumford) stack (see, e.g., [ATW19, §3]). Then the
stacky exceptional divisor F is a weighted projective stack bundle over W
with the fiber P(ay,...,a,) := [(A" \ {0})/G,,] as a Deligne-Mumford stack
where G, acts diagonally on A" by weights (a1, ..., a,) (see, e.g., [RT11, §2.3]),
and O(—F)|p(ay,...ar) = O(1). The natural morphism

Play,...,ar) — Pld),...,a)
maps the Deligne-Mumford stack to its coarse space, with an orbifold divisor
of the form (1 — i)(xl = 0) along the i-th coordinate hyperplane (z; = 0) of
P(a),...,al) (see [RT11, §2.5]).

Now claim (2) follows from the fact that O(—F) is O(1) on P(ay,...,a,),
and the pullback of O(1) on P(d},...,a.) to P(a,...,a,) is O(q). In fact, for
the map

7)()\1,...,)\7;,...,)\“)—>’P<);\1,...,)\Z',...,/\):1>,

where

~

A= ng()q,...,)\i,...,/\r),
the pullback of the divisor given by the section x; of (’)P(A1 N An )()\i) is
P

X

A-multiple of the orbifold divisor given by the section y; of Op(x, . A, x.) (M)
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For (3), the birational transform of E; restricting on P(ay,...,a,) is {y; = 0}
on P(ai,...,a,) with coordinates y;. Then Kp(,, . 4.+ > bi{yi=0} is the
pullback of Kp(y; )+ izt %fbi{:z:i =0} as the morphism P(ay,...,a,) —
P(al,...,al) precisely has codimension one orbifold components along (y; = 0)
with degree ¢;. (Alternatively, (3) can also be derived through a direct cal-
culation of the different, noting that Z has a cyclic quotient singularity of
order ¢; along the codimension 2 component {z; = 0} C F.) Finally, let
¢t = P Ow(—(miE1 + -+ +m,E,)) be the direct sum that appears in (4).
Since p*(Oy (—(miEy + -+ m,E,)) C Oz(—mF) if 3~ a;jm; = m, then

Oy (=(miE1 + -+ myE;)) C pOz(—mF) = Ip,.

Therefore, we have a natural map ¢, — b,,. A local computation shows that
both two sides are generated as free module by the image of e} --- e with
aymi + -+ + a,m, = m. Thus (4) follows.

By (1) and (4), for any m € N such that mL is Cartier, we have
p+Op(mL) = Oy (—mn*(Kx + A))
© 0.02(—mAx A(F) - F)/p.O(~(mAx,a(F) + 1)F)
= @ OW(—mﬂ'*(KX—i—A)—(mlEl—}--‘-—l—mrEr)),
(m1,...,my)
the direct sum running over all > ;_; a;m; = m > j_; a;c;. Recall that g—; <C
forall 1 <4i,j <r, thus mi +---+m, < Coym, where Cp = [C > i_; ¢;]. If we
choose a very ample line bundle Hy such that Hy + E; (1 <i <) are all very
ample and Hy + 7*(Kx + A) is ample, then for sufficiently divisible m, each
direct summand in p,Op(mL) admits an inclusion
Ow (—ma*(Kx +A) — (m1Ey + - -+ mE,))
— Ow((m +my+ -+ mr)Ho)
— Ow((CO + 1)mH0).
Therefore for H = (Cy + 1)H and sufficiently divisible m, we have
p*OF(mL) — Ow(mH)EBNm

for some integer Ny, (= rank(b, 45 5(F)))-

Since Fy is toric, by [BJ20, Th. F| we know that lct(Fo, @y |Lr,lo) is
computed by one of torus invariant divisors {z; = 0}. Thus by (1) (2) and (3),
we get
minlSiST ai(l - bz)

aicy + -+ apcp
for some constants a > 0 that only depend on b;, ¢; and C. Let Ay :=
(Ay VO —>i_1 bE;)|lw. Note that (W, Ay ) is klt and p* Ay is the vertical

1Ct(F0, (I>F0§ |LF0|Q) =

>a
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part of ®. We have lct(W, Aw;|H|g) > 0 by Izumi’s inequality (see, e.g.,
[Lil8, Th. 1.2] or [BL21, Th. 20]), since there exists constant M > 0 such
that mult,,D < M for any effective divisor D ~g H and any w € W. Thus
after replacing a by a smaller positive number, we may further assume that
let(W, Aw; |H|g) > a. We claim that a,, > a.

To see this, let ¢ € (0,a) and let &’ ~g L|p be an effective divisor. Suppose
that (F, ®+t®’) is not le. Then since (F, ®+t®’) is lc along the general fiber of
F — W by our choice of a, we know that there exists a divisorial valuation vy
over I such that Ap g ta/(vo) < 0 and the center of vy does not dominate W.
By [Zhu20, Lemma 2.1], vg restricts to a divisorial valuation w on W.

Let g: W1 — W be a birational morphism such that the center of w is a
divisor @ on Wy, let F} = F xyw W, @1 = ¢g*(® — p*Aw) (i.e., the pullback
of the horizontal part of ®; here we also denote the projection F; — F by g),
and let P be the preimage of @ in Fj.

Since F' — W is locally a trivial product Fy x W, it is not hard to see
that the formation of p,Op(mL) commutes with the base change W; — W.
Thus by the projection formula, we see that

HY(Fy,O0p, (¢*mL — kP)) = H' (W1, ¢* p.Op(mL) @ Ow, (—kQ)).
Since p,Op(mL) = Ow (mH)®Nm for any sufficiently divisible m, we have
HY(Fy,0p (g*mL — kP)) # 0 = H°(Wy, Ow, (mg*H — kQ)) # 0
for any k£ € N, which implies

ordp(®') < sup ordg(H').
H'G‘H|Q

Since let(W, Aw; |H|g) > a,

a- sup ordg(H') < Awa, (Q) = Aps(P).
H/€|H|Q

Since t < a, we combine the above inequalities to conclude that ¢ - ordp(®’) <
Apa(P). It follows that if we write

G (Kp+®+1t®)=Kp, +® + AP+ D

where P ¢ Supp(D), then A < 1.

On the other hand, since the divisor P is vertical, over a general fiber of
P — @ (which we still denote by Fy), we have D|g, ~q tg*®'|r, ~q tL|g.
Thus by our choice of a, (P, (®1+ D)|p) is lc along the general fibers of P — Q,
and hence by inversion of adjunction we see that (F;,®; + AP + D) is also lc
along the general fibers of P — (). In particular, it is lc at the center of vg, a
contradiction. Thus (F, ® + t®’) is always lc and «, > a as desired. (]
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LEMMA 4.14. Using notation as above, let K C DMR(X,A+T) be a
compact subset that is contained in the interior of some simplicial cone in
QM(Y, E). Then there exist some constants b > 0 such that £, > b for all
divisorial valuations v € K.

Proof. We continue to use the notation from the proof of Lemma 4.12. Let
Ay 1= p*Oz(*mAX,A(F) . F)

Since 7+ < C for all 1 <4, j <, there exists some constant M € N such that
J

1 1
———ord > —mult
(e () = gyt (7)
for all regular functions f around the generic point of W. In particular,
I%m C a,, for all m € N.

Claim 4.15. We can find a sequence of ideals

(4.7) Oy DIy 2 2ap 2 2I{™

on Y such that the quotients of consecutive terms are all isomorphic to
Ow(—mEy — -+ —n,.Ey)

for some (n1,...,n,) € N" with >7/_; n; < Mm.

The key point in this claim is that a,, appears in this sequence. (The
remaining terms in the middle do not matter too much to us.)

Proof. We know
Ih, T8 = SymP (T /T3,) = ay Ow (= By —---—n,E,).
ni+-Anp=p,(n1,...,n ) EN"

Therefore we can find a sequence of ideals
Jo(=0y) 2 T(=Iw) DT 2--- 2 Iy,

such that Jx/Jk+1 = Ow(—niEy — -+ — n,E,) for some ny + -+ +n, <
Mm, (ny,...,n,) € N" and all such (ny,...,n,) appear precisely once as a
subquotient. Indeed, if we order N” such that (ni,...,n,) < (n},...,n}) if
and only if ny +---4+n, <ni+---+nlorny+---+n, =n} +---+n. and
(n1,...,ny) < (n},...,nl) in the lexicographic order, then we can choose Jj
so that around any = € W it is locally generated by the monomials 6‘111 el
where e; = 0 is the local equation of F; and (di,...,d,) € N" is at least the
(k 4 1)-th smallest under the above ordering. We claim that

(@m O Tx)/(@m O Tiey1)

B (’)W(_nlEl—---—anT) if ainy + -+ arn, ZmAX,A(F>7
0 if ayny + -+ + apny < mAx a(F).
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In fact, (a,, N Jx)/(am N Jk+1) is isomorphic to the image of a,, N Jy in Jy —
Ji/Tk+1, and a local calculation then gives that the image is 0 if e} --- e}’

Q (09%%) and OW(_nlEl — = anr) if 6?1 T e;}r S
Similarly,
(am + Tk)/(@m + Tk+1)
B 0 ifaing +---+an, ZmAX,A(F)7
Ow(—mEr — - —n.E,) ifaing + - +an, <mAxa(F).

Then we construct the sequence (4.7) as follows: first we enumerate all ideals of
the form Ji+a,,, aslong as (a,,+Jx)/(am+Tk+1) # 0; next comes a,,, followed
by all ideals of the form J; N a,y,, as long as (a,, N Jx)/(am N Txs1) #0. O

We next choose some sufficiently large and divisible integer mg, p > 0 such
that

(1) The line bundles {7G and ({7G — E;)|w are globally generated for all
1=1,...,7.

(2) H\(W,Ow (mpG — myEy — -+ —n.E,)) = 0 for all i,m € N, and all
(n1,...,ny) €Nwith >77_; n; <Mm. (This is possible by Fujita vanishing.)

(3) Oy (mpG) ® IH™ is globally generated and H’ (Y, Oy (mpG) @ TH™) =0
for m > my,j € N4. (This holds as long as mg > 0 and p- h*G — M - E
is ample on the blowup h: Y’ — Y along W with exceptional divisor E.)

Consider the filtration (4.7). Let Z; 2 Zs be two consecutive terms. Then we
have the exact sequence

0 = Oy (mpG) ® Iy — Oy (mpG) @ I; — Ow (mpGlw) ® (Z1/Z2) — 0.

Since (Z,/I2) =2 Ow(—m1E1 — -+ — n,.E,) for some (ng,...,n,) € N" and
>~ n; < Mm, then by (2),

H (W, Ow (mpGlw) @ (11/T2)) =0 any i>0,
and thus if H (Y, Oy (mpG) ® Iy) = 0 for i > 0, then
HY(Y,Oy(mpG)®I) =0  any i>0.

If, moreover, Oy (mpG) ® I, is globally generated, then as Ow (mpGlw) ®
(Z1/I») is globally generated by (1), we know that Oy (mpG) ® Iy is globally
generated by diagram chasing and the vanishing H (Y, Oy (mpG) ® Iy) = 0.
Therefore, working inductively and starting from I‘]}V/[m by (3), we conclude
that for any ideal sheaf Z C Oy that appears in the sequence (4.7), the sheaf
Oy (mpG)®T is globally generated and H(Y, Oy (mpG)®ZI) = 0 for any i € N
and any m > mg. In particular, Oy (mpG) ® a,, is globally generated for all
m > my, which implies that pp*G — Ax A(F) - F' is nef. In other words, ¢, > %
and we are done since the integer p does not depend on the valuation v. [
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Proof of Theorem 4.8. The result now follows from a combination of Lem-
mas 4.11, 4.12 and 4.14. O

We now have all the ingredients to prove Theorems 4.2 and 4.1.

Proof of Theorem 4.2. By Lemma 4.3 we already have (1) = (2), so it
remains to prove (2) = (1). Let v be a valuation that satisfies (2).

We first show that gr,R is finitely generated. To this end, let ¥ C
QM(Y, EYNDMR(X, A+T") be the smallest rational PL subspace containing v,
and let U C ¥ be a small open neighborhood of v such that the closure of U
is contained in the interior of the simplicial cone in QM(Y, E) that contains v.
By Theorem 4.5, it is enough to show that the set {(Xy,Ay)|w € U(Q)}
is bounded. By Theorem 2.13, this is true if a(X,,Ay) > « for some con-
stant o > 0 that does not depend on w € U(Q), which then follows from
Theorem 4.8. Next, by Lemma 4.4, we have (X,,A,) = (Xu,Ay). Since
a(Xw,Ay) > a > 0 and, in particular, (X, Ay) is klt, we see that (X,, Ay)
is also klt. This finished the proof. O

Proof of Theorem 4.1. This follows immediately from Theorem 4.2 and
Corollary 3.4. O

5. Applications

In this section we present some applications of the finite generation results
from the previous section. As we mentioned, combining with earlier works,
Theorem 1.1 solves a number of major questions on the study of K-stability of
Fano varieties.

5.1. Optimal degeneration.

THEOREM 5.1 (Optimal Destabilization Conjecture). Let (X, A) be a log
Fano pair of dimension n such that 6(X,A) < "T‘H Then 6(X,A) € Q, and

there exists a divisorial valuation E over X such that §(X,A) = ‘2}’:2((5))

In particular, if 6(X,A) < 1, there exists a non-trivial special test config-
uration (X, Ay) with a central fiber (Xo, Ag) such that §(X,A) = §(Xo, Ay),

and 6(Xo, Ag) is computed by the G,-action induced by the test configuration

structure.

Proof. Let v be a valuation on X that computes 6(X, A). By Corollary 3.4,
there exists some complement I" of (X, A) such that v € DMR(X,A+T). Let
Y. C DMR(X,A+T) be the smallest rational PL subspace containing v. By
Theorems 4.1 and 4.5, the S-invariant function w — Sx a(w) on ¥ is linear in
a neighborhood of v. As v computes §(X,A), we have

Ax A(v) = 0(X,A)Sx a(v).
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Since the log discrepancy function w — Ax a(w) is linear in a neighborhood
of v € ¥ and by the definition of stability thresholds we have

AX7A(U}) Z (5(X, A)S)QA(’U))
for all w € 3, we see that
Ax a(w) = 0(X,A)Sx a(w)

in a neighborhood U C ¥ of v. In particular, any divisorial valuation w € U(Q)
also computes 0(X,A). Since w is a divisorial lc place of a complement, it
induces a weakly special test configuration of (X,A) by [BLX19, Th. A.2].
By [Lil7, Proof of Th. 3.7] or [Fujl9b, Th. 5.2] we know that Sy a(w) =
Ax a(w) — Sx a(w) is rational. Since Ax a(w) is clearly rational, we see that
d(X,A) is also rational.

The last part follows from [BLZ19, Th. 1.1}, as the conjectural assumption
there is verified by the first part. O

THEOREM 5.2 (Yau-Tian-Donaldson conjecture). A log Fano pair (X, A)
is uniformly K-stable if and only if it is K-stable; and it is reduced uniformly
K-stable if and only if it K-polystable. In particular, (X,A) admits a weak KE
metric if and only if it is K-polystable.

Proof. Suppose first that 6(X,A) < 1. Then by Theorem 5.1, the stability
threshold is computed by some divisor E over X. By [BX19, Th. 4.1], this
implies that (X, A) is not K-stable. In other words, if (X, A) is K-stable, then
(X, A) > 1;ie., (X,A) is uniformly K-stable.

Suppose next that (X, A) is K-polystable. Let T C Aut(X,A) be a max-
imal torus. We show that ép(X,A) > 1. Suppose not. Then by [XZ20,
App. A], we know that o7(X,A) = 1 and 6(X,A) is computed by some
T-invariant quasi-monomial valuation v that is not of the form wt¢ for any
¢ € Hom(G,,,, T) ®z R. Moreover, v is an lc place of a complement. Let m € N
be sufficiently divisible, and consider the T-invariant linear system

M= {s€ H(—m(Kx + A))|v(s) >m-Axa(v)}.

Let Dy € M| be a general member, and let D = £ Dy. Then (X, A + L M)
has the same set of lc places as (X, A 4+ D), and thus by construction v €
DMR(X,A + D). Since T is a connected algebraic group, every lc place of
the T-invariant pair (X, A+ %M) is automatically T-invariant. In particular,
DMR(X, A+ D) consists only of T-invariant valuations.

By the same argument as in the proof of Theorem 5.1, we see that §(X, A)
is also computed by some divisorial valuations w € DMR(X, A + D) that are
sufficiently close to v (in particular, w # wte as well). Since w is T-invariant,
by [BX19, Th. 4.1], w induces a T-equivariant special test configuration (X, D)
of (X,A) with Fut(X,D) = 0. Since T C Aut(X,A) is a maximal torus and
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w # wte for any £ € Hom(G,,,T) ®z R, we deduce that (X, D) is not a prod-
uct test configuration. But this contradicts the K-polystability assumption of
(X, A). Therefore, we must have ép(X, A) > 1 and (X, A) is reduced uniformly
K-stable.

When k = C, the existence of a KE metric now follows from this equiva-
lence and [Li22, Th. 1.2] (see also [BBJ21], [LTW21]). O

THEOREM 5.3 (K-moduli conjecture). The K-moduli space Mf{}sc s proper,

and the CM line bundle on MEL(ESC 1s ample.

Proof. The properness follows from Theorem 5.1 and [BHLLX21, Cor. 1.4].
The ampleness of the CM line bundle follows from Theorem 5.2 and [XZ20,
Th. 1.1]. O

5.2. Tuwisted stability by adding a general boundary. Our final application
is the proof of a modified version of a conjecture of Donaldson (see [Donl2,
Conj. 1], [Sz¢é13] and [BL22, §7]). Using the Optimal Degeneration Theo-
rem 1.2, we can reduce the calculations to a maximal degeneration of the log
Fano pair. Nevertheless, we still need a subtle analysis of valuations in a
neighborhood of the d-minimizers.

THEOREM 5.4. Let (X, A) be a log Fano pair such that § :== §(X,A) < 1.
Then (X,A + (1 —0)D) is K-semistable for any sufficiently divisible integer
m € N and any general D € L|—m(Kx+A)|. In particular, (X, A+(1—6")D)
is uniformly K-stable for any 0 < §’ < 4.

For the proof, we first need a few auxiliary lemmas.

LEMMA 5.5. Let (X,A) be a log Fano pair, and let D ~g —(Kx + A) be
an effective Q-divisor such that (X, A+ D) is klt. Assume that (X, A+tD) is
K-semistable for some t € (0,1). Then (X, A + sD) is uniformly K-stable for
all s € (t,1).

Proof. This simple interpolation result is well known. We include it here
for the sake of completeness.
By assumption, for any valuation v on X with Ax a(v) < oo, we have

Ax a+tp(v) = Ax a(v) —t-v(D) > (1 —t)v(D)

and Ax a4tp(v) > Sx.a+tp(v) = (1 —t)Sx,a(v). Thus for any s € (¢,1), we
have
1-s
Axa+sp(v) = Ax,a+ep(v) = (5 = 1)0(D) > T— Axa+en(v)

> (1 — S)SXA(U) = SX,A—i-sD(U)

for any valuation v € Valg. Hence (X, A + sD) is uniformly K-stable. O
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LEMMA 5.6. Let X be a normal projective variety with an ample line
bundle L. Let Z C X x U be a bounded flat family of positive dimensional
normal subvarieties of X over a normal variety U. Let I' be an effective Q-
divisor on Z that does not contain any Z, (so the restriction Ty, := I'|z, is
well defined as a Q-divisor on Z,,). Assume that Kzy + 1 is Q-Cartier and
(Zy,Ty) is kit for allu € U.

Then there exists some constant a > 0 such that for all sufficiently large
m € N, a general member D € |mL| does not contain any Z, and (Zy, Ty +
aD,) is lc for allu e U.

Proof. For any closed point y € Y of a variety Y and any effective Cartier
divisor G = (¢ = 0) on Y, we define the order of vanishing of G at y as

ord,(G) =max{j € N|g € mJy}

By the family version of the Izumi type inequality (see, e.g., [BL21, Th. 20]),
there exists some constant Ky > 0 depending only on the family (Z,I') — U
such that

v(Dy) < Ko - Az, r,(v)-ordz(Dy)

for any u € U, any effective Cartier divisor D, on Z,, and any v € Valy such
that x = Cz,(v) is a closed point. In particular, this implies

1

5.1 lety(Zy, Tu; Dy) > —————
( ) Cx( uyr L u U)_K[)'Ordx(Du)
for all x € Z,, and all effective Cartier divisors D, on Z,.

Let m € N be large enough so that the restrictions

Yur: HY(X,O0x(mL)) = H*(Z,,0z,(mL))
— H(Zu, 0z,(mL) & (Oz, /mg™Z+1))

are surjective for any closed point w € U and x € Z,. (This is possible since
L is ample.) Since dim Z, > 1, we have h%(Oz, (mL) ® (O, /miimZ+1y)) =

hO(Og, /mdimZ+1) > dim Z. A simple dimension count using the incidence
variety

W ={(z,f) € Zx H(X,mL) |z € Zy, pus(f) =0} C Z x H*(X,mL)

shows that the second projection W — HY(X,mL) is not surjective.

Hence if D € |mL| is a general member, then ord,(D,) < dim Z for all
u e U and x € Z,. By (5.1), this implies lct(Z,,T'y; Dy) > m Thus if
we take a = m, then (Zy, Ty +aD,) is Ic for all u € U. O

Next consider the following setup. Let (X, A) be a log Fano pair. Let T <
Aut(X,A) be a maximal torus, let N = Hom(G,,, T) be the co-weight lattice,
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and let M = Hom(T, G,,) be the weight lattice. For sufficiently divisible r, we
have a weight decomposition

R=@P H (X, -mr(Kx+A)= P Rma
meN (m,a)eNx M

For each £ € Ng, we set A¢ := inf(m,a){<£’a> | Rm.o # 0}. Since R is finitely

mr
generated, the function £ — A¢ is piecewise linear with rational coefficients.

Moreover, for sufficiently divisible m, A¢ = infa{% | Ripo # 0}. Then the
valuation wte is given by wte(s) = (§,«) — Aemr for all 0 # s € Ryq. In
fact, let s* € Ry, o such that wte(s*) = A¢gmr. Then the trivialization of
—rm(Kx + A) around Cx (wt¢) is given by s — 2%, and thus

whe(s) = whe(— - 87) = wte( ) = (€ a) — Agmr.

LEMMA 5.7. Let V. C Ng be a convex subset where { — A¢ is linear. Then
the functions

E— AX,A(th) and & SX,A(th)
are both linear on V.

Proof. We choose a basis s1,...,sn,, of R, such that each s; € Ry, o, for
some «; € M. In other words, {s1,...,sn,,} is a disjoint union of bases of
Ry, o over all o € M. From the definition of wte we know that f@t ng is a
direct sum of some of the R,, ,’s for every A € R>g. Thus the basis s1,...,sn,,

is compatible with wt¢ for every { € Ng. Hence we have

N, N,
1 m 1 m
Sm(whe) = — > whe(si) = —N > (€, i) = Agmr).
moi=1 moi=1

Since £ +— ¢ is linear on V, the above equation implies that £ — Sy, (wt¢) is
also linear on V. Therefore, £ = Six a)(Wte) is linear on V' as Six a)(wte) =
limyy, 00 Sm(Wte). Since Ax a(wte) — Sx a(wte) = Fut(§) is always linear on
Ng, the lemma follows. O

Since R = @ (;n,0)eNx M Fm,o 18 finitely generated, the sub-semigroup A :=
{(m,a) e Nx M | Ry, o # 0} of N x M is also finitely generated. As a result,

A¢ is equal to the minimum of finitely many rational linear functions in £ of

the form % Thus A¢ is a rational piecewise linear function in § on Ng. We
may decompose Ng into a fan consisting of finitely many rational simplicial
cones such that { — A¢ is linear on each cone.

For each cone o of the fan (other than the origin), we choose some &, € Ny

in its interior and let Z, := Cx (wtg, ).
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Claim. Z, does not depend on the choice of &,, and Z, C Z, if ¢ D 7.

Next, we prove the claim. Let A¢ := {(m,a) € A | (§,a) > Aemr}. We
first show that

(5.2) Cx(wte) = [\ Bs(Bma),
(m,a)eA¢

where Bs(-) denotes the base locus of a linear system. By the definition of
wte, we know that wte(s) > 0 for any s € Ry, o with (m,a) € A¢. Thus the
“C” direction of (5.2) is clear. For the “2” direction of (5.2), let Ze C Ox be
the ideal sheaf of Cx (wt¢) with reduced scheme structure. Since —r(Kx + A)
is an ample line bundle, we fix a sufficiently large m; € N such that 7, ®
Ox(—myir(Kx + A)) is globally generated. Clearly,

HY(X,Z; @ Ox (—mir(Kx +A))) = {s € R, | wte(s) >0} = P Ry
(m1,0)€Ne

Thus the global generation of Z¢ ® Ox (—mr(Kx + A)) implies
Cx(wtg) =Bs( P Rma)= [] Bs(Bma)2 [ Bs(Rma)

(m1,a)€Ae (m1,0)€Ne (m,a)€Ae

This finishes the proof of (5.2).

Back to the proof of claim. Recall that &, belongs to the interior of o.
To prove the claim, it suffices to show that Cx(wte,) € Cx(wtg) whenever
¢ € 0. By (5.2), this reduces to showing A¢, D Agr. Let (m, o) € A\ Ag,, ie.,
(€o, ) = Ag, mr. Since the function { — (£, o) =A¢mr is linear and nonnegative
on o, its vanishing at an interior point £, of ¢ implies that it vanishes on
the whole of 0. Thus (¢, a) = Agmr, which implies that (m,a) € A\ Ag.
Therefore, we have shown A\ Ag, C A\ Ag, ie., Ae, O Ag. This finishes the
proof of the claim.

As a consequence of the claim, when ¢ varies in the fan, Z, enumerates
the center of wt¢ for all £ € Ng.

Since wte, induces a product test configuration of (X, A) that is special,
by Theorem 2.30 there exist some v, € (0,1) and some G, ~g —7s(Kx + A)
such that (X, A+ G,) is Ic and wte_ is its unique lc place. In particular, Z,
is the minimal lc center of (X, A + G,). Choose some 0 < ¢, < 1 and some
general G/, € | — Kx — Algp. By Kawamata subadjunction [Kaw98], we may
write

(Kx + A+ Go +e5Gl)|z, ~qo Kz, + T

for some divisor I'; > 0 on Z, such that (Z,,I',) is klt. Moreover, if D > 0
is a Q-Cartier divisor on X whose support does not contain Z,, then (X, A +
Gy + D) is lc in a neighborhood of Z, if (Z,,T's + D|z,) is lc. (For a more
precise version, see [HMX14, Proof of Th. 4.2].) For any g € Aut(X,A), let
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(Z,g:V59) =(9-Zs,9-T»). We will eventually apply Lemma 5.6 to the family
(Zog-Tong)-

For now we state a technical result that is needed in our proof of Theo-
rem 5.4.

LEMMA 5.8. Assume that dim Z, > 1. Let 7 be a cone of the fan on Ng
such that o C 1. Let & € 0, & € 7, and let & = (1 — )&y + t& fort € [0,1].
Then for any 0 # s € Ry, such that Z, is not contained in the support of
D = (s =0), we have

Wie (5) < 1&&4 X?(-W 1;§|1) '
oyloy ZU)

Proof. For ease of notation, let vy = wtg,, { =&, € 0, G = Gg, Z = Z,,
and I' = I',. Using the weight decomposition, we may write s = 3" s 5o and
by definition
(5.3) ve(s) = min{wve(sq) | Sa 7 0}

Let My := {a € M | so # 0and ({,a) = Aemr}. Let 51 := > e Sa-
Note that by the definition and the linearity of A¢ on o, for each a € M, we
necessarily have

(5.4) (€0, ) = Agymr

as well. By assumption, we have My # () and s; # 0, as otherwise Z C
Supp(D). Since ¢ is linear in 7 and &, &; € 7, we know that ¢ — )¢, is linear

for t € [0,1]. Thus for each a € My and t € [0,1], we have
(5.5)

vi(sa) = (&, ) =Agmr = (1=1)((§0, @) = Agymr) +1({§1, ) = Agymr) = tvi(sa),
where the last equality follows from (5.4). Let D; = (s; = 0). Then we have
Dl’Z = D|Z and
(5.6) ve(s) < wi(s1) =1t -vi(s1),
where the first inequality follows from (5.3), and the second equality uses (5.5)
and the fact that
ve(s1) = arg}\rjs{vt(sa)} and wvi(s1) = arrel}\?s{vl(sa)}.
Thus to prove the lemma, by (5.6) it suffices to show that
v1(s1) < M, M.
let(Z,T; D1l z) v1(D1)
But as Cx(v1) N Z 2 Z; is non-empty, by subadjunction we have
Ax a(v1)
(% (Dl) ’
where the two log canonical thresholds in the middle are taken in a neighbor-
hood of Z, and we are done. O

or equivalently lct(Z,T; Dy|z) <

let(Z, 15 D1|z) <lctz(X,A+ G;Dq) <lctz(X,A; Dq) <
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We are now ready to present the proof of Theorem 5.4.

Proof of Theorem 5.4. First note that if (X, A) has a special degeneration
to some log Fano pairs (Xo, Ag) with §(Xo,Ag) = § and the theorem holds
for (Xo,Ap), then it also holds for (X, A) by the openness of K-semistability
[BLX19], [Xu20]. The following claim shows that the process of special de-
generations preserving the stability threshold will stabilize after finitely many
steps.

Claim. Any sequence of special degenerations
(X,A) = (X0, AO) s (XD ADY s (XO APy s oo (XD AO)s.

satisfying that 6(X@, A®) = § and (X, A®) 2 (XD AGHD) for every
1 > 0 must terminate after finitely many steps.

Assuming the claim, there exists a finite sequence of special degenerations
(X,A) ~ -~ (XK AK)) preserving stability thresholds such that any
special degeneration (X®) A®)) « (X (E+1D) AK+D)) preserving the stability
threshold is of product type, i.e., (X#) AK)) = (x*+1) AK+D))  Thus from
the above argument using openness of K-semistability, we may replace (X, A)
by (X®), AR,

Next, we prove the claim. Since the set of log Fano pairs with fixed volume,
finite rational coefficient set, and J-invariant is bounded by Theorem 2.13,
we can embed every (X (i),A(i)) into a common projective space PV using
a common multiple of its anti-log-canoncial divisor, such that each special
degeneration (X@ A®) ~ (XD AGHD) is induced by a one parameter
subgroup of G := PGLy11. Let P denote a locally closed subscheme of the
relative Hilbert-Chow scheme of PV such that P is of finite type, and each
Hilbert-Chow point z; := [(X® A@)] belongs to P; see, e.g., [BLZ19, §6]
or [BHLLX21, §4.1] for details. Then by construction, we know that z;;1 €
G-z \ G - z;. This implies that G - z;1+1 C G - z as closed subsets of P. Since
P is of finite type by boundedness, it is a Noetherian topological space. As a

result, the sequence G- zg 2 G - 21 2 --- must terminate after finitely many
steps. Thus the proof of the claim is finished.

Thanks to the claim, in the rest of the proof we may assume that any spe-
cial degeneration (Xo, Ag) of (X, A) with §(Xg,Ag) = 0 satisfies (Xo,Ag) =
(X,A); ie., the degeneration is induced by a one parameter subgroup of
Aut(X,A). Let m € N be sufficiently large and divisible, and let D,, €
L] —m(Kx + A)| be general. Since (X, A+ mDy,) is lc by Bertini’s theorem,
we have

Ax,A(v) > Ax A+(1-6)D,n (V)

= Axa(®) = (L= 5)o(Dp) > Axalv) ~ L Ax ()
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for any valuation v on X. Since Sx a4(1-5)D,, (V) = 0 - Sx,a(v), this implies
that

1—1;6:<1—17_5>5_1-5(X,A)
m m

<S(X,A+(1—-68)Dy) <61-6(X,A) =1.
By Theorem 5.1, there is a special degeneration,
(X, A+ (1=06)Dp) ~ (X, A + (1 = 6)Gin)

induced by some special divisorial valuation v,,, such that

57) 6(Xoms A+ (1 — 8)Gi) = 6(X, A+ (1= 6)Dya) > 1— %‘5
This implies

1-6
AX A (V) 2 Ax A +(1-6)Gn (V) 2 (1 - m) S X, A +(1-8)Gon (V)

<1 _ 16) 5 - SXm,Am(U)
m

for all valuation v over X,,, and hence
1—-96
(5.8) (X, Ap) > (1 — ) 0
m
is bounded from below by some constants that only depend on §. By Theo-
rem 2.13, we see that (X, Ay,) belongs to a bounded family.

Since the J-invariant function (more precisely, min{d(X,A), 1}) is lower
semi-continuous and constructible in a bounded family [BLX19, Th. 1.1], we
have 0(Xpm, Ap) = 0 when m is sufficiently large by (5.8). Thus by our as-
sumption on (X, A) at the beginning of the proof, we see that v, is induced
by a one-parameter subgroup of Aut(X,A). It follows that in order to prove
the K-semistability of (X,A 4+ (1 — §)D,,) for m > 0, it is enough to show
Ax A+(1-6)Dm (V) = Sx,A+(1-6)D,,, (V) Or equivalently,

Ax a(v) > (1 =6)v(Dy) +9 - Sx a(v)

for all v € Valx that are induced by one-parameter subgroups of Aut(X,A).

Fix a maximal torus T of Aut(X, A). Since all maximal tori are conjugate
and the functions Ax A, Sx A are Aut(X, A)-invariant, it suffices to show that
(5.9) Ax a(v) > (1 =08)v(g-Dy) +9-Sxa(v)
for all v € Valx of the form wte (£ € Nr) and all g € Aut(X, A).

By [Zhu2l, Th. 1.5], there exists an Aut(X, A)-invariant closed subva-
riety W of X such that W is contained in Cx(v) for any valuation v com-
puting 6(X,A). Consider the simplicial fan structure on Ng induced by the
piecewise linear function { — A¢ as before. By Bertini’s theorem we may as-
sume that (X, A 4+ mD,,) is lc and W € Supp(D,,). This also implies that
(X, A+m(g-Dy)) is lc and W € Supp(g - Dy,). By applying Lemma 5.6



556 YUCHEN LIU, CHENYANG XU, and ZIQUAN ZHUANG

to the effective Cartier divisors mD,, and the families of pairs (Zs 4,1 )
parametrized by U = Aut(X,A) for all o such that dimZ, > 1, we also
know that there exists some constant a > 0 independent of m such that
let(Zs,9, o3 Dinl 2, ,) > ma, or equivalently,

(510) ICt(Zaa Fa;g ’ Dm’Za) > ma

for all o satisfying dim Z, > 1 and all g € Aut(X, A).

Let m,..., 7 be the cones of maximal dimension in the fan of Ng. We
shall analyze the behavior of Ax a, Sx a, and v(g - Dy,) on each cone 7;. For
eachi=1,...,k, let

g; = {f Sy ’A)QA(WQ) =4- SX’A(WQ)}.

By Lemma 5.7 and the fact that Ax a(v) > - Sx a(v) for all v € Valg, we
see that o; is a face of 7;. Let o] C 7; be the smallest face such that 7; is the
convex hull of o; and o]. (Such o] exists since 7; is simplicial.) In particular,
we have o;No} = {0}, and therefore there exists some constant ¢y € (0, 1) such
that

0
(5.11) AX7A(Wt§) > 1— o . SX7A(W1J§)

foralli=1,...,k and all £ € o/.

We now proceed to prove that (5.9) holds for all 7 > max{1=2, 1291 Tet

g0 ’ agg J°
§ € Ng, and let v = wte. Let 7; be a cone that contains {. There are three

cases to consider:

Case 1: 0; = {0}. Then o, = 7;. Since (X, A+m(g-Dy,)) is lc, combined
with (5.11) we have

Ax A(v) =3 - Sxa(v) > e Axa(v) > meg-v(g- D) > (1 —0)v(g - D)
for any g € Aut(X,A). Thus (5.9) holds in this case.

Case 2: 0; # {0} and Z,, is a point. Then we necessarily have Z, = W
and since Z;, C Z,,, we have Z, = W as well. Since W & Supp(g - Dy,), we
deduce that wte(g - Dy,) = 0 for any € € 7; and any g € Aut(X, A). Thus (5.9)
clearly holds in this case.

Case 3: 0; # {0} and dim Z,, > 1. We can write { = (1 —t)&p + ¢ - & for

some & € o; and & € o). Then by Lemma 5.8 and (5.10), we know that
t
D)< — A
v(g - D) < o x.a(v1)

for any g € Aut(X,A), where v; = wt¢,. On the other hand, since Ax A and
Sx a are linear on 7; by Lemma 5.7, we have

AX’A(U) —4- SX’A(U) > teg - AX,A(Ul)
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by (5.11). Combining the two inequalities above we get
Ax aA(v) =3 - Sx,a(v) > maeg-v(g - Dp) > (1 —0)v(g- Dp,)

for all g € Aut(X,A). Thus (5.9) holds in this case as well.

Thus we have proved that (5.9) holds for all v = wte. As explained
earlier, this implies the K-semistability of (X, A + (1 — 0)D,,) when m > 0.
The remaining part of the theorem follows from Lemma 5.5. U

6. Examples

It is still natural to ask which lc places of a given Q-complement induce
finitely generated associated graded rings. Unlike the divisorial case, where
the finite generation is guaranteed essentially by [BCHM10], in the higher rank
case, the associated graded ring could generally be non-finitely generated. In
fact, it was first discovered in [AZ20, Th. 4.16] that on every smooth cubic
surface there exist lc places of complements whose associated graded rings are
not finitely generated.

In this section, we give a complete picture of the finite generation prob-
lem in an explicit example, that is, lc places of (P?,C) where C is an irre-
ducible nodal cubic curve. As one will see, even in this simple set-up, the locus
of finitely generated lc places is fairly complicated, and there are infinitely
many special degenerations of P?. In addition, both non-finitely generated
and finitely generated non-divisorial rational rank two lc places appear in the
same simplex (given by a dlt modification of (P2, C)). This also illustrates the
importance of considering special complements in previous discussions. It will
be an interesting question to understand better how to locate the valuations
on a dual complex with a finitely generated associated graded ring.

We fix the following notation. Let o be the node of C. Choose an analytic
coordinate (z,w) of P? at o such that the analytic local equation of C' is given
by (zw = 0). For t € Ry, let v; be the monomial valuation of weights (1,1)
in the coordinate (z,w). Since C is normal crossing, we know that any lc
place of (P%,C) is a multiple of v; or ordg. Let R := R(P? Op2(3)) be the
anti-canonical ring of P2. We also denote X := P2,

THEOREM 6.1. With the above notation, the associated graded ring gr,, R is

finitely generated if and only if t € Q>0U(%‘/g, %‘/5) Moreover, Projgr,, R
15 a Q-Fano variety if and only ift € (%‘/5, %‘/‘F’) For a detailed description

of these special degenerations of P2, see Remark 6.6.

The proof of Theorem 6.1 is divided into several parts. We first recall a
useful lemma.
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LEMMA 6.2 ([Fujl9a, Claim 4.3]). Suppose a,b are coprime positive inte-
gers. Let u: X — X =P2 be an (a,b)-weighted blow up at a smooth point with
exceptional divisor E. Let ex(F) := max{\ € R>o | p*(—Kx) — A\E is nef}.
Then we have
Tx(E) +ex(E)

3 .

PropoSITION 6.3. If t > 7+?2)7\/5 and t ¢ Q, then gr, R is not finitely
generated.

(6.1) Tx(F)-ex(E)=9ab and Sx(F)=

Proof. By Theorem 4.5, it suffices to show that the function ¢ — Sx (v¢) is

7+g\/g’ +OO)

not linear in any sub-interval of | We first compute the S-invariant

for v when t = g > %‘/5, where a,b are coprime positive integers. Let

T X — X =P2?be the (a,b)-weighted blow up at o in the analytic coordinates
(z,w). Let E be the u-exceptional divisor. Then easy computation shows that

C:=p;'C ~ 7" (—=Kx) — (a+b)E and (C%) = 9— % < 0. Hence [C] is ex-

tremal in NE(X) by [KM98, Lemma 1.22]. Thus we have the pseudo-effective
2
threshold Tx(E) = ordp(C) = a + b, which implies Sx (E) = (@tb +9ab 1,y

3(a+b)
(6.1). Since vy = %ordE, for any rational ¢ > %‘/5 we have
1 2+ 11t + 1
6.2 S =-Sxt)=—F—""7—
(6.2 (o) = L Sx(E) = 5

Since the S-invariant is continuous in the dual complex [BLX19, Prop. 2.4],

(6.2) holds for any ¢ € [%\/5,—1—00). Thus t — Sx(v:) is not linear in any
sub-interval. g

Next we turn to proving finite generation of gr,, R for ¢ € [1, %‘/5) The
idea is to find a sequence of increasing rational numbers 1 =ty < t; < -+ <
ty, < -+ with lim, oo t, = ”27\/5 such that the function ¢ — Sx(v;) is linear
in each interval [t,, tp+1].

Let (dp)n>0 be the following sequence of integers, where dp = 1, dj = 1,
dy = 2, and dy41 = 3d,, — dp—1. The sequence of (dy,)n>0 goes as 1,1,2,5,13,
34,89, .... It is easy to see that (d,) satisfies the following properties:

e each d, is not divisible by 3;

e d, = Fy,_1, where (F,) is the Fibonacci sequence;

e (1,dp,dn41) is a Markov triple, i.e., 1 +d2 +d2, | = 3dndny1;
° di +1=d,_1dns1.

Let t, := ZZ—E for n > 1 and ¢y := 1. Then it is easy to see that (¢,) is a

strictly increasing sequence whose limit is ”%‘/5



FINITE GENERATION FOR VALUATIONS AND K-STABILITY 559

PROPOSITION 6.4. We have Sx (vi) = dgf + diilt fort € [tn,tnt1] and
n > 0.

In order to prove Proposition 6.4, in the following lemma we find a se-
quence of very singular plane curves D,, of degree d,, such that they compute
the T-invariant for v;,. Note that Ds is precisely the singular plane quintic
with an Ajg-singularity (see, e.g., [ADL19, §7.1]).

LEMMA 6.5. For eachn > 0, there exists an integral plane curve D,, such
that deg(D,,) = d,, and the Newton polygon of the defining function of D,, in
(z,w) at o is the line segment joining (dp+1,0) and (0,dp—1).

Proof. Let pn : Xn — X be the (dp—1,dpn+1)-weighted blow-up in (z,w)

at o. Let E, be the u,-exceptional divisor, so ordg, = dp—1v,. It is clear
2

that h°(P%2, O(d,)) = W. Using Pick’s theorem, it is easy to compute

that colength(ag, ,4,,,(ordg,)) = d%JrTBd". Thus we have h°(P?, O(d,)) >
colength(ag,_,d,.,(ordg, )), which implies the existence of a plane curve D,, of
degree d,, with ordg, (D)) > dp—1dp+1.

Next, we show that the curve D, is integral. Assume the contrary.
Then there exists an integral plane curve D of degree d < d,, such that

OrdEg(D) > e, (D) d"*clld"“. In fact, we always have OrdEC}L(D) > dn=tdnt

n n

since d”%i”“ = d, + i and d < d,. Clearly D # C since 70rdE§(C) =

dnfl +dn+l
3

(D-C)o > ordg, (D) (dnl,l + dnlﬂ) > d(d"*il:d"“) = 3d. On the other hand,
Bezout’s theorem implies (D - C), < (D - C) = 3d, a contradiction. Thus D,
is integral.

Finally, we show the Newton polygon statement. Suppose the Newton
polygon of D,, passes through (p,0) and (0,¢q). Then by computing local in-
tersection numbers, we know that 3d, = (D, -C) > (D, -C), = p+¢q. On
the other hand, ordg, (D,) > dn—1dn+1 implies that p > d,,+1 and ¢ > d,,—1.
Hence we must have p = d,, 11 and ¢ = d,,—1. O

=d, < %. Computing local intersection numbers, yields

Proof of Proposition 6.4. We first treat the case whenn = 0, i.e., t € [1,2].
Choose suitable projective coordinates [z, 71, z2] of P? such that C' = (zoz3 =
73+ 192?) and o = [1,0,0]. In the affine chart [1, 21, 73] of P2, let 2/ := z1 — 29
and w’ := x1 + 2. Then after possibly rescaling and switching (z,w), we may
assume that ord,(z — 2’) > 2 and ord,(w — w’) > 2. Let u; be the monomial
valuation of weights (1,¢) in the coordinate (z/,w"). We will show that v; = w,
for any ¢ € [1,2]. Since us(2') = 1 < 2t = uy(w') and ug(w') =t < 2 = uy(2?),
we know that ui(z) = w(2’) = 1 and ug(w) = u(w’) = t. Hence for any
P,q € Z>p, we have v (2Pw?) = p + tq = w(2Pw?). Then for any non-zero
function f € Op2, \ {0} with a Taylor expansion f = > (pa)ez2, Cpa? W, we
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have

v(f) = mingp + tq | ¢y # 0} = minfuy (z"0?) | cpy # 0} < ur(f):

By switching (z,w,v) and (2/,w’,us), similar arguments show that us(f) <
ve(f). Thus we have v; = wu; for any ¢ € [1,2]. Since u; is toric in the
affine coordinate (z/,w’), a standard toric computation shows that Sx(v:) =
Sx(u) =1+t

From now on we may assume n > 1. By Lemma 6.5, we know that (DQ)
(D2) + (dpy1dn—1)*(E?) = —1, where D, = (pn)7 Dy, Thus [ ] is extremal
in NE(X,) by [KM98, Lemma 1.22]. Hence TX(ordEn) = aordEn(Dn) =
Mndw Thus Lemma 6.2 implies that Sx (vy,) = — SX(En) = dZ:1 —|—%
So t = t, satisfies the statement of Proposition 6. 4

Let ¢!, := d”“ for n > 1. Then we have t,, <t/ < t,41. Let u), : X’ - X

be the (d2, dn+1)nwe1ghted blow-up in (z,w) at o with exceptional divisor EJ,.

Then using Lemma 6.5, similar computation shows (D'Q) = 0, where D/, :=
(u!):tD,. Hence [D;l] lies in the boundary of NE(X;L) by [KM98, Lemma
1.22]. Thus Tx(ordgs) = %ordE;L(Dn) = 3d,dn+1, and Lemma 6.2 implies
that ¢t = t], also satisfies the statement of Proposition 6.4. Since S-invariant is
concave by Lemma 4.6, the proof is finished. O

Proof of Theorem 6.1. Choose the projective coordinates [z, z1, 2] of P?
as in the proof of Proposition 6.4. Then the automorphism o of (P?,C) given
by o([zo, z1, z2]) := [x0, x1, —x2] interchanges the two analytic branches of C' at
o =[1,0,0]. Thus o.v; = t-v;—1, which implies that v;—1 and v; have isomorphic
associated graded rings after a grading shift. So we may assume ¢ € [1,+00)
from now on. The non-finite generation of gr,, R when ¢ € [%‘/5, +00) \ Q

is proven in Proposition 6.3. For t € (”%‘/5,4—00) N Q, Theorem 2.29 and
Corollary 4.10 imply that gr,, R is finitely generated whose Proj is not klt
as Ax(vt) = Tx(v¢). The finite generation of gr,, R for ¢ € [1,”%\/5) =
Un>0[tn, tnt1] follows from Theorem 4.5 and Proposition 6.4.

Finally, we show that Projgr,, R is a Q-Fano variety for t € [tn,t,41].
When n =0, i.e., t € [1,2], we know from the proof of Proposition 6.4 that v;
is toric in the projective coordinate [z, 21 — 22,21 + 22]. Thus Proj, R = P2.
Thus we may assume n > 1 in the rest of the proof. From computations
in the proof of Proposition 6.4, we know that Ax(E,) = ex(E,) < Tx(Ey)
and Ax(E)) < ex(E}) = Tx(E}). Since both X, and )?7’1 are of Fano type,
we know that —Ky — Ej, and —Kg, — E] are nef and hence semiample.

Thus by Bertini’s theorem we can find Q )-complements G, and Gl of (Xn, E,)
and (X!, E!) respectively, such that (X, E, + Gn) and (X, E! + G') are
plt. Hence Theorem 2.30 implies that both E,, and E] are special divisors as
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they satisfy A < T, and the desired Q-complements of plt type are given by
(n)«Gp and (uh)«Gh,. Since vy, is a rescaling of ordg,, it induces a special
degeneration of P?. By the last paragraph of the proof of Lemma 4.7, we know
that gr, R = grvt,nR & grp R for any ¢ € (ty,tn11). Thus Projgr, R is a

Q-Fano variety as E/ is special. O

Remark 6.6. Using similar arguments to [ADL19, Proof of Prop. 7.4], one
can show that Proj gr,, B for n > 1 is isomorphic to the weighted hypersurface

(wors = 29 4+ 231 C P(1, dyy, gy, d2).

Such a Manetti surface is a common partial smoothing of P(1,d>_,,d?) and
P(1,d2,d2 ). Similarly, for any ¢ € (¢, tn41), one can show that Projgr,, R =
Projgr, , R = P(1, d2,d2. ). This provides infinitely many special degenera-

tions of P2 which are unbounded.
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