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Abstract

‘We prove an algebraic version of the Hamilton—Tian conjecture for all log Fano pairs. More precisely, we show that
any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits
a Kéhler-Ricci soliton when the ground field k = C.
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Throughout this paper, we work over an algebraically closed field k of characteristic 0.

1. Introduction

A Kihler-Einstein metric is arguably ‘the most canonical’ metric that one can find on a Fano variety.
However, not every Fano variety admits a Kdhler—Einstein metric. So it is natural to ask what kind of
structure one should look for on a general Fano variety. In fact, there are several candidates. In this note,
we will study one structure, namely the Kédhler—Ricci soliton. This kind of metric has been investigated
in many previous works. While not every Fano variety itself admits a Kéhler—Ricci soliton, it is expected
that any Fano variety has a unique degeneration to one with a Kéhler—Ricci soliton (see, e.g., [Tia97,
Section 9]).

For a smooth Fano manifold X, the approach of using Kihler—Ricci flow to study Kéhler—Ricci
solitons has been intensively studied in complex geometry literature and leads to the solution of the
Hamilton—Tian conjecture (see [TZ16, Bam18, CW20]), which says that the Gromov-Hausdorff limit
Xo of X under the Kéhler—Ricci flow admits a Kdhler—Ricci soliton. What is more relevant to us is that
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2 H. Blum et al.

in [CSW 18] it is shown that X, can be realized as a (two-step) degeneration of X, and in [DS20] that the
first degeneration minimizes the H-functional among all possible R-degenerations (note that our sign
on H is opposite to the one in [DS20]).

In this paper, we will pursue a purely algebraic study of the above degeneration process by studying
the geometry of the minimizer of the non-Archimedean type functional HNA, which in particular can be
applied to a general (possibly singular) log Fano pair (X, A). Such algebraic study, including developing
the non-Archimedean theory of the HMA_functional, was initiated in [HL20b]. There it is shown the
uniqueness of the above degeneration process. Our first main theorem of this paper is the existence of
such a degeneration for general log Fano pairs. It can be considered to be an algebraic version of the
Hamilton—Tian conjecture, though there is no metric involved. More precisely, we have the following
result.

Theorem 1.1. Let (X, A) be a log Fano pair. Then it admits a two-step degeneration to a K-polystable
triple (Y, Ay, &y), which is indeed reduced uniformly Ding stable. In particular, it admits a Kdhler—
Ricci soliton if k = C.

In the above theorem, &y = 0 if and only if (X, A) is K-semistable. The proof of Theorem 1.1 will
be separated into two parts, contained, respectively, in Theorems 1.2 and 1.3.

By [HL20b, Theorem 1.3], it is already known that any K-semistable triple (Xp, Ao, &) admits a
unique K-polystable degeneration (Y, Ay, &y) (whose proof is based on [LWX21]). Therefore, it suffices
to establish the first-step degeneration which degenerates (X, A) to a K-semistable triple (X, Ag, &).
To construct such a degeneration, we follow [HL.20b] and study the valuation which computes (X, A)
(i.e., the minimizer of the ,@). As a result, we prove the following statement, which establishes the first
half of Theorem 1.1 and gives an affirmative answer to [HL.20b, Conjecture 4.10].

Theorem 1.2. Let (X, A) be a log Fano pair. Let r be a positive integer such that r(Kx + A) is Cartier.
Then (X, A) has a unique valuation v computing h(X, A).

Moreover, the associated graded ring gr, R for R = P, o HO(-mr(Kx + A)) is finitely generated,
whose Proj together with the degeneration of A and the induced vector &, yields the first-step degener-
ation to a K-semistable triple (Xo, Ao, &).

It was shown in [HL20b] that the uniqueness statement in the above theorem follows from the
finite generation of the gr, R. In this note, we first establish stronger convexity results for various non-
Archimedean functionals (see Theorem 3.7). Then we will obtain uniqueness as a consequence, without
using finite generation.

The second step to proving Theorem 1.1 is to establish the following Yau-Tian—Donaldson (YTD)
conjecture for Kédhler—Ricci solitons.

Theorem 1.3 (YTD Conjecture for Kéhler-Ricci Solitons). A triple (X, A, €) is K-polystable if and
only if it is reduced uniformly Ding stable. In particular, when k = C, (X, A, ¢) admits a Kdhler—Ricci
soliton if and only if it is K-polystable.

In fact, in [HL20], it is proven that the reduced uniform Ding stability of (X, A, &) is equivalent
to the existence of a Kéhler—Ricci soliton, by using variational methods. Here, we verify that reduced
uniform Ding stability is equivalent to K-polystability. When X is smooth and A = 0, the second part of
Theorem 1.3 is proved in [DS16, CSW18].

Remark 1.4. As we already mentioned, when X is smooth, the Cheeger—Colding—Tian theory can be
used to establish Theorem 1.1, Theorem 1.2 and Theorem 1.3. In fact, one can obtain the optimal
degeneration from the study of the Hamilton—Tian conjecture on the long time behavior of Kédhler—Ricci
flows on X. See [DS16, TZ16, Bam18, CW20, CSW18]. However, it seems to us it is hard to extend
these types of arguments to the more general (possibly singular) case.

Recent work of Han and Li builds an algebraic framework for studying the two-step degeneration
process. Specifically, in [HL.20b], they developed the non-Archimedean theory for the HNA-functional
(based on the H-function(al) defined in [TZZZ13, Hel6]) and interpret the existence of the optimal
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degeneration, which is essentially equivalent to Theorem 1.2, in terms of geometric properties of the
minimizer of the EX’ A-function, which is a variant of the HNA-functional but defined on Val§, U {viiy }

From the algebro-geometric viewpoint, the study of Sx_a in [HL.20b] is entirely parallel to the study
of the stability threshold of a log Fano pair or in the local setting the normalized volume function of a
Kawamata log terminal (klt) singularity. Therefore, it is natural to apply the arguments in the former
problems to the current case. Indeed, [HL.20b] has made significant progress in carrying out this study,
and the main remaining step is the finite generation of the graded ring induced by minimizers of various
functions, for example, EX,A and §g (X, A, €).

In [LXZ22], the finite generation of the associated graded ring for the valuation computing the
stability threshold is solved. In this note, we solve the finite generation in Theorem 1.2 and Theorem 1.3
by a similar method. We also give a more straightforward argument of the uniqueness without using
the finite generation (which is needed in [HL20b]) but by establishing convexity of various functionals
based on the arguments in [XZ21].

We will also investigate a moduli approach to study general log Fano pairs with fixed A-invariant.

Theorem 1.5 (=Theorem 6.1). For a fixed dimension n, volume V, a positive integer N and a constant hy,
families of n-dimensional log Fano pairs (X, A) with (-Kx — A)" =V, NA integral and h(X,A) = hy
are parameterized by an Artin stack ./\/liar‘l,o N+ Of finite type.

VLIV

In the upcoming work, we aim to show that there is a finite type Artin stack MKV N .o which
parametrizes famllles of n-dimensional K-semistable triples (X, A, &) with (- KX - A)" =V, NA

integral and h(&) = hg. Moreover, MKS€, N ., admits a proper good moduli space M*?

will study the two-step degeneration from a moduli theoretic viewpoint.

V N by . Then we

1.1. Outline of the proof

In recent years, there have been two functions on the space of valuations which have been intensively
studied in algebraic geometry. The first one is the function Ag'A_(') of a log Fano pair (X, A), and the
second one is the normalized volume function on a klt singularity x € (X, A). Many of their fundamental
properties were proved in a sequence of works. The general framework for the proofs of the theorems
in this paper is largely parallel to the previous works on the study of these two functions, especially the
first one.

Step 1: The first step is to show the strict convexity of the HN*-functional. For any pair of filtrations
Fo and F, there is a natural family (F;);c[o,1] of filtrations connecting them called the geodesic (see
Section 3.1.2). To study it, we define a measure DHr, 7, over R? (called the compatible Duistermaat—
Heckman measure) that encodes DHy, for ¢ € [0, 1] (see Section 3.1.3). Then convexity results for
various functionals, for example, ENA and S along geodesics can be proved by doing integration over this
measure. And for LN, the convexity is proved by interpreting it as the log canonical slope u and then
applying results from [XZ21] to compare log canonical thresholds. As a result, this yields the convexity
of DNA and the strict convexity of HNA along geodesics (analogous results in the Archimedean setting
were proved in [Ber15]). The latter will imply the uniqueness of the minimizer.

Step 2: To prove Theorem 1.3, we will take a similar strategy to the solution of the usual YTD
conjecture for log Fano pairs. First, we will extend the usual definition of the S-invariant function to the
weighted setting with respect to a quasi-monomial valuation vq (see Section 4.1) and then we can define
the corresponding §(X, A, vo).

We are first interested in the special case when v is a valuation coming from a vector field £ induced
by a torus action. In this case, as seen in [HL.20b], many criteria for testing the the K-semistability or
(reduced) uniformly K-stability of a pair (X, A) can be extended in to the setting of triples (X, A, &).
In particular, we extend results from [Li22] and [XZ20, Appendix] to this setting in Sections 4.2
and 4.3.
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In a similar but slightly different setting, we consider the minimizer vy of the nonhomogeneous
function Bx A, and we show it computes (X, A, vo) for the weight function g = e~*. See Section 5.1.

Step 3: In the last step, we will show in the above two cases v¢ is a monomial log canonical (Ic) place
of a special Q-complement (in the sense of [[LX7Z22, Definition 3.3]) constructed from a weighted basis
type divisor. Then we can apply the finite generation result in [LLXZ22] to show the associated graded ring
of vg is finitely generated (see Corollary 5.7 and 5.8). This completes the proof of Theorem 1.2 and 1.3.

. . . F . . .
Finally, to prove Theorem 1.5, that is, to verify ./\/lnm“/0 N 18 an Artin stack of finite type, we first

need to show that the set of all n-dimensional log Fano pairs (X,A) with (-Kx — A)" = V, NA
integral and h(X, A) > hg is bounded, and then we conclude by showing, for any Q-Gorenstein family
of (X,A) — B over a finite type base B, the function B > ¢t — h(X;,A,) is constructible and lower
semicontinuous.

2. Preliminaries

Notation and Conventions: We follow the standard notation as in [KM98, Kol13, Laz04].

A variety is a separated integral scheme of finite type over k. A pair (X, A) consists of a normal
variety X and an effective Q-divisor A on X such that Kx + A is Q-Cartier. A pair (X, A) is called
log Fano if X is projective, (X, A) is klt and —Kx — A is ample. A log smooth model (Y, E) of a pair
(X, A) consists of a projective birational morphism 77: ¥ — X and a reduced divisor E on Y such that
(Y, Supp(E + Ex(n) + 7;'A)) has simple normal crossing support.

Let X be a normal variety. We denote by Valy the space of real valuations K(X)* — R centered
on X whose restriction over the ground field k is trivial. We endow Valy with the weak topology. We
denote the trivial valuation on X by vysiy.

For the definitions of divisorial valuations, quasi-monomial valuations and log discrepancy of valu-
ations; see, for example, [JM 12, LL.X20, Xu20].

Definition 2.1. Let (X, A) be a pair. We denote by
Val§ = {v € Valy | Ax ao(v) < +coand v # vy }.

If (X, A) admits a torus T-action, then we denote by Val}r( the subset of Valx consisting of all T-invariant
valuations, and let Valy° := Valy N Valy.

2.1. Filtrations

Let (X, A) be an n-dimensional log Fano pair. Fix » > 0 so that L := —r(Kx + A) is an ample Cartier
divisor. We write

R(X,L) =R := @ Ry = @ HO(X,0x(mL))

meN meN

for the section ring of L and Ny, := dim R,,.
Definition 2.2. A filtration F of R is a collection of vector subspaces F AR C R, for each 1 € R and
m € N satisfying
(F1) FAR,, c FYR,, for A > A';
(F2) F'Rp = Nyca F¥ R
(F3) F'R,, = R, for A < 0 and FR,, = 0 for 1 > 0;
(F4) FARy - F¥Ryy € FHYR .

A filtration F is a Z-filtration if FIR,, = FAR,, for all 1 € R and m € N. A filtration is
finitely generated if the associated graded k-algebra grzR := P, 1 crixp &5 R, Where griR,, =
F R/ (UysaFHRy), is finitely generated.
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The translation of F by ¢ € R is the filtration defined by G*R,,, := FA*"™"“R,,. The scaling by
a € R, is the filtration defined by HAR,, = FUeR,,.

A filtration F is linearly bounded if there exists C > 0 so that FCR,,, = 0 for all m > 0. Note that
there always exists C > 0 so that FCR,, = R,, for all m > 0 by the finite generation of R combined
with (F3) and (F4).

For an element s € R,, \ {0}, we set ord7(s) := max{d € R|s € F'R,,}. We set ord»(0) = +co by
convention. A basis (s1, . . ., sn,,) Of Ry, is said to be compatible with F if FAR,,, = span(s; | ordx(s;) >
A) for each 1 € R.

Example 2.1. The following filtrations play an important role in this paper.

1. Given v € Valy, there is an induced filtration F,, of R defined by
FARy = {s € Ry | v(s) = A}.

When Ax a(v) < 400, F, is linearly bounded [BJ20, Lemma 3.1].
2. Similarly, any effective Q-divisor G on X induces a filtration F¢ of R by setting

]-éRm ={seR,|{s=0}>AG}.

3. A test configuration (X, L) of (X, L) induces a finitely generated Z-filtration of R. See [BHJ17,
Section 2.5] for details.

2.1.1. Successive minima
Given a basis (s1, ..., sn,,) of R, compatible with F, the numbers

/1;'") =ordr(s;) forl <j< N,y

are called the successive minima of F along R. Since % dim F'R,, = -3, 6 ,om the values (/1;"1)) i
70 :

are independent of the choice of compatible basis up to reordering. We write /15;1’2; = max{1 € R| F*
(m)
Rm * 0} and set /lmax = SumeI Amax .

mr

2.1.2. Graded linear series
A graded linear series Vo = (V,;)men of L is a collection of vector subspaces V,,, C R,, satisfying
Vi * Var € Vipane . The volume of V, is the value

dimV,,

vol(V,) := limsup

m—co M0’

Given a filtration F of R and s € R, we define a graded linear series V.(S) by setting V,f,f) =F" SR
When the choice of filtration is not clear from context, we will denote it by V,]r ’(S).
The following result is a consequence of [BC11]. See [BHJ17, Theorem 5.2].

Proposition 2.3. Let F be a linearly bounded filtration of R.
(i) Foreach s < Amay, VOl(VS®) is a limit.

(ii) The function s +— VOl(V.(x))]/ " s concave on (—o0, Amax) and vanishes on (Amax, ) (hence, it is
continuous away from s = Apax)-
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2.1.3. Base ideals
Given a linearly bounded filtration F of R, we set

L. i= im(F'R,, ® Ox(-mL) — Ox),

which is the base ideal of the linear series F1R,,. Note that Lnoa Loy v C Iy s

Foreach A € R, we write [ .(’l) for the graded sequence of ideals on X defined by setting [ ,(,f) = I amr-
For each m € Z-, we set

Ty i= ) Init™ CK(X)(1) = K(X x A,
i€Z

m)
Note that tr’ll(mx] -Im C OXAI since I,,; = 0 for i > /lr(n’;l))( Therefore, Z,,, is a fractional ideal on
X=X x AL

2.1.4. Duistermaat—Heckman measure
Given a linearly bounded filtration F of R and an integer m > 0, we consider the probability measure
on R defined by

1 W d dim F"rAR,,

F._ -_c
Y N 2 imniap = " N,

i=1
By [BC11] (see [BHJ17, §5.1]), vf, converges weakly as m — oo to the probability measure

i vol(V.(’D)

DHf := -
T Ta L

The measure satisfies supp(DHz) = [Amin, Amax], Where
Amin 1= inf{1 € R |vol(VIY) < (L")}

and Amay is as defined previously.
The following statement is an extension of [BHJ17, Lemma 5.13] from divisorial valuations to
valuations with finite log discrepancy.

Lemma 2.4. [fv € Valx and Ax A (v) < +co, then Adpin(Fy,) = 0.

Proof. Tt is clear that A, (F,) = 0 since ]-';lR = R for 1 < 0. For the reverse inequality, fix a log
resolution Y — X of (X, A) and let ¢ := cy (v) be the center of v on Y. Note that Ay o(v) is finite since
Ax A(v) < +00 by assumption. An Izumi type inequality [JM12, Proposition 5.10] implies

v(f) < c-ordg(f) forall f € Oy ¢,

where ¢ := Ay o(v) > 0, and, hence, F! C ‘Fiorde for all A € R. Therefore, Amin(Fy) <

/lmin(]-"c.ordf) = 0, where the equality holds by [BHJ17, Lemma 5.13], since ¢ - ord¢ is a divisorial
valuation. |

2.2. Non-Archimedean functionals

2.2.1. Energy functional
Following [BHJ17], the Monge—Ampere energy of F is given by

NA(F) =
ENA(F) /R/lDH].-(d/l)
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which is the barycenter of DHx. When F = F, for a valuation v € Valx with Ax o(v) < oo,
ENA(F,) = S(v) and Apax (F,) = T(v), where S(-) and T(-) are the expected and maximal vanishing
order appearing in [BJ20].

2.2.2. Ding-functional
The Ding invariant of a linearly bounded filtration F is defined by

DYA(F) = L"(F) - EN(F),
1
where LNA(F) = lim,;, o0 let (X1, A 1, Zi7 5 (¢)) — 1 and

a a
let(X a1, Apr, Zr 5 () == sup{c € R| (Xa1,Ap1, Z - (1)€) is sub-lc}.
This invariant was introduced in [Ber 1 6] for test configurations and [BHJ 17, Fuj19] for general filtrations.

2.2.3. HN-functional
Following [HL.20b], for a linearly bounded filtration F we set

HYA(F) = LNA(F) - S(F).

where LNA(F) is defined above and S (F) == —log fR e *DH £ (dA). This invariant was introduced
in [TZZ713] for holomorphic vector fields and then extended to R-test configurations in [DS20] and
linearly bounded filtrations in [HL20b]. We set

h(X,A) = ingNA(]-'),

where the infimum runs through all linearly bounded filtrations of F. By [HL20b, Corollary 4.7],
h(X,A) < 0 and equality holds iff (X, A) is K-semistable.
For a valuation v € Val}, U {vyiy}, we define

Bxa(v) = Ax A(v) = S(v),
where S(v) = S(F,). Note that Sx_a (vriv) = 0. By [HL20b, Theorem 1.5],

h(X,A) = inf  B(v).

veVali U{wiv }

We say that v € Val}, U {vyiy} computes ~(X, A) if it achieves the above infimum. By [HL.20b, Theorem
4.9], there always exists a quasi-monomial valuation computing i (X, A).

3. Convexity and uniqueness

In this section, we will obtain the uniqueness of the valuation computing 4 (X, A). In [HL20b], this was
proved to follow from the finite generation, that is, Theorem 1.2. In this section, instead of using the
finite generation, we will take the approach of establishing more general convexity results. In fact, for
two filtrations Fp and F7, we consider a segment in the space of filtrations (F;);¢[0,1], Which we call the
geodesic between the two filtrations. We then introduce a probability measure on R? that encodes DH F
fort € [0, 1]. This will allow us to deduce the convexity of a number of functionals which take the form
of integrating over the Duistermaat—-Heckman measure (DH). For LN, the proof of its convexity uses
the ideas from [XZ21] in the local setting.

Throughout, (X, A) is a log Fano pair, 7 > 0 a rational number so that L := —r(Kx + A) is a Cartier
divisor, and R := R(X, L).
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3.1. Geodesics and DH measures

Fix two linearly bounded filtrations F( and | of R. For each integer m > 0, choose a basis (s1, ..., sn,,)
of R, that is compatible with both Fy and F; simultaneously; see [AZ22, Lemma 3.1] or [BE2I,
Proposition 1.14] for the existence of such a basis. For 1 < i < N, we set

1, (m)
i

/l?’(m) =ordg(s;) and A =ordr, (s;).

The pairs (/l?’(m), /1;’(”’)) are unique up to reordering. For example, this follows from the observation

2
that _6,(3_6)/ dim(]-'(;‘ R,, N F ly Rn) =20 20-0m) 1. 0m). The above basis and notation will be used in the
constructions below.

3.1.1. Relative limit measure
For each integer m > 0, we define a probability measure on R by

1 Nln
vl = 1)

_ 0, N .
Nm (mr) ](/li (m)_/ll! (m))

i=1
It was proven in [CM 15] that v,j;‘”f ! converges weakly as m — oo to a compactly supported probability
measure that we denote by RLM r, 7,. See [BJ21, Theorem 3.3] for the statement and proof written in
our setting.

The L!'-distance [BJ21, Section 3.4] between JFy and F, is defined by

d1(]:(),]:1) Z:/|/1|RLM]:0,]:](d/1).
R

We say Fq and F are equivalent if d\(Fo, F1) = 0.

Proposition 3.1 [BJ21, Corollary 3.13]. If Fo and F| are equivalent, then DHx, = DHx,.

3.1.2. Geodesics
Let Fp and F be linearly bounded filtrations of R. For ¢ € (0, 1), we define a filtration F; of R by setting

FR,, = Z FE Fon OV FY Ry, 3.1)
pu(l-t)+ve=a

It is straightforward to check that 7; is a filtration of R and is linearly bounded. We will call (F;)e[0,1]
the geodesic connecting Fy and F.
An alternative way to describe F; is in terms of the basis (sy,...,sn,,) of R, fixed earlier. Indeed,

since F{' Ry N F) Ry = spans; | ﬂ?’(m) > u and /lg’(m) > v), it follows that

FRy = span(s; | A% (1= 1) + 21 2 2).

i

Therefore, the basis (si, ..., sy,,) is compatible with F; and ordz, (s;) = (1 — t)/l?’(m) + t/ll!’(m). Asa
consequence of this observation,

Fi _

1
Vin N_m ; 5(mr)’1 (ﬂ?.(vn,) (l—t)+/l:’(m)t) . (32)

In the following section, will analyze a measure on R? that encodes equation (3.2) for each ¢ € [0, 1].
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Remark 3.2. In the language of graded norms, the definition of (F;);¢[o,1] appears in the work of
Reboulet in a more general setting and plays a key role in his theory of geodesics in the space of
non-Archimedean metrics on a line bundle [Reb22].

3.1.3. Duistermaat—Heckman measures
For each m > 0, we consider the probability measure on R? defined by

N

3

8% dim(F)" R,y N F"" Ry)

O 2 121 = gy Non

Vi 1=

1
N

1l
—_

i

Since JF( and JF; are assumed to be linearly bounded, we may fix C > 0 so that ]-"I.CWRm = 0 and
.E_Cerm = R,, for both i = 0, 1. Hence, supp(v,,) is contained in the bounded set [-C, C] x [-C, C].

Theorem 3.3. The sequence v,, converges weakly as m — oo to the compactly supported probability
measure

82 vol(W)

PHz.7 = 0x0y Ln

where W.(x’y) is the graded linear series defined by W,(nx’y) =Fy" R N }"{"ryRm.

We will call DHx, 7, the compatible DH measure of the two filtrations. The use of the measure is
that it encodes DH £, for ¢ € [0, 1], as well as RLM x, 7, (see Proposition 3.6).

To prove Theorem 3.3, we analyze the following functions R*> — [0, 1] that are nonincreasing in
both variables:

; (x,) (x,y)
dim(W, . vol(W,
Jm(x,y) = dim(Win ) and  f(x,y) :=limsup fr(x,y) = (—),
N m—sco (L")

as well as the locus P = m where P, = Supp(f)-
Proposition 3.4. The set P is convex and Int(P) = U,,Int(P,,)
Proof. Using property (F4) of a filtration, it follows that

cmPy +dqPy C (cm+dq)Ppcrga  forallc,d,m,q € Zsy. (3.3)
Indeed, if (x,y) € cmPy, and (x’,y’) € dqP,, then there exist nonzero sections

s€Fy Ry NFPRy and s € Fy¥ R, 0 FUR,.
Hence,

Scs’d € -Fg(x+x,)Rmc+md N ‘Flr(y+y )Rmc+md
which implies (x+x’, y+y’) € (mc+qd)P c4qa as desired. Now, equation (3.3) implies: if p, g € Uy, P,
andt € [0,1] N Q, then p(1 —¢) + tq € U, P,,. Therefore, the closure of U,, P,, is convex.
To show Int(P) = U,,Int(P,,), first note that the inclusion O clearly holds. To see C holds, fix

(a, b) € Int(P). Since Int(P) is open, we may choose € > 0 so that (a+¢€, b+¢) € Int(P). Since P is the

closure of U, P,,, and (a+¢€, b +€) € P, there exists (x,y) € U, Py, sothata < x and b < y. Using that
each f;, is > 0 and nonincreasing in both variables, the latter implies (a, b) € U,,Int(P,,) asdesired. O

Proposition 3.5. On the locus R? \ 0P, f = lim,,—e fon and f is continuous.
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Proof. The statement clearly holds on R? \ P since f,, and f are both zero on that locus. It remains to
verify the statement on Int(P).
Fix (a, b) € Int(P). Let G denote the filtration of R defined by

g/lRm = J,—_-(;HmraRm N ];-I/Hmrme’

which is linearly bounded since both F and F; are linearly bounded. Let Vg’(t) and V.g *( be defined
as in Section 2.1.2. If we set

di Vg,(z) 1 V.gv(t)

gm(t) =—4" mSUp oy

then g,,(t) = fu(a+t,b+1t) and g(¢t) = f(a +1t,b+1t) since V,i’(t) = W,(na”’b”). Note that, for
t < Amax(G), g(t) = lim, 0 g:n () exists and g is continuous at ¢ by Proposition 2.3.
We claim that A, (G) > 0. Indeed, using that g,,,(f) = fi(a +1,b +1t), we see

(mr) AU (G) = sup{t € R|(a+1t,b+1) € P}

Since (a, b) € Int(P), Proposition 3.4 implies there exists m’ > 0 so that (a, b) € Int(P,, ). Therefore,
/lﬁnr;’;) (G) > 0 and, hence, Aax(G) > 0 as desired.

Using the above claim, we see that lim,;,« fin(a, b) = f(a,b), and f(a +t, b + 1) is continuous at
t = 0. Since f is nonincreasing in both variables, the latter implies that f is continuous at (a, b). O

Theorem 3.3 is now an easy consequence of the previous propositions.

Proof of Theorem 3.3. As m — oo, f,, converge pointwise to f away from a set of measure zero by
by Propositions 3.4 and 3.5. Since 0 < f;,, < 1, the dominated converges theorem implies f,, — f in
Ll

S 2 2 S
loc(R2)' Therefore, f,, — f as distributions and, hence, v,, = af—ay fm — af—ay f as distributions,

as well. Since each distribution v,,, is a measure, [Hor03, Theorem 2.1.9] implies DHx, 7, = %;y f

. eak )
is a measure and v,, —> DH Fo,7 as measures. Furthermore, the measure DHr, 7, is a compactly
supported probability measure since it is a weak limit of probability measures with uniformly bounded
support. O

Proposition 3.6. Fix t € [0,1], ¢ € R.q, and d € R. Consider the maps p,q : R> — R defined by
px,y) = -t)x+tyand q(x,y) = x — c(y + d). The following hold:

1. p*(DH]:O,]:I) = DH]:t, and

2. ¢.(DHzx, ) = RLM g, g, where G is filtration given by G'R,, := Fl(’l_dmr)/CRm.

Proof. Observe that p.(v,,) = vnf’ and g.(vy,) = anqo,g. Therefore, p.(v;,) e DHpy, and q.(v,) Heal

ak
RLMz, g. By Theorem 3.3 and the continuity of p and g, we also have p.(v,,) = p«(DH x5, 7) and

ak
q«(Vin) = q+(DHx,, 7,). Since weak limits of measure on R? are unique, the result follows. O

3.2. Convexity
In this section, we prove the following result on the convexity of the non-Archimedean Ding and H-

functionals.

Theorem 3.7. Let Fy and Fy be linearly bounded filtrations of R and (F;);e0,1] be the geodesic
connecting them. For t € (0, 1), the following hold:

1. DNA(F) < (1 = 1)DNA(Fy) + tDNA(F));
2. HYA(F) < (1 — ) HNA(F) + HNA(F).
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Furthermore, the inequality in (ii) is strict unless there exists d € R so that di(Fo,G) = 0, where G is
the filtration defined by G'R,, := }"l/l‘dm’Rm.

The result is an algebraic analogue of a theorem of Berndtsson on the convexity of the Ding-functional
along geodesics in the space of Kéhler potentials [Berl5]. In forthcoming work, Reboulet shows that
Theorem 3.7 can in fact be deduced from Berndtsson’s convexity result when X is smooth [Reb21]. The
proof below is self-contained and purely algebraic.

To prove Theorem 3.7, we first show the convexity of LN along geodesics. For this, we first compare
LNA with the log canonical slope of a filtration F, defined as (c.f. [XZ20, Definition 1.3 and Lemma
4.13])

1 1
w(F) := ux.a(F) :=sup {s eR|let(X,A; 1) > —} = sup {s eR|let(X, A 1) > —} )
r r

Lemma 3.8. For any linearly bounded filtration F of R we have u(F) = LNA(F), and there exists some
valuation v € Valy U {vyiy} such that

FIvIY) > A+ Ax A (v) - LNA(F) (3.4)

for all A € R. Moreover, if F is a finitely generated Z-filtration and LN*(F) < Amax (F), then v can be
chosen to be a divisorial Ic place of some Q-complement.

Recall that a valuation v is said to be an Ic place of some Q-complement if there exists some effective
Q-divisor I' ~g —(Kx + A) such that (X,A +T') is Ic and Ax a.r(v) =0.

Proof. By [XZ20, Theorem 4.3], we already have u(F) > LNA(F), thus it suffices to show u(F) <
1

LNA(F). By [IM12, Theorem 7.3], lct(X,1, A g1 + ZJ ; (1)) = LNA(F) + 1 is computed by some G,y,-
invariant valuation w € Val;’(X a1 (the Gyp-equivariant version is not proved in [JM12] but is not hard to
achieve from the proof). By [BHJ 17, Lemma 4.2], up to rescaling w is the Gauss extension of a valuation
v € Valg U {vyiv}, thatis, w(f1') = v(f) +iforany 0 # f € K(X) andi € Z. Since w computes the Ict

and w(¢) = 1, we have
1 1
LMF) +1=Ax, o, (W) —w(Z) = Ax a(v) + 1 = w(ZJ).

1 L i
Thus, Ax A (v) = LNA(F) = w(ZJ) < w(Z") < % for all m € N and i € Z. It follows that
rv () = A+ Axa(v) - LNA(F)

for all A € R. In particular, Ict(X, A; 1Y) < 7 for any A > LNA(F). By the definition of log canonical
slope, this implies u(F) < LNA(F) and proves the first part of the lemma.

If F is finitely generated, then Z,,, = Z}, for any sufficiently divisible m, p € N and thus w can be
chosen as a divisorial valuation. Since LN*(F) < Apax (F), the valuation v cannot be the trivial one,
otherwise equation (3.4) becomes A < LNA(F) for all 1 < Apax (F) and therefore Apax (F) < LNA(F),
a contradiction. By [BHJ17, Lemma 4.1], we know that v is divisorial. Let a,, = Iy ymr. Again,
Upm = al, for any sufficiently divisible m, p € N as F is finitely generated. By equation (3.4), we have
r~'v(a.) = Ax a(v); thus, from the definition of log canonical slope, we see that v necessarily computes

Ict(as) = m - lct(a,,) =m - lct(X,A; {s = 0})

for sufficiently divisible m and general s € F*"™"" R,,. As Kx + A + #{s =0} ~g 0, this easily implies
that v is an Ic place of some Q-complement. m}
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Remark 3.9. From the above proof, it is clear that if the filtration F is T-equivariant for some torus
T < Aut(X, A), then the valuation v can be chosen to be T-invariant as well.

Remark 3.10. Lemma 3.8 immediately implies that S(F) = DNA(F) (see [XZ20, Definition 4.1] for
the definition 8(JF)) for any linearly bounded multiplicative filtration F.

Corollary 3.11. For any v € Valy, we have LNA(F,) < Ax.a(v) and HNA(F,) < Bx A (v).

Proof. It is not hard to see from the definition that u(F,) < Ax.a(v) (c.f. [XZ20, Proposition 4.2]),
thus the first inequality follows from Lemma 3.8. The second inequality follows from the first and the
definition of HNA and S. O

Given the equality LNA(F) = u(F) (see Lemma 3.8), we can establish the convexity of LNA using
[XZ21].

Proposition 3.12. Let Fy and Fi be linearly bounded filtrations of R and (F;)iej0,1] be the geodesic
connecting them. For t € (0,1), LNA(F;) < (1 — t)LNA(Fo) + (LNA(F)).

Proof. Tt is not hard to see that the statement is unaffected by translation of the filtrations. Thus, by
Lemma 3.8, we may assume that, after shifting the filtrations, there exists valuations v, v; on X with
Ax.a(vi) < oo such that LNA(F}) = u(F3) = Ax a(vy) and v; (1)) > raforall 1 € Rand i =0, 1. In
particular, F'R C F1R forall 1 € R.

Let (Y = Spec(R),T") denote the affine cone over (X,A) with respect to the polarization L =
—r(Kx + A). Let w; be the G,,-invariant valuation on Y given by w;(s) = mr + v;(s) for s € R,
(informally w; = r - ord, + v;). Let b, o be the graded sequence of ideals on Y defined by

brm = ae((1 = )wp) Ba.(twy) := Zam—i((l —t)wo) Na;(twy).
0

In other words, b; ,, is generated by those s € R with [ (1 — f)wo(s)]| + [twi(s)] = m. Forany k € Z
and any s € FX*2R,,, we have (1 — t)wo(s) + twi(s) > mr + k +2 by equation (3.1). It follows that s
is a section of b; 1k (forif a + b > k +2 then |a] + | b] > k). Therefore, elements in ]-'tk”Rm yield
sections of by ,,,+x on Y for any k € Z. By [XZ21, Theorem 3.11], we have

let(b;,e) < lct(ae((1 —1)wo)) +lct(as(twy)) < (1 —1)Ay r(wo) + 1Ay r(w1)
=1+ (1-0)Axa(vo) +tAx A(v) = 1+ (1 = )LNA(F) + rLNA(F)).

Thus, for any rational ¢ > (1 — #)LNA(Fp) + rLNA(F}) and any s € FE™ *2R,,, (where m is sufficiently
divisible), as it yields a section of b; (11¢)mr On Y, the pair (¥,I" + #{s = 0}) is not lc. Using
[Kol13, Lemma 3.1(5)], it follows that the base (X, A + %{s = 0}) is not Ic for any m € N and any
s € Ft"m”sz. By the definition of log canonical slope, this implies that u(F;) < ¢. By Lemma 3.8
and the fact that ¢ > (1 — £)LNA(Fp) + LNA(F)) was arbitrary, the result follows. O

Using the measure DHx, 7, constructed in Section 3.1.3, we next describe the behavior of the
Monge—Ampere Energy and S functionals along the geodesic.

Proposition 3.13. Fort € [0, 1], ENA(F,) = (1 — 1)ENA(F) + tENA(F)).

Proof. Setv := DHx, . We compute

EM(F) = /zDHf,(cu) =/ (1=tx+ry)ydv=(~1-1) xdv+t/ ydv, (3.5)
R R2 R2 R2
where the second equality is by Proposition 3.6. From this, the result follows. O
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Proposition 3.14. For ¢ € (0,1), S(F;) > (1 - 1)S(Fo) + tS(Fy). Furthermore, the inequality is strict
unless there exists d € R so that d\(Fo, G) = 0, where G is the filtration defined by G'R,,, := G*""4R,,.

Proof. Setv :=DHpg, 7, f(x,y) :=e ™, and g(x,y) := e . Fort € [0, 1],
S(F;) = ~log / ™' DH, (d1) = ~log / 170X dy = ~log||f' '8 1.,
R2 R2

where the second equality is by Proposition 3.6. Holder’s inequality implies

—log|lf' g Iy = —log (Ilfllf}tllglli,y) =—(1=1)log|l flh,y —tlogllglliy
= (1-1)S(Fo) +1S(F1)
Furthermore, the inequality is strict unless (i) f = 0 or g = 0 v-a.e. or (ii) there exists ¢ > 0 so that
f—cg=0v-ae.

Condition (i) cannot occur since f and g are > 0. Condition (ii) is equivalent to sayingx—y—d = 0 v-
a.e., where d := —In(c). Now, if we write G for the filtration of R defined by GR,, = ]—"l"‘””dRm, then

vy =dlhy = [ b=y=dldv= [ 12 RLM6(@0) = 1 (7.0).
R R

where the second is by Proposition 3.6. Therefore, (ii) holds iff d; (F,G) = 0. m

Proof of Theorem 3.7. The result follows immediately from Propositions 3.12, 3.13 and 3.14. m}

3.3. Uniqueness of valuations computing h(X,A)

As a consequence of the convexity results in the previous section, we prove that the minimizer of HNA
is unique.

Theorem 3.15. Assume v and w are valuations in Valy, U {vyiv}. If v, w both compute h(X, A), then
v =w.

In [HL20b], the previous theorem was shown under the assumption that there exists a special R-test
configuration computing 4 (X, A). The latter assumption will be verified in Corollary 5.7.

Proof. Consider the geodesic (F;);¢[0,1] connecting Fo := F, and F; := F,,. Fort € (0, 1),
HYA(F) < (1 - nHY(Fo) + HYA(F)) < (1= 1)Bx.a(v) +1Bx.a (W) = h(X, A),

where first inequality is Theorem 3.7 and the second Corollary 3.11. Since h(X,A) < HNA(F,), the
first inequality cannot be strict. Therefore, Theorem 3.7 further implies there exists d € R so that
d\(Fo, G) =0, where G'R,, = .Fl’l‘m’dRm.

Next, note that d = 0, since

0= ﬂmin(]:()) = /lmin(g) = Amin(fl) +d=d,

where first and last inequality is by Lemma 2.4 and the second by Proposition 3.1. Therefore,
di(Fo, F1) = 0. By Lemma 3.16, we conclude v = w. m]

Lemma 3.16 [HL20b, Proposition 2.27]. Assume v and w are valuations in Valy, U {vyiv}. If F,, and
Fy are equivalent, then v = w.

This result was first proved in [HL20b] using the machinery of non-Archimedean metrics from
[BJ21]. For the sake of completeness, we give a proof which only uses the terminology introduced in
this paper.
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Proof. 1t is enough to show v(f) = w(f) for all f € R,, and m € N. Indeed, for any A € R, we may
choose some integer m > 0 such that Ox (mL) ® a,(v) is globally generated, where a,(v) = {f €
Ox | v(f) = A} denotes the valuation ideal. If v(f) = w(f) forall f € H*(X, Ox (mL)®a,(v)) C R,
then a,(v) C a, (w). Switching the role of v and w gives the reverse containment. Thus, a,(v) = a,(w)
for all 1 € R, and, hence, v = w.

Suppose now that a = v(f) # w(f) = b for some f € R,,. Without loss of generality, we may
assume a > b. Let A = Ayax (Fyy ). Fix some € € (0,a — b), and let p be a sufficiently large integer such
that Ar < (a—b—¢)p. Consider the subspace Vy := fkP. R, C .Fvakka(mp+1). For any g € Vi, we have
w(g) < bkp+kAir < (a—¢g)kp by our choice of p. Thus, for any basis (s1,- -+, Sn) of Ri(mp+1) thatis
compatible with both F,, and F,,, the part that spans F, kp Ri(mp+1) contains at least dim V; = dim Ry
elements s; with w(s;) < (a — &)kp. In particular for these s;, we have v(s;) — w(s;) > gkp. It follows
that

EpP .
/ Aldy e T TopeDr - dim Ry
k(mp+1) ~ dim Rk(mp+1)

for all k£ > 0. Letting k — co, we get d (F,, F) > 0, contradicting our assumption. Thus, we must
have v(f) = w(f) for all m € N and all f € R, and therefore v = w. O

Corollary 3.17. Let (X,A) be a log Fano pair, there is a unique valuation computing h(X,A) in
Val§, U {vyiy} and it is quasi-monomial.

Proof. By [HL20b, Corollary 4.9], there is a quasi-monomial valuation v € Val} U {Vyiv} computing
h(X,A). The uniqueness is by Theorem 3.15. m]

4. Weighted stability

In this section, we provide a common ground to study the stability of both Kéhler—Ricci solitons and
triples (X, A, vo) (where vq is the unique minimizer of $ from the previous section) in a suitably
weighted sense. The results will be applied in the next section to study the finite generation property for
various minimizers.

4.1. Weighted d-invariants

We first introduce a weighted version of the stability threshold and then generalize results from [BJ20]
to this setting (see also [RTZ21, Section 6]).

Definition 4.1. Let vy € Valy be a quasi-monomial valuation and g: R — R, a continuous function.
A g-weighted (m, vg)-basis type divisor is a divisor of the form

N,
= vo(si)
merZg( ) {si =0},

i=1

i=1
D e | - Kx — Alg. We say D is compatible with a filtration F on R if the basis (s, - ,sn,,) is
compatible with F. In particular, we say D is compatible with a valuation v € Val§, (resp. an effective
Q-divisor G on X) if it is compatible with the induced filtration F;, (resp. F¢).

where (s,---,sy,,) is a basis of R,, that is compatible with vo and Q,, = X" g (VO(é )) Note that
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For any linearly bounded filtration F on R, let v,,, and v = DH FogsF = lim;;,— v, denote the
measures on R? associated to F,,, and F as constructed in Section 3.1.3. We set

g(x)ydv, g(x)ydv
Se.m(vo; F) = /R@— and Sg(vo; F) = lim Sg n(vo; F) = /]R@—.
.[I‘QZ g(x)dvm m—oo _/Rz g(x)d"

It is clear that

N
1 5 [vols;
Se.m(vo: F) = mrOn Z;g (%) -ordx(s;)

for any basis (sy,- - -, sn,,) that is compatible with both v and F.

Lemma 4.2. For any € > 0, there exists a positive integer mg = mg(&) such that
Sg.m(vo; F) < (1+&)Sg(vo; F)

for any linearly bounded filtration F of R satisfying F°R = R and any m > my.

This follows from essentially the same argument as [BJ20, Corollary 2.10] except we need to use an
Okounkov body that is induced by a suitable valuation.

Definition 4.3. Let w: K(X)* — Z" be a valuation with values in the group Z" (equipped with some
total ordering). Following [KK12], we say that w is faithful if its image equals Z"; we say that w has
one-dimensional leaves if dimV,, < 1 for every a € Z", where V, := {f € K(X) |w(f) > a}/{f €
K(X)|w(f) > a}. Finally, we say that w is a good valuation if it is faithful, has one-dimensional leaves
and n = dim X.

Lemma 4.4. Let vy be a quasi-monomial valuation on X. Then there exists a good valuation
wo: K(X)* — Z" and ug € R% ) such that

vo(f) = (uo,wo(f))  forall f € K(X)".

Proof. Let r be the rational rank of vg. Since v is quasi-monomial, there exists a log resolution
m: Y — X, aregular system of parameters yj,...,y, atapointy € Y,and @ € R}, suchthatvg = v,.Let
W = Cy (vg). Possibly after further blowups, we may chooseaflagW,: W =Wy 2 --- 2 W,,_, = {point}
of smooth subvarieties such that each W, is a divisor in W;. Let v = vy, : K(W)* — Z"" be the
induced valuation as in [LM09]. Any nonzero f € Oy w can be written as f = cﬁyﬁ + f for some
(uniquely determined) 8 € N” and cg, fi € Oy w such that (a,8) = vo(f) and vo(f1) > vo(f).
Moreover, 0 # ¢g € K(W) is well defined and does not depend on the choice of cg. Now, consider
the valuation wo: K(X)* — Z" given by setting wo(f) = (B,v(ég)) for f € Oy w. It is not hard
to check from the construction that wy is faithful and has one-dimensional leaves. Clearly, vo(f) =
{(@,0,---,0),wo(f)). Thus, wy is the good valuation we want. O

Proof of Lemma 4.2. Since the argument is very similar to those in [BJ20], we only sketch the proof.
By Lemma 4.4, there exists some good valuation wqy: K(X) — Z" and some ug € R’;O such that
vo(f) = (ug,wo(f)). Let £ C R" be the corresponding Okounkov body (see [KK12]), that is, the
closed convex hull of | J,,,>1{ w’fq(rs) | s € Ry, \ {0}}. We regard the function g also as a positive function
on X by g(a@) = g({ug, @)). Let p denote the Lebesgue measure on X and p,, the atomic probability
measure supported on X N %Z" as defined in [BJ20, Section 2.2]. Note that lim,;—c o = p in the
weak topology of measures (see [BJ20, Theorem 2.1]). Using the argument of [BJ20, Lemma 2.2] and
the uniform continuity of g on X, we see that for each & > 0 there exists my = mo(&) such that

/ Fedom < / fedp+e
> >
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for every m > myg and every concave function f: X — R satisfying 0 < f < 1. We may then apply
the proof of [BJ20, Corollary 2.10] to the concave transform of F and conclude that (after possibly
enlarging mo) Sg m(vo; F) < (1+&)S,(vo; F) for all linearly bounded filtrations 7 and all m > mg. DO

When F is the filtration induced by some valuation v € Val} (resp. effective divisor G # 0 on X),
we will simply write Sg(vo; v) (resp. Sg(vo; G)) for Sg(vo, F). Let T = G, < Aut(X,A) be a torus
subgroup of the automorphism group (we allow T = {1}). For any quasi-monomial valuation v € Valq;;’O
we set

Ax.a(v)
Ogr(X,A,vp) := inf ———.
& vevall® Sg(vo;v)

We say that v € Vallr(’o computes 5, (X, A, vp) if it achieves the above infimum. For each positive
integer m, we also set

8g,1,m(X,A,vo) := min{lct(X, A; D) | D is a T-invariant g-weighted (m, vo)-basis type divisor}.

When T = {1}, we will suppress the subscript T and write d¢(X, A, vo) and 64 (X, A, vo).

Lemma 4.5. In the above setup, we have
Og,1(X,A,vg) = nll_r)noo Og.1,m(X, A, v0).
Proof. Tt is not hard to check from the definition that
Se.m(vo;v) =max{v(D) | D is a g-weighted (m, vo)-basis type divisor} 4.1

and in fact Sg ,,,(vo; v) = v(D) for any g-weighted (m, vo)-basis type divisor D that’s also compatible
with v. Moreover, when v, v € Valg’o, such a divisor D can be chosen to be T-invariant by choosing
compatible basis in each component of the weight decomposition under the torus action. Hence,

A
6gstm(X9 A, V()) = lnf X,A(V)

_—, “4.2)
v eVal}" Sg,m("O; V)

Combined with Lemma 4.2, the argument in the proof of [BJ20, Theorem 4.4] then yields
0o 1(X, A, vp) = liMyy—e0 Gg,7,m (X, A, vo). o

4.2. Reduced uniform stability

In this section, we define stability notions for triples (X, A, vo) where (X, A) is a log Fano pair, vy is a
quasi-monomial valuation on X, and g: R — R; is a continuous function.

We first define the weighted version of the non-Archimedean functional. For any linearly bounded
filtration on R, we set

DA (F) = LNA(F) = Sg(vo: F),

JI;A(-F) = Amax (F) _Sg(VO;]:)~
Note that J§*(F) = 0. We also set EY* (F) := Sg(vo; F). If (X, A x; L) is a normal test configuration
of (X,A), then we set DYA(X,Ax; L) = DY (Fx.aic) and J3N(X, A L) = J3M(Fivarc))

Denote by Aut(X, A, vg) the subgroup of Aut(X,A) that leaves the valuation v invariant, and let
T < Aut(X, A, vg) be a torus subgroup.
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Definition 4.6. We say that the triple (X, A, vg) is T-equivariantly g-Ding semistable (or simply g-
Ding semistable when T = {1}) if DgA(X ,A; L) > 0 for all T-equivariant normal test configurations
(X,A; L) of (X, A).

Denote by M := Hom(T, G,,) the weight lattice and N := Hom(G,,, T) the co-weight lattice. Then
there is a weight decomposition R,;, = ®4ecp R, o- Recall that, for any T-equivariant filtration F and
each n € Ng, there is an n-twist 7, of F given by

FlRm = FODRAR,, o
aeM

Set Futg (1) := Eg’A(}' ) — Eg’A (F5)- It is not hard to see from the definition that Fut, does not depend
on the choice of the filtration / and is linear on Nr. We define the reduced JEA-norm of F as

NA () ._ ioe JNA
Jon(F) = nlen1£RJg (F)-

Definition 4.7. We say a triple (X, A, vo) is reduced uniformly g-Ding stable if there exists a maximal
torus T < Aut(X, A, vg) and some & > 0 such that

DEA(X, Ax; £) 2 el 5(X, A L)

for all T-equivariant normal test configurations (X, A y; £) of (X, A).

Note that the above definition is independent of the choice of T since any two maximal tori are
conjugate.

Lemmad4.8. Let T < Aut(X, A, vo) be a torus. Assume that Dlg\IA > 0 for any product test configurations
that is induced by a one parameter subgroup of T. Then Futy = 0 on Ny.

Proof. Let F be the trivial filtration of R. By Lemma 3.8 and [XZ20, Lemma A.6], we have LNA(F) =
LNA(F,) forany n € Ng. Thus, DY (F;)) = DY (F)+Fut, (17) = Futg (). By assumption, DY (F;) >
0 for any n € N. By linearity, Fut, = 0 on N and, hence, the same holds on Ng. O

We are most interested in the case v = wt, for some torus T < Aut(X, A) and some ¢ € Ng. In this
case, we write (X, A, £) instead of (X, A, wtz). We note that while T is not explicitly written out in the
notion (X, A, £), it is indeed part of the data.

Theorem 4.9 [HL20]. Let (X, A, €) be a triple over k = C. Then it admits a Kdhler—Ricci g-soliton if
and only if it is reduced uniformly g-Ding stable.

Definition 4.10. Let (X,A,¢) be a triple. We say that (X, A, &) is g-Ding semistable if it is T-
equivariantly g-Ding semistable. We say that (X, A, &) is g-Ding polystable if it is g-Ding semistable
and DIg‘IA(X ,Ax; L) = 0 for a weakly special T-equivariant test configuration (X, A x; £) only if itis a
product test configuration.

We say that (X, A, &) is K-semistable (vesp. K-polystable, or reduced uniformly Ding stable) if it is

X

g-Ding semistable (resp. g-Ding polystable, or reduced uniformly g-Ding stable) for g(x) = e™*.

Remark 4.11. The above definition of K-polystability agrees with the notion in [BWN14] when T is the
torus of smallest dimension such that & € Ng; see [HL20b, Remark 2.47]. Note that K-polystability of
Kihler—Ricci solitons is proved in [BWN14, Theorem 1.5]. Later, we will see that the definition indeed
does not depend on the choice of T (see Remark 5.10).

The following is the main result of this subsection.
Lemma 4.12. Let vg be a quasi-monomial valuation on X, and let T < Aut(X, A, vq) be a torus. Let

g: R — Ry be a continuous function and c € [0, 1). Then the following are equivalent:
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1. DIg\IA(X, Ax; L) >c- JE?F(X’ A x; L) for any T-equivariant normal test configuration (X, A x; L)
of (X,A).

2. DI;A(X Ax; L) = ¢ Jlg\“?r( X,Ax; L) for any T-equivariant weakly special test configuration
(X, Ax; L) of (X, A).

3. D?A (Fy) =c 'Jg,/}]r (Fy) for any divisorial valuation v € Val;E;’O that is an lc place of a Q-complement.

Proof. When vy = wtg this is treated in [HL20, Section 7] using [LX14]. Here, we present a proof
that is independent of [LX14]. It is clear that (1) implies (2). By [BLX22, Theorem A.2], (2) implies
(3). Thus, it remains to show (3) implies (1). To see this, let F be a finitely generated T-equivariant
Z-filtration of R. If LNA(F) > Apmax (F), then we already have DgA (F) = JSA(]:) > Jlg\lﬁr(}'). Thus, to

prove (1) we may assume that LNA(F) < Apax(F). By the second part of Lemma 3.8 and Remark 3.9,
there exists some divisorial Ic place of a Q-complement v € Valz’o such that

(V) = Ax A (v) > A= LNA(F)

for all A € R. Since DSA(}') and J?‘%(}" ) are both translation invariant, we may shift F so that

LNA(F) = Ax.a(v). The above inequality then becomes v(I.(’l)) > Ar and therefore AR C FR for
alld e R.

Let n € Ng, and let G be the n-twist of F,,. Then we also have ]—',’;R C G1R for all A, and this clearly
implies

EEA(}—U) < EI;A(g) and Amax(fn) < /lmax(g)~

Since LNA(F) = Ax A (v) = LNA(F,) by Corollary 3.11, we also get LNA(F,,) > LN*(G) by Lemma
3.8 and [XZ20, Lemma A.6]. Note that by Lemma 4.8, [BLX22, Theorem A.2] and (3) we have Fut, =0
on Ny, thus DY*(F,) = Dy*(F) and D}A(G) = DYA(F,).

Since

DYA(F) - ¢ - IA(F) = LA(F) = (1 - OENA(F) = ¢ - dan (),
we then obtain
DYA(F) — ¢ - J3A(F) 2 DYA(F,) — ¢ - JRA(Fy)
> DA(G) — ¢ - IZA(G) =DA(F) — ¢ TR (G).
As i € Ny is arbitrary, this gives
DYA(F) — ¢ YA(F) 2 DINF) — ¢ - YA (F).

By (3), the right-hand side is > 0. Thus, the same is true for the left-hand side. Since F is arbitrary, this
proves that (3) implies (1). |

We get the following generalized version of Fujita-Li valuative criterion [Fuj19, Lil7] which treat
the case g = 1 (see also [HL.20, Theorem 5.18]).

Corollary 4.13. A triple (X,A,vo) is T-equivariantly g-Ding semistable if and only if
5g’T(X,A,V()) > 1.

Proof. Assume that (X, A, vo) is T-equivariantly g-Ding semistable. If 6 := §, 1(X, A, vo) < 1, then
we may choose some & > 0 such that (1 + £)2§ < 1. Let m > 0 be such that §,, := Og,1.m(X, A, vp) <
(1+¢&)d. By Lemma 4.2, we may also assume that Sg ,, (vo; v) < (1+€)Sg(vo; v) for any v € Valy. By
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definition, ¢,, = lct(X, A; D) for some T-invariant g-weighted (m, vo)-basis type divisor D. Thus, if w
is a T-invariant divisorial valuation that computes the Ict, we would have

Ax.a(W) = 6mSgm(vosw) < (1+8)%5 - Sg(vo;w) < Sg(vo; w).

On the other hand, since §,,, < 1, we know that —(Kx +A+,,D) is ample, thus gr,, R is finitely generated
by [BCHM 10, Corollary 1.4.3]. In other words, w induces a T-equivariant test configuration of (X, A).
As (X,A,vp) is T-equivariantly g-Ding semistable, Corollary 3.11 gives Ax a(w) — Sg(vo;w) >
Dg’A(]—'w) > 0, a contradiction. Therefore, 0, 7(X,A,vo) > 1 when (X, A, vg) is T-equivariantly
g-Ding semistable.

Conversely, if 6, 7(X,A,vo) > 1, then for any v € Val?("’ we have Ax A (V) = Sg(vo;v). If visanlc
place of a Q-complement, then we also have LNA(F,) = Ax A (v) (c.f. [XZ20, Proposition 4.2]). Thus,
DgA (Fy) =0forany v € Valll;o that is an Ic place of a Q-complement. By Lemma 4.12 (with ¢ = 0),
this implies that (X, A, vo) is T-equivariantly g-Ding semistable. O

4.3. Existence of minimizer

Throughout this section, let T < Aut(X,A) be a torus and let & € Ng. We aim to prove the following
statement.

Proposition 4.14. Assume that (X, A, &) is g-Ding semistable but not reduced uniformly g-Ding stable.
Then there exists a T-invariant quasi-monomial valuation v that is not of the form wty, for any n € Ny
suchthat 1 = 84(X, A, €)(:= 0g,1(X, A, Wtg)) is computed by v.

Proof. The argument is very similar to those in [XZ20, Appendix], so we only give a sketch. First, note
that the assumption remains true if we enlarge the torus T, and clearly if the conclusion holds for a
maximal torus containing T, then it also holds for T. Thus, we may assume that T is a maximal torus.
By Lemma 4.12 and [BLX22, Theorem 3.5], we know that there exist some integer N > 0 and a
sequence of divisorial Ic places of N-complements v; € Valj;“’ (not of the form wt,;) such that

DYA(F,,)
hm A 7 T
i—oo Jg,'][‘(]:\’i)

By the constructibility result [XZ20, Lemma A.11] and arguing as in the proof of [ X220, Theorem A.5],
we may assume that the v;’s are Ic places of the same Q-complement and after rescaling v = lim; v; €
Valj)z,’Q exists and v # wt,, for any n € Ng. By the following Lemma 4.15, we have lim; Sg(vo; v;) =
S¢(vo;v). Since v; are Ic places of Q-complements, it follows from Lemma 3.8 that LY (F,) =

Ax a(v;) and thus lim; DEA(}",’.) = D&I\,IA(]-'V). Since the function v — Amax (Fy) = Tx.a(v) is also

continuous on QM(Y, E) by [BLX22, Proposition 2.4], we get lim; J3* (F.,) = J3*(F,) as well. Thus,
DYA(F,) . DEA(FR)
— = lim —>———— =
M) )

>

which implies DEA(]-"V) = Ax a(v) = Sg(vo;v) = 0. Since dg (X, A, €) > 1 by Corollary 4.13, we see
that §4(X, A, &) = 1 and v computes 64(X, A, £). O

We have used the following statement in the above proof.

Lemma4.15. Let Y — X be a proper birational map with Y regular and E := Zil E; a reduced simple
normal crossing divisor on Y. Then the function S4(vo; - ) is continuous on QM(Y, E).

We will deduce the result from the continuity of S(-) on QM(Y, E) shown in [BLLX22].
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Proof. Fix a point 7 € Supp(E) and local coordinates yi,...,y, € Oy so that each y; cuts out an
irreducible component of E at . For @ = (ay,...,@;) € ero’ write v, € Valx for the associated
quasi-monomial valuation satisfying v, (y;) = ;.

To prove the continuity of S¢(vo; -) on R, fix a convergent sequence o' in RY, and set @ := lim; o'
We aim to show lim; S, (vo; vi) = Sg(vo; V), where v; := v, and v 1= v,.

First, note that Sy (vo; cw) = ¢S (vo; w) for all w € Val§ and ¢ € R.g. Therefore, after rescaling
the @' and removing finitely many terms, we may assume the sequence (a') is nonincreasing. Hence,
v; > v > v for all i. Next, consider the Okounkov body X c R" induced by the good valuation form
Lemma 4.4. Write G; and G for the concave functions ¥ — Ry¢ induced by the filtrations F,, and F,

(see [BJ20, Section 2.5]) and set vol, (X) = fz g dp. Note that

1 1 1
Gidp - Gdp| = G - G|dp,
Volg(Z)/zg P volg(Z)/zg p‘ volg(z)/zgl |dp
4.3)

1Sg (vos vi) = Sg(vosv)| =

where the second equality uses that G; < G. Using that lim; S (vo; v;) = S1(vo; v) by [BLX22, Propo-
sition 2.4] and equation (4.3), we see (G;) converges to G a.e. Therefore, the dominated convergence
theorem implies

. . 1
Jim 1550109 = Sy 09| = Jim e [ 4161~ Gldp =0,
which completes the proof. O

5. Finite generation
5.1. A valuative criterion for EX,A-minimizers

In this section, we give a valuative criterion for valuations computing h-invariant inspired by [XZ21]
in terms of weighted stability thresholds. Let us recall that in Corollary 3.17, we know the valuation
computing ~(X,A) is quasi-monomial. Thus, we can apply the construction in Section 4.1. We use
the following notation: for any quasi-monomial vo and v € Valg, let S(vo;v) = Sg(vo;v), where
g(x) = e™*. By [HL20b] and Theorem 3.15, the unique valuation computing 2(X, A) is trivial if and
only if (X, A) is K-semistable. Hence, throughout this subsection, we assume that (X, A) is K-unstable,
that is, 2(X,A) < 0.

Theorem 5.1. A quasi-monomial valuation vy € Val, computes h(X,A) if and only if Ax a(v) =
S(vo; v) for any valuation v € Valy and Ax a(vo) = S(vo; vo).

Proof. We first show the ‘if’ part. It suffices to show that Bx a(v) > Bx.a(vo) for any valuation
v € Val}. Let Fy := F,, and F; := F,. Let v denote the compatible measure of F, and F; from Section
3.1.3. From the definitions, we know that

fR2 xe *dv

fR2 ye *dv
./R2 exdv’

and §(v0;v) = .
/RZ e *dv

S(vo:vo) = (5.1)

Consider the following function f : [0, 1] — R given by

f(1) == (1 =1)Ax A (vo) + 1Ax A (V) +log / e~ I=0x=1y gy
RZ
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It is clear that f(0) = Bx.a(vo) and f(1) = Bx.a(v). By Holder’s inequality as in the proof of
Proposition 3.14, we know that f(¢) is convex in ¢. Moreover, we have
./R2 (x —y)e *dv
/R2 e~*dv
= (Ax,a(v) = S(vo;v)) = (Ax,a(vo) = S(vo; v0)) > 0.
Thus, (1) = f(0) and the ‘if” part is proved.

Next, we show the ‘only if” part. Let (F;),c[o0,1] be the geodesic of filtrations connecting Fo and F;.
Since vy computes 4(X, A), we know that HNA(F;) > HNA(Fy) = £(0) for any ¢ € [0, 1]. Recall that

f'(0) =Ax a(v) = Ax.a(vo) +

HYA(F,) = LM(F) = S(F) = LN (F) +log / eIy,
R2

By Proposition 3.12 and Corollary 3.11, we obtain
LYA(F) < (1= )LY(Fo) + LM(F1) < (1 - 1) Ax.a(vo) +1Ax A (V).

Hence, we have HNA(F;) < f(¢) which implies that f(¢) > f(0) for all € [0, 1] and thus f’(0) > 0,
that is,

Ax.A(v) = S(vo;v) = Ax.a (Vo) — S(vo; vo).

Since v € Valj is arbitrary, the above inequality remains true if we replace v by Av for any 1 € R,
that is,

A(Ax.a () = 5(v0:v)) = Ax.a (vo) = S(voi vo).
Thus, we have Ax A (v) > S(vo; v) for any v € Valy and Ax a(vo) < S(vo; vo), which implies that
Ax A (vo) = S(vo; vo). This finishes the proof. |
The previous theorem immediately implies the following corollary.

Corollary 5.2. Let g(x) = e, and let vo € Valy be the valuation computing h(X,A). Then
8¢(X,A,vo) = 1 and is computed by vy.

5.2. 6g-minimizers

In this section, we fix a continuous function g: R — R, atorus T < Aut(X, A) and a quasi-monomial
valuation vq € Val‘g’o. Let N = Hom(G,,, T) and Ng = N ®z R as before.

Question 5.3. Assume that 5, 1(X,A,vo) < 1. Let v € ValP;I;’o be a valuation that computes
0¢.7(X, A, vp). Is the associated graded ring gr, R := grx R finitely generated?

We give an affirmative answer in two special cases, which is enough for our applications.

Theorem 5.4. Letv € Valj)r(’o be a quasi-monomial valuation that computes 64 7(X, A, vo). Assume that
Sg.1(X,A,vo) < 1 andthatv = (vo)g or vo = wtg for some ¢ € Ng. Then gr, R is finitely generated.

For the proof, we first recall a statement that can be extracted from the proof of [LXZ22, Lemma 3.1].

Lemma 5.5. Let v be a quasi-monomial valuation on X. Assume that there exists a sequence of Q-
divisors Dy, (m € N) such that (X, A + Dy,) is lc and —(Kx + A + Dy,) is semiample for all m and that
limy—00 V(D) = Ax.A(v). Then v is an lc place of (X, A +T') for some Q-complement I' of (X, A).
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Proof. We only sketch the proof since the argument is almost the same as in [LXZ722, Lemma 3.1]. After
rescaling, we assume that Ax A (v) = 1. Since v is quasi-monomial, we have v € QM(Y, E) for some
log smooth model (Y, E) — (X,A). Let a,, = a,,(v) (m € N) be the valuation ideals. By the proof of
[LXZ22, (3.1)] (which only uses the fact that v is quasi-monomial), we know that, for any £ € (0, 1),
there exists 9 > 0 and divisorial valuations v; = ordr, € QM(Y,E) (i = 1,--- ,r) such that v is in the
convex hull of vy, -+ ,v, and AX,A+al"”° (F;) < & for all i. By assumption, we have v(D,,) > 1 — g for

sufficiently large m and for such m we obtain

Ax.A+D,, (F7) < AX,A+al_‘E°(Fi) <e. (5.2)

By [BCHM10, Corollary 1.4.3], we get a Q-factorial birational model p: X — X that extracts exactly
the divisors F;. By assumption, all (X, A + D,,) (m € N) have Q-complements. Together with equation
(5.2), this implies that (X,p'A+(1-¢) 2.i— Fi) has Q-complements as well. Using [LXZ22, Lemma
3.2], we conclude that Q-complements also exist for (X, pilA + 2i_1 F;) as long as ¢ is sufficiently
small. Since v is in the complex hull of ordf,, this yields a Q-complement I" of (X, A) that has v as an
Ic place. O

Lemma 5.6. There exists some constant ¢ > 0 such that Sy(vo; G) > c for all effective Q-divisors
G ~q —(Kx + A) on X. In particular, for any m > 0 and any g-weighted (m, vo)-basis type divisor D
that is compatible with G, we have D > cG.

Proof. LetT =Tx a(vo) < oo, and let

o= infyepo.7) (%) >0
0= ——— .
SUPcpo,7] 8 (%)

Let v denote the compatible DH measure associated to F,, and Fg as in Section 3.1.3. Then v is
supported in [0, 7] X R and we have

yg(x)dv ydv
Sg(vo;G)=/R2— >co- fRz =CO'SX,A(G)=C—O,
/R2 g(x)dv /RZ dv n+1
where the last equality is by [LXZ22, Lemma 2.20]. Thus, we may take, for example, ¢ = ;—fl O

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. The plan is to use Lemma 5.5 to show that v is a monomial Ic place of a special
complement (in the sense of [[LXZ22, Definition 3.3]) and then apply [LXZ22, Theorem 4.2] to get
the finite generation. To this end, let 7 : (Y,E = }7_, E;) — (X,A) be a T-equivariant log smooth
model such that QM(Y, E) is a simplicial cone whose interior contains v, Cy (v) = N;_, E;, and there is
a m-exceptional and w-ample Q-divisor —F on Y.

Let Gy be a T-invariant Q-divisor in the ample Q-linear system | - 7*(Kx +A) —eF|g (0 < e < 1)
whose support does not contain Cy (vg) (such Gy exists because there is some T-invariant element I
in HO(Y, m(-n*(Kx + A) — €F)) for sufficiently divisible m with vo(I") # 0). Let G := 7.Gy. For
any m € N, let D,,, € | - Kx — A|r be a T-invariant g-weighted (m, vo)-basis type divisor that is also
compatible with both v and G. Such divisors exist because:

e Both v and G are T-invariant (so we can choose compatible basis in each individual piece in the
weight decomposition), and

e By our assumption, any T-invariant basis that is compatible with both v and G is automatically
compatible with vg.
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By Lemma 5.6, there exists some ¢ € Q,; such that D,, > ¢G for all m > 0. Let ¢, =
min{dg 1.m(X,A,vo), 1}. Then (X, A + 6,,D ) is Ic and lim,—co 6 = 0 7(X, A, vo) by Lemma 4.5
and the assumption that 5 v(X, A, vo) < 1.

Since v computes d, (X, A, vp), we also have

lim 6,,v(Dy) = 85 1(X, A, v0)Sg(vo;v) = Ax A (V).
m-—oo

Note that by construction D, = }; /l,vD,(,? for some 1 € R, and some effective Q-divisors DS,? ~Q
—(Kx +A). Thus, by perturbing the coefficients A;, for each m > 0 we get a Q-divisor D, = . A; D<')
such that 6,,D,,, > D;, > ch and lim,, .« v(D;,) = Ax a(v). It follows that (X,A +c¢G + Dm) islc
and —(Kx + A +cG + Dm) is ample where Dm =D, - ECG. By Lemma 5.5, we see that v is an Ic

place of (X, A + %CG +T") for some Q-complement I" of (X, A + %CG). Recall the 7' G is ample and
does not contain Cy (v). By [LXZ22, Theorem 4.2], this implies that gr R is finitely generated. O

Corollary 5.7. Assume that (X, A) is not K-semistable. Let vo € Valy, be the unigue valuation computing
h(X,A). Then gr, R is finitely generated.

Proof. By [HL20b, Theorem 1.5], vo is quasi-monomial. So the result follows immediately from
Corollary 5.2 and Theorem 5.4 (with g(x) = e and T = {1}). O

Proof of Theorem 1.2. By Corollary 5.7, we know that v yields a special R-test configuration in the
sense of [HL.20b, Definition 2.8]. Thus, by [HL20b, Theorem 1.6], we know that (X, A, &,) is a
K-semistable triple. O

Corollary 5.8. Any quasi-monomial valuation v € Valll;’0 computing 64(X,A,€), where ¢ # 0, has a
finitely generated associated graded ring.

Proof. Inview of Theorem 5.4, it suffices to show that 6, (X, A, ¢) < 1. Indeed, we will prove a stronger
statement:

Og.1.m(X,A,vp) <1 (5.3)

for all vy € Valg"’, m € N and all positive functions g € C°(R), as long as T # {1}. To see this, let
D be a T-invariant g-weighted (m, vo)-basis type divisor. If (X, A + D) is klt, then after perturbing the
coeflicients of D as in the proof of Theorem 5.4, we get a T-invariant Q-divisor D>D proportional to
—(Kx+A) such that (X, A+D) isstillkltand Kx +A+D is ample. So such pairs have finite automorphism
groups and this is a contradiction as T < Aut(X,A + D) by construction. Thus, (X, A + D) is not klt
and Ict(X, A; D) < 1. This proves equation (5.3). O

Corollary 5.9. Any g-Ding polystable triple (X, A, &) is also reduced uniformly g-Ding stable. In
particular, it admits a Kdhler-Ricci g-soliton when k = C.

Proof. The proof is very similar to that of [LXZ22, Theorem 5.2]. Let T < Aut(X, A, ¢) be a maximal
torus such that & € Ng. Assume to the contrary that (X, A, ¢) is g-Ding polystable but not reduced
uniformly g-Ding stable. Then by Proposition 4.14, we know that 6, (X, A, £) = 1is computed by some
quasi-monomial valuation v € Valg’c that is not of the form wt,. By Corollary 5.8, the associated
graded ring gr,, R is finitely generated. Let : (¥, E) — (X, A) be a T-equivariant log smooth model
such that QM(Y, E) is a simplicial cone containing v and that its dimension is the same as the rational
rank of v. As in [Xu21, Claim 3.10], this implies that in a neighbourhood of v in QM(Y, E), the function
w > Sg(vo; w) is linear, and we have gr,, R = gr R.

Thus, d4(X, A, £) is also computed by some T-invariant divisorial valuation w € QM(Y, E) that
is sufficiently close to v. In particular, DI;A(]-"W) < Ax a(w) — Sg(vo; w) = 0 (the first inequality is
by Corollary 3.11) and w # wt,, for any n € Ng. It induces a nonproduct type T-equivariant test
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configuration (X, A x, £) such that DEA(X ,Ax,L) < 0. This contradicts the g-Ding polystability of
(X, A, ¢) and proves the first part of the corollary. The remaining part follows from Theorem 4.9. O

Proof of Theorem 1.3. By [BWNI14, Theorem 1.5], (X, A, &) is K-polystable if it admits a Kéhler—
Ricci soliton. Thus, the result follows immediately from Theorem 4.9 and Corollary 5.9 by setting
glx)=e™. O

Remark 5.10. The above proof that reduced uniform Ding stability implies K-polystability uses Kédhler—
Ricci solitons, but it can be proved algebraically. Though, there is some subtlety, since the data of a triple
(X, A, ¢) includes a torus T so that ¢ € Ng := Hom(G,,, T) ®z R and T is not necessarily maximal.
While the K-polystability of (X, A, ¢) is with respect to T, reduced uniform Ding stability is defined
using a maximal torus T < T™ < Aut(X, A).

To prove the equivalence, observe that if (X, A, ¢) is reduced uniformly Ding stable, then it is K-
polystable with respect to T™** by [HL20, Proposition 5.16]. To show it is K-polystable with respect to
T, first by [HL.20b, (168) or (189)], it follows that (X, A, £) is K-semistable with respect to T. Then by
verbatim applying the proof of [LWX21, Theorem 3.7] (see also [HL.20b, Section 8]), we know the K-
polystablity of (X, A, &) with respect to T™* implies the K-polystability of (X, A, &) with respect to T.

Proof of Theorem 1.1. Itis acombination of Theorem 1.2, [HL.20b, Theorem 1.3] and Theorem 1.3. O

As an application, we show the following theorem, which generalizes [WZ04] from the smooth case
to general toric log Fano pairs. See also [HL20, Section 8].

Theorem 5.11. For any toric log Fano pair (X,A) over C, there exists a vector & € Nr :=
Hom(Gy,,, T) ®z R where T is the maximal torus acting on (X, A), such that (X, A, &) admits a Kdhler—
Ricci soliton.

Proof. By Corollary 3.17, there is a unique valuation v € Valy which computes i#(X,A). By the
uniqueness, v is T-invariant, that is, v = wtg for some & € Ng. Therefore, the K-semistable triple
produced in Theorem 1.2 is (X, A, &).

Since (X, A, ¢) is K-semistable and toric, it is reduced uniformly Ding stable by Theorem 4.12.
Indeed, condition (3) of the theorem holds trivially, since any w € Valq;;’o is of the form w = wt,, for
some 17 € Nr and, hence, satisfies Jlg\fﬁr(w) = 0 where g = e™*. Therefore, (X, A, ¢) admits a Kéhler—
Ricci soliton by [HL.20]. O

6. Moduli stack

In this section, we will prove Theorem 1.5. It suffices to verify the boundedness and openness; see
Theorem 6.3 and Theorem 6.4.

Theorem 6.1. For a fixed dimension n, volume V, a positive integer N and a negative constant hy < 0,
Jfamilies of n-dimensional log Fano pairs (X, A) with (-Kx — A)" =V, NA integral and h(X,A) > hy

are parameterized by an Artin stack ./\/li v N+ Of finite type.
VLIVl

The following result gives the boundedness.
Proposition 6.2. Let (X, A) be a log Fano pair, and let ¢ € R. Assume that Bx a (v) > c forall divisorial
valuations v on X. Then a(X,A) > « for some constant @ > 0 that only depends on ¢ and dim(X).
Here, (X, A) denotes Tian’s a-invariant. In the proof, we use that @ (X, A) equals inf, Ai‘(AV()V) s
where the infimum runs through all divisorial valuations on X; see, for example, [BJ20].

Proof. 1t suffices to find some constant M = M(c,n) > 0 that only depends on ¢ and n = dim(X)
such that 7(v) < M for all divisorial valuations v with Ax A (v) = 1. For now, fix any such v and let
F=F,, T =Txa(v),S = S(v). We will apply a modified argument from [BJ20, Lemma 2.6]. Let
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()
f(2) = W) Note that £(0) = 1, f£(T) = 0 and DHz = —f’(4)dd. By [Laz04, Theorem 11.4.9],

the function A — f (/1)% is concave on (0, T), thus
/1 n
H=(1-=] .
o (1-2)

On the other hand, integration by parts yields

T T
-5 _ -2 _1_ -2
e _./0 e "DHx(d1) =1 /0 e " f(A)da,

hence ¢S < 1 — fOT et (1- %)” dA. We may further rewrite the right-hand side as

oo T /l n T /1 n o)
/ e‘/ld/l—/ e"l(l——) dﬂ:/ e"l[l—(l——) cu+/ e~da
0 0 T 0 T T
Tl/l/l N ) A
/ —e d/l+/ e dAa
o T T

-T

IA

n
—+e
T

IA

By assumption, 1 — S = B(v) > ¢, hence ¢S > ¢! Tt follows that

n .
—+e T >
T

From this, we deduce that T is bounded from above by some constant that only depends on ¢ and n. The

proof is now complete. o

Theorem 6.3. Fixed positive integers n, N, a positive number Vi and a constant hyg. Denote by P the
set of n-dimensional log Fano pairs (X,A) with N - A integral which satisfy (-Kx — A)" > Vy and
h(X,A) > hgy. Then P is bounded.

Proof. For fixed ap > 0, the set of log Fano pairs (X,A) with n = dim(X), N - A integral and
(=Kx — A)" > Vy, and a(X,A) > @ are bounded by [Che20] [Jia20] [XZ21]. Applying Proposition
6.2 then completes the proof. O

Next, we will prove the openness. It suffices to show the following theorem.

Theorem 6.4. Let (X,A) — B be a locally stable family of log Fano pairs over a scheme B of finite
type. Then

h:t— h(X;,A;), t€B

is a constructible and lower semicontinuous.

Proof. By passing to a resolution of B4, we may assume B is smooth. By the proof of Theorem 5.4,
we know that the minimizer of ﬁx,A is an lc place of a Q-complement. Then as showed in [BLX22,
Theorem 3.5],

h(X;,A;) = min{Bx, A, | v is an N-complement},
A4

for some constant N which only depends on dim X and coefficients of A. Then the rest of the proof is
similar to the one in [BL22, BLX22]. For the sake of completeness, we give a sketch here.

We know that there is a finite type variety ¢: S — B with a relative Cartier divisor D € X Xp S over
S such that
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1. For any s € S, the fiber Dy is an N-complement of (X;,A;), where t = ¢(s), and (X;, Dy + A;) is
log canonical but not klt, and
2. For any N-complement I'; of (X;, A;), there is a point s € S, such that Dy = T';.

After resolving and stratifying S, as well as passing to a finite base change, we can assume S is a union
of its smooth connected component S; such that (X Xg S;, A Xg S; + D Xg S;) admits a fiberwise log
resolution.

For a fixed 7, we can identify the dual complex CW; := DMR(X;, A; + D;) forany t € S;. We claim
,éX,, A, (v¢) does not depend on ¢, for different valuations v, correspond to the same point of CW;. This
is obvious for Ax, a,(v¢). It also proved in [BLX22], using the invariance of plurigenera ([HMX13]),
for v, corresponding to the same point of CVV over any ¢ € S;, the induced DH-measure DHz, on R is
the same. Therefore,

S(7,) =-log [ Dt (@)
R

does not depend on t.

Hence, for each i, we can define a; = min{3(v;) | v; € CW;}, and we know that h(X;,A;) =
min{a;| t € ¢(S;)}, which implies that 4(X;, A;) is constructible.

In light of the above constructibility result, to prove the lower semicontinuity of 4 it suffices to
consider the case when B is the spectrum of a DVR R essentially of finite type over k. Let K denote
the fraction field of R and « the residue field. By the properness of the flag variety, we know that any
filtration Fx on €, H(—mr(Kx, + Ax,)) extends to a filtration F, on (B, H°(-mr(Kx, +Ax,))
(see [BL22]). By Lemma 3.8 and the lower semicontinuity of the log canonical threshold,

LM (Fx) = u(Fx) 2 u(Fo) = LA (F).

Since DHx, (d1) = DH £, (dA), we also have §(]—'K) = §(}'K). Therefore, i is lower semicontinuous. O
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