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Abstract

We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the
existence of Kihler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability
thresholds for hypersurfaces at generalised Eckardt points and for cubic surfaces at all points, and (c) provide a new
algebraic proof of Tian’s criterion for K-stability, amongst other applications.
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1. Introduction

Introduced by Tian [47] and reformulated algebraically by Donaldson [18], K-stability is an algebro-
geometric property of Fano varieties that detects the existence of Kéhler-Einstein metrics. By the
celebrated works of Chen-Donaldson-Sun [14] and Tian [48], a Fano manifold admits a Kahler-Einstein
metric if and only if it is K-polystable. However, it is in general very hard to verify the K-stability of
a given Fano variety. Tian’s criterion, introduced in [46], provides a sufficient condition for K-stability
and has arguably become the most famous validity criterion for K-stability. There are also a few variants
[15, 21, 41] of Tian’s criterion, and a notable application is the K-stability of smooth hypersurfaces
of Fano index one [21]. More recently, [44] discovered another K-stability criterion in the particular
case of birationally superrigid Fano varieties; and as an application, [51] proved that Fano complete
intersections of index one and large dimension are K-stable. However, both criteria apply exclusively to
certain Fano varieties of index one, and except in a few sporadic cases, it is unclear how to attack the
problem when the required conditions in neither criterion are satisfied; see for example [1, 16, 38, 43].

The purpose of this paper is to develop a systematic approach for proving the K-stability of Fano
varieties. As a major application, we confirm the K-stability of all smooth hypersurfaces of Fano index
two.

Theorem 1.1 (=Theorem 4.12). Let X = X, C P™! be a smooth Fano hypersurface of degree n > 3.
Then X is uniformly K-stable.

In particular, this generalises the work of [38] on K-stability of smooth cubic threefolds, although
our argument is completely different.

As another application, we prove the following K-stability criterion, giving a unified treatment for
several Fano manifolds that are previously known to be K-(semi)stable; see Definition 2.3 for the
definition of Bx (E) in the statement.

Theorem 1.2 (=Corollary 4.4). Let X be a Fano manifold of dimension n. Assume that there exists an
ample line bundle L on X such that

1. =Kx ~q rL for some r € Qwith (L") < "TH; and
2. foreveryx € X, there exists Hy, . ..,Hy,_| € |L| containing x suchthat Hy N - -- N H,,_; is an integral
curve that is smooth at x.

Then X is K-semistable. If it is not uniformly K-stable, then (L") = "7” and there exists some prime
divisor E C X such that Bx (E) = 0.

For instance, this applies to projective spaces, hypersurfaces of Fano index one and double covers
of P" branched along a hypersurface of degree at least n + 1. We refer to Corollary 4.5 for a more
exhaustive list. While Tian’s criterion or the criterion from [44] apply to some of them, the conditions
in Theorem 1.2 are usually easier to check; indeed, we never use Tian’s criterion or the criterion from
[44] in this paper, as most varieties considered here are of higher Fano index. On the other hand, it
may be worth pointing out that our general approach also leads to a new proof of these two criteria; see
Subsection 4.1.

Before we state further applications, let us recall that by [2, 24], K-stability of a Fano variety X can
be characterised by its stability threshold 6(X), defined via log canonical thresholds of anti-canonical
Q-divisors of basis type; see Subsection 2.2. For example, X is K-semistable if and only if §(X) > 1. One
can also define local stability thresholds d, (X) at some x € X by taking log canonical thresholds around
the point x so that the global invariant §(X) is the minimum of the local ones 8, (X); see Subsection 2.2.
It is again a challenging problem to find the precise value of these invariants, unless the variety has a
large group of automorphisms [2, 25, 50]; see [13, 42] for some estimates on del Pezzo surfaces.

We also compute these invariants in some nontrivial cases. As a first example, we study the local
stability thresholds of hypersurfaces at generalised Eckardt points.

Theorem 1.3 (=Corollary 4.10). Let X C P"™*! be a smooth Fano hypersurface of degree d, and let
X € X be a generalised Eckardt point (the tangent hyperplane section at x is the cone over a hypersurface
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Y C P! of degree d). Assume that Y is K-semistable when d < n — 1 (i.e., when it is Fano). Then
0x(X) = %, and it is computed by the ordinary blowup of x.

Since on smooth quadric hypersurfaces every closed point is a generalised Eckardt point, by induction
on dimension, we obtain an algebraic proof of their K-semistability. In general, we get 6,(X) > 1 as
long as Y is K-semistable. We expect that if X has a generalised Eckardt point x, then §(X) = d,(X),
and smooth Fano hypersurfaces of degree d with smallest stability thresholds are those with generalised
Eckardt points (see Theorem 4.6 and Corollary 4.7 for some evidence on cubic surfaces). Thus the
above theorem suggests a possible inductive approach to the K-stability of Fano hypersurfaces.

As a second example, we calculate the local stability thresholds of all cubic surfaces, from which we
derive the following consequences.

Theorem 1.4 (see Theorems 4.6 and 4.8). Let X C P be a smooth cubic surface. Then there exists

some boundary divisor A such that (X,A) is log Fano and 6(X,A) = 25—98\6 ¢ Q. Moreover, there

exists C € | — Kx| such that (X, C) is log canonical and some valuation v that is an Ilc place of (X, C)
such that the associated graded ring

gr R = @m,AGr}VHO(X, -mKy)

is not finitely generated, where F, is the filtration induced by v.

This is somewhat surprising as, by [4, Theorem 1.4], the global stability thresholds §(X) are always
rational on Fano manifolds that are not K-stable. Moreover, graded rings associated to Ic places of
Q-complement as in the above statement are usually expected to be finitely generated; see, for example,
[35, Conjecture 1.2]. Thus our example shows that the situation is more complicated in general.

1.1. Overview of the proof

We now describe our approach to proving the K-stability of Fano varieties. In general, one would like
to estimate, or perhaps calculate, the stability threshold of a Fano variety. A priori, we need to consider
log canonical thresholds of all anti-canonical basis type divisors. Our first observation is that it suffices
to consider a smaller class of them: that is, those that are compatible with a given divisor over the Fano
variety.

Definition 1.5. Let X be a Fano variety, and let E be a divisor over X: that is, a prime divisor on some
birational model of X. Let m € N, and let D be an m-basis type Q-divisor on X: that is, there exists a
basis 51, , s, of Vi, = H*(X, —-mKx), where N,,, = h®(X, —-mKx), such that

1 W
D= ;{si = 0}.
We say that D is compatible with E if for every j € N, the subspace
]:{EVm ={seVy|ordg(s) > j} € Vyu

is spanned by some s;.

We may then define the stability threshold 6(X; Fg) of X with respect to E by restricting to basis
type divisors that are compatible with E. It turns out that
Proposition 1.6 (see Proposition 3.1). §(X) = §(X; Fg).

In other words, only basis type divisors compatible with E are relevant when computing stability
thresholds. While basis type divisors can be hard to study in general, those compatible with a given
divisor E are often concentrated around E, making it convenient to apply the inversion of adjunction.
As an illustration, we consider the example of projective spaces.
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Example 1.1. Let X = P", and let E be a hyperplane. Then asymptotically, basis type Q-divisors D on
X that are compatible with E can be written as D = E + D, where D does not contain E in its support
and Dy is a convex linear combination of basis type Q-divisors on E = P!

By induction and inversion of adjunction, this easily implies that 6(P") > 1 and thus gives an
algebraic proof of the K-semistability of P". In general, there is a lot of flexibility in the choice of the
auxiliary divisors E, leading to various applications. In fact, as we will show in Subsection 4.1, both
Tian’s criterion and the criterion from [44] are implied by taking E to be a general member of | — mKx|
for some sufficiently divisible integer m. On explicitly given Fano varieties, however, the geometry
usually suggests more natural choices of E; sometimes we can even start with the optimal one — that is,
a divisor that computes ¢(X), as in Example 1.1 — and no information will be lost in the process. This
is exactly how we compute the stability thresholds in Theorems 1.3 and 1.4.

More generally, instead of using an auxiliary divisor to refine the class of basis type divisors, we
can also use an admissible flag, which is an important tool in the construction of Okounkov bodies
of line bundles; see, for example, [33]. Indeed, in the inductive proof of the K-semistability of P" as
outlined above, we already implicitly use the full flags of linear subspaces. One can similarly define
the compatibility of a basis type divisor with an admissible flag and show that to compute the stability
threshold, it suffices to consider basis type divisors compatible with a chosen flag; see Section 3 for
details. To prove the K-stability of a Fano variety, it is often enough to carefully choose the auxiliary
divisor or admissible flag and analyse the corresponding compatible basis type divisors through inversion
of adjunction. In particular, the proofs of Theorems 1.1 and 1.2 are obtained this way and involve several
different auxiliary divisors and admissible flags.

1.2. Structure of the paper

This paper is organised as follows. In Subsections 2.2-2.4, we put together various preliminary materials.
As we apply inversion of adjunction to basis type divisors compatible with an admissible flag, we get
basis type divisors of some filtered multigraded linear series in a natural way. We define and study
the invariants associated to such linear series in Subsections 2.5 and 2.6. In Section 3, we develop
the framework to study stability thresholds of Fano varieties or, more generally, §-invariants of big line
bundles and derive a few inversion-of-adjunction type results for stability thresholds. The applications are
presented in Section 4: in Subsection 4.1, we give a new proof of Tian’s criterion and the criterion from
[44]; in Subsection 4.2, we study K-stability of Fano manifolds of small degree and prove Theorem 1.2;
in Subsection 4.3, we explain how to compute stability thresholds of log del Pezzo surfaces almost in
complete generality, and in particular we prove Theorem 1.4; in Subsection 4.4, we prove Theorem 1.3;
and finally, Theorem 1.1 is proved in Subsection 4.5.

2. Preliminaries
2.1. Notation and conventions

We work over C. Unless otherwise specified, all varieties are assumed to be normal and projective. A
pair (X,A) consists of a variety X and an effective Q-divisor A such that Kx + A is Q-Cartier. The
notions of kit and Ic singularities are defined as in [31, Definition 2.8]. The non-lc centre Nlc(X, A) of
a pair (X, A) is the set of closed points x € X such that (X, A) isnotlcatx. If 7 : ¥ — X is a projective
birational morphism and E is a prime divisor on Y, then we say E is a divisor over X. A valuation on
X will mean a valuation v: C(X)* — R that is trivial on C*. We write Cx (E) (respectively, Cx (v))
for the centre of a divisor (respectively, valuation) and Ax a(E) (respectively, Ax a(v)) for the log
discrepancy of the divisor E (respectively, the valuation v) with respect to the pair (X, A) (see [6, 27]).
We write Val, for the set of nontrivial valuations. Let (X, A) be a klt pair, Z C X a closed subset (may
be reducible) and D an effective divisor on X; we denote by Ictz (X, A; D) the largest number A > 0
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such that Nlc(X, A + AD) does not contain Z. Given a Q-divisor D on X, we set
H°(X,D) := {0 # s € C(X) | div(s) + D > 0} U {0}

whose members can be viewed as effective Q-divisors that are Z-linearly equivalent to D. In particular,
if D is Q-Cartier, then ordg (s) := ordg (div(s) + D) is well-defined for any 0 # s € H°(X, D) and any
divisor E over X. We also define the sheaf Ox (D) by localising the above construction.

2.2. K-stability and stability thresholds

Let (X, A) be a projective pair, and let L be a big Q-Cartier Q-divisor on X. We denote by M (L) the set
of integers m € N, such that H%(X,mL) # {0}.

Definition 2.1. Notation as above. Let m € M (L), and let V C H°(X,mL) be a linear series. We say
that D is a basis type divisor of V if D = Zfil {s; = 0} for some basis sy, - - - , sy of V (where, by abuse
of notation, {s; = 0} refers to the Q-divisor div(s;) + mL). By convention, this means D = 0 if V = {0}.
We say that D is an m-basis type Q-divisor of L if D = Dy for some basis type divisor D of

H°(X,mL) (in particular, D ~q L).

1
m-hO(X,mL)

Definition 2.2, Let m € M(L), and let v € Val}.. In the above notation, we set

Sm(L;v) = sup v(D),
D~qL, m-basis type

where the supremum runs over all m-basis type Q-divisor of L. We define S(L;v) to be the limit
lim,— 00 S (L3 v), which exists by [2, 8]. We also define the pseudo-effective threshold as

T(L;v) =sup{d >0|vol(L;v >1) > 0},
where

. 0 >
vol(Liv > 1) = lim dim{s € H‘ (X,mL)|v(s) > mt}.
m—co mdimX /(dim X)!

We say that v is of linear growth if T(L; v) < oo (e.g., when v is divisorial or has finite discrepancy; see
[11, Section 2.3] and [2, Section 3.1]). By [2, Theorem 3.3], for any valuation v of linear growth, we have

1

S(L;v) = vol(L)

/ vol(L;v > t)dt,
0

where vol(L) denotes the volume of the divisor L (see, for example, [32, Section 2.2.C]). If E is a divisor
over X, we put S(L; E) = S(L;ordg) and T(L; E) = T(L; ordg). We will simply write S,,,(E), S(E),
and so on, if the divisor L is clear from the context.

Definition 2.3. Let (X, A) be a log Fano pair: that is, (X, A) is klt and —(Kx + A) is ample. We say
(X, A) is K-semistable (respectively, K-stable) if

Bxa(E) == Ax a(E) = S(-Kx —A}E) 20
(respectively, Bx.a(E) > 0) for all divisors E over X. We say that (X, A) is uniformly K-stable if
Bx.a(v) :=Axa(v) —S(-Kx —A;v) >0

for all v € Valy such that Ax A (v) < oco.
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By [2, 5, 23, 34], this is equivalent to the original definition [10, 17, 18, 47] of K-stability notions in
terms of test configurations.

Definition 2.4. Let (X, A) be a klt pair, and let L be a Q-Cartier big divisor on X. The (adjoint) stability
threshold (or -invariant) of L is defined as

§(L) = §(X,A; L) = inf Ax.a(E)

E S(L.E)’ @

where the infimum runs over all divisors E over X. Equivalently [2], it can also be defined as the limit
0(L) = limy,—c0 0,y (L), where

Om(L) =sup{d > 0| (X, A + D) is Ic for all m-basis type Q-divisors D ~g L}. 2.2)

We say that a divisor E over X computes §(L) if it achieves the infimum in equation (2.1). When (X, A)
is log Fano, we write §(X, A) (or 6(X) when A = 0) for 6(—Kx — A).

We also introduce a local version of stability thresholds.

Definition 2.5. Let (X, A) be a kit pair, and let L be a Q-Cartier big divisor on X. Let Z be a closed
subset of X. We set

8z.m(L) =sup{d > 0| Z ¢ Nlc(X, A + AD) for all m-basis type Q-divisors D ~g L}

and define the (adjoint) stability threshold of L along Z as §z(L) = limsup,,_,, 6z m(L). When Z is
irreducible, it is not hard to see (by an argument similar to that in [2, §4]; see also Lemma 2.9) that the
above limsup is a limit, and we have

Axa(E) . Ax A (V)

57(L)= i 2xat2) 2xaty)
2= 0 e SLE) vz ) S

where the first infimum runs over all divisors E over X whose centre contains Z and the second infimum
runs over all valuations v € Valy such that Ax A (v) < co and Z C Cx(v). If in addition L is ample,
then the second infimum is a minimum by (the same proof of) [2, Theorem E]. As in the global case,
we then say that E (respectively, v) computes dz (L) if it achieves the above infimum. When (X, A) is
log Fano, we also write 6§z (X, A) (or 6z(X) when A = 0) for 6z (—Kx — A).

2.3. Plt-type divisors

Definition 2.6. Let (X, A) be a pair, and let F be a divisor over X. When F is a divisor on X, we write
A=A +aF, where F ¢ Supp(A); otherwise let A} = A.

1. F is said to be primitive over X if there exists a projective birational morphism 7 : ¥ — X such that
Y is normal, F is a prime divisor on Y and —F is a m-ample Q-Cartier divisor. Wecall7 : ¥ — X
the associated prime blowup (it is uniquely determined by F).

2. F is said to be of plt type if it is primitive over X and the pair (Y, Ay + F) is plt in a neighbourhood
of F, where m : Y — X is the associated prime blowup and Ay is the strict transform of A; on Y.
When (X, A) is kit and F is exceptional over X, x is called a plt blowup over X.

Lemma 2.1. Let (Y, F + A) be a plt pair with | F + A| = F. Then for any Q-Cartier Weil divisor D on
Y, there exists a uniquely determined Q-divisor class (i.e., Q-divisor up to Z-linear equivalence) D|p
on F and a canonical isomorphism

Oy (D)/Oy(D - F) = Op(D|F).
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Proof. The Q-divisor class D|r is defined in [26, Definition A.2 and A.4] by localising at every
codimension 1 point of F, and the isomorphism is established by [26, Lemma A.3]. O

2.4. Filtrations and admissible flags
We recall the notation of filtrations as well as some constructions from the study of Okounkov bodies.

Definition 2.7. Let V be a finite dimensional vector space. A filtration F on V is given by a collection of
subspaces 7'V indexed by a totally ordered abelian monoid A (in which case we also call the filtration
a A-filtration) such that Foy = v, Py =0 for some 1y, 1, € A and FV C F'V whenever 1 > 1.
When A = R, we will also require that the filtration is left continuous: that is, for any 4 € R, we have
Fey = PV forall 0 < & < 1. For each 1 € A, we set Gr’]l_-V = ]:’lV/U,D/l]:"V. A basis sq,- -+, SN
(where N = dim V) of V is said to be compatible with F if every F'V is the span of some s;.

Most filtrations we use are induced by a divisor or an admissible flag.

Example 2.2. Let L be a Q-Cartier Q-divisor on X, and let V. C H°(X, L) be a subspace. Let E be a
divisor over X. Then it induces an R-filtration Fg on V by setting

FLV = {s € V|ordg(s) > 1}.

More generally, every valuation v on X induces a filtration F,, on V with ]-'/VIV ={seV]|v(s) = 1}.

Definition 2.8 [33]. Let X be a variety. An admissible flag Y, over X of length ¢ < dim X is defined as
a flag of subvarieties

Yo : Y=Yy 2112---2Y,

on some projective birational model 7 : ¥ — X of X, where each Y; is an (irreducible) subvariety of
codimension 7 in Y that is smooth at the generic point of Y.

Given an admissible flag Y, over X as above and a Q-divisor L on X that is Cartier at the generic
point of Yz, one can define a valuation-like function

v=vr =y (HOX DO} 5 I, s o v(s) = (1), 1 ve(s)) 23)

as follows. First, v; = v;(s) = ordy, (s); over an open neighbourhood U C Y of the generic point of
Y,, s naturally determines a section §; € HO(U, Oy (n*L — v{Y;)) that restricts to a nonzero section
s1 € HHY nU, Ov,nu (*L — v1Y1)). We set va(s) = ordy, (s1) and continue in this way to define
the remaining v;(s) inductively. Via the lexicographic ordering on Z¢, every flag Y, over X induces a
filtration Fy, (indexed by N¥) on V = H(X, L) by setting

FrV={seV]|v(s) > a}.
We also define the graded semigroup of L (with respect to Y, ) as the subsemigroup
P(L) =Ty, (L) = {(m.,vy.(5)) |m € N0 # s € H(X,mL)}

of N x N¢ = N1, The Okounkov body A(L) = Ay, (L) of L is then the base of the closed convex cone
(L) = Xy, (L) € R! spanned by I'(L): that is, A(L) = (L) N ({1} x RY).

For later use, we introduce some more notation. For a subspace V € H°(X, L) and an effective Weil
divisor E on some birational model 7 : ¥ — X of X, we set V(—E) := VNH(Y, n*L(-E)) € H(X, L).
Let Y, is an admissible flag over X of length r. Assume that L is Cartier and that each Y; in the flag is a

https://doi.org/10.1017/fmp.2022.11 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.11

8 Hamid Abban and Ziquan Zhuang
Cartier divisor in ¥;_;. Then for every s-tuple (1 < s < ¢) of integers @ = (ay,- - ,as) € N¥, following
[28], we define
V(@) € H'(Yy, L ® Oy, (~a\Y) — axYs — -+ — a,Yy))
inductively so that V(a;) = V(—a1Y1)|y, and
V(ay, -+ ,as) =V(ay, - ,as-1)(—as¥Ys)ly, 2 < s <0).

Note that Fy, induces a filtration on V(ay, - - - , ay) indexed by N¢=5.

2.5. Multigraded linear series
Definition 2.9 [33, §4.3]. Let Ly, - - - , L, be Q-Cartier Q-divisors on X. An N”"-graded linear series Wy
on X associated to the L;’s consists of finite-dimensional subspaces

W; ¢ H'(X,Ox(a\Li +---+a,L,))

for each @ € N” such that Wy = C and W5 - W5, C W; 4, for all a,d> € N". The support
Supp(W;) € R” of W5 is defined as the closed convex cone spanned by all @ € N” such that W; # 0.
We say that Wy has bounded support if Supp(W;5) N ({1} x R"~!) is bounded. For such W;, we set

B (Wpz) = Y. dim(W,,z)
deNr-1
for each m € N (it is a finite sum when W; has bounded support) and define the volume of W5 as (where
n = dim X)
RO (W, %)
ntr=1/(p4r— 1)

vol(W53) := lim sup
m—oo M

We say that W; contains an ample series if the following conditions are satisfied:

1. Supp(W;) € R” contains a nonempty interior;

2. for any d € int(Supp(W;5)) NN", W,z # 0 for k > 0;

3. there exists some dy € int(Supp(W;)) N N” and a decomposition dj - L=A+E (where L
(Ly,---,L,)) with A an ample Q-line bundle and E an effective Q-divisor such that H*(X,mA)
Wna, for all sufficiently divisible m.

N

If Y, is an admissible flag of length ¢ over X such that Ly, - - - , L, are Cartier at the generic point of Y,
the multigraded semigroup of W; with respect to Y, is defined to be

C(Ws) =Ty, (Ws) == {(@,v(s)) |0 # s € Wg} C N x Nl = N+,

Remark 2.3. Note that the above definition is slightly more general than [33] since we allow divisors
L; that may not be Cartier or integral. However, most results of [33, §4.3] carry over to our setting.
In particular, when W; contains an ample series, one can verify as in [33, Lemma 4.20] that I"(W5)
generates Z'** as a group. If in addition W has bounded support, then we can define the associated
Okounkov body A (W;) = Ay, (W3) as Z(W;) N ({1} x R”~1*¢) where X(W;) is the closed convex cone
spanned by I'(W;). When £ = n = dim X, we let T',,, = T'(W;) N ({m} x N"=1*) and let

1
= Z S-la (2.4)

acely,
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be the atomic positive measure on A (W5). Then by [7, Théoréme 1.12], p,,, converges weakly as m — oo
to the Lebesgue measure on A(W5). In particular, we have vol(W5) = (n+r — 1)! - vol(A (W3)) as in
[33, Theorem 2.13]. By [33, Corollary 4.22], there is also a continuous function

volw, : int(Supp(W;)) — R 2.5)

such that for any integer vector @ € int(Supp(W53)), volw; (@) equals the volume of the graded linear
series {W,,z }men-

We give some examples of multigraded linear series that naturally arise in our later analysis (i.e., when
applying inversion of adjunction to basis type divisors compatible with a given divisor or admissible
flag). The following lemma ensures that the graded linear series we construct contains an ample series.

Lemma 2.4. Let Wg be an N -graded linear series on X with bounded support and containing an ample
series. Then for any admissible flag Y, of length € over X such that Ly, - - - , L, are Cartier at the generic
point of Yp and any y € int(X(Wz)) NN+ we have ky € T'(Wz) when k > 0.

Proof. By [33, Lemma 4.20] as in the previous remark, the semigroup I'(W5) generates Z"*¢ as a group.
Let ' C I'(W;) be a finitely generated subsemigroup that still generates Z"+ and such that y € int(X),
where X C X(W3) is the subcone generated by I'. By [29, Proposition 3], there exists some yy € I such
that

(Z+790) NN C T CT(Ws).

Asy € int(X), we have ky € Z + yo when k > 0, and thus the lemma follows. O

Example 2.5. Let L be a big line bundle on X. The complete linear series associated to L is the N-graded
linear series V; on X defined by V,,, = H°(X, mL). It is clear that V; has bounded support and contains
an ample series.

Example 2.6. Let Li,---,L, be Cartier divisors on X, and let V; be an N"-graded linear series
associated to the L;s. Denote L= (Ly,---,L;). Let F be a primitive divisor over X with associated
prime blowup 7 : ¥ — X, and let F be the induced filtration on V; (see Example 2.2). Assume that F
is either Cartier on Y or of plt type. In the latter case, we define F|g as the Q-divisor class given by
Lemma 2.1. Then in both cases,

Wz, = }_jVa/]‘—jHVa
can be naturally identified with the image of 77/ V; under the composition
FVq— H(Y.n"(a- L) - jF) — H'(F.x"@- D)lr - jFlr)

(this is clear if F is Cartier on Y; when F is of plt type, we use Lemma 2.1). It follows that W; is an
N"*!_graded linear series on F (associated to the divisors 7*Li|f, - ,n*L,|r and —F|r), called the
refinement of Vg by F. It is not hard to see that W5 has bounded support if V5 does (see, for example,
[33, Remark 1.12]). We show that W; contains an ample series if V; does. Indeed, condition (1) and (3)
are easy to verify as V; contains an ample series. For condition (2), consider the admissible flag Yy = Y,
Y| = F; then we see that W ; # 0 if and only if (a, j) € Ty, (V5), and hence condition (2) follows from
Lemma 2.4.

Example 2.7. More generally, let Ly, --- , L, be Cartier divisors on X, let V5 be an N"-graded linear
series associated to the L;’s, and let Y, be an admissible flag of length £ over X. Assume that each ¥; in
the flag is a Cartier divisor in ¥;_;. Then in the notation of Section 2.4,

Wa,bl,*“,b[ = Vd(bl’ et ,bf)
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defines an N"*‘-graded linear series on Y,. We call it the refinement of V; by Y. As in the previous
example, one can check that W5 has bounded support (respectively, contains an ample series) if V5 does.

2.6. Invariants associated to filtered multigraded linear series

Definition 2.10. Let W5 be an N"-graded linear series. A filtration F on W; (indexed by A) is given
by a filtration on each W (4 € N") such that F Ws, - Fl W, € Flutd W;, 44, for all 4; € A and all
d; € N If A C R, we say the filtration F is linearly bounded if there exist constants C; and C; such
that F'W; = W for all 1 < Ci|d| and F'W; = 0 for all A > C,]d].

One can generalise the definition of basis type divisors, S-invariants and stability thresholds to filtered
multigraded linear series.

Definition 2.11. Let W; be an N X N”-graded linear series with bounded support. Let M (W3) be the
set of m € N, such that W, ; # 0 for some @ € N". Let m € M(W5), and let N,, = hO(Wm’;). We say
that D is an m-basis type divisor (respectively, Q-divisor) of Wy if there exist basis type divisors D of
W,,.a for each @ € N” such that

D= QZ D; respectively, D = mLNm QZ D;.
aenN” aeN”r

When r = 0 and W5 is the complete linear series associated to L, this reduces to the usual definition of
m-basis type (Q-)divisors of L (compare to Section 2.2). Let F be a filtration on Ws, and let D be an
m-basis type (Q-)divisor of W;. We say that D is compatible with F if all the D; above has the form
D; = f‘i {s; = 0} for some basis s; ( = 1,---,N) of W, ; that is compatible with F. In particular,
we say that D is compatible with a divisor E (respectively, an admissible flag Y,) if it is compatible with
the filtration induced by E (respectively, Y, ). Note that the divisor class c{ (D) € Cl(X)g of an m-basis
type divisor does not depend on the choice of D. We denote it by ¢ (W, 3).

Definition 2.12. Let (X, A) be a klt pair, and let Z be a closed subset of X. Let W5 be an N x N"-graded
linear series on X with bounded support, let F, G be filtrations on W5, and let v € Val; be a valuation
on X. Assume that G is a linearly bounded, left continuous R-filtration and Ax A (v) < co. Associated to
G, we have a valuation-like function vg: Wi — R given by

s € W; - sup{d € R|s € G'W;}.

IftD = ﬁ Zf\i’f{si = 0} is an m-basis type Q-divisor D of W5, where each s; € W,, ; for some

d € N”, then we define

Nm

vg(D) = —— > vglsi).

i=1

Clearly vg = v if G = F, is the filtration induced by the valuation v. Similar to Section 2.2, for each
m € M(Ws), we set

Sm(W5, F;G) =supvg(D), Sn(Ws, Fyv) =S, (W, F, F,) =supv(D),
D D

where the supremum runs over all m-basis type Q-divisors D of W; that are compatible with F. We also
set

(Wi, F) =6, (X, A; W5, F) = igflct(X,A;D)
0z, m(Ws, F) =0z m(X,A; W5, F) = igflth(X,A;D),
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where the infimum runs over all m-basis type Q-divisors D of W; that are compatible with F. We then
define

S(W;, F,G) =limsup S,,,(Ws, 7, G),  S(Ws, F;v) = S(Ws, F, Fy)

and similarly the (adjoint) stability thresholds 6 (W5, F) (respectively, 6z (W5, F)) of a filtered multi-
graded linear series W;. If E is a divisor over X, we set S(W5, F,E) = S(W;, F;ordg) and
Sm(W3, F, E) = S,,,(W;, F;ordg). When the filtration F is trivial (i.e., ]-"’IWa equals W; when 2 < 0
and is 0 when A > 0), we simply write S(Ws; G), §(Ws), 6z (Ws), and so on.

Remark 2.8. When L is a big line bundle on X and W; is the complete linear series associated to L, we
have S(W5;v) = S(L;v) for any valuation v on X; similarly, §(W5) = 6(L) and 6z (W5) = 6z (L) for
any closed subset Z C X.

The following statement is the direct generalisation of [2] to multigraded linear series.

Lemma 2.9. Let (X, A) be a kit pair, and let Z C X be a subvariety. Let W3 be an N X N" -graded linear
series with bounded support that contains an ample series. Then S(Wy; F) = limy,—e0o Si(Ws; F) for
any linearly bounded, left continuous R-filtration F on W3, and we have

A E A
5(Ws) = inf S (XV‘;A; (E; = inf < (XW;A;(‘\}); respectively,
A E A
o W)= nf XAl Axal)

in _— = in _—
E,ZcCx(E) S(Wg; E)  v,zcCx(v) S(W5;v)

where the first infimum runs over all divisors E over X (respectively, all divisors E over X whose centre
contains Z) and the second infimum runs over all valuations v € Valy (respectively, all valuations
v € Valy whose centre contains Z) such that Ax (v) < co. Moreover, it holds that

5(W;) = lim 5m(W;) and 52(W;) = lim 5Z,m(W3)-
In view of this lemma, we say that a divisor E over X (or a valuation v € Valy) computes 6(W5;)
(respectively, 6z (W3)) if it achieves the above infimum.

Proof. The argument is almost identical to those in [2] (which is in turn based on [8]). Using the filtration
F, we define a family W of multigraded linear series on X (indexed by t € R) where Wr’n a=F "W .-
Set ’

Trn(W5; F) = max{j € N| F'W,, ; # 0 for some G}.
It is easy to see that the sequence 7,,,(W5; F) is super-additive, and we set

Tn(W5; F) T (W53 F)
/s = qup ———,
m

meN m

T (W F) = lim

One can check as in [8, Lemma 1.6] that for any r < T(Wg; F), the multigraded linear series W:t
contains an ample series. Therefore, for any fixed admissible flag Y, of length n = dim X centered at
a general point of X, we have the associated Okounkov bodies A? = AY.(WE) (t € R). The result is
now simply a consequence of properties of Okounkov bodies. More precisely, consider the function
G: A =A% = [0,T(W;; F)] given by

G(y) =sup{t e R|y e A"}

It is straightforward to check that G is concave and hence continuous in the interior of A. By the
exact same proof of [2, Lemma 2.9] (using [8, Theorem 1.11]), we get the equality (where p is the
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Lebesgue measure on A°)

S(W" ) I(A) /de— hm S (W;,F)

and an estimate

Sm(WZ;]:) = ]’lo(Wm )/dem,

where p,, is as in equation (2.4) (note that A = A(Ws)). Applied to F = F,, the argument of [2,
Lemma 2.2 and Corollary 2.10] then implies that for any € > 0, there exists some mq = mg(€) such that
Sm(Wg;v) < (1+€)S(Ws;v) for any valuation v € Valy with Ax A (v) < co and any m > my (the key
point is that mo doesn’t depend on v). The remaining equalities in the lemma now follow from the exact
same proof of [2, Theorem 4.4]. O

The above proof also gives a formula for the S-invariants of multigraded linear series, similar to the
one in Definition 2.2.

Corollary 2.13. Notation as above. Then S(Wg; F) = Vol(l—w) fom vol(W})dt.

Proof. We already have S(W5; F) = vo]—lm) /A Gdp. It is not hard to see that fA Gdp = fooo vol(A”)dr.

Since vol(Wg) = (n+r)! - vol(A) and vol(WY) = (n+r)! - vol(A") for all # > O (see Remark 2.3), the
result follows. O

We also provide a more explicit formula for the volumes vol(W}). To this end, let W5 and F be as in

Lemma 2.9, let A{,,, = Supp(WZ) N ({1} x R"), and let

VO]Wr int(Al, ) —> R

supp

be the volume function as in equation (2.5). Then we have

Lemma 2.10. vol(W}) = (n+r) fAz VO]W'()’)dV

Proof. Let pr: R"*** — Rl be the projection to the first » + 1 coordinates that induces a map
p: A" — Al By [33, Theorem 2.13 and 4.21], we know that vol(W.) = (n +r)!- vol(A") and

supp*
voly« (y) = n! - vol(p~'(y)) forall y € int(A{,pp)- The lemma then follows from the obvious identity
vol(A") = [}, vol(p~'(y))dy. O
supp

Recall that for any Q-Cartier big divisor L on X and any integer k > 0, we have §(kL) = %6 (L).
This can be generalised to multigraded linear series as follows. Let Ly, - - - , L, be Q-Cartier Q-divisors
on X, and let W; be an N” -graded linear series associated to them. Let k > 0 be an integer such that kL;
is Cartier forall 1 <i <r.Set W. = W;; (d € N"); then W, is an N"-graded linear series associated to
kLy,--- ,kL,.

Lemma 2.11. In the above notation, assume that W contains an ample series and has bounded support.
Then

L. S(WZ;v) = k- S(W5;v) for any valuation v on X;
2. 6(W;) = k- 6(W2) and 67(W5) = k - 6z(W2) for any subvariety Z of X.

In particular, this implies that for the calculation of stability thresholds, we only need to consider
multigraded linear series associated to Cartier divisors.
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Proof. We use the same notation as in the proof of Lemma 2.9 and let A’, G’, and so on be the
counterparts on WZ. Let f: R™"" — R"*" be given by

(xla""xr+n)'_)(kxl7"'7k-xr,xr+la""xr+n)-
We claim that
(W) = f(Z(WY)). (2.6)

Indeed, it is clear from the construction that f(I"(W.)) € ['(W5), hence f(Z(W2)) € Z(W5). On the
other hand, from the proof of Lemma 2.4, we know that there exists some o € I'(W5) such that

(Z(W3) +y0) NN C T'(W5),

hence as f(I'(W2)) = f(N"*") nT'(W5), we have (X(W3) +yo) N f(N"™) C f(I'(W.)) and therefore
2(W;) € f(Z(W))), which proves the claim.

It follows from equation (2.6) that A(W3) = % S(A(W))) (recall that we identify A(W5) as a subset
of {1} x R"~!*") Replace W; with Wé/k, noting that Wr"i 2= }"’”W"n 2= W]Zr]: rz» and we deduce

Ak = L f(A"). Hence A = 1 f(A’) and

G (M) _GW @7

k k

for any y € A’. Substitute it into the equality S(Ws;v) = FA) fA Gdp from the proof of Lemma 2.9,

we obtain S(Ws;v) = %S (W;v). The remaining parts of the lemma now follow immediately from
Lemma 2.9. O

To further analyse basis type divisors of Ws, for each @ € N"*! with W # 0, we let M (respectively,
F) be the movable (respectively, fixed) part of the linear system |W;|. Thus we have a decomposition
|W;| = |[Mj| + F5. For each m € M (Wj3), let

Fp = Fp(W3) = ! ) Z dim(Wm,&) “F,a-

. Ko -
m-hO(W,, 5 et

Then it is clear that every m-basis type Q-divisor D of W5 can be decomposed as D = D’ + F,;, where
D’ is an m-basis type Q-divisor of My (the definition of basis type divisors works for any collection of
linear series indexed by N x N”). We next study the asymptotic behaviour of D’ and F,.

Lemma-Definition 2.14. Let Ly, - - - , L, be Q-Cartier Q-divisors on X, and let W3 be an associated

NXxN"-graded linear series that has bounded support and contains an ample series. Then in the notation
of Definition 2.11, the limit

- W 3
m—oo - hO(Wm’;

exists in Pic(X)g. Similarly, lim,,—« ordp F,, exists for any prime divisor D C X. We will formally write

F(W;) = Z( lim ordp (Fy)) - D.
D

When this is a finite sum, we set c{(Mz) = c;(W3) — F(W3) € CI(X)g.
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Proof. Let L= (Ly,---,L,). In the notation of Definitions 2.9 and 2.11, we have

1 Wnz) . Zaar WO (W) - (@- L)

- = +
m- O Wz m - hO(W,,3)

Saewr h° (W, 5)-a;

IO (W s) exists for each 1 < i < r. In the

Thus for c¢;(Ws), it suffices to show that lim,;,—c
notation of Remark 2.3, we have

Saewr W) - a; _ /xidpm
m - hO(W,, 3) [ dpm ’

where x; denotes the ith entry of an element of R"*"*. Hence by [7, Théoréme 1.12], the limit exists and
equals m fA x;dp, where A = A(W5).

For F(W5), it suffices to show that lim,,,_,., ordp (F;;,) exists for any prime divisor D. First note that
since W5 has bounded support, there exists some constant C; > 0 such that |d@| < Cym for any d € N”
with W,, ; # 0. Thus asmLo +d - L- F,, ; is effective, we further deduce ordp (F,, ;) < Tm for some
absolute constant 7. Let Ag := int(Supp(W3)) N ({1} xR") € R". Since W; - W; C W3z, we have
F; + F; > F;,z (whenever Wz, Wz, # 0); thus if we let

ord me* ord me_
D( s y) - lim D( s y)

Sfw;.p(y) :=inf

for y € Ag N Q", where the infimum and limit are taken over sufficiently divisible integers m, then
Swe.p(tyr + (1 =1)y2) < tfw..p(y1) + (1 =) fw, p(y2) for any y1,y2 € Ag. Therefore it naturally
extends to a convex (and hence continuous) function fw, p on Ay. For simplicity, we denote fw; p by
/- By the previous discussion, f(y) < T forall y € Ay.

We claim that f(y) = limy,—e f (y) for any y € Ag where

%Ol‘dD(Fm’me,J) if Wm,Lm)'/’J #0

Jny) = {T W, 0.

Jmy] =
Indeed, as f,(y) > f (LmTﬂ) (m > 0) by definition, we have

timinf £,,() = 1im f(22) = p),
m—oo m—oo m

To get the reverse direction, let € > 0 and choose y; € Ao N Q" (i =0, - - - , r) that are sufficiently close
to y such that their convex hull contains 7y in the interior and f(y;) < f(y) + &. Then we may choose
some sufficiently divisible mg € N such that f,,,, (y:) < f(y) +&. Let I C R"™*! be the cone spanned by
all the y;s. From the proof of Lemma 2.4, we know that there exists some do € N"*! such that W; # 0
for all @ € (I1 + dg) N N"*! (consider the semigroup {a@ | W; # 0} C N"*!, choose a finitely generated
subsemigroup that generates Z"*! such that the cone it spans contains IT, and apply [29, Proposition 3]).

Then one can verify that there exists some constant C > 0 such that for all m > 0, we have
r
(m, m¥]) =@+ ki(mo, moy;)
i=0

for some k; € N and some @ € N"*! satisfying W; # 0 and |d@| < C. In particular, |m —mqg Y, k;| < C
and ordp (W) < CT. It follows that
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r r
Ordp (Fyn, 7)) < ordp(Wz) + Y kiordp (Fong myy,) = ordp (Wa) + > kimo funy (7:)
i=0 =0

< ordp(Wg) + (m = CO)(f(y) +&) < CT + (m = C)(f(y) +¢).

Hence limsup,,,_,, fin(y) < f(y) +&. Since £ > 0 is arbitrary, we get limsup,,,_,, fin(y) < f(y), and
this proves the claim. Note that the argument also shows W,,, |,,5| # 0 for m > 0.
It is clear that

op)d
OrdD (Fm) = M’
J dom
where p: A = A(W3) — Ay is the natural projection. By dominated convergence and the above claim,
the latter limit exists and equals Vollw fA (f o p)dp. O

For later calculations, we extract a formula for F (W) from the above proof.

Corollary 2.15. Let W; be an N X N" -graded linear series on X that has bounded support and contains
an ample series, and let D be a prime divisor. Then

(n+r)!. 1

ordp (F(W3)) = nl vol(W;)

A Fyvolw, (y)dy.

supp

where Agypp = Supp(Wz) N ({1} xR"), £(¥) = fw;.p(¥) = limp—e Lordp (F,, | my)), n = dim X and
volw, (+) is as in equation (2.5).

Proof. The above proof gives ordp (F(W3)) = F@) fA(f o p)dp. We have vol(W3) = (n+r)!-vol(A),

P(A) = Agypp and voly, (y) = n! - vol(p~'(y)) for any y € int(Agypp). These together imply the given
formula. o

Most multigraded linear series considered in this paper come from the refinement of some complete
linear series by a divisor or a flag. To simplify computations, we often carefully choose the divisor
(or flag) so that the corresponding multigraded linear series behaves like complete linear systems
associated to multiples of a fixed line bundle.

Definition 2.16. Let L be a big line bundle on X, and let W5 be an N x N”"-graded linear series. We say
that W; is almost complete (with respect to L) if the following two conditions are both satisfied:

1. there are at most finitely many prime divisors D C X with ordp (F(W5)) > 0 (so that F(W5) is an
R-divisor);

2. for every ¥ € Q" in the interior of Agpp := Supp(Wg) N ({1} x R") and all sufficiently divisible
integers m (depending on ¥), we have |M,,, ,,,7| € |L,, 5| for some L,, 3 = ¢, ;L and some £,,, 5 € N
(where M; is the movable part of W;) such that

hO(Wm,m)_}) hO(Mm,mf/)
= —
(X, by sL) WX, Ly 5L)

asm — oo,

Example 2.12. Let L be an ample line bundle on X, and let H € |L|. Assume that H is irreducible and
reduced. Let V; be the complete linear series associated to L for some positive integer r, and let W; be
its refinement by H (Example 2.6). Then the N?-graded linear series Wy is almost complete. Indeed, we
have Wy, ; = |(mr — j)L|p; but since L is ample, the natural restriction H*(X, kL) — H°(H, kL|y) is
surjective when k > 0, hence W, ; = |(mr — j)Lo| (Where Lo = L|g) and F,,, ; = 0O when mr — j > 0,
so the conditions of Definition 2.16 are satisfied and F (W) = 0. More generally, if Y, is an admissible
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flag on X (i.e., Yo = X) such that each Y; is Cartier on ¥;_; and ¥; ~ m; Ly, , for some m; € N, then the
refinement of V; by Y, (Example 2.7) is almost complete as well.

Lemma 2.13. Let L be a big line bundle on X, and let W3 be an N X N" -graded linear series. Assume
that Wi has bounded support, contains an ample series and is almost complete with respect to L. Then

1. F(W;) is R-Cartier (i.e., it is an R-linear combination of Cartier divisors);
2. there exists a constant pu = pu(X, L, W3) such that ¢1(Mz) = uL in NS(X)gr and

S(We;v) = - S(L;v) +v(F(W3)) (2.8)

for all valuations v € Valy of linear growth.

Proof. Let M(y) = limy—e %Cl(Mm,me/J) € CI(X)r and F(y) = limy—e %Fm,I_mf/J for y €
int(Agupp). As in the previous proof, the limit exists: M(y) = ¥ - L- >p fw.,p(y) - D and F(y) =
2.p fwz,p(y) - D in the notation of Corollary 2.15. Moreover, M is continuous, and we have

1

c1(Mg) = ol(A) /A(M o p)dp,

where A = A(W;) and p: A — Ay, is the natural projection. Since W5 is almost complete, we see

that M (y) is R-Cartier and M (y) = g(y)L for some g(y) € R. It follows that ¢ (M3) is also R-Cartier
and ¢1(M3) = pL in NS(X)g, where

1 1
#= vol(A) ‘/A(g °p)dp = vol(A)

Since F(W;) ~r ¢1(W3) — ¢1(Mz), we also see that F (W) is R-Cartier. It remains to prove equation
(2.8).

As F(y) ~r ¥ - L — M(y) is also R-Cartier, we may define h(y) = v(F(y)); and as in the proof of
Corollary 2.15, we have

vol(p~' (7)) - g(y)dy.

Asupp

1
VW) = s /A (ho p)dp.
We claim that

voly: (v) = vol(g(y)L;v = 1 = h(y)) (2.9)

in the notation of Corollary 2.13 and Lemma 2.10. For this, we may assume that y € Q". Let F be the
filtration induced by v, and let m be a sufficiently divisible integer. From the exact sequence

A A 770 0
0—-F Mm,m? — F'H (X, Lm,?) — H (X, Lm,f/)/Mm,mi;
and the obvious equality
|-Fthm,m)7| _ |fmt_V(Fm,)nq7)Mm’m,}7| )
we deduce that
dim(F™ W, nz) — dim(F™ ™ Fmm?) HO(X, L,y 5))| < B(X, Ly 3) = b (Mipy ) (2.10)

By [32, Lemma 2.2.42], there exists a fixed effective divisor N on X such that N £ (L,,, 5 — ¢, 7L) is
effective. In particular, we have the inclusions
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H°(X, €y 3L — N) < H°(X,L,, 5) < H(X,, ;L +N),

H(X, 6, 5L - N) = H*(X, 4, ;L) — H°(X,{, 5L+ N),

which implies

dim(F™ =Y FEmm?) HO(X, L,, 5)) dim(F™ =Y Fmmy) HO(X, €, 5L))
lim . = lim Z .

m—co m"/n! m—co m" [n!

Thus as we divide equation (2.10) by m"/n!, and letting m — oo, the right side of the inequality

becomes 0 by the definition of almost completeness, and the equality equation (2.9) follows as g(y) =
lim,;— 0 %t’m 5

>

5
By Corollary 2.13 and Lemma 2.10, we have

1
S(Wisv) = ——— L+ (y)dtdy.
(We:v) n!vol(A) /./Agup,,xn& volyey (y)dedy

Combined with equation (2.9), we then obtain

S(Ws;v)

1
- // vol(g(y)L;v >t — h(y))dtdy
n!vol(A) AsuppXRs

h(y) o0
n'voll(A) /A (./o +/h( )) vol(g(y)L;v =t — h(y))dtdy
) s y

1 o
Avol(A) (h(7)~g(7)"vol(L)+ A g()™vol(L; v > t)de| dy.

upp

Asupp

Notice that volw, (y) = voly,0(y) = g(y)"vol(L) by equation (2.9); thus we deduce that

SWsiv) = s [ volwa () - () + g Sy

. supp
" VOl(A) Jay,, vol(p™! (7)) - (h(y) + 8 ()S(L; v))dy

=v(F(W3)) + - S(L;v).

This finishes the proof. O

Corollary 2.17. Let C be a smooth curve, and let Wy be an almost complete multigraded linear series
on C that has bounded support and contains an ample series. Then

2

op(C:Ws) = deg(c1(W3) — F(W3)) +2 - multp F(W5)

for all closed point P € C. In particular, §(C; W3) = m if F(W;) = 0.

Proof. We have S(L; P) = % deg L for any ample line bundle L and any closed point P on C. Combining
with Lemma 2.13, we see that S(W5; P) = S(c;(W3) — F(W3); P) + multp F(W3) = %deg(cl(W;) -
F(W3)) + multp F(W3). Since 6p(C; W;) = m and 6(C; W5) = infpec 8 p(C; W5) by definition,
the result follows. O
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3. Adjunction for stability thresholds

In this section, we develop a framework to estimate stability thresholds. The starting point is the following
elementary observation (compare to [9, Proposition 1.14]).

Lemma 3.1. Let V be a finite-dimensional vector space, and let F, G be two filtrations on V. Then there
exists some basis s1,- -+, sy of V that is compatible with both F and G.

Proof. By enumerating all different subspaces 7'V and G“V, we may assume that 7 and G are both
N-filtrations. Note that F (respectively, §) induces a filtration (which is also denoted by 7, respectively
) on each graded quotient GrV (respectively, Gr]fV). It is not hard to check that

Gr.GrLV = (FI'V N G'V)/(FI*'V NGV + FV 0 G*V) = Gr,Grl.v

for each i, j € N. To construct a basis of V that is compatible with F, it suffices to lift a basis of each
Gr}V to F'V and take their union. In particular, we may lift bases of GrﬂTV that are compatible with
the induced filtration G. By the above isomorphism, such bases can be obtained by lifting a basis of
(FVNGWV)[(FIFVNGV+FVnGHv)to FV NGV (foreach i, j € N) and then taking the union.
But since the construction is symmetric in F and G, it follows that the basis obtained in this way is also
compatible with G. m]

As an immediate consequence, we have

Proposition 3.1. Ler (X, A) be a pair, and let Vi be a multigraded linear series containing an ample
series and with bounded support. Let F be a filtration on V. Then for any valuation v of linear growth
on X and any subvariety Z C X, we have

S(Vsiv) =S(Vs, Fiv), 6(V5) =06(V5, F), and 67 (Vs) =0z(Vs, F).
Proof. Tt suffices to show that for any m € M (V5), we have
Sm(Va;v) = Sm(Va, Fiv), 0m(Vs) = 6m(Vs, F), and 6z,m(V3) = 6z.m(Vs, F),

the result then follows by taking the limit as m — oo. Let F,, be the filtration on V; induced by v (see
Example 2.2). It is clear from the definition that S,,, (V5; v) = v(D) for any m-basis type Q-divisor D of V;
that is compatible with F,,. In particular, if we choose an m-basis type Q-divisor D of V; that is compatible
with both F,, and F (which exists by Lemma 3.1), then we see that S,,,(V5;v) = v(D) < S,,,(V5, F;v).
But the reverse inequality S,,(Vs, F;v) < S;,(V3;v) is trivial, and thus we prove the first equality
Sm(Vz;v) = S (V5, F; v). By definition, it is not hard to see that

Ax A(E)
Sm(Vi;E)

Ax A(E)

1) V;) = inf —
zm(Va) =1} Sm(Vs. F.E)

and 6z, (Vs F) = i%f

where both infimums run over divisors E over X whose centres contain Z (here we use the fact
that Z is irreducible), hence the equality 6z, (V5) = 6z.m(Vs, F) follows. The proof of the equality
Om(V3) = 6, (V5, F) is similar. O

Typically we will apply Proposition 3.1 to some Fano variety X and the complete linear series
associated to —rKx for some sufficiently divisible integer r > 0. By choosing different filtrations F on
Vi, we get various consequences. Here we explore two of them corresponding to filtrations induced by
primitive divisors or admissible flags. Throughout the remaining part of this section, we fix a klt pair
(X, A), some Cartier divisors Ly, -, L, on X and an N”"-graded linear series V5 associated to the L;s
such that V; contains an ample series and has bounded support.
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3.1. Filtrations from primitive divisors

Let F be a primitive divisor over X with associated prime blowup 7 : ¥ — X. Let F be the induced
filtration on V5, and let

D=y Ytsa=0)

(where N, = hO(Vm’;) and for each @ € N" 7!, sg; (1 <i <dim(V,, z)) form a basis of V,,, ;) be an
m-basis type Q-divisor of V5 that is compatible with F. We may write

1 >,
b= MmNy, z&: ;Da’j,
where

D . = Z {s4.: = O}.
i,ordr (sz,;)=j
Since D is compatible with F, for each @ € N !, the s55.;S that appear in the expression of D :3 ; restrict

to form a basis of GH}Vm, &- Now assume that F is either Cartier on Y or of plt type, and let W; be the
refinement of V; by F (Example 2.6). Then after combining coefficients of F' in 7* D, we see that

. 1 S
n D=Sm(V;;F)~F+mNm ZZDM = S (Vs:F) - F+T,

a j=0

where each D ; doesn’t contain F in its support and D ;|r is a basis type divisor for W,,, 5 ;. In other
words, I'| is an m-basis type Q-divisor of W5 (notice that h%(W,,, 5) = hO(Vm’:)). Letting m — oo, we
obtain

cil(Wg) = (n"c1 (V) = S(V5: F) - F)|F. (3.1

These observations also allow us to relate the stability thresholds of V; and W; via inversion of adjunction.
In particular, we get the following consequence:

Theorem 3.2. With the above notation and assumptions, let Z C X be a subvariety, and let Zy be an
irreducible component of ZNCx (F). Let Ay be the strict transform of A on Y (but remove the component
F as in Definition 2.6), and let Ar = Diffp (Ay) be the difference so that (Ky + Ay + F)|r = Kr +AF.
Then we have

. [Axa(F) |
Vs) > _— ’ . -
0z(X,A;V5) _mm{S(Vg;F)’HZl'f(SZ (F,Ap;W3) (3.2)
when Z C Cx (F) and otherwise
02(X.A:V3) > inf 57 (F. Ap: W), (3.3)

where the infimums run over all subvarieties Z' C Y such that n(Z") = Zy. Moreover, if equality holds
and 67 (V3) is computed by some valuation v on X, then either Z C Cx (F) and F computes 57 (V)
or Cy(v) ¢ F; and for any irreducible component S of Cy(v) N F with Zy C n(S), there exists
some valuation vy on F with centre S computing 6z (W3) = 6z(V3) for all subvarieties Z' C S with
ﬂ(Z’) = Z().
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Loosely speaking, this means §(V;) is either computed by the auxiliary divisor F or bounded from
below by the stability threshold 6 (W5) of the refinement by F, and in the latter case the inequality is
usually strict.

Proof. We only prove equation (3.2), since the proof for equation (3.3) is almost identical. By Proposition
3.1, we have 6z (V5) = 62 (Vs, F) (where F is the filtration on V5 induced by F); thus it suffices to show
that

Ax A(F
(sz,m(v;,f)zmin{ xalh) 52,,m(F,AF;W;)} (3.4)

Sm(Vas F) =(2)=2

for all m € M(V3). Letting m — oo, we obtain equation (3.2). Let D be an m-basis type Q-divisor of V;
that’s compatible with F. From the discussion before, we have

7D =S, (Vs: F) - F + T, 3.5)

where I' = Dy is the strict transform of D on Y and I'|r is an m-basis type Q-divisor of W;. Let
A (respectively, 1) be the right-hand side of equation (3.4) (respectively, equation (3.2)). Then we
have 7*(Kx + A + AmD) = Ky + Ay + apmF + 4, where ap, = 1 — Ax A(F) + 1S (V53 F) < 1. In
addition, the non-Ic centre of (F, Ar +1,,I"|) doesn’t contain Zy C Z in its image (under the morphism
) by the definition of stability thresholds, and hence by inversion of adjunction the same is true for
(Y,Ay + F + 2,,I'). It follows that (X, A + A,,,D) is Ic at the generic point of Z and indeed

Ax.A(V) 2 Apv(D) + (1 = am) - v(F)

for all valuations v on X whose centre contains Z (when Z ¢ Cx (F). The value of a,, doesn’t matter to
us since v(F) = 0; this is the main difference between the proof of equation (3.2) and equation (3.3)).
Since D is arbitrary, we get 6z, (Vs, F) = A, Which proves equation (3.4), and

Ax A(V) 2 4uSm(Vs, Fiv) + (Ax A (F) = 4nSm (Vi F)) - v(F).

As in the proof of Lemma 2.9, we have lim,;, ;o 4, = A. Thus, letting m — oo and noting that
S(Vg;v) = S(V;, F; v) by Proposition 3.1, we obtain equation (3.2) as well as the following inequality:

Axa(v) 2 2-8(Va;v) + (Ax a(F) =4 S(V5: F)) - v(F). (3.6)

Now assume that equality holds in equation (3.2) and 6z(V;) is computed by some valuation
v € Valy: that is, Z C Cx(v) and Ax A(v) = A - S(Vi;v). By equation (3.6), we see that either
Ax A(F) =A-S(V5; F), in which case F computes 6z(V;) and we are done, or

Ax A (F)
A= inf Sy (W) < XA
pnf 07 (We) S(Va, F)

3.7
and v(F) = 0: that is, Cy (v) ¢ F. Now assume that we are in the latter case, and let S be an irreducible
component of Cy (v) N F with Zy C n(S). After rescaling the valuation v, we may also assume that

Ay A, (v) = Ax a(v) = 1. Let as(v) € Oy be the valuation ideals, and let b, = a,(v)|r. Clearly
Iet (Y, Ay;ae(v)) < % < 1 for any x € Cy(v), hence by inversion of adjunction, we have
Ict(F,Afp;bs) < 1 at the generic point of S. By [27, Theorem A], there exists some valuation vy on F

with centre S such that

AFr Ar(v0)

1. 3.8
V()(bo) = ( )
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To finish the proof, it suffices to show that this valuation computes 6z (Ws) for any subvarieties Z’ C S
with 7(Z") = Zy and that 6z (W5) = A. To see this, let D be an m-basis type Q-divisor of V5 that’s
compatible with both F" and v (which exists by Lemma 3.1), and let Dy be its strict transform on Y.
Then as before, we have v(Dy) = v(D) = S,,(V5;v) (here we use the fact that Cy (v) ¢ F) and Dy |r
is an m-basis type Q-divisor of W;. Using equation (3.8), we further see that

vo(Dyl|r) _ vo(Dylr)
v(Dy)  Sm(Vaiv)’

AF,AF (VO) <

hence S,,,(Wz;v0) > vo(Dylr) = Sm(Vs;v) - AF ar (vo). Letting m — oo, we obtain

AF Ap(vo) < v Axa(v)
S(Wssvo) — S(Vasv) — S(Vasv)

0z (Ws) <

Combined with equation (3.7), this implies 6z (W5) = A, and it’s computed by vyg. O

Theorem 3.2 reduces the question of estimating stability thresholds to similar problems in lower
dimensions. Certainly the lower bounds we get depend on the choice of the auxiliary divisor F. In general,
if we want to calculate the precise value of the stability threshold, we should pick an ‘optimal’ F — that
is, a divisor that computes §(V;) — although the resulting refinement W; can be quite complicated. On
the other hand, if we are merely interested in an estimate, we can also choose some divisor F' such that
W; is relatively simple. As a typical example, we have the following direct consequence of Theorem 3.2.

Corollary 3.3. Let (X,A),L;,V5,Z,F,Zy,n: Y — X, Ar and W5 be as in Theorem 3.2. Assume that

1. Ws is almost complete (Definition 2.16);
2. 6z (F,Ap + AF(W3);¢1(M3)) > A for some 0 < A < Ig‘)((V;(}f)) and all subvarieties Z' C Y with
n(Z") = Zy (where My is the movable part of W5).

Then 67 (X, A;V3) = A If equality holds and 67 (V3) is computed by some valuation v on X, then either
Z C Cx(F) and F computes 67 (V3), or Cy (v) € F, and for any irreducible component S of Cy (v) N F
with Zy C 7 (S), there exists some valuation vo on F with centre Z computing

0z (F,Ap + AF (W3);c1(Mg)) = A

forallZ' C Swithn(Z') = Z.

Proof. This is immediate from Theorem 3.2 and Lemma 2.13. O

3.2. Filtrations from admissible flags

One can inductively apply Theorem 3.2 to refine the original graded linear series while lowering the
dimension of the ambient variety. This is essentially equivalent to filtering the graded linear series via
an admissible flag. For simplicity, consider the following situation. Let

Yo : X=Yy2Y,2---2Y,

be an admissible flag of length £ on X. Assume that each Y; in the flag is a Cartier divisor on Y;_;. Then
for each 1 < j < ¢, we can define a boundary divisor A ; on Y; inductively as follows: first set Ag = A;
for each A; that’s already defined, write A; = a;Y;41 + I';, where I'; doesn’t contain Y;4 in its support
and set A;y = Ily,,,. We also let Y.(]) be the flag givenby Yy 2 --- 2 ¥}, and let W:(J) be the refinement

of V5 by Y.(j ) (Example 2.7): that is, it is the N"*/-graded linear series on Y; given by

() _
Wa{bl,n,b, - Va(bl’ e ,bj)
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Note that W;(O) = V5. Also recall from Section 2.4 that the flag Y, induces a filtration F = Fy, on each
)

Theorem 3.4. With the above notation and assumptions, we have

0z (X,A\;V3) > min{ min
0<i<j-1

{ Ay, a, (Yie1)

W} ,5Zn){,~(Yj,Aj;W;(j)7]:)} (3.9)
. syl

forany 1 < j < € and any subvariety Z C X that intersects Y.

This will be a key ingredient in our proof of Theorem 1.1. Compared with Theorem 3.2, the main
difference is that we allow (possibly) reducible centres Z N'Y; when applying inversion of adjunction.
In this case, we only have an inequality ¢ zny; (W:(" ),]-' ) =6 zny; (W:(J )) (as opposed to the equality in
Proposition 3.1). As such, we also need to keep track of the filtration F in the proof below.

Proof. By Proposition 3.1, we have 6z (V;) = 62z (Vs, F) = 6zay, (Yo, Ao; Wéo), F). Thus it suffices to
prove that

Ay, p; (Yi1)

6szi(Yi,Ai;W;(i),}') > min{ 0
S(W; ;Yi+l)

,6zny,-+l(Yi+1,Ai+1;wé””,f)} (3.10)

forall 0 <i < j — 1; equation (3.9) then follows by induction.

As in the proof of Theorem 3.2, let D be an m-basis type Q-divisor of W;i) that’s compatible with F.
Then in particular it is compatible with Y;,1, and we may write

D= Sm(Wsi);Ym) Y + T

where I" doesn’t contain Y;,; in its support and I'ly,,, is an m-basis type Q-divisor of W§i+l) (since this
is the same as the refinement of W:(i) by Y;4+1) that is compatible with F (since the same is true for D and

the filtration F on W:(i) is a refinement of the filtration induced by Y;.1). Thus by inversion of adjunction
as in the proof of Theorem 3.2, we get

Ay, a; (Yis1)

6ZﬁY,~,m(Yi,Ai;W:([>,.F) > min{ 5
Sm(W; ;Yi+l)

2 0Z0%,m (Yist, Ajsts W;(M),]:)} .
Letting m — oo, we obtain equation (3.10), and this finishes the proof. O

4. Applications
4.1. Tian’s criterion and connection to birational superrigidity

As a first application of the general framework developed in Section 3, we give a new proof of Tian’s
criterion for K-stability [46] (see, for example, [24, 41] for other proofs).

Theorem 4.1 (Tian’s criterion). Let (X, A) be alog Fano pair of dimension n. Assume that (X, A++25D)

is log canonical (respectively, kit) for any effective Q-divisor D ~g —(Kx + A). Then (X,A) is K-
semistable (K-stable).

The proof is based on the following lemma, which is known to imply Tian’s criterion (this is the
strategy used in [24]). When v is a divisorial valuation, the statement is proved in [22, Proposition 2.1]
and [2, Proposition 3.11]. Here we give a different proof using compatible divisors, which naturally
generalises the statement to all valuations (see also [2, Remark 3.12]).
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Lemma 4.1. Let X be a projective variety of dimension n, let L be an ample line bundle on X, and let v
be a valuation of linear growth on X. Then

n
S(L;v) £ ——T(L;v).
(Liv) £ —=T(L:v)

Proof. Let r be a sufficiently large integer such that rL is very ample, and let H € |rL| be a general
member. Let V; be the complete linear series associated to L, and let F be the filtration on V; induced
by H. By Proposition 3.1, we have S(L;v) = S(V;;v) = S(V;, F; v). Let D be an m-basis type Q-divisor
of L that’s compatible with F. By the same discussion as at the beginning of Section 3.1, we have

D=Su(L;H)-H+T

for some effective Q-divisor I' whose support doesn’t contain H. Since H is general, we have Cx (v) ¢ H.
Thus v(D) =v(I') < T(L - Su(L; H) - H;v)) and S,,,(V5, F;v) < T(L — S;u(L; H) - H;v)). Letting
m — oo, we see that

S(L;v) <T(L-S(L;H) - H;v)).
By direct calculation for any irreducible divisor H € |rL|, we have

1
r(n+1)

1/r
S(L;H) = / (1 —-rx)"dx = ; 4.1)
0

putting it into the previous inequality we get S(L;v) < 2T (L;v) as desired. O

n+l

Proof of Theorem 4.1. We only prove the K-stability part since the argument for K-semistability is
similar (and simpler). Let r > 0 be an integer such that —r(Kx + A) is Cartier. Following [23], we say
that a divisor E over X is dreamy if the double graded algebra @k,ieN HO(Y,—krn*(Kx + A) — JE)
is finitely generated (where m: Y — X is a proper birational morphism such that the centre of E is
a prime divisor on Y). For such E, there exists some effective Q-divisor D ~g —(Kx + A) such that
T(-Kx —A; E) = ordg (D). By assumption, (X, A+:55 D) isklt, hence ;25T (-=Kx —A; E) < Ax a(E)
and by Lemma 4.1, we have 8x A (E) = Ax A(E) —S(—Kx —A; E) > 0. Since this holds for any dreamy
divisor E over X, (X, A) is K-stable by [23, Theorem 1.6 and §6]. O

Using the same strategy, we can also give a new proof of the following statement, which implies the
K-stability criterion from [44].

Theorem 4.2 [51, Theorem 1.5]. Let (X, A) be a log Fano pair where X is Q-factorial of Picard number
1 and dimension n. Assume that for every effective Q-divisor D ~g —(Kx + A) and every movable
boundary M ~qg —(Kx + A), the pair (X, A + ﬁD + ;’—jM) is log canonical (respectively, kit). Then
X is K-semistable (respectively, K-stable).

For the proof, we need some notation. Let X be a projective variety of dimension #, and let v be a
valuation on X whose centre has codimension at least two on X. Let L be an ample line bundle on X.
We define the movable threshold n(L;v) (see [51, Definition 4.1]) as the supremum of all > 0 such
that the base locus of the linear system | Fy 7H®(X,mL)| has codimension at least 2 for some m € N.
Analogous to Lemma 4.1, we have

Lemma 4.2 [51, Lemma 4.2]. Notation as above. Assume that X is Q-factorial and p(X) = 1. Then we
have

n—

1
Lv).
+]77( V)

1
S(L;v) < —T(L;v) +
n+1 n

Proof. We may assume that T (L;v) > n(L;v), otherwise the statement follows from Lemma 4.1. We
claim that there exists a unique irreducible Q-divisor G ~g L such that v(G) > 5. The uniqueness
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simply follows from the definition of movable threshold. To see the existence, let G ~q L be an effective
Q-divisor on X such that v((~;) > 1 (such G exists by the definition of pseudo-effective thresholds).
Since X is Q-factorial and has Picard number one, every divisor on X is Q-linearly equivalent to a
rational multiple of L. In particular, we may write G = 3} A4;G;, where 3’ 4; = 1 and each G; ~q L is
irreducible. As v(G) > n, we have v(G;) > n for some i that proves the claim. Note that by the definition
of pseudo-effective threshold, we then necessarily have v(G) = T (L;v). Write G = 1G(, where G is a
prime divisor on X.

As in the proof of Lemma 4.1, let » € Z, be such that rL is very ample, and let H € |rL| be a general
member. Let V; be the complete linear series associated to L, and let F be the filtration on V; induced
by H. By Proposition 3.1, we have S(L;v) = S(V;, F; v). Let D be an m-basis type Q-divisor of L that’s
compatible with both F and F,, (which exists by Lemma 3.1). We have

D=S,(L;H)-H+T

for some effective Q-divisor I' whose support doesn’t contain H. We further decompose I' = uGo + Iy,
where the support of Iy doesn’t contain G. Note that v(I'y) < n(Ty; v) by our choice of Gy. As H is
general and D is of m-basis type, we have u = ordg, (") = ordg, (D) < S,,,(L; Go); thus

Sm(Va, Fiv) =v(D) =v(T') = - v(Go) +v(Io)

< Sm(L; Go) - v(Go) +n(I" = S, (L; Go) - Go; v)
=T(Su(L;Go) - Go;v) +n(L = Spu(L; H) - H - 8, (L; Go) - Go; v).

Since p(X) = 1, for any prime divisor F' on X, we have S(L; F) - F ~q ﬁL as in the proof of
Lemma 4.1, hence letting m — oo in the above inequality, we obtain

S(L;v) = hm Sm(Vz, Fyv) < LT(L v)+ (L v)

as desired. O

Proof of Theorem 4.2. As in Theorem 4.1, we only prove the K-stability part. Let E be a dreamy divisor
over X. If the centre of E is a prime divisor on X, then we have —(Kx +A) ~g AE for some A > 0 as X has
Picard number one. By assumption (X, A + 25 —A_FE)isklt, hence Bx A (E) = Ax o (E)-S(-Kx —AE) =
Ax A(E) - # > 0. If the centre of E has codimension at least two on X, then since E is dreamy
there are effective Q-divisor D ~g —(Kx + A) and movable boundary M ~q —(KX +A) such that
ordg (D) =T(-Kx —A;E) and ordg (M) = n(—Kx — A; E). By assumption (X, A + mD +0 LM) is
klt, thus

1 n-1
A E D M
x.A(E) > n+10rdE( )+ n+1ordE( )

1 n-1
= — T(-Kx - A;E) + —Kx —AE
1 (—Kx ) n+177( X )

> S(-Kx — A E),

where the last inequality follows from Lemma 4.2. Therefore Sx A (E) > O for all dreamy divisors E
over X, and (X, A) is K-stable by [23, Theorem 1.6 and §6]. O

Corollary 4.3 [44, Theorem 1.2]. Let X be a birationally superrigid Fano variety. Assume that (X, %D)
is lc for all effective Q-divisor D ~q —Kx. Then X is K-stable.

Proof. By [12, Theorem 1.26], X is Q-factorial of Picard number one and (X, M) has canonical
singularities (in particular it is klt) for every movable boundary M ~Q —K x. Let D ~Q —Kx be an

effective Q-divisor. By assumption, (X, %D) is Ic. As —D +o=ly = +1 . 1D + 2=L M is a convex

n+l n n+1
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linear combination of %D and M, we see that the conditions of Theorem 4.2 are satisfied and therefore
X is K-stable. O

4.2. Fano manifolds of small degrees

As a second application of our general framework, we study K-stability of Fano manifolds of small
degree using flags of complete intersection subvarieties. To do so, we first specialise Corollary 3.3 to
the case when the auxiliary divisor is an ample Cartier divisor on the given variety.

Lemma 4.3. Let X be a variety of dimension n, let L be an ample line bundle on X, and let H € |L|.
Assume that H is irreducible and reduced. Then

5, (L) > min {n+1 5 (LlH)}

at every x € H. If equality holds, then either 6,(L) = n + 1 and it is computed by H, or 6,(L) =
"T“csx(Lly) and Cx (v) ¢ H for any valuation v that computes 6 (L). Moreover, in the latter case, for
every irreducible component Z of Cx (v) N H containing x, there exists a valuation vo on H with centre
Z computing 5 (L|g).

Proof. Let V; be the complete linear series associated to L, and let W; be its refinement by H By
Example 2.12, W5 is almost complete and F(W3) = 0. By equation (4.1), we have S(L; H) = n+1 As
discussed in Section 3, any m-basis type Q-divisor D ~g L that is compatible with H can be written as
D =S,,(L;H) - H+T', where I'| is an m-basis type Q-divisor of W5; thus, letting m — oo, we see that

n
c1(Wg) ~q Llg —S(L;H) - H|lpg ~g mLIH

and 6, (c1(Wg)) = "T*léx(L|H). The result now follows directly from Corollary 3.3 with F = H. o
Applying induction, we further deduce:

Lemma 4.4. Let X be a variety of dimension n, and let L be an ample line bundle on X. Let x € X be a
smooth point. Assume that

(*) there exists Hy,--- ,H,— € |L| containing x such that Hy N - -- N H,_| is an integral curve that is
smooth at x.

Then 6,(L) > (L,,) If equality holds, then either (L") = 1, or every valuation that computes 6, (L) is
divisorial and is induced by some prime divisor E on X.

Proof. First assume that n = 1: that is, X is a curve that is smooth at x (in this case, the statement should
be well-known to experts). By direct calculation, we have S(L;x) = %deg L. Hence 6,(L) = 35 as
desired.

Assume now that the statement has been proved in smaller dimensions. Let H € |L| be a general
divisor containing x. By (*) H is smooth at x and L|g also satisfies (*). By induction hypothesis, we have
6x(Llg) = (L"—IH) Vo) L")’ hence by Lemma 4.3, we see that §,(L) > ("LJ;'). Suppose that equality
holds, (L") > 1, and let v be a valuation on X that computes 6, (L). Then by Lemma 4.3, we see that
the centre Cx (v) of v is not contained in H, 6, (L|g) = ﬁ and it is computed by some valuation v
on H with centre Z C Cx(v) N H. But by induction hypothesis, v is divisorial and its centre Z is a
prime divisor on H, hence Cx (v) has to be a divisor on X. It follows that v is divisorial as well and is
induced by a divisor on X. o

deg

‘We now restrict our attention to Fano manifolds of small degree:

Corollary 4.4. Let X be a Fano manifold of dimension n. Assume that there exists an ample line bundle
L on X such that
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1. —Kx ~q rL for some r € Qwith (L") < #; and
2. foreveryx € X, there exists Hy, - -+ , H,_| € |L| containing x such that Hy N - --N H,,_ is an integral
curve that is smooth at x.

Then X is K-semistable. If it is not umformly K-stable, then (L") = =, and there exists some prime
divisor E C X such that Bx (E) =

Proof. By Lemma 4.4, we have 6,(L) > (L") (L,, By (1), we then

obtain §(—Kx) > ’E;Ll,,) > 1 and X is K-semistable. Assume that X is not uniformly K-stable: that is,
6(—Kx) = 1. Then equality holds in (1) and 6§(L) = "+1 . By Lemma 4.4, either (L") = 1 or §(L) is
computed by some prime divisor E on X. In the latter case there is nothing left to prove. In the former

case, we have r = (”L",ll) =n+ 1, hence X = P" by [30] and Bx (H) = 0 for any hyperplane H on X. O

at every x € X, hence 6(L) >

In particular, taking L to be the hyperplane class on P", Corollary 4.4 gives a new algebraic proof of
the K-semistability of P" (see, for example, [34, 42] for other proofs). It also gives a unified treatment
of the uniform K-stability of the following Fano manifolds.

Corollary 4.5. The following Fano manifolds are all uniformly K-stable:

[45] del Pezzo surfaces of degree < 3;

[21] hypersurfaces X € P"*! of degree n + 1;

[16] double covers of P" branched over some smooth divisor D of degree d > n + 1.

cyclic covers t : X — Y of degree s (where Y C P! is a smooth hypersurface of degree m) branched

along some smooth divisor D € |dH| (where H is the hyperplane class) withQ < n+2—m—(1— %)d <
n+l

Sl .

ms
5. del Pezzo threefolds of degree 1: that is, smooth weighted hypersurfaces X¢ € P(13,2,3).

Proof. Note that (3) is a special case of (4) with m = 1. We will also treat (5) separately. In each
remaining case, we will find an ample line bundle L on the Fano variety that satisfies the assumptions
of Corollary 4.4. Indeed, for del Pezzo surfaces X of degree 2 or 3 (respectively, degree 1), we take
L = —Ky (respectively, L = —2Kx). We also set L = —Kx for hypersurfaces X C P"*! of degree n + 1.
In case (4), we choose L = n*H. It is straightforward to verify that they all satisfy the assumptions of
Corollary 4.4, hence by Corollary 4.4, all Fano manifolds X in (1)—(4) are K-semistable. Moreover, del
Pezzo surface of degree 1 or 2 are uniformly K-stable since (L") < "” for our choice of L. It remains
to check that there are no divisors E on X with 8x (E) = 0 in the other cases.

Lett = T(—Kx; E) be the pseudo-effective threshold (Definition 2.2). If dim X > 3 (so we are in case
(2) or (4)), then X has Picard number one and —Kx ~q TE. A direct calculation gives Sx (E) = 1— m
Since X is not isomorphic to P", we have 7 < n + 1 by [30] and thus Bx (E) > 0 in this case (compare
to [20, Corollary 9.3]). If dim X = 2, then X is a cubic surface. Clearly S(E) < 7. Since —Ky — 7E
is pseudo-effective, it has nonnegative intersection with —Kx and thus 7 < (K—E It follows that if
Bx(E)=1-8(E) =0,thent > S(F) = 1 and (—Kx - E) < 2: that s, E is a line or a conic. But in both
cases, we have 7 = 1 and hence S(E) < 1:if E is a line, then | — Kx — E| is base point free and defines a
conic bundle X — P!; if E is a conic and L is the residue line (the other component of the hyperplane
section that contains E), then —Kx — E ~ Lg is a (—1)-curve. Thus Bx(E) = 1 — S(E) > 0 for all
divisors E on the cubic surface X as well. We therefore conclude that all Fano manifolds in (1)—(4) are
uniformly K-stable.

It remains to prove every Fano threefold X in (5) is uniformly K-stable. For such X, we have -Kx = 2H
for some ample line bundle H on X. We claim that for every x € X there exists a smooth member S € |H|
that contains x. Indeed, it is not hard to check that h°(X, H ® m,) > 2. Let S| # S, € |H ® m,|, and
let M C |H ® my| be the pencil they span. As H generates Pic(X), S| and S, doesn’t have common
component, and we have a well-defined I-cycle W = (S| - S») on X. Since (H-W) = (H’) =1, W
is an integral curve. As W is also the complete intersection of any two members of M, every S € M
is smooth at the smooth points of W. Let y be a singular point of W, and let S’ be a general member

https://doi.org/10.1017/fmp.2022.11 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.11

Forum of Mathematics, Pi 27

of |2H ® my|. Then as |2H| is base point free, S; N S N S is zero dimensional. If both S; and S5 are
singular at y, then we have mult,S; > 2 (i = 1, 2) and thus

2=2(H% =(S1-S2-S) > multyS; - mult,S, - mult,S” > 4,

a contradiction. Hence a general member of M is smooth at y. Since there are only finitely many singular
point of W and M is base point free outside W, we see that a general member of M is smooth, proving
the claim.

Now let x € X, and choose a smooth member S € |H| containing x. Note that S is a del Pezzo
surface of degree 1. By Lemma 4.4 with L = -2Kg, we have §(H|s) = 26(L) > % and if the
equality is computed by some divisor E over S, then E is a divisor on S. By Lemma 4.3, it follows that
0x(—Kx) = %6X(H) > %S(Hls) > 1 for all x € X, thus X is K-semistable. If it is not K-stable, then by
another use of Lemma 4.3 and the same argument as in Corollary 4.4, we have Sx (E) = 0 for some
divisor E on X. But since X has Picard number one and is not P3, this is a contradiction as before and
therefore X is uniformly K-stable. O

4.3. Surface case

We next investigate the surface case where almost everything can be explicitly computed. Recall from
[22, Theorem 1.5] that it is enough to test the K-stability of log Fano pairs using divisors of plt type.
The nice feature in the surface case is that the corresponding refinements are always almost complete.

Lemma 4.5. Let (S, A) be a surface pair, and let L be an big line bundle on S. Let E be a plt type divisor
over S. Let V5 be the complete linear series associated to L, and let W be the refinement of Vg by E.
Then Wy is almost complete.

As in Example 2.12, the almost completeness of a refinement is related to the surjectivity of the
natural restriction map on sections, hence the proof of Lemma 4.5 essentially boils down to the following
vanishing-type result.

Lemma 4.6. Let (S,A) be a surface pair. Then there exists some constant A > 0 such that
h'(S, Os(D)) < A for all Q-Cartier Weil divisor D on S such that D — (Ks + A) is nef and big.

Proof. Let f: T — S be the minimal log resolution of (S, A), and let (T', A7) be the crepant pullback of
(S,A): thatis, Ky +Ar = f*(Ks+A). Let E be the sum of all exceptional divisors. Since D has integer
coefficients, { f*D} is exceptional over S, hence we have | f*D]| + E > f*D and f.Or (| f*D]+E) =
Os(D).LetL =|f*D]+E,andlet A’ = Ay + L — f*D. Then it is easy to check that 0 < A’ < Ar +E
and

L—- (KT +A’) ~Q f*(D - KS - A),

which is nef and big by assumption. By Lemma 4.7, we know that there exists some constant A
depending only on the pair (T,Ar + E) such that A!(T, O (L)) < A. The lemma then follows as
h'(S,0s(D)) = h' (S, .07 (L)) < W' (T, Or (L)). o

The following result is used in the above proof.

Lemma 4.7. Let S a smooth surface, and let A be an effective divisor on S with simple normal crossing
support. Then there exists some constant A such that h' (T, Or (L)) < A for all Cartier divisor L such
that L — (Kt + A’) is nef and big for some Q-divisor 0 < A’ < A.

Proof. We prove by induction on the sum of all coefficients of |A]. First note that if |A’| = 0, then
(T,A’) is kit and ' (T, Or (L)) = 0 by Kawamata-Viehweg vanishing. Thus it suffices to consider
the case when |[A’] # 0. In particular, we may just take A = 0 when |[A]| = 0. In general, let
C be an irreducible component of |A’] < |A]. By assumption (L — K7 — A’) - C > 0, which
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gives deg(L|c — K¢) = (A’ = C) - C, thus by Serre duality h'(C,O¢(L)) = h°(C,wc(-L)) <
1+deg(Kec — Llc) <1+ ((C—=A")-C) is bounded by some constants A; that only depends on A. By
induction hypothesis (applied to the pairs (7', A — C) for various components C of |A]), we also have
h'(T,Or (L - C)) < A, for some constant A, that only depends on A, thus 1" (T, O (L)) < A| + A,
via the exact sequence 0 —» Orp (L —C) — Or (L) — O¢(L) — 0. O

Proof of Lemma 4.5. Let T| — S be the prime blowup associated to E. Note that E is a smooth curve
onT; and T is kit along E (as (71, Ar, + E) is plt by assumption). Let T — 7} be the minimal resolution
of T} over its non-klt locus, and let 7: T — S be the induced morphism. Note that T is Q-factorial. Let
I =Supp(Ws) N ({1} xR),lety € I°NQ, and let 7*L — yE = P, + N,, be the Zariski decomposition
where P,, (respectively, N,) is the nef (respectively, negative) part. We claim that there exists a divisor
G C T such that Supp(N,) C G for all y. Indeed, for any y; < y < y», since n*L — yE is a convex
linear combination of 7*L —y| E and n*L — y» E, we see that Supp(N,) C Supp(N,,) U Supp(N,,). On
the other hand, by [39, Proposition II1.1.10], there are at most p(7T') irreducible components in each N, .
It follows that U, Supp(/, ) is a finite union of divisors in 7, and we may simply take G = USupp(N,).
Note that E ¢ Supp(G) as otherwise E C Bs(x*L — yE) for some 7, and thus W,,, ,,,,, = 0 for all m.

Now fix y € I° N Q and write P (respectively, N) for P, (respectively, N,). Then for sufficiently
divisible m, we have |m(7*L — yE)| = [mP| + mN. It follows that | M, ;. | C |D,y| for some divisor D
with 0 < deg D,,, < m(P - E) and in particular (P - E) > 0. Since E is a curve, any divisors on E are
numerically proportional. Thus W5 is almost complete (with respect to any line bundle of degree 1 on
E) as long as

WO (W
lim —( my) =

Jlim = L (4.2)

where the limit is taken over sufficiently divisible integers m. Indeed, if equation (4.2) holds, then as
B Wimy) = B (Myymy) < B°(E,Dyy) < deg D+ 1 <m(P-E) +1,

B (W)
1O(E,Dy)
lim,,— 00 deg—mD'" = (P-E), hence lim,, = N|g for sufficiently divisible m (compare to the proof
of Lemma 4.8 below). Since Supp(N) € G, we see that F(W;) is supported on G N E, which verifies
condition (1) in Definition 2.16.

It remains to prove equation (4.2). To see this, we note that P is big (since y € I°) and hence
moP — E — Ky is effective for some divisible enough integer mg. Let Q € |moP — E — Kr|. Then by
Lemma 4.6, there exists some constant A depending only on (7', Q) such that A (T, Oy (mP — E)) < A
for all sufficiently divisible m > mg (as mP — E — (Kp + Q) ~ (m — my) P is nef and big).

Using the exact sequence

we clearly have lim,;, e = 1, which verifies condition (2) in Definition 2.16. It also gives

Fm,m,y

0— Op(mP—-E) - Opr(mP) - Og(mP) - 0
from Lemma 2.1, we obtain
B (Wimy) = dimIm(H (T, Or (mP)) — H*(E, O (mP)))
> h%(E, Og(mP)) — h'(T, Or (mP — E))
> h(E,Op(mP)) — A
>m(P-E)+1-g(E) - A,

where the last inequality follows from Riemann-Roch. Letting m — oo, we get equation (4.2), and hence
Ws is almost complete as desired. O
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For actual calculations, it would be convenient to have a formula for F(W;) before we apply
Corollary 3.3 to the almost complete refinement W;. This can be done using Zariski decomposition on
surfaces.

Lemma 4.8. In the setup of Lemma 4.5, assume that L is ample, and let 7. T — S be the prime blowup
associated to E. Then we have

F(W;) = (L_22)/0 (volg | (n*L = tE) - Ny ("L — tE)|g) dt, 4.3)

where volr g (+) is the restricted volume function (see [19]) and N, (-) denotes the negative part in the
Zariski decomposition of a (pseudo-effective) divisor.

Proof. Since L is ample, it is easy to see that Supp(W5) N ({1} xR) = [0,T(L; E)]. By Corollary 2.15,
we then have

> T(L:E)
POV = s [ Fovolw, (),

where F(y) = lim,,—c %Fm, Lmy|- By construction, we have vol(W5) = vol(V5) = vol(L), volw, (y) =
volr g (n*L —yE) and volr g (n*L — yE) = 0 when y > T(L; E). Thus it suffices to show that

F(y) =Ng(n"L - yE)|g. 4.4

By continuity, it is enough to check equation (4.4) wheny € (0,T(L; E))NQ.Let n*L —yE = P+ N be
the Zariski decomposition as in the proof of Lemma 4.5, and let m be a sufficiently divisible integer. Since
L is ample, E is not contained in the stable base locus Bs(7*L) of 7* L. Since there always exists some
v’ >y suchthat E ¢ Bs(7*L — y’'E) (e.g., we take v’ = ordg (D) for any D ~g L with ordg (D) > )
and n*L — yE is a convex linear combination of 7*L and n*L — y’E, we see that E ¢ Bs(n*L —yE) as
well. In particular, E ¢ Supp(N). Then clearly F,,, »y > mN|g and hence F(y) > N|g. From the proof
of Lemma 4.5, we also see that there exists some constant A (depending only on (S,A) and E) such
that the restricted linear series [mP|g has codimension at most A in |Og (mP)|, and thus the degree of
Fymy —mN|E is at most A. Letting m — oo, we obtain deg F'(y) = deg(N|g), which implies equation
(44)as F(y) 2 N|g. O

As an illustration, we compute the d-invariants of all smooth cubic surfaces. Some of these will be
useful in our proof of the K-stability of cubic threefolds (Lemma 4.10).

Theorem 4.6. Let X C P? be a smooth cubic surface, and let x € X be a closed point. Let C = T (X)NX
be the tangent hyperplane section. Then

3/2 if mult, C = 3,

27/17 if C has a tacnode at x,

5/3 if C has a cusp at x,

18/11  if C is the union of three lines and mult,C = 2,

12/7  if C isirreducible and has a node at x,
9
25-8v6

6x(X) =

if C is the union of a line and a conic that intersects transversally.

Moreover, in the first three cases, 5 (X) is computed by the (unique) divisor that computes Ict, (X, C);
in the next two cases, 6 x(X) is computed by the ordinary blowup of x; in the last case, 6 (X) is computed
by the quasi-monomial valuation over x € X with weights 1 + V6 on the line and 2 on the conic, and if

0 < & < 1, then the log del Pezzo pair (X, (1 — &)C) satisfies 5(X, (1 —&)C) = ﬁ ¢ Q.

Proof. See Appendix A. o
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Corollary 4.7. Let X C P? be a smooth cubic surface. Then

5(X) = 3/2 if X has an Eckardt point,
~127/17  otherwise.

It has been expected (see, for example, [37]) that given a kit Fano variety X with a Q-complement A,
the graded rings

gr R = EBm,,lGr/l}-v HO(X, —mrKx)

are finitely generated for all Ic places v of (X, A), where r > 0 is an integer such that —rKx is Cartier
and F, is the filtration induced by v. Unfortunately, this is not true in general, and we identify a
counterexample through the calculations in Theorem 4.6.

Theorem 4.8. Let X C P3 be a smooth cubic surface, and let C C X be a hyperplane section such that
C = L U Q is the union of a line and a conic that intersects transversally. Then there exists an Ic place
v of (X, C) such that gr, R is not finitely generated.

Proof. This can be deduced from the fact that 6, (X) ¢ Q, where x € L N Q. Here we give a more direct
(and simpler) argument.

Letx € LNQ,andleta, b > 0 be coprime integers. Let 7: Y =Y, ;, — X be the weighted blowup at
xwithwt(L) = a and wt(Q) = b. Let E be the exceptional divisor, and let L (respectively, é) be the strict
transform of L (respectively, Q). Assume that b < 2a. We have (Zz) =-1-7, (éz) =-2 (L Q) =1
and in particular the intersection matrix of L and Q is negative definite. As —1*Kx — (a + b)E L+ Q,
it follows that T(—Kx; E) = a + b, the stable base locus of —n*Kx — ¢E is supported on LU Q for all
0<7<a+b,andhence Ny (-n*Kx —tE) = f(t)L +g(t)Q for some f(t), g(¢) > 0. The coeflicients
f(#) and g(t) are computed as the smallest numbers such that —n*Ky —tE — f (1)L - g(t)Q is nef, and
it is enough to check nefness against Land 0. A straightforward computation then gives

0 if0<r<b,
No(-m"Kx —tE) = { =L T ifb <1< 2430 4.5)
2f— %)a bz+ (2a+b)t;§(2a+3b)é if a(;z:ib) <t<a+bh.
The key point is that as a rational function, agmz?) is not a linear combination of @ and b. In particular,
a0(2a0+3b0)

we may choose ag, by € Ry such that by < 2aq and ay, b, are linearly independent over

(2a0+bo)
Q (thus 7 @ is necessarily irrational). Let vy be the quasi-monomial valuation centred at x given by
wt(L) = ao and wt(Q) = bo. We claim that gr, R is not finitely generated.

Suppose that gr,, R is finitely generated, and let f; (( = 1,2,---, ) be a finite set of homogeneous

generators (gr,, R is naturally graded by N x (Nao + Nby)). Let deg(f;) = (m;,A4; = piag + qibo),

= Ao a0(2ag+3bo)
where m;, p;, q; € N. We may assume that 0 = m] S (2ag+bo)

(otherwise vo(s) < ag + by for all s € H°(X, —Kx); but VO(L + Q) = ag + by). Since ag, by and

%&iﬁ‘)) are linearly independent over Q, there exists 1 < £ < s such that

As As
< Clearly o 2 a0+ by >

A¢ao(2a0+3bo)  Ae
mp (2ap + bo) Mmes1

We may lift each f; to g; € R, = H*(X, —m;Kx) such that in,, (g;) = f;. Then for all @ = (a, b) € Q°

with |a@ — (ag, bg)| < 1, we have y; :=v,(g;) = pia + q;b (Where v, is the quasi-monomial valuation

with wt(L) = a and wt(Q) = b); in particular, v,(g;) > m; - a(isjib) when i > €+ 1; thus by
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equation (4.5), g; vanishes on Q for all i > £ + 1. We may also assume that

0=ﬂ3~'-<&< a(2a +2b) - e+l

m my 2a+b Mmesl

<...< s (4.6)
mg

By [35, Lemma 2.10], g; restrict to a finite set of generators of gr,, R. It follows that for any g € R, =
HY(X,-mKx), we have

Va(g) = max{wt(F) | F € C[xy, - ,xs] s.t. F(g1,- -, 8s) = g} 4.7
where we set wt(x;) = ; (clearly if g = F(g1,--- ,gs), then v, (g) = wt(F); conversely, as g; generate
gr, R, there exists F such that wt(F) = v,(g) and g = F(gy,--- , gs)mod fi(f“(g)Rm, one can then

a(2a+2b)

prove by induction on v, (g) that g = F(g1,- -+ ,gs) for some wt(F) = v,(g)). Now let 4 = =5 =

By equation (4.5), for sufficiently divisible integers m > 0, there exists f € H°(X,—mKx) such that
Ve (f) = Am and f does not vanish on Q. By equation (4.7), we have f = F(g1,--- ,gs) for some F
with wt(F) = mA. However, by equation (4.6), we see that each monomial in F' must contain some g;
with i > € + 1; it follows that f = F(gy,--- , gs) vanishes along Q, a contradiction. Therefore, ngOR is
not finitely generated. m}

4.4. Hypersurfaces with Eckardt points

Let X € P"! be a smooth hypersurface of degree d > 2. Recall that x € X is called a generalised
Eckardt point if the tangent hyperplane section D = Tx X N X C X at x satisfies mult, D = d. In this case
D is isomorphic to the cone over F (X, x), the Hilbert scheme of lines in X passing through x, which is
a hypersurface of degree d in P"~!. It is in fact smooth by the following easy lemma.

Lemma 4.9. Let X C P! be a smooth hypersurface of degree d > 2, and let x € X be a generalised
Eckardt point. Then F (X, x) is smooth.

Proof. We may assume that x = [0 : --- : 0 : 1]. Up to a change of coordinates, X is defined by an
equation of the form xof(xy, -+ ,Xu41) + g(x1,- -+ ,x,) = 0, where deg f = d — 1, degg = d and f
contains the monomial x?_!. We then have F(X,x) = (g =0) C P""".If [a; : -+ : a,] is a singular
point of F(X,x), then for any a,.; with f(aj,---,an+1) = 0 (such a,4; exists since f contains the
monomial xjf;ll) it is not hard to check that X is singular at [0 : a; : - - : an4+1]. This is a contradiction
as X is smooth. Thus F (X, x) is smooth. m]

Theorem 4.9. Let X C P! be a smooth hypersurface of degree d > 2, and let x € X be a generalised
Eckardt point. Assume that F(X,x) is K-semistable if d < n — 1 (i.e., when it’s Fano). Then 6 (H) =

Z&T—ll) (where H is the hyperplane class on X), and it is computed by the ordinary blowup of x.

Proof. Letn: Y — X be the blowup of x, and let E be the exceptional divisor. Let V; be the complete
linear series associated to H, and let W; be its refinement by E. Since x € X is a generalised Eckardt
point, the tangent hyperplane section x € D C X has mult,D = d. Let D be the strict transform of
DonY.Let j,m € N. Note that |[mn*H — jE| # 0 if and only if 0 < j < dm, and it is base point free
when 0 < j < m. We first show that

i B = [m - T2 e - a2 Jmm5
|mn*H ]EI—‘(m |'d_1'|)7rH (] d |'d_1 )E'+|'d_1'|D 4.8)
is the decomposition into movable and fixed part when m < j < dm.

Suppose first that n > 3. Then D is irreducible. Let D’ ~g H be another effective Q-divisor that
doesn’t contain D in its support. We have

d~multxD's(D~D’-H1-~~-Hn72)=d,
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where Hy,---,Hy are general hyperplane sections passing through x, hence mult,D’ < 1.
It follows that for any G € |ma*H — jE|, if we write G = aD + G’, where D¢ Supp(G’), then
G' e|(m—-a)n*H — (j —ad)E| and

j—ad <mult,7(G") <m—a.

In other words, a > f%], which implies equation (4.8). If n = 2, then in the above same notation D

is a disjoint union of d lines Ly,--- , Ly. If we take G € |mn*H — jE| and write G = Y a;L; + G’,

where G’ doesn’t contain any L; (i = 1,---,d) in its support, then as (G’ - L;) > 0, we obtain

m—j=(G-L;) > a;(L?) = a;(1-d); thus a; > = L= forall 1 < i < d, and equation (4.8) still holds.
It is straightforward to check that for all 0 < j < m, the natural restriction maps

H'(Y, Oy (mn"H = jE)) — H(E, O (j))
are surjective. It follows that

d-—1t" if0<t<1,
VOI(T[*H - IE) = (d—t)"

d-D ifl <t <d,
and
HY(E, Og(})) if0<j<m,
Winj = YIm(HO(E, O (j - d[524])) ———= T — L HOE, 0 () ifm < j <dm
0 otherwise,

where Dy = DNE=F (X, x). In particular, W5 is almost complete, and through direct calculations
we see that S(H; E) = €21 F(W;) = - (1 - 1)Dy (by Corollary 2.15) and ¢1(Ws) ~g (7*H —

n+l

S(H;E)-E)|g ~ din—l Hj (see equation (3.1)), where Hj is the hyperplane class on E = pr-l,

n+l

Clearly 6,(H) < A, where A = Z(J::r_]l) = ;(’;{(;g)). It remains to prove 6,(H) > A. Let M5 be the

movable part of W5. By Corollary 3.3, it suffices to prove

S(E,AF(W3);c1(M3)) > A. 4.9
Note that by the above calculations, we have
Aci (M) + AF(W3) ~q Ac1(W;) ~q nHo ~ —KE.
Thus equation (4.9) is equivalent to saying that the pair

n(d-1)

~ n-1 _""\* )
(E,/lF(WZ)) = (P ’ d(d+n— 1)

Do)

is K-semistable. By [16, Lemma 2.6], this would be true if (P"~!', uDg) is K-semistable for some

> "(d—_i) (as P"! is K-semistable). When d > n, (P""!, 2Dy) is a log canonical log Calabi-Yau
d(d+n—T) d g g

pair (note that Dg is smooth) and therefore is K-semistable by [40, Corollary 1.1]; thus we may take

u=1%5.Whend < n—1, Dy is Fano and K-semistable by assumption. We claim that (P!, uDy) is
K-semistable, where yr = 1 - 4 + 1 d’('[(l‘i;)l)
(P"!, uDo) to (V, uVs), where V = C,, (Do, Np, /) is the projective cone over Dy. By [36, Proposition
5.3], (V, uVe) is K-semistable, thus (P"~!, uD) is also K-semistable by the openness of K-semistability
[3, 49]. This proves the claim and also concludes the proof of the theorem. O

> . Indeed, the divisor D induces a special degeneration of

Restricting to Fano hypersurfaces, we have
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Corollary 4.10. Let X C P™! be a smooth Fano hypersurface of degree d, and let x € X be a generalised
Eckardt point. Assume that F(X,x) is K-semistable if d < n — 1. Then 6,(X) = %, and it
is computed by the ordinary blowup of x.

Proof. If d = 1, then X = P" and 6, (X) = | = Gpiftls—s forall x € X. If d > 2, then as
n(n+l)

—Kx ~ (n+2—d)H, where H is the hyperplane class, we have 6, (X) = ﬁéx(H) = GimTrd) i=d)
by Theorem 4.9. O

Since every point of a smooth quadric hypersurface is a generalised Eckardt point, we obtain a new
algebraic proof of the following well-known result.

Corollary 4.11. Quadric hypersurfaces are K-semistable.

Proof. Let d = 2 in Corollary 4.10. Since every x € X is a generalised Eckardt point and F (X, x) is a
smooth quadric hypersurface of smaller dimension, we get §(X) = 1 by induction on the dimension. O

4.5. Hypersurfaces of index two
The goal of this section is to prove the following result.

Theorem 4.12. Let X = X,, C P! be a smooth Fano hypersurface of degree n > 3 (i.e., it has Fano
index 2). Then X is uniformly K-stable.

Note that when n = 3 — that is, X is a cubic threefold — the result is already known by [38]. Here we
give a different proof using techniques developed in previous sections.

Lemma 4.10. Let X C P* be a smooth cubic threefold. Then X is uniformly K-stable.

Proof. 1t suffices to show that 6,(X) > 1 for all x € X. If x is a generalised Eckardt point, then
0x(X) = %6 x(H) = g > 1 by Theorem 4.9. If x is not a generalised Eckardt point, then there are only
finitely many lines on X passing through x; thus if Y C X is a general hyperplane section passing through
x, then Y is a smooth cubic surface such that x is not contained in any lines on Y. By Theorem 4.6, we
see that 6 (Y) > 3. It then follows from Lemma 4.3 that 6, (X) = $6x(H) > 36.(Y) > ¥ > 1. This
completes the proof. [

In the remaining part of this section, we will henceforth assume that n > 4. As a key step toward the
proof of Theorem 4.12, we observe the following K-stability criterion.

Lemma 4.11. Let X be a Fano manifold of dimension n. Assume that

1. 6z(X) > "T”for any subvariety Z C X of dimension > 1;
2. Bx(Ey) > 0 for any x € X, where E denotes the exceptional divisor of the ordinary blowup of x.

Then X is uniformly K-stable.

Proof. We need to show that for any valuation v € Val} with Ax(v) < oo, we have Bx (v) > 0. By our
first assumption, this holds if the centre of v has dimension at least one. Thus we may assume that the
centre of v is a closed point x € X, and by our second assumption, we may assume that v # ¢ - ordg, .
Let r be a sufficiently large integer such that —rKx is very ample, and let H € | — rKx| be a general
member (in particular, x ¢ H). By Proposition 3.1, we have S(—Kx;v) = S(V;, F;v), where V5 is the
complete linear series associated to —Kx and F is the filtration induced by H. Let m > 0, and let D be
an m-basis type Q-divisor of —Kx that’s compatible with F. As in the proof of Lemma 4.1, we have
D = u,, - H+T, where pu,, = S,,(-Kx; H) — S(—Kx; H) = r(n% (m — co)and I' ~g —(1 —ru,m)Kx
is effective. By [2, Corollary 3.6], there exist constants €,, € (0, 1% (m e N) depending only on X such
thate,, = 1 (m — o) and

S(=Kx;V) > €n - Sm(—Kx; V)
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for all valuations v € Valy with Ax(v) < co and all m € N. Perturbing the €,,, we will further assume

that €,,(1 — rp,) < ;25 . Combining with our first assumption, we see that

Szm(X) > em - 67(X) » L Dém

neighbourhood of x and so does (X, %F). Note that —(Kx + %F) ~g —(1 - 2le, (1 -
rim))Kx is ample; thus by the following Lemma 4.12, there exists some 1 = £- . 2L 5 | (where
Ax(v)

T
H= Sty > n) such that

for any subvariety Z C X of dimension > 1. It follows that (X, %D) is kIt in a punctured

Ax(v) = ey, - v(ID) = A€y, - v(D),

where the last equality holds since x ¢ H. Since D is arbitrary, we obtain Ay (v) > A€, - Si, (Vs, F;v);
letting m — oo, we deduce Ax (v) > AS(—Kx;v) > S(—Kx;v). This completes the proof. O

The following result is used in the above proof.

Lemma 4.12. Let x € X be a smooth point on a projective variety. Let D be an effective Q-divisor on X
such that (X, D) is kit in a punctured neighbourhood of x and —(Kx + D) is ample. Let v € Valy, be a

valuation with Ax (v) < co that’s centred at x, and let yu = éf(ng)) . Then

1. u > dim X and equality holds if and only if v = ¢ - ordg for some ¢ > 0, where E is the exceptional

divisor of the blowup of x.

2. Ax(v) > ﬁ -v(D).

Proof. Let n = dim X. The first part follows from the fact that (X, m}) is lc, and the only lc place
is the exceptional divisor coming from the blowup of x. The second part essentially follows from the
proof of [51, Theorem 1.6], which we reproduce here for the reader’s convenience. Let 7 = J(X, D)
be the multiplier ideal of (X, D). We may assume that (X, D) is not Ic at x (otherwise Ax (v) > v(D),
and we are done), hence J, # Ox x. By assumption, we have 7 = Ox in a punctured neighbourhood
of x. Since —(Kx + D) is ample, we have H'(X, 7) = 0 by Nadel vanishing and hence a surjection
H°(Ox) » H°(Ox/J) -» H°(Ox.x/Jx). Since h°(X,0x) = 1, we see that J, = m, and thus
v(J) =v(my) = AXT(V). Through the definition of multiplier ideals, we also have v(7) > v(D)—Ax (v).

Combined with the previous equality it implies Ax (v) > /ﬁ -v(D). O

To prove the K-stability of smooth hypersurfaces of Fano index two, it remains to verify the two
conditions in Lemma 4.11. The following lemma takes care of the (easier) second condition.

Lemma 4.13. Let X C P"™! be a smooth Fano hypersurface of degree d. Let r = n +2 — d be its Fano
index. Assume that d > 3 andn+ 1 > r>. Then Bx (Ey) > 0 for any x € X, where E, is the exceptional
divisor of the ordinary blowup of x.

Proof. Let H be the hyperplane class on X, and let T = T (H; E ) be the pseudo-effective threshold and
n = n(H; Ey) the movable threshold (see Lemma 4.2). Clearly 1 <5 < T < d.Letn: Y — X be the
blowup of x. Then as 7*H — E is nef, we see that

(n*H - Ex)" - (x"H = nE,) - (n"H - TE,) 2 0,

and thus T < d and 7 < Vd. By Lemma 4.2, we then have

1 ~1 d ~1
S(H:E,) < 7+ n
n

< + )
+ 1 n+1n_(n+1)77 PR
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When 1 <75 < Vd, the right-hand side of the above inequality achieves its maximum at either n = 1 or
n= \/E,henceaSS <d<n+landn+1 > r% we obtain

(n+2-d)(n—-1+d) rnVd
n+1 n+1

S(-Kx;Ex) =r-S(H;E,) gmax{ } <n=Ax(Ey).

In other words, Bx (E) > 0. O

‘We now focus on checking the first condition of Lemma 4.1 1. The basic idea, similar to the proof of
Lemma 4.4, is to apply Theorem 3.4 to an admissible flag of complete intersection subvarieties on the
hypersurface X. At the end, we relate 6z (X) to the stability threshold of a divisor of degree close to 4
on a curve C (i.e., the 1-dimensional subvariety in the chosen flag). However, this only gives the naive
bound 67 (X) > 6(—%1()( lc) = "2—;1 (since 6 (L) = ﬁ for any ample line bundle L on a curve) and
is not good enough for our purpose. To get a better estimate, we choose a flag such that C intersects
Z in at least two points P, Q (which is possible since dim Z > 1). We still have the freedom to choose
another point R # P, Q on C to put in our flag. The key observation is that (asymptotically) basis type
Q-divisors of degree 4 on C that are compatible with R have multiplicity 2 at the point R and therefore
must be log canonical at one of P or Q for degree reason. In other words, the stability threshold along
Z N C is at least one, which is exactly what we need.

We work out the details in the next several lemmas. The first thing is to make sure that the admissible
flag we want to use exists.

Lemma 4.14. Let Y C P! be a smooth hypersurface of dimension m > 2, and let P # Q be two
distinct points on Y. Let H C Y be a general hyperplane section containing both P and Q. Then H is
smooth unless m = 2 and Y contains the line joining P and Q.

Proof. Let £ C P! be the line joining P and Q, and let M C |Oy(1)| be the linear system of
hyperplane sections containing P, Q. If £ € Y, then M only has isolated base points £ N Y, and by
Bertini’s theorem, H is smooth away from these points. On the other hand, since H is general, it is
different from the tangent hyperplane of any x € £{NY; hence H is also smooth at any x € {NY. Thus we
may assume that £ € X. Again H is smooth away from ¢ by Bertini’s theorem. The tangent hyperplanes
of x € ¢ give a 1-dimensional family of members of M. Hence they are different from H as long as
dim M =m — 1 > 2. It follows that H is smooth when m > 3. O

In the remaining part of this subsection, let X C P"*! be a smooth hypersurface of degree n > 4 and
Z C X asubvariety of dimension at least one. We divide into two cases to show that 5z (X) > "T“ First
we treat the case when X doesn’t contain the secant variety of Z.

Lemma 4.15. In the above notation, assume that there exist closed points P # Q € Z such that the line
Jjoining P and Q is not contained in X. Then 6z (X) > "TH

Proof. By Lemma 4.14, there exists a flag

Yo : X=Yy2Y,2---27Y,

on X such thateach ¥; (1 < i < n—1) is a smooth hyperplane section of ¥;_; containing P, Q and Y, is a
smooth point on the curve Y,,_; that’s different from P, Q. Let V; be the complete linear series associated
to —Kx, let Y.(J ) be the truncated flag given by Yy 2 --- 2 ¥, and let W;(] ) be the refinement of Vi by

Y.(j ) Ttis equipped with a filtration F induced by Y,. By Example 2.12, W;(j ) is almost complete, and it

is clear that F (W;(j ) ) = 0. Since any m-basis type Q-divisor D of Wéj ) that’s compatible with F can be
written as (see the discussion at the beginning of Section 3.1)

D =Su(W ¥j1) Vi +T,
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WD

where F|Yj+l is an m-basis type Q-divisor of W, we have (see equation (3.1))

A W) = (s W) = S 1) V)| (4.10)
Therefore, by Lemma 2.13 and induction on j, we have

() J J

W) ~g =1 - — | Kxly, =21 -—|H

aWe™) ~e ( n+1) xly; ( n+l)

forall 0 < j < n—1and S(WS;Yj41) = S(ci(W);¥j) = ;2 for 0 < j < n—2. By
Theorem 3.4 (applied to j = n — 1), we see that to prove 6z(X) = 62(Vz) > "T“, it suffices
to show that 5Znyn_l(Yn_1;W:("71),]:) > "T” As Z NY,_; contains at least two points P,Q and

degc; (W;("_l)) = n—il(—KX CHYY = %, this follows from the next lemma. O

Lemma 4.16. Let C be a smooth curve, let Wy be a multigraded linear series with bounded support
containing an ample series, let P1,- - - , P,, Q be distinct points on C, let Z =Py U ---U P,, and let F
be the filtration on W5 induced by Q. Assume that Wy is almost complete and F(W3) = 0. Then

2r

57(CiWs, F) > —— .
2(CWa F) 2 G e W)

Proof. Any m-basis type Q-divisor D of W5 that’s compatible with Fhas the form D = S,,(W;; Q)-Q+I"
for some effective Q-divisor I'. Since Q ¢ Z, in order for Z to be contained in the non-lc centre of
(C,AD), we need multp, (AI') > 1 foralli =1,---,r. It follows that

r

,
Oz m(Ws, F) 2 = '
Z.m( ) degT"  degD - S,,(Ws;0)

Letting m — oo, we obtain

r

0z(Ws. 7) 2 degci(W3) - S(W5:0)°

The lemma then follows since S(W5; Q) = S(c;(Ws3);0) = % degci(W;) by Lemma 2.13. O

The opposite case is when X contains the secant variety of Z.

Lemma 4.17. Let X C P™*! be a smooth hypersurface of degree n > 4 and Z C X a subvariety of
dimension at least one. Assume that there exists closed points P # Q € Z such that the line joining P, Q
is contained in X. Then 57 (X) > "7“

Proof. The proof is similar to Lemma 4.15, except that we use a slightly different flag. Consider a flag
Yo ¢+ X=Yy2Y12---2Y%,

on X such that each ¥; (1 <i < n—2) is a smooth hyperplane section of ¥;_; containing P and Q, Y,
is the line joining P, Q and Y, is a smooth point on Y,,_; that’s different from P, Q. We use the same
notation W;(j ) and Fas in Lemma 4.15. We claim that W3(j ) is almost complete and F' (W;(j )) =0 for all
0 < j < n— 1. Indeed this is evident when 0 < j < n — 2 by Example 2.12, so it remains to consider
the case j = n — 1. For ease of notation, let S = Y,,_», L =Y,_1, and let H be the hyperplane class. It is
straightforward to check that on the surface S (which is a smooth surface of degree n in P3), we have

l.(H-L)=1,(H*) =n,(L*) =2-nand (H-L)* =0;
2. H — L is nef.
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They together imply that HO(S,mH — jL) # 0 (m, j € N) if and only if 0 < j < m and that

1
=—. 4.11
W (4.11)

W

1
S(H;L) = %/G (H —xL)*dx =

By Kodaira vanishing, we also have H' (S, Og(mH — jL)) = 0 whenever m — j > n — 4, and thus the
natural map H°(S, Os(mH — jL)) — H°(L,Op(mH — jL)) is surjective when m — (j + 1) > n — 4.
As Op(mH — jL) = Op(m + j(n — 2)), we see that the complete linear series V; associated to H on
S has almost complete refinement by L. Since W(” 2 is almost complete (with respect to H), most

graded pieces of W: ) are a complete linear series |[mH| for some m € N (see Example 2.12); hence
its refinement W;("_l) by L is also almost complete. As L = P!, the linear systems |O (mH — jL)| are
all base point free; thus it is not hard to check that F (W:("_l)) = 0. By Lemma 2.13, equation (4.10) and
equation (4.11), we find (as in the proof of Lemma 4.15)

n

S(W ) = 2 <
Y n+l n+1l

when 0 < j <n-3and

6 6 (2 1
SW™ 5 Yep) = S(er (W) Y,0) = (n—H;L) = (— - —) <,

+1 n+1\3 3n n+1

where the last inequality uses n > 4. Using equation (4.10) one more time, we also obtain

~ 6 | 4 1 4n
d Wf" 1) — H-|--—|L-L|= -1 — .

Hence by Lemma 4.16, noting that Z N Y,_; contains at least two points P,(Q, we deduce that
dzny, (W;("_l), F) = ”T“, and therefore the lemma follows from Theorem 3.4 and the above compu-
tations. O

We are ready to prove the K-stability of index two hypersurfaces.

Proof of Theorem 4.12. By Lemma 4.10, we may assume that n > 4. It suffices to verify the two
conditions of Lemma 4.11. The first condition follows from Lemmas 4.15 and 4.17 and the second
condition follows from Lemma 4.13. m]

A. Stability thresholds of cubic surfaces

In this appendix, we compute the J-invariants of all smooth cubic surfaces and give the proof of
Theorem 4.6. Throughout the section, we let X C P? be a smooth cubic surface, x € X a closed point
and C =T (X) N X.

The proofs are similar between different cases. Note that the first case — that is, mult,C = 3 —is
already treated by Theorem 4.9. We work out the details when C has a tacnode and sketch the argument
in the remaining cases.

Lemma A.1. Assume that C has a tacnode at x. Then §,(X) = 17, and it is computed by the (unique)
divisor that computes Icty (X, C).

Proof. By assumption, C = L U Q, where L (respectively, Q) is a line (respectively, conic) and L is
tangent to Q at x. We have L = (« = 0) and Q = (u — v?> = 0) in some local coordinates u, v around x.
Let 7: Y — X be the weighted blowup at x with weights wt(u) = 2, wt(v) = 1, and let E C Y be
the exceptional divisor. Note that E is the unique divisor that computes lctx(X C).Let L (respectlvely,
Q) be the strict transform of L (respectively, Q). We have (L?) = -3, (Q ) = -2, (L Q) = 0 and
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—n*Kx —4E ~ L+ é It follows that the stable base locus of —7*Kx — ¢E is contained in L U Q for all
0 <t <4, and we have
0 if0<r<1,
Ny (—n"Kx —tE) ={ &4 ifl <t <2, (A.1)

I~
L
L+ 520 if2<r<4,

where N (L) (respectively, P, (L)) denotes the negative (respectively, positive) part in the Zariski
decomposition of L. Therefore,

vol(-n*Kx — tE) = (P (—n*Kx — tE))? (A.2)
31 ifo<tr<l,
=13 32+ 3t - 1) if1<r<2,

3-12+3( -1 +3(t-2)% if2<r<4
In particular, T(-Kx; E) = 4 (as vol(—n*Kx —4E) = 0) and S(-Kx; E) = 19—7. Let

27 Ax(E)

A== X
17~ S(—Kx:;E)

Clearly 6,(X) < A by definition, and it remains to show 6,(X) > A. Let V; be the complete linear
series associated to —Kx, and let W5 be its refinement by E. By Theorem 3.2, it is enough to prove
6(E,Ap;W;) = A, where Ag = Diffg(0) = %Po and Py is the (unique) singular point of Y. Note that
Py ¢ Z U é

By Lemma 4.5, W5 is almost complete. Therefore, by Corollary 3.3, it suffices to show

0(E,Ap + AF(W3);c1(Mz)) = A. (A.3)
As in the proof of Theorem 4.9, noting that

Act(Mz) + AF (W5) ~q Ac1 (W) ~q A(-n"Kx — S(-Kx;E) - E)|E
~g —Ax(E) -E|g ~q9 —(Ky + E)|g ~¢ —(Kg + AE),

we see that equation (A.3) is equivalent to saying the pair (E, Ag + AF(W;)) is K-semistable.

We apply Lemma 4.8 to compute F(W;). Let P, = L N E and P, = Q N E. Then Supp(F(W;)) C
Py U P,. We have voly |g(—n*Kx — tE) = —% . dd—tvol(—ﬂ*KX — tE) by [33, Corollary C]. Combined
with equation (A.1), equation (A.2) and Lemma 4.8, we deduce

1 2r—1 t+2 Yr-1 2(4-1) 17
Itp F(W3) = . d . drl = =
multp, F(We) = =553 (/1 3 3 YY) 3 3 YT s
1 Yr-2 2(4-1) 4
multhF(WZ) = (_KX)Z'/z. 2 ! 3 dr = ﬁ

Thus (E,Ag +AF(Ws)) = (P!, 1Py + %Pl + 14—7P2), which is K-semistable by Lemma A.2. This finishes
the proof. O

The following result is used in the above proof.
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LemmaA.2. Let A = a;P1+- - -+a,, Py, where Py, - - - , P, are distinct points on P' and a; € (0,1) (i =
1,---,m) satisfy ai + -+ am < 2 (i.e, (P',A) is log Fano). Then

—maxj<i<m{ai}

1
5(P',A) = — )
1-5(a+--+am)

In particular, (P', A) is K-semistable if and only if a1 + - - - + a,, > 2a; forall 1 < i < m.

Proof. Wehave S(—Kpi —A; P) = § deg(—Kpi —A) = 1-1(aj+- - +a,,) and Api 5 (P) = | -multp(A)
for any P € P!. The result then follows from the definition of stability thresholds. O

Lemma A.3. Assume that C has a cusp at x. Then 6, (X) = % and it is computed by the (unique) divisor
that computes Ict, (X, C).

Proof. The proof is very similar to that of Lemma A.1, so we only sketch the steps. In local coordinates,
C = (u*—v?>=0) around x. Let 7: Y — X be the weighted blowup at x with wt(u) = 3, wt(v) = 2, and
let E be the exceptional divisor. Let C be the strict transform of C. We have T(—Kx; E) = 6,

0 if0<r<3,

No(-m"Kx —tE)={\ , ~
o (T —E) {%C if3<r<6

and

. 3-12 if0<r<3,
vol(-n"Kx —tE) = L6 p? if3<r<6
; <6.

Thus S(—Kx;E) =3.Let A = % = S(Aj‘K—f)E), and let W5 be the refinement by E of the complete linear
series of —Kx. As in the proof of Lemma A.1, W; is almost complete, and it suffices to show that
(E,Ag+AF(W;5)) is K-semistable. Note that Ap = %Po + %Pl , where Py, P are the two singular points

of Y. By Lemma 4.8, we find

1 6r-3 6-1 1
multsz(W;)z(_KX)Z/3 T 3 dtzg,

where P, = C N E. Thus (E,Ap + AF(W3)) = (P', lPO + %Pl + %PZ), which is K-semistable by
Lemma A.2. This concludes the proof. O

Lemma A.4. Assume that C is irreducible and has a node at x. Then 6, (X) = 17—2, and it is computed
by the ordinary blowup of x.

Proof. Again we only sketch the steps. Let 7: ¥ — X be the ordinary blowup of x, and let £ be the
exceptional divisor. Let C be the strict transform of C. We have T(-Kx; E) = 2,

0 ifo<t<3,

Ny (=m"Kx — 1E) = _
(="K ~1E) {(2t—3)C ifd<r<2

and

. 3-12  if0<r<3,
vol(-n"Kx —tE) = 2 e
32-1% ifd<r<2.

Thus S(-Kx; E) = %. LetA = 172 = ffK—%, and let W; be the refinement by E of the complete linear

series of —Kx. Since W5 is almost complete by Lemma 4.5, it suffices to show that (E, AF(W3)) is
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K-semistable as in the proof of Lemma A.1 (note that Ag = 0 in this case). By Lemma 4.8, we see that
F(W3) = u(Py + Pp) for some u > 0, where {P, P,} = C N E. Thus (E, AF(W5)) is K-semistable by
Lemma A.2 (regardless of the value of w). This proves the lemma. O

Lemma A.5. Assume that C is a union of three lines and mult,C = 2. Then 6,(X) = %, and it is
computed by the ordinary blowup of x.

Proof. Write C = L1 + Ly + L3, whEre LiNnLy, =x.Letm: Y — X be the ordinary blowup of x, and
let E be the exceptional divisor. Let L; be the strict transform of L; (i = 1,2). We have T(—Kx; E) = 2,

[ ifo<r<l,
Ky —tE)=4°
TR WL +1y) ifl<1<2

and
. 3-2 if0<t<l,
vol(—n"Kx — tE) = ]
4-2t ifl<tr<2.
Thus S(-Kx; E) = %. Letd = i—? = ffK—%, and let W; be the refinement by E of the complete linear

series of —Kx. As in previous cases, W; is almost complete, and it suffices to show that (E, AF(W3)) is
K-semistable (note that Ag = 0). By Lemma 4.8, we have F(W;) = u(P; + P,) for some y > 0, where
P; = L; N E. Thus (E, AF(W5)) is K-semistable by Lemma A.2 (regardless of the value of u). This
proves the lemma. O

Lemma A.6. Assume that C = L U Q, where L is a line, Q is a conic, and they intersect transversally
at x. Then 6,(X) = ﬁ@, and it is computed by the weighted blowup at x with wt(u) = 1 + V6 and
wt(v) = 2 (where u, respectively v, is the local defining equation of L, respectively Q).

Proof. For each a, b > 0, let v, be the quasi-monomial valuation over x € X defined by v, (1) = a
and v, (v) = b. We first identify the minimiser of %. For this choose coprime integers a, b > 0,
and let 7: Y =Y, — X be the weighted blowup at x with wt(u) = a and wt(v) = b. Let E be the
exceptional divisor, and let L (respectively, Q) be the strict transform of L (respectively, Q). Assume

that b < 2a. Then similar to the calculations in previous cases, we have (compare to equation (4.5))

0 if0<r<b,
No(-n"Kx —1E) = { =2 T ifh <1< 42e80)

2;—2ba—bz + (2a+b)t;¢21(2a+3b)é if a(2a+3b)

321D <t<a+b,

1 d
voly |[g(-n"Kx —tE) = (Po(-n"Kx —tE) - E) = == - —vol(-n"Kx — 1E)

2 dt
= if0<r<b,
=\almpy fb<t< %,
Mt i e <rsa+b,
and
S(-Kx:;E) = @ /0 a+bt‘V01Y\E(—7T*KX —tE)dt = 100294221619112; 3p2
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Note that /;X ((:“ .b) only depends on the ratio 4 thus by continuity [3, Proposition 2.4], we have

Ax(vap)  9(a+Db)(2a+Db)
Sx(Vap)  10a2 + 19ab + 3b2

when 4

. . .. _ 9 _ _
for all a, b € R,. It achieves its minimum A = 3557C F =M= TS

Ox(X) < A. It remains to show 6, (X) > A.

Choose a sequence of coprime integers a,,,b,, > 0 (m = 1,2,---) such that y,, := Z—’" - u
(m — o). Let mp: Yy, = Yq,,.,, — X be the correspondmg weighted blowup, and let E,, be the
exceptional divisor. Let P(m) LNE,, Pém) =Q N E,, and let W:m) be the refinement by E,, of the

> 1. In particular, we have

complete linear series associated to —Kx. As before, W:(m) is almost complete by Lemma 4.5. Using
the above calculations and Lemma 4.8, we have

o c(’">
Cl

m m
where
(m) _ 2003, — 82, + i + 1 ) _ 4
: Ut (2t + 1)? ’ 2 9(2um + 1?2

Let Ay, = Diffg,, (0) = (1— 7o) P{™ + (1= )P, 4y = 5250 and let

Fin = 6 (Ems A + A FWS™); At (M{™)) = 6(Epy A + AmF(WS™)), (A4)
where the last equality follows from equation (3.1). Then by Corollary 3.3, we obtain
0x(X) = min{ A, rmdin } (A.5)

for all m. Note that A,, — A as m — oo.
We claim that 7, — 1 as m — co. Since E,, = P!, by Lemma A .2 this is equivalent to

1

H
1= mult o (A + A F(WS™))
2
when m — oo. It is straightforward (though a bit tedious) to check that

1= Apel™ 9p(2u+ 1)2 = 22043 — 8p2 + p+ 1)
— .

1= Aped™ Opu(2u+1)% — 4y

LHS = uy, -

This proves the claim. Letting m — oo in equation (A.5), we obtain 6, (X) > A as desired. O

Corollary A.1. In the situation of Lemma A.6, let 0 < & < 1 be a rational number. Then the pair
(X, (1 =¢)C) is log Fano and 6 (X, (1 — )C) = e S\f

Proof. We continue to use the notation from Lemma A.6. Since (X, C) islc, itis clear that (X, (1-£)C) is
log Fano. Let L NQ = {x, y}, let v be the quasi-monomial valuation that computes J, (X) in Lemma A.6,

and let A = e 8( Note that v is an Ic place of (X, C): that is, Ax(v) = v(C). Then by Lemma A.6,

we get Ax (1—g)c) (V) = eAx(v) = eASx(v) = ASx (1-s)c(v) and hence §(X, (1 — £)C) < A. To get

https://doi.org/10.1017/fmp.2022.11 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.11

42 Hamid Abban and Ziquan Zhuang

the reverse inequality, we shall prove
6,(X,(1-¢)C) =2 (A.6)

for any closed point z € X. In any case, we have Ax (v) > v(C), and hence Ax (1_5)c (V) = eAx(v) =
0,(X)-&Sx(v) = 6,(X)-Sx,(1-s)c (v) for any divisorial valuation v whose centre contains z. It follows
that 6,(X,(1 — &)C) > 6.(X), and hence by Lemma A.6, equation (A.6) holds when z € {x, y}.
If z ¢ Supp(C), then v(C) = 0 for any divisorial valuation v whose centre contains z, hence by the
definition of stability thresholds we get 6, (X, (1 —&)C) = @ > Awhen 0 < & < 1. Thus it remains
to consider the case when z € Supp(C) \ {x, y}. For simplicity, we assume z € Q (the other case z € L
is similar). Consider the refinement (denote it by W;) by Q of the complete linear series associated to
—Kx . Note that §(W5) > 0. Since —(Kx + (1 — &)C) ~g —eKx, by Theorem 3.2, we have

Ax (1-5)c(Q)

= ol -8)C; - i
0:(X, (1 -e)C) =& '6,(X, (1 - &)C; KX)Zmln{SX,(ls)C(Q),

s‘ldz(W;)} > 1

when 0 < € <« 1. Hence equation (A.6) also holds in this case. The proof is now complete. O

Proof of Theorem 4.6. This follows from the combination of Theorem 4.9, Lemmas A.1, A.3, A.4, A.5,
A.6 and Corollary A.1. O
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