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Abstract

We present HydroFlow, a novel deep generative model
for predicting the electricity generation demand of
large-scale hydropower stations. HydroFlow uses a la-
tent stochastic recurrent neural network to capture the
dependencies in the multivariate time series. It not
only utilizes the hidden state of the neural network,
but also considers the uncertainty of variables related
to natural and social factors. We also introduce an end-
to-end approach based on generative flows to approx-
imate the posterior distribution of time series with
exact likelihoods. Our model is powerful as adding
stochasticity to different factors (e.g., reservoir capacity
and water-flow measurements) and thus overcomes
the expressiveness limitations of deterministic predic-
tion methods. It also enables trainable latent transfor-
mations that can improve the model interpretability.
We evaluate HydroFlow on the data collected from the
hydropower stations of a large-scale hydropower de-
velopment company. Experimental results show that
our model significantly outperforms the state-of-the-art

baseline methods while providing explainable results.
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1 | INTRODUCTION

The volume of generated renewable and clean energy such as photovoltaic, wind, and water
power has increased rapidly over the last decade.* Hydropower, which is derived from river
basins that provide water slopes to drive turbine generators, is the most significant renewable
resources with the lowest carbon footprint per MWh.> For example, it hit a record 4306
terawatt-hours (TWh) in 2019—the single most enormous contribution from a renewable en-
ergy source in history.* Moreover, the global weighted average cost of electricity from hydro-
power projects in 2019 was US $0.047/kWh, making it the lowest-cost source of electricity in
many markets. The Covid-19 pandemic has also highlighted hydropower's resilience and cri-
tical role in delivering clean, flexible, reliable, and affordable energy, especially in times of
crisis, because the plant operations have been less affected due to the degree of automation
with modern Industrial Internet of Things (IIoT) facilities and intelligent system.®'?

Generally, the grid controls and dispatches the electricity generation demand to hydro-
power stations ahead of days. However, a hydropower station's power generation is also af-
fected by many dynamic factors, such as river/reservoir inflows, seasonality, abrupt needs, and
gross industrial production, the self-usage of electricity, price, and so forth. In addition to
hydropower generation, the dams should also regulate the downstream water and maintain
water ecology. For example, the inflow in summer cannot be fully exploited to generate elec-
tricity because the dam has to release surplus water to guarantee a safe water level and reduce
the probability of floods and landslides."* Similarly, the hydropower generation in winter is low
due to the minimum water level required to ensure the river ecology and the responsibility for
irrigation of surrounding farmland.

Since the electricity cannot be stored in large quantities, the power generation of the
hydropower enterprises must follow certain dispatching policies.' Therefore, large-scale hy-
dropower companies necessitate modeling'> and forecasting and recommending the power
demand, especially in the case of cascaded hydroelectricity plants'®'’—an example of which is
shown in Figure 1.

Within the broader context of Machine Learning (ML) for Internet of Things (I0T),"® the ex-
isting research on renewable energy forecasting focuses on either the power consumption pre-
diction in electricity grid'®*' or the intermittent resources (e.g., wind, inflow, and solar power)
forecasts.** ** For example, short-term load prediction has been considered in Reference [21],
which models various coevolving time series using neural networks. In Reference [31], the authors
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FIGURE 1 A map of the hydropower plant distribution along Dadu River—a tributary of the Yangtze River
in China [Color figure can be viewed at wileyonlinelibrary.com]
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use optimal reconciliation regression to model the electricity consumption patterns. The renewable
generation of wind and photovoltaic (PV) power has been extensively studied in recent years,** ***
which mainly work on various aspects of power probabilistic forecasts,”* including multiobjective
decision-making,>® dynamic feature engineering,>’ the strategies of balancing various renewable
resources,”” and so forth.

Despite significant progress in modeling and forecasting electricity consumption and the
intermittent resources,*** very few efforts have focused on fine-grained hydropower demand
prediction. However, the forecasting of hydropower energy demand to be dispatched in the
future would improve the support not only of the more economic dam operation, but also river
ecology.36 With the increasing complexity of the power system with the intermittent renewable
resources, hydropower demand forecasting may benefit the balance between profit max-
imization, equipment maintenance, and ecology preservation in the downstream river and
dams.*’ For example, hydropower stations could improve the water storage as much as possible
within the safe range to maximize the utilization ratio of water resources. Correspondingly, the
enterprises could arrange cycle scheduling of water turbines for regular check and repairing of
components if less power generation demand is dispatched. Besides, knowing future power
generation demand can help hydropower systems make decisions on drainage in the nonflood
period, which will better take the rule for river ecology, such as biodiversity conservation and
agriculture irrigation.®®?° Thus, accurate hydropower demand prediction will benefit in
enhancing river ecology and developing a power generation plan to reasonably reduce the
water loss.

There is a growing need to accurately and efficiently model short-term renewable genera-
tion demand uncertainties and minimize the power system's decision risks. However, as
common in IoT systems—there are various uncertainty factors stemming from heterogeneous
sources™”*! which pose additional challenges on modeling and forecasting hydroelectric power
generation demand. In principle, hydropower data can be large-capacity and real-time data,
and its representation is usually composed of multiple time series.”” In addition to the
infrastructure-related factors such as grid demand and grid-connected load, specific natural and
social factors also affect hydropower demand prediction, for example, the different on-grid
prices of various stations in a company.

In this paper, we propose a novel approach called HydroFlow to overcome these challenges.
HydroFlow is an innovative probabilistic learning and predicting framework that models the
stochastic multivariate time series—which is collected from various IIoT sensors and real-time
intelligent platform—and produces latent variables’ temporal dependencies. In particular, we
design a novel variational latent recurrent neural networks (VL-RNNs) model for learning
multivariate hydropower time-series data. It is a latent generative approach preserving both
temporal relationships along the time dimension and stochastic processes of the power gen-
eration demand. This property allows us to estimate the model uncertainty that is important to
support the downstream decision-making regarding dam operation. Our method increases the
expressive capacity of the deterministic recurrent neural networks (RNNs) with efficient var-
iational inference. It also enables the estimates of model uncertainty—which is essential to
support the downstream decision-making regarding dam operation. To alleviate the inductive
bias raised by poor posterior inference, we use a normalizing flow"*—a Bayesian method
transforming a simple prior distribution into the desired target distribution through an in-
vertible neural network—to express the likelihood over the hydropower time series and esti-
mate the density more accurately and flexibly. Furthermore, we consider additional features,
including natural (e.g., inflow, temperature, and abandoned water) and social factors
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(e.g., electricity price) and present an efficient external knowledge fusion network to improve
the hydropower generation demand forecast.
In conclusion, the main contributions of this study are fourfold:

« To our knowledge, this is the first study on predicting the hydropower generation
demand of large-scale hydroplants. We analyze various observations from a perspective
of deep multivariate time-series learning and probabilistic modeling. Our approach
opens the door of applying deep generative models on mining industrial power data and
may foster enthusiasm for efficient and flexible renewable energy use.

+ Moreover, we propose a novel framework to learn the evolution of latent representation
with a new designed stochastic RNN and the generative normalizing flow, preserving
accurate and robust representations of multivariate time series corresponding to in-
dustrial hydropower generation and demand data.

« Finally, we conduct extensive experiments on real-world data sets collected from large-
scale hydropower stations. The experimental results show that HydroFlow improves
prediction performance over state-of-the-art time-series forecasting approaches while
self-explaining the model behavior.

« We successfully deploy our hydropower demand forecasting model on the Hydropower
Data Analysis and Data mining platform (HydroDAD) in a large-scale hydropower
generation company. The model is continuously optimized with new hydropower data,
which combines hydropower demand prediction with various IIoT monitoring data to
help make decisions.

2 | RELATED WORK

Modeling multivariate time series is a subject that has attracted researchers from a diverse
range of fields. As a specific industrial time series, electricity generation/consumption fore-
casting has received considerable attention due to its practical value in industry, business,
society, and environments.***"*"** Zhou et al. study short-term load forecasting to improve the
reliability of the power grid.> The proposed method, called NeuCast, models various loads as
coevolving time series using neural networks and captures seasonality of the electricity usage
using the external factors, including temperature and precipitation. Pang et al. propose a
hierarchical time-series model to forecast the electricity demand through exploring electricity
consumption patterns.’’ The basic model is based on the optimal reconciliation regression and
can therefore deal with the hierarchical power usage prediction. StreamCast®® forecasts the
power consumption of a location multiple days ahead. The authors propose a temporal linear
load model, which characterizes the grid load by modeling the voltage sensitivities.

With the increasing penetration of stochastic renewable generation, recent studies try to
model and predict possible future renewable electricity.** *”** Uncertainty modeling techni-
ques for power probabilistic forecasts were studied in Reference [23], where a Gaussian copula
approach was proposed to model the short-term wind power. Complementary, data reduction
was used in Reference [22] to generate representative power penetration and load levels and
solve the multiobjective decision-making problem based on information entropy and the
analytic hierarchy process. Forecasting the PV output power at several time horizons using
several ML techniques such as least square support vector machine and neural networks was
studied in Reference [33]. An efficient dynamic power generation prediction method based on
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Gibbs sampling was presented in Reference [27]. The generated renewable power scenarios are
drawn from the joint distribution, capturing multiple renewable power plants' statistical fea-
tures. Keeping renewable electricity production in balance with the actual demand has been
studied in Reference [32], which introduced a complementary imbalance forecasting frame-
work that can help the system determine future intermittent renewable production.

As for hydropower prediction research, prior works mainly concentrate on the inflows
forecasting and power generation forecasting. For example, Zhong et al.** studied the influence
of climate change on future hydropower generation, which is limited to natural factors without
considering the social and commercial impact on power generation. Learnt hydropower time
series using RNN was proposed in Reference [46], which only considers the sequential de-
pendencies among power generation data. Combining social and natural factors to predict
reservoir inflows and power generation's evolution using RNN was tackled by References
[30,46]. However, the proposed models are built based on solving ordinary differential equa-
tions (ODEs), making the model hard to train due to the inaccurate and unstable numerical
ODE solvers.

In addition, some recent works studied the issues w.r.t. hydropower generation demand,
which, however, mainly focus on long-term and real-time hydropower generation dispatch
optimizations from the grid's perspective. For example, Zhang et al.*’ analyze the character-
istics of hydropower to determine the optimal working position and capacity of each power
plant in the daily load curve. Lion swarm optimization algorithm to optimize the dispatch of
cascade hydropower stations was presented in Reference [48]. The interactions between power
generation and degree of ecological flow satisfaction under different operation modes to
enhance the stability of river ecosystems was considered in Reference [49].

Notwithstanding the progress enabled by the above works, we note that there are few works
paying attention to predicting short-term dispatches of hydropower generation demand, which
has significant benefit for scheduling electricity generation and operating dams from the
hydropower station's perspective.

Recent advances in deep neural networks have inspired many works that improve time-
series prediction with various deep learning techniques,’® among which autoregressive models
such as RNN and its variants®" are the main building blocks. However, RNNs are deterministic
models that cannot efficiently capture the uncertainty associated with multivariate time series,
for example, the inflow/outflow of reservoir and rainfall measurements for hydropower dams.

Nowadays, deep generative models are applied to time-series modeling and forecasting
tasks and achieve important advances.’®>? Thus, to overcome the above issues, we introduce
generative methods by proposing a VL-RNN model to capture the stochasticity of power
generation and enhance the robustness of learning multivariate time-series data. Besides,
normalizing flow™® is explored to improve posterior inference through an invertible density
transformation. Specifically, we propose a continuous variational inference approach based on
free-form Jacobian of reversible dynamics®* to fit the dynamic systems of hydropower, where
the latent variables can be composed with each other to approximate more complex distribu-
tions beyond mixture Gaussian.

In addition to modeling the electrical power as in previous neural approaches, we also distill
the knowledge from external factors, the dependencies between latent variables and, most
importantly, the uncertainty of hidden states. In this spirit, we take the initiatives to model
industrial time series and external data fusion in a profoundly generative learning way. Rather
than merely improving prediction results, our model is more robust on data representation and
can interpret the learned latent space.
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3 | PRELIMINARIES

We consider a portfolio of multivariate hydropower observations X. Each observation x, at time
t includes electricity v; and water flow w;. The power, defined as v; = {v}, v v*}, includes total
power demand, power generation, grid-connected power and auxiliary power. The water flow,
defined as w; = {w, w’, w}, consists of water inflow, water outflow, and generation flow.
Therefore, each observation x; € R? at time ¢ is a vector with a dimension of P = 7.

Several external factors are considered including: (1) the temporal factor 7 of holiday effect,
which consists of three categories, that is, HourOfDay, DayOfWeek, and WeekdayOrNot; (2)
natural factors including water flow and temperature, which are uncertain due to inaccurate
measurement and prediction; and (3) the electricity price of individual plants that can be
considered as a commercial/social factor. We use e to represent these external factors. Hy-
dropower generation forecasting. Let X,_1 = {X/_n, X;_n41, ... Xi—1} € RY¥*F be the N historical
observations, and e; be the external factors at time f, the task is to learn a model F from
historical data X; ; to predict the future power V;:

Vi = F(X;_iles; Q), (1)

where  are the set of learnable parameters.

4 | METHODOLOGY

We now provide a formal definition of the problem and present the details of our methodology.

41 | Problem definition

We consider a portfolio of multivariate hydropower observations X. At each time ¢, we have the
observation X; consisting of electricity v; and water flow w; measurement values. The generated
power data are composed of four different time series, that is, v; = {vtl, vf, vf ; vf}, which are the:
total power demand, power generation, grid-connected power, and auxiliary power, respectively. The
water flow, denoted as w; = {er, w?, w'}, consists of water inflow, water outflow, and generation
flow. That is, each observation x; € R at time ¢ is a vector with a dimension of P = 7.

Several external factors are considered including: (1) the temporal factor T of holiday effect, which
consists of three categories, that is, HourOfDay, DayOfWeek, and WeekdayOrNot; (2) natural factors
including water flow and temperature, which are uncertain due to inaccurate measurement and
prediction; and (3) the electricity price of individual plants that can be considered as a commercial/
social factor. We use e to represent these external factors. In this study, we study the following
problem: Hydropower generation demand forecasting. Let X;_1 = {X,_n+ X;_N41s - X1} € RV be
the N historical observations, and e, be the external factors at time ¢, the task is to learn a model F
from historical data X; ; to predict the future power V;:

Vi = F(Xi_1les; ©), )

where © is the set of learnable parameters.
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4.2 | System overview

Our generative model-based hydropower forecasting method enables probabilistic time-series
learning by incorporating stochastic variables into RNNs. In particular, our HydroFlow model
consists of three core components: a stochastic time-series encoder—-decoder network, the ex-
ternal attributes embedding network, and the feature fusion and prediction network.

Figure 2 illustrates the overall architecture of HydroFlow. First, HydroFlow learns the latent
representations of multivariate time-series data (cf. the left part of Figure 2) in an end-to-end
manner by introducing a stochastic RNN method, called VL-RNN. VL-RNN captures long and
short temporal dependencies among sequential observations with the gated mechanism of gated
recurrent unit (GRU) while embedding the stochastic variables to enable variational inference.
Rather than merely relying on predefined diagonal Gaussian as previous autoregressive variational
models, we borrow the idea from generative flows to better estimate latent variables distribution.
Next, our model combines external knowledge (e.g., sale price, temperature, and holiday effect)
using an external information embedding network (EIEN). Finally, the multiple representations
learned from both time-series data and categorical data—including external knowledge a, and
stochastic latent variables z, —are fed into a fusion network to make the prediction. We will delve
deeper into the three components in the subsequent sections.

4.3 | Stochastic encoder-decoder network

RNNs have proven to be effective for time-series modeling and learning. RNN autoencoders are
usually used for learning latent representations of time series, which can provide useful information
for downstream tasks, including future value prediction, outlier detection, and classification.>

Multivariate VL-RNN Encoder Continous Variational Inference Reconstruct
Time Series
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FIGURE 2 An overview of our model for hydroelectricity generation demand prediction. VL-RNN and
continuous variational inference: a latent RNN model for learning stochastic dependencies and variational
uncertainty inference. External knowledge includes temperature, time, weekday, electricity sale price, and so
forth. We design an external information embedding network to analyze them. GRU, gated recurrent unit;
MLP, multiple layer perceptron; ODE, ordinary differential equation; RNN, recurrent neural network;
VL-RNN, variational latent recurrent neural network [Color figure can be viewed at wileyonlinelibrary.com]
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However, RNNs are deterministic models that cannot handle the stochasticity inherent in time
series, which causes the existing methods to fail to fully exploit latent temporal dependencies
between pairs of variables. Here we present a novel hydropower inference network that explicitly
modifies the RNN to consider the uncertainty of RNN hidden states. In addition, we equip our model
with the normalizing flow technique that allows us to approximate more complex posterior, beyond
diagonal Gaussian, with flexible density transformations.

4.3.1 | Variational latent RNN

Our VL-RNN behaves as the encoder and decoder networks in HydroFlow. It takes multivariate
time series as input and restores the input as the objective. The main idea of VL-RNN is illustrated
in the bottom left of Figure 2. Typical RNN-based variational autoencoder (VAE) models™ usually
parameterize the latent variables z on the last hidden state h of RNN, which may not well encode
the temporal dependencies into latent codes z. In contrast, VL-RNN specifically considers the
inherent relationships among latent variables Z;_; up to the previous step, while maintaining the
hidden states of RNN cells. Therefore, our model learns the representations conditioned not only
on the time-series observations but also on some latent random variables.

Figure 3 illustrates the workflow of VL-RNN in one time step. Specifically, we use GRU as
the basic RNN cells. At current time stept — 1, the input of the GRU is the observed time-series
value X, ; and the mean and variance of previous hidden states (p.}‘iz, ol ). The GRU cell first

outputs the mean and variance of the observation (pti‘il, ol ), followed by the hidden state
h;_,. Subsequently, another GRU cell would take (i ,, o7_,) (the stochasticity of observations

obtained at previous time step ¢ — 2) and current hidden state h, ; as inputs to generate the
latent variables (i |, o7 ;) att — 1, which are considered as the mean and variance of a certain

distribution. Then, we use the reparameterization trick®® to compute the latent variables:
Z 1= p.il + o;_,*e, where € are samples from a standard Gaussian € ~ \(0, I).

Algorithm 1: The pseudo-code of VL-RNN.

Input: multivariate hydropower data: X,_;.
Output: latent variables Z,_; and hidden states H,_;.

1 Initialize u:‘_N_l =0, O“:I_N_l

2 foreachiin[t— N,--,t— 1] do

— VA - VA P .
=0, M N1 = 0, O N-1= I

3 | Wlol = GRUCeN (4 .ot ,x;);
4 h;, = th;
s | ul,of =GRUCell (p ,0* ,h);
6 z; = Reparameterize (,ulz oiz);
Save hidden state h; and latent variable z;;
s end

9 Concatenate all hidden states h;_».;_; to H;_;;
10 Concatenate all latent variables z,_n.,_; to Z;_;;
1 returnZ,_; and H,_,.

VL-RNN realizes the variational latent representation learning based on both latent
variables and hidden states of observations. Since the latent variables in VL-RNN are also
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FIGURE 3 Zoom-in of one-time step computation in VL-RNN. GRU, gated recurrent unit; VL-RNN,
variational latent recurrent neural network [Color figure can be viewed at wileyonlinelibrary.com]

conditioned on hidden states, it can be considered as a hierarchical RNN architecture that
summarizes high-level time-series patterns and is expected to capture statistical dependencies
among observations. Once the latent variables z, ; are available, we can directly sample z,
from the learned posterior distribution 9y (z;-11X:-1,2;—,) (¢ denotes the parameters), and

concatenate all hidden states h, n., ; and all latent variables z, n.,_; for downstream
high-level feature fusion. Algorithm 1 summarizes the computations in VL-RNN.

4.3.2 | Inference with normalizing flow

The majority of RNN-based autoencoders model their variational distributions
d (z;11X; 1, z;_,) as a unimodal distribution via isotropic Gaussians with diagonal covariance.

This approach is computationally convenient since it permits a closed-form solution for
computing the Kullback-Leibler (KL) term and facilitates end-to-end gradient-based optimi-
zation via the reparametrization trick. However, it may pose strong regulations on the latent

variables from VL-RNN, which is usually non-Gaussian.
To remedy this issue, we propose to employ more flexible posterior distributions in our

HydroFlow model. Inspired by the normalizing flows,** we present a way of computing more
flexible posterior to approximate the variational distribution. The basic idea is to draw a simple
(e.g., Gaussian) base density p(z), and apply K invertible deterministic transformation

functions § (also known as flows) on the base density:

zt = (- BB (=D))), (3)

whose probability distribution p(zX) can, theoretically, approximate any complete posterior.*’

There are many forms of normalizing flows that have been proposed in recent years, such as
linear flows, radial and planar flows, coupling flows, autoregressive flows, residual flows, and
continuous normalizing flows (see Reference [57] for a comprehensive review). In our
HydroFlow, we propose a continuous-form normalizing flow based on free-form Jacobian of
reversible dynamics™ as the transformation module. Its calculation uses relatively cheap trace
operations and, as a result, is able to achieve more flexible estimation with unrestricted
transformation functions. For the transformation functions in Equation (3), the change of
variables is as

k+1 .
zF+1 = ﬁk(zf) =z + fk f(zr ; K 6) dk’, 4)
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Glogp(zf) of
— >  ==—Tr ~— =l (5)
ok 0z;
k+1 0
logp(zf“) = logp(zf) — ﬁ Tr a_fk dk’, (6)
Z

where k € K is the index of transformation layers and Tr(-) is the trace function of the matrix.
Equation (5) is also known as the instantaneous change of variables formula.”®
f(zF', k'; 8) = dz” /dk’, namely, the ODE solver, is a differential equation describing the

continuous transformation of zf’ parameterized by 8, and is estimated by a neural network
with fully connected layers. In general, computing the trace in Equation (5) incurs a square of
matrix dimension complexity. Here, for efficiency, we introduce Hutchinson's trace estimator>”
to estimate this term by taking a double product of that matrix with a noise vector «:

Tr(i) = eTaa—fe, e ~ N(0, 1), @)

k 3
0z, Z;

which allows us to obtain the unbiased trace estimation with a linear time complexity. Com-
bining Equations (3) and (7), we can encourage the model to learn the probabilistic distribution
with more flexible and accurate form in the latent space that can better reflect the char-
acteristics and trends of hydrological time-series patterns.

For the observations X, before current time ¢, the latent variables obtained by VL-RNN are
denoted as z, through seeking parameters € that maximize the marginal of latent variables:

log ps (X)) = £(&,¢) = KL|q, (251%,) I ps (2F) |, (8)

where the first term £(6, ¢) refers to the evidence lower bound (ELBO), and KL[:I-] is the
KL divergence. Following References [56,60], we use amortized variational approxima-
tion g, (z£1Xo) = p,(zF) to minimize the KL divergence, which equals to maximize the ELBO

L(B, ¢) as

kqé(zf‘) \ X,)
- [quﬁ log :pe (X; | ZF)pa (Z;K)] = [Eq¢ log [q¢ (ZrK | Xr)]

= E,, log :pe (Xt | zF)] + Eg,log [pe (sz)]

K k+1 o

%)
2 f el redk’
=1 k OZ;

C))

+E,, —[E%log[qg&(z?er)], e ~ N(0, 1),

which is improved when the model learns a posterior distribution of latent variables that
minimizes the reconstruction loss (the first term). The second term can be directly calculated
by Equation (4). The variational prior dy (z?) is an isometric Gaussian. The last term is the

result of applying Equation (6).
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In the decoder, we feed Z, ; as the input to reconstruct the hydropower data X, :

Xt—l — VL-RNN(Z[,b ZrK,l), (10)

where X, ; is the reconstruction data. By applying the above invertible transformations, our
model may attain a more appropriate variational posterior distribution g, (zF |1X; ) that is

more instructive for future time step prediction, as will be demonstrated in our experiments.

4.4 | External knowledge embedding

As mentioned earlier, power generation demand is closely related to power consumption and
other highly seasonal and periodical values. Moreover, water flow is always associated with
hydropower demand or water-level regulation—reflecting the responsibility of hydropower
dams to prevent flood and protect water ecology. In addition, socioeconomic attributes such as
electricity prices may further potentially affect hydroelectric power generation demand, that is,
the higher the electricity price, the higher the profitability of hydroelectric power systems.

To incorporate these aspects of knowledge, we design an external information extraction
network, as shown in the bottom of Figure 2. Specifically, we embed categorical features (e.g.,
HourofDay and DayofWeek) as one-hot vectors and feed all external attributes to a self-
attention unit,®" where the close correlation between various factors can be considered. This
process at time ¢t can be described as follows:

[QI’ Kiy .V[] = [Wla W25 W3]e[ + [bla bZa b3]5 (11)
a, = Softmax(QK//d; ) Vi, (12)

where d, = 128 is the dimension of a;, Q;, K;, and V; denote the query, key, and value in
attention mechanism. This unit outputs 128 dimensions vectors a,;, which would be leveraged
for predicting the future hydropower generation demand.

4.5 | Fusion and prediction

Feature fusion: Now we can immediately forecast the power using the representations learned
by the above two key components of HydroFlow, including the latent variables z~ | determined
by both VL-RNN extraction and normalizing flow transformation, and the external knowledge
vector a;. In our implementation, we use a multiple layer perceptron (MLP) to predict the
hydropower V; at time ¢:

% = MLP([z{il, a,]). (13)

Objective: Clearly, our objective is composed of three parts: (1) minimizing the re-
construction in VL-RNN, (2) minimizing the loss between predicted power and the ground-
truth, and (3) maximizing the ELBO L(6, ¢) in Equation (9):
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€(0) = IX;—1 — Xiall5 + v, — %l — £(6, ¢), (14)

where © refers to the parameter set.

Algorithm 2: HydroFlow

Input: multivaraiate hydropower data X,_;; external attributes e;;
Output: predicted hydropower generation demand V,.

W

LI Y

10 end

Initialize all parameters © of HydroFlow;
while not converged do

Obtain Z,_,; and H,_; by Algorithm 1;

Sample z?_l =y  +o; Xe e~ N(0, I);

Compute zfi 1 using continuous variational inference by Eq.(4) — Eq.(7);
Reconstruct X,_; via VL-RNN (Eq.(10));

Obtain embed external features a;

Predict hydropower generation demand ¥, with input [z,_;, a,] by Eq.(13);
Update ® by minimizing the objective in Eq.(14).

4.6

Model analysis

Complexity for generating Z and H: VL-RNN has two GRU cells in each time step, that
is, evolution in h-space and z-space, respectively. Besides, VL-RNN needs to compute
the mean and variance of the hidden state and latent variables. Thus the time com-
plexity of VL-RNN is four times that of vanilla GRU.

Complexity for near-field (NF) transformation: The time complexity in NF is linear with
the number of hidden units M and the number of transformations K which, conse-
quently, yields O(M) x O(K).

Complexity for external information extraction: We utilize a self-attention unit to
embed the prior knowledge, the time complexity is linear in dimension d;, and
quadratic in the length of time series N. Thus the time complexity of this component
is O(d,) x O(N?).

Complexity for other parts of HydroFlow: The time and space complexities of MLP are
related to the input dimensions of latent variables.

Overall, the computation cost of the proposed model is the same as the typical RNN-based

autoencoders. Algorithm 2 depicts the training procedure for HydroFlow.

5

EXPERIMENTS

In this section, we present the result of our evaluations on real-world data sets and compare
our method against the baseline approaches. We also investigate the effectiveness of
different components of HydroFlow and present intuitive explanations of the model
performance.
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5.1 | Experimental settings

Data sets. All evaluations are conducted on data sets collected from the three largest hydro-
power generation stations affiliated with the Dadu River Hydropower Development Co., that is,
Pubugou (PDP) Dam, Dagangshan (DGS) Dam, and Shenxigou (PDS) Dam. Figure 4 illustrates
the operational components of the hydropower plants.

« Pubugou (PDP) hydropower plant is located in Hanyuan County, which has a total of
3600 MW (6 X 600 MW) installed capacity.

« Dagangshan (DGS) is a new station located in Shimian County. It consists of four
650 MW hydropower generators.

+ Shenxigou (PDS) is at the downstream of PDP and plays the role of antiregulation
station of PDP. It is a smaller plant with a 660 MW capacity.

We used 2 years of electricity demand data—spanning from January 1, 2017 to December
31, 2018—from the above-mentioned three hydropower stations for evaluation. We split the
data in each station into two periods P1 (2017) and P2 (2018). The time interval of all time
series is set as 1 h.

The corresponding natural and social factors are also used for training the models. Besides,
the holiday effect features (e.g., HourOfDay) are embedded as one-hot vectors during training.
Table 1 shows the statistics of the two data sets. We use the first 80% data for training and
examine the model performance with the rest data.

Baselines: We compare our HydroFlow against the following baseline approaches, which are
typically used for modeling and prediction in time series:

* Historical Average (HA) averages a historical time period T to predict the time series in
the next time step. T is fixed as 7 in our evaluation.

« Autoregressive integrated moving average (ARIMA)** is a generalization of an auto-
regressive moving average (ARMA) model.

« ARIMA® is a generalization of an ARMA model.

Dagangshan Dam (D) Utility system (E) Gas substation

FIGURE 4 (A) A snap of the arch dam in Dagangshan. (B) A picture of the water turbine (650 MW
generators) in Dagangshan station. (C) A single electromechanical unit in Pubugou (PDP). (D) The entire utility
system of PDP station. (E) The gas-insulated substation in PDP [Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 1 Data set description

Data set PDP DGS PDS

Time interval (h) 1 1 1

Power demand (MWh) [0.0,3587.8] [0.0,2591.2] [0.0, 668.0]
Water flow

Water inflow [0.0, 7020] [0.0, 4640.0] [0.0,11579.0]

Water outflow

Generation flow

External Factors

[119.0, 5670]

[119.0, 2470]

[55.1, 5220.0]

[55.1,1730.0]

[53.8, 6490.0]

[55.1, 2480.0]

Temperature (°C) [—24.4,21.7] [—24.4,21.7] [—24.4,21.7]
HourOfDay [0, 24] [0,24] [0, 24]
DayOfWeek [1,7] [1,7] [1,7]
WeekendOrNot {0,1} {0,1} {0,1}

Note: Private information such as sale price is masked.
Abbreviations: DGS, Dagangshan; PDP, Pubugou; PDS, Shenxigou.

« Long short-term memory (LSTM)>' is an RNN-based model which captures the in-
formation of long-short-term dependency and has been widely used for time series
forecasting.”

+ Bi-GRU® is a bidirectional GRU model that concatenates the forward and backward
hidden states for prediction.

« GRU-VAE>® combines GRU and VAE for learning the latent variables of time-series
data in an encoder-decoder manner.

e Bi-GRU-ATT incorporates attention mechanism into the Bi-GRU network, which can
discriminate the vital information and dependency among time series.

« DeepHydro®' captures temporal dependencies in coevolving time series with a condi-
tioned latent RNN. It also introduces neural ODEs to make extrapolation for temporal
inference.

Variants of HydroFlow. Because the proposed HydroFlow contains several key components,
we derive the following variants to demonstrate the effectiveness of its three major parts:

« HydroFlow-NF removes normalizing flow module free-form Jacobian of reversible
dynamics (FFJORD) and uses diagonal Gaussian for the latent variables z.

» HydroFlow-RNN replaces VL-RNN with deterministic LSTM as the encoder and decoder.

+ HydroFlow-NE does not account for the external factors and makes predictions based
on the multivariate time series only.

Evaluation protocols: Following typical time-series prediction works, we evaluate all
methods using three widely used metrics for time-series prediction, that is, Root Mean-Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).

Hyperparameters: All deep learning algorithms are implemented with PyTorch and are trained
with Adam optimizer.** The learning rate is initialized as 0.0001 and decays 50% every 20 epochs.
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The batch size B = 128. For all methods, we run 200 epochs to train the model and then verify the
model on testing data. We repeat each experiment 10 times and report the average of results.

5.2 | Evaluation results
52.1 | Performance comparison

We report the overall performance of our method compared with the state-of-the-art time-series
forecasting models in Table 2. We observe that the proposed HydroFlow significantly outper-
forms the other algorithms for all three metrics. Our approach's advantage mainly lies in its
ability to encode both the observations and latent variables to learn the temporal dependencies
among multivariate time series. Linear forecasting models (e.g., ARIMA and its variant) yield
inferior results since they are weak in handling nonlinear interactions between different kinds
of data and long-range dependencies in multivariate time series. Moreover, simple deep
recurrent networks, for example, LSTM, Bi-GRU, Bi-GRU-ATT, do not show comparable
performance, because they fail to consider the stochasticity of time-series data. This result also
implies that the proper generative process for time-series data modeling helps in learning more
meaningful latent representation (Table 3).

5.2.2 | Analysis of HydroFlow components

To validate the effectiveness of each component of our model, we conduct ablation experiments
on different HydroFlow variants. The results are depicted in Figure 5. Comparing HydroFlow
with HydroFlow-NE, we can see that external factors are crucial for power demand prediction,
which shows the necessity of incorporating social and natural knowledge. Next, the advantage
of our latent model VL-RNN can be quantified by the improved performance of HydroFlow
over HydroFlow-RNN. This result suggests that modeling the temporal dependence among
latent variables enhances the model expressiveness. It also reaps notable performance com-
pared with the methods using deterministic RNNSs, that is, capturing more informative signals
from the stochastic variables. Finally, the difference between HydroFlow and HydroFlow-NF
reveals that the model performance is improved considerably by exploiting the continuous
normalizing flow FFJORD in posterior approximation.

5.2.3 | Influence of different factors

We now further investigated the influence of various external factors by individually removing
them from HydroFlow and present the results in Figure 6. Each dimension of the radar figure
indicates the discrepancy between HydroFlow and the model without the corresponding
factor—that is, the larger the value, the more significant the factor. As expected, water inflow
and outflow are informative for forecasting power demand, since the water derives the hy-
dropower electricity and it is an important standard in dispatching. Furthermore, the holiday
effect, temperature, and electricity price are also correlated to hydropower demand, for ex-
ample, seasonal fluctuation, residential and industrial electricity consumption, and so forth. All
of these should be taken into account for fine-grained power demand forecasting.
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TABLE 3 Performance comparisons on Shenxigou (PDS) over two different time spans

Data sets PDS

Time span P1 P2

Method RMSE MAPE RMSE MAPE
HA 139.3 0.590 139.3 0.446
ARIMA 723 0.322 74.8 0.283
SARIMA 71.3 0.318 73.4 0.273
LSTM 51.6 0.208 5313 0.182
Bi-GRU 50.8 0.201 52.6 0.179
GRU-VAE 50.2 0.201 5211 0.178
Bi-GRU-ATT 50.1 0.204 51.9 0.177
DeepHydro 35.2 0.169 38.8 0.153
HydroFlow 33.9 0.163 37.3 0.148

Note: Best performance is in bold font.

Abbreviations: ARIMA, autoregressive integrated moving average; ATT, attention; Bi-GRU, bidirectional GRU; GRU, gated
recurrent unit; HA, historical average; LSTM, long short-term memory; MAPE, Mean Absolute Percentage Error; PDS:
Shenxigou; RMSE, Root Mean-Squared Error; SARIMA, seasonal ARIMA; VAE, variational autoencoder.

I Bi-GRU-ATT HydroFlow
I HydroFlow-NE HydroFlow-RNN HydroFlow-NF
(A) (B)
e 266 = pkn
I 256 I 183
RMSE 235 RMSE 155
‘ 1230 i 149
225 144
e 206 I 137
I 200 I 127
MAE 184 MAE 112
1180 [ o 109
174 106
= 34 I 58
32 I 54
MAPE 30 MAPE 46
28 I 1 43
27 40
0 100 200 300 0 100 200
Ablation-PDP-P1 Ablation-DGS-P1

FIGURE 5 The analysis of HydroFlow components. ATT, attention; Bi-GRU, bidirectional GRU; GRU,
gated recurrent unit; MAE, Mean Absolute Error; MAPE, Mean Absolute Percentage Error; NE, northeast; NF,
near-field; PDP, Pubugou; RMSE, Root Mean-Squared Error; RNN, recurrent neural network [Color figure can
be viewed at wileyonlinelibrary.com]

5.2.4 | Latent representation learning

As a Bayesian learning method, the latent variables learned by HydroFlow carry important
time-series information. Figure 7 plots the distribution of z, along with the process of learning
temporal dependencies in our VL-RNN model. In the beginning, the latent variables are
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(A) Holiday effect (B) Holiday effect
20 -
15
0 &2 10
Temperature zer flow Temperature <>3;er flow
Electricity price Electricity price
Improvement on RMSE. Improvement on MAPE.

FIGURE 6 Influence of different factors (DGS-P1). DGS, Shenxigou; MAPE, Mean Absolute Percentage
Error; RMSE, Root Mean-Squared Error [Color figure can be viewed at wileyonlinelibrary.com]

(A) ‘ (B) \ (C) ' (D) a

1=4. t = 16. 1t =64. t = 168.

FIGURE 7 Variational latent representation learned in VL-RNN. z;45 (168 =7 X 24) is the output of
VL-RNN, compare Figure 2. VL-RNN, variational latent recurrent neural network [Color figure can be viewed at
wileyonlinelibrary.com]

clustered in a very narrow area. The model's capability grows over time with more observa-
tions, which means the model captures more robust representation through exploring more
latent space, which, to some extent, explains why HydroFlow learns more expressive temporal
dependencies than vanilla RNNs.

Though VL-RNN preserves the temporal dependencies of latent variables, the distribution
of z is regularized to be a Gaussian, which might be a too strong assumption limiting the
capability of the variational inference. Figure 8 shows the process of transforming z (after
VL-RNN) to approximate the desired posterior distribution. When applying NF on the random
variable z, the inference network propagates the progression of its density by transforming
variables towards more complex and real distributions. In addition, the inference network is
trained to extrapolate the density at time ¢, which allows our model to obtain the instantaneous
change of variables at a future moment. We note that this transformation is reversible,”® which
means that we can efficiently sample from the learned density to decode the time series from
the latent variables.

5.2.5 | Qualitative study

We randomly select a day, a week, and a month of the power demand data from the testing
set, and visualize the predicted results by comparing HydroFlow with the ground-truth
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k=5. k=6. k="17. k=38.

FIGURE 8 Visualization of the transformation of the latent variables (PDP-P1). Note that the number of
flow in FFJORD is 8. FFJORD, free-form Jacobian of reversible dynamics; PDP, Pubugou [Color figure can be
viewed at wileyonlinelibrary.com]

and the results from strong baselines, as shown in Figure 9. Generally, HydroFlow
fits better on spiking changes, mainly due to the ability to leverage the knowledge of
external factors, such as electricity price and water inflow/outflow of reservoirs. We re-
spectfully note that the extreme events, for example, the full-load operation and sched-
uled outage, are still hard to be predicted. A possible solution is to consolidate the power
grid dispatch command and multiobjective dispatch problem in cascaded hydropower
systems for such event detection, which is beyond the scope of this paper and left for our
future work.

52.6 | Deployment

Our model has been successfully deployed on the HydroDAD mining platform in the
Dadu River Hydropower Development Co. and is continuously optimized with new hy-
dropower data. Figure 10 shows a snapshot of the HydroDAD platform, where both
natural factors (e.g., weather, precipitation, and water level) and social factors (electricity
market share and sale price) are displayed. Real-time hydropower demand predicted by
our HydroFlow is shown in Figure 11. As we can see, the (predicted) power demand
(yellow line) is far from reaching the full-load (red line). This phenomenon happens due
to the lower water level of the reservoir and relatively less precipitation in the winter—
note that the day of this snapshot is December 19, 2019. Our ultimate goal is to minimize
the gap between the two lines by optimizing power demand allocation, which could
maximize the enterprise’s profit.
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[Color figure can be viewed at wileyonlinelibrary.com]

6 |

CONCLUSION

In this paper, we presented a deep generative model to address the problem of hydropower
demand forecasting. We used stochastic RNNs with variational inference to capture the se-
quential dependencies and uncertainty of the power-related time series. Normalizing flows
with flexible density transformers are used to alleviate the agnostic posterior estimation pro-
blem in stochastic variational inference. Experimental results on real-world hydropower data
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FIGURE 10 User interface of the deployment platform. There exists our hydropower demand prediction
results and various ITIoT sensors monitoring data for industrial operations and decisions making. IIoT, Industrial
Internet of Things; KPI, key performance indicator [Color figure can be viewed at wileyonlinelibrary.com]

Capability
Day Month Year

Capability 90,310MW 2,862,000MW 52,871,000MW
Surplus 10,170MW 859,000MW 14,469,000MW

Capacity -®- Forecasting

FIGURE 11 Power demand forecasting by HydroFlow on HydroDAD platform. HydroDAD, Hydropower
Data Analysis and Data [Color figure can be viewed at wileyonlinelibrary.com]

demonstrate the effectiveness and superiority of the proposed framework in solving the hy-
dropower demand prediction problem.

As our future work, we plan to improve the power forecasting performance by in-
corporating climate changes and meteorological satellite data. Besides, we are interested in
simultaneously predicting the power generation of the cascaded hydroplants in the company,
which allows us to optimize the electricity generation distribution and system operation by
dynamically coordinating the demand allocation. Another objective of our future work is to
accurately forecast the water inflow in the reservoirs and maximize power generation and
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profit. Lastly, as the increasing wind and PV power generated in our company, it is desirable to
determine future electricity power trends and proactively alleviate the imbalances between
different energy sources, which could help increase the robustness of the system to better
support the smart grid demand.
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