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Abstract—Traditional approaches to authenticated key establishment include the use of PKI or trusted third parties. While certificate
deployment is sub-optimal for large-scale, low-cost applications, the use of trusted third parties is subject to human error and leaked
credentials. For this context, co-location can be a valuable resource, and it is often exploited through common randomness harvesting
techniques, but these, in turn, suffer from low achievable rates and usually from restrictive assumptions about the environment. Recent
techniques for exploiting co-location are based on the notion of quality time and rely on sophisticated throttled clue-issuing
mechanisms that allow a device with enough time to spend in the vicinity of the transmitter to find a secret key by collecting enough
consecutive clues. By contrast, attackers are afforded only limited time to listen to, or interact with, the clue transmitter. Previous work
in this direction deals solely with passive attackers and uses high-overhead information throttling mechanisms. This paper introduces
the active attacker model for the quality-time paradigm and proposes a simple solution, a Zeroconf Key Establishment Protocol
(ZeroProKeS). Additionally, the paper shows how to efficiently expand the proposed protocol to adhere to any customized information

transfer function between legitimate users.

Index Terms—Security Protocols, Zeroconf, Key Establishment, Set Intersection, Erasure Coding

1 INTRODUCTION

Establishing a secret key between two communicating
parties lies at the root of any secure communication chan-
nel. While many such key establishment protocols exist,
spanning a wide range of techniques and technologies,
from public key infrastructure (PKI) to harvesting common
randomness, very few appear to be appropriate for very-
large-scale, low-cost deployment. Imagine the cost and time
requirements for installing PKI certificates on hundreds or
thousands of sensors that are awaiting together to be de-
ployed en masse in the field in a total-loss manner (without
the intention of recovering them once their batteries run
out). Similar considerations would hold, for example, for the
RFID tags attached to any product parts, which spend long
times together, starting with the manufacturing process, and
continuing throughout the product’s lifetime.

One could consider an architecture in which the devices
are prompted to initiate a key exchange protocol by a
(human or machine) trusted party to facilitate an authen-
ticated key exchange. In such a case, the authentication
is provided through, and as such, it is subject to the se-
curity of the authentication of this trusted party — which
in turn would have to rely on pre-programmed keys and
would be subject to human error and leak of credentials.
Software vulnerabilities due to human error have been
well documented. Brubaker et al. [1] conducted a study to
show various incorrect certificates, either due to expiration,
corrupted authorities, or invalid data, would be accepted by
one TLS implementation while getting rejected by another.
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Moreover, authors in [2] attributed the usage of insecure
“reusable code” from Stack Overflow as a source of human
error. In this paper, we construct a key establishment proto-
col that achieves authentication through the duration of co-
location and works on the principles of Zero Configuration
Networking [3].

The concept of quality-time advantage was introduced in
[4] and further developed in [5]. It implies that, while the
pairing devices are able to spend long and largely uninter-
rupted periods of time (referred to as quality time) in the
proximity of each other, an attacker is limited in how much
time she can spend in their vicinity. For our application,
assume that the attacker can reach the devices’ vicinity only
after breaching the physical defenses of the storage facility.
By the time the attacker can intercept — and interfere with —
the communications between devices, the key establishment
protocol is already well on its way — and it may continue
well beyond the interval of time that the attacker can afford
to spend at the location without being found. While not
directly related to our large-scale, low-cost applications, a
similar attack model is adequate for body-area networks —
in this case, an attacker can only follow the intended victim
for a short period of time, lest he is discovered (such an
attacker is appropriately referred to as “the man on the bus”
in [4]).

Co-located devices can establish a symmetric key be-
tween themselves through the application of quality time.
Consider a scenario where a large number of military-
grade wireless sensors are needed to be deployed (possibly
in a complete loss manner), and before deployment, they
are kept together in a storage facility. Consequently, these
sensors can utilize the quality time they spend together to es-
tablish a secure channel among themselves. Similarly, think
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of an industrial control application where a considerable
number of sensors are deployed to ensure the automation of
an industrial process and minimization of user intervention.
These sensors spend most of their time together in a secure
location, conceivably in a warehouse, and thus can make use
of their shared time to establish a symmetric key to create a
secure channel among themselves.

Let us consider the automobile industry as an example of
large-scale production, as demonstrated by the production
of more than 1000 vehicles an hour in North America in
2019 by Toyota [6]. An electronic control unit (ECU) takes
input from several parts of a vehicle and makes a decision
based on the collected information. Therefore, to ensure
secure communication between separate vehicle parts, we
need to establish a symmetric key. The cost of relying on
PKI or trusted third parties to achieve this key can be
overwhelming. The notion of quality time suits this situation
perfectly, as the ECUs that end up on a certain vehicle can
count on spending the rest of their lives together. They can
easily establish a key among themselves at any one time or
do so repeatedly, based on nothing but their quality time
advantage.

To understand how much information about a secret can
be gained over time, authors in [4] introduced the notion
of information transfer function. An information transfer func-
tion is defined as a rate at which a legitimate device can have
information about a secret. In Shamir’s secret sharing scheme
[7], threshold cryptography is used, and consequently, the
legitimate listening party has no information about the
secret even when he has only one clue less than the required
threshold. Consequently, there is a sudden rise in the infor-
mation instead of a smooth transition. In other words, the
information transfer function of Shamir’s secret sharing scheme
is a step function. This result is undesirable, as it lacks the
flexibility of customization.

A co-location-based key establishment protocol was de-
veloped in [5]. The authors’” employed threshold cryptogra-
phy — specifically Shamir’s secret sharing scheme [7], and suc-
cessfully met the main design requirements set forth in [5]. It
does, however, suffer from certain drawbacks. For instance,
the protocol — as well as the original design requirements
- is designed to be secure solely against passive attackers.
Moreover, due to the utilization of Shamir’s secret sharing
scheme, the resultant information transfer function is a step
function. The issue is handled in [5] by running multiple
instances of the protocol in parallel, resulting in significant
overhead.

The current paper attempts to improve on the protocol
of [5] by solving these issues. Specifically, the contribution
is twofold: (1) we propose a new algorithm for co-location-
based key establishment, which is robust against active
attackers, and (2) we introduce a methodology to make the
algorithm consistent with any arbitrary information transfer
function [5] without using parallel instances; interestingly,
this methodology is also applicable to the protocol of [5].

The remainder of the paper is organized as follows.
Related works are discussed in section 2. In section 3, we
analyze both the system and the attack model and provide
definitions that formalize our attack model and the security
and robustness of our protocol. Additionally, we introduce
an evaluation framework against which we evaluate our
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proposed protocol. The ZeroProKeS algorithm is presented in
section 4. Section 5 describes the error correction capability
of the protocol. A security analysis is provided in section
6 and section 7 determines the computational cost of the
protocol. Section 8 shows how the protocol can follow any
arbitrary information transfer function. The implementation
and the evaluation of the protocol are discussed in section
9, while section 10 presents the summary and concludes the

paper.

2 RELATED WORK

With the advent of RFID technology, various low-cost appli-
cations have been launched to perform secure key establish-
ment. Elliptic curve cryptography (ECC) based key estab-
lishment protocol has been proposed to achieve low power
consumption [8], whereas in [9], the authors combined this
ECC with a symmetric key operation to design a dynamic
key exchange protocol.

In a typical symmetric key cryptographic protocol, the
communicating parties are assumed to have some kind of an
advantage over the adversaries — for example, they may be
communicating over an exceptional communication channel
[10], [11], or they may have access to a source of common
randomness, either relying on network metadata [12], [13]
or obtained from manipulating auxiliary random sources in
the physical layer [14], [15], [16].

In the IoT literature, context-based pairing has been intro-
duced to eliminate the human involvement while pairing up
IoT devices. One such technique is to extract entropy from
the surrounding environment by converting common sensor
measurements to common randomness, which provides the
basis for symmetric key establishment [17], [18], [19]. The
authors in [20] utilize a similar idea of harvesting random-
ness from the environment to implement an autonomous,
secure pairing protocol named Perceptio for IoT devices.

Eschenauer et al. [21] introduced a probabilistic key
distribution approach for symmetric key establishment. In
the paper, the authors proposed a random selection and
distribution of the key. The authors in [22] and [23] improve
this method by reducing the memory space required for key
storage and by improving the connectivity among the nodes
of the network.

The idea of Minimalist Cryptography was introduced by
Juels et al. [24]. It provides effective tracking protection but
needs to exchange mappings when a product is transferred.
Authors in [25], [26] suggested disabling the RFID tag once
it has performed the assigned task to prevent unwanted
affiliation. Such disabling of tags, however, limits the usage
of RFID tags. Mathur et al. [27] devised a protocol for a key
establishment that exploits the assumption that the channel
response, which decorrelates quickly, is unique between
two communicating entities. Various information-theoretic
approaches have also been analyzed in this context. Authors
in [28], [29] introduced the idea of generating the common
bits based on the information that is available to both valid
users but not fully available to the attacker. A number of
protocols, such as [30], [31], [32], utilize this approach to
establish the secret key.

Several password-authenticated key exchange protocols
have been introduced in recent years [33], [34], [35]. Such
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protocols are immune to offline attacks. Additionally, there
have been numerous research on adopting PAKE protocols
for the post-quantum world [36], [37].

In recent times, smart-card-based password authenti-
cation has been widely popular for two-factor authenti-
cation in a diverse application domain. Various cryptana-
lytic attacks, most notably side-channel attacks, have been
launched to gain unauthenticated access to secrets [38], [39].
Therefore, considerable work has been done to design a se-
cure two-factor authentication scheme. In [40], [41] authors
discussed the security of such a two-factor authentication
scheme based on the non-tamper resistant assumption of
smart cards. Authors in [42] introduced an efficient authen-
tication scheme for mobile devices that is quantum-resistant.
Finally, Wang et al. [43] proposed a systematic evaluation
framework that has been adopted in numerous recent works
[44], [45], [46], [47] to evaluate the security of a smart-card-
based authentication protocol.

The development of quantum computers opened the
door for numerous key exchange protocols for the post-
quantum world. Among them, a lattice-based cryptosys-
tem is considered the most promising [48]. Ding et al.
[49] introduced a reconciliation-based Ring-LWE key ex-
change scheme for two-factor authentication. The protocol
is a variation of the PAKE protocols [50]. Several other
reconciliation-based PAKE protocols were introduced in
[51], [52].

The idea of time advantage was first introduced in the
adopted-pet (AP) protocol of [4] for RFID applications. It deals
with breakable stream ciphers to establish the key. The
reader would query the tag, and the tag would reply with
a small chunk of the key stream that it received when it
accessed the cipher as a result of the query. Once the reader
has gathered enough shares, it would be able to compute
the secret as the characteristic polynomial. Therefore, with
the correct amount of chunks, solving the characteristic
polynomial reduces to solving a linear system of equations.
Contrarily, an adversary may fail to gather such an amount
of chunks, and thus, she would have to solve a system
of quadratic equations over a finite field, which is known
to be NP-complete [53]. However, AP Protocol releases the
information about the secret at a linear rate, making the
information transfer function of the protocol linear. But it is
expected that the transfer function increases gradually with
the length of uninterrupted time the reader spends with the
tag so as to leak less information about the key.

This direction was further explored in the patent of [54].
The author achieved the key establishment by controlled
release of the plaintext. One of the legitimate parties breaks
the secret into various shares and later encodes these shares
with an erasure code. Afterward, it releases the encoded-
word corresponding to one of the shares over a certain inter-
val of time. The device that listens to this broadcasting for a
sufficient time interval will have the share of the key. Once
it gets a large enough number of shares, it will be able to
generate the secret key. However, for correct operation, one
device needs to be aware of the beginning of the listening of
other devices. This awareness can be achieved by making a
query to the secret holding device, but this method paves
the way for denial of service attacks. Moreover, because
of the employment of Shamir’s secret sharing scheme [7] to
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compute the shares, no information is obtained about the
secret until the last share is computed. It makes the protocol
very inflexible to changes.

The method of [54] was further improved in [5]. In that
paper, the authors also utilize Shamir’s secret sharing scheme
to break the secret into various shares for the QTAB-KEP.
However, in order to make it start time-independent, the
scheme is run in parallel. The number of batches running
in parallel is equal to the total number of clues. It ensures
that the legitimate party can have the secret if she listens for
a certain uninterrupted amount of time. This batching also
has a nice property as it also enables the device to control its
information transfer function, unlike the basic QTAB-KEP.
However, this method is vulnerable to active injection if
the number of injected clues overcomes the error correction
properties of Reed-Solomon code [55].

3 THE QUALITY-TIME-BASED KEY ESTABLISH-
MENT PROBLEM

3.1 Preliminaries

In this subsection, we shall briefly discuss the concept of co-
location and how to identify the co-location. Consider the
example of the deployment of a substantial number of low-
cost sensors to monitor the air quality of a specific region.
These sensors are closely located and monitor the same
space for identical or different purposes. Moreover, these
sensors communicate with each other to make a collabo-
rative decision. These sensors, occupying a similar spatial
region, are referred to as co-located sensors. It is possible
that a monitoring device collects data from these co-located
sensors and makes a decision based on the reasoning of all
these co-located sensors. Such decision-making is known
as collective intelligence. Kotevska et al. [56] utilized this
collective intelligence to determine the behavior patterns
among correlated sensors. Therefore, ensuring secure com-
munication between these co-located sensors is of utmost
importance.

Now we shall discuss how to detect the co-located
sensors, more specifically, how to detect that several sensors
have spent quality time together. Recall that quality time is
defined as the size of an uninterrupted time interval that the
two devices can spend together. We take the approach of [5]
— namely, the quality of the time interval can be measured
through the implementation of puzzles and emission of
clues regarding the solution of the puzzle. The clue issuing
device will generate a puzzle and, at regular/ irregular
time intervals, release some clues regarding the solution of
this puzzle. Each clue will have some information that will
enable a device to solve the puzzle and, correspondingly,
prove the co-location to the clue issuing device. A valid user,
who will be able to listen to these clues with no or very few
interruptions for a considerable amount of time, will be able
to establish a symmetric key with the emitting device by
proving its spatial closeness to the clue issuing device.

3.2 System and Attack Models

The limitation of extracting the secret key from the com-
mon randomness, enabled by a superior communication
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or observation channel, is that the security of this type of
protocol is conditioned on the superiority of the channel.
Considering a planned uninterrupted time between the
parties eliminates this restriction. An interesting thing to
note here is that considering only the amount of time that
the two legitimate parties spend in the company of each
other cannot render the protocol secure, as an attacker who
can spend many distinct small time intervals with one of
the devices should be able to eventually accumulate the
required amount of time. Therefore, a better criterion would
be the quality time that two devices can share together. In the
previous subsection, we have described how to recognize
the quality time. Such a measure ensures the detection of co-
located sensors. Yet, there may be missed or injected clues
due to the nature of wireless communication. To formalize
these cases, we formulate various types of access that a
legitimate user or an attacker can have during the execution
of our proposed quality-time-advantage-based protocol, re-
ferred to as ZeroProKeS.

Definition 1. Legitimate user access: We say that a legiti-
mate user has (g, w) legitimate access to the protocol if he
can listen to intervals of at least g consecutive clues, out of
which he misses at most w clues.

Definition 2. Passive attacker access: We say that an at-
tacker has (m,p) passive access to the protocol if she can
listen to intervals of at most m consecutive clues and must
miss at least p consecutive clues between two such listening
intervals.

Definition 3. Active attacker access: We say that an attacker
has (m, p,r) active access to the protocol if she can listen to
intervals of at most m consecutive clues, must miss at least p
consecutive clues between two such listening intervals, and
can modify at most 7 arbitrary clues during each listening
interval.

Based on these various types of access, we formulate
the properties of ZeroProKeS along the lines of the three
definitions below.

The first definition, introducing the robustness criterion
of the protocol, is similar to Definition 2.1. of [5].

Definition 4. Robustness: The protocol is said to be (g, w)
robust if a legitimate party who has (g, w) legitimate access
to the protocol can retrieve the secret with probability 1 in
the absence of any active attackers.

This definition indicates that there should be at least w
redundant clues among the g consecutive clues. There can
be several ways to achieve this redundancy. The obvious
choice is to employ some form of an error correction code.

Apart from being robust to the missed or erroneous
clues, ZeroProKeS needs to be secure against an eaves-
dropper as well. As the eavesdropper spends less time in
the proximity of the clue issuing device, she needs to be
penalized for the long separation. Thus, we can formulate
the following definition for the security of the protocol —in
essence, a probabilistic version of Definition 2.2 in [5].

Definition 5. Security: The protocol is said to be (m,p, )
secure if an attacker with (m,p) passive access to the pro-
tocol can only recover the secret with probability less than
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The probabilistic formulation in the definition above
allows us to move away from the threshold cryptography
method of [5] and thus produce a more efficient protocol.

Finally, ZeroProKeS needs to be immune against the
actions of an active attacker. An active attacker can inject or
modify clues along with the passive listening. Therefore, we
need to develop the resilience of the protocol to circumvent
an active attacker.

Definition 6. Resilience: The protocol is said to be
(g,v,m,p,r) resilient if a legitimate party that has (g, v)
legitimate access to the protocol can recover the secret with
probability 1 in the presence of an attacker who has (m, p, r)
active access to the protocol.

As the legitimate user has (g,v) legitimate access, they
can miss at most v clues during their listening interval of
g clues. Moreover, the active attacker has (m,p,r) active
access and thus, can inject r clues during their listening
interval of m clues, after which they must miss consecutive
p clues.

This definition indicates the maximum number of clues
that an attacker can modify in an arbitrary fashion such that
the legitimate party is still able to recover the secret.

3.2.1 Security Assumption

In our proposed key establishment protocol, once a key is
established between the sender and receiver, the receiver
sends a message to the sender indicating that they have the
correct key. We have assumed that such a message from
the receiver to the sender can not be interfered with by the
adversary. This is the only security assumption needed for
our protocol to operate properly.

3.3 Evaluation Framework

In this section, we shall introduce the characteristics of the
attacker, the usability requirement that we aspire our proto-
col to maintain, and the evaluation metrics that a quality-
time-advantage-based key establishment protocol should
aim to satisfy.

3.3.1

Now we shall describe the characteristics of our adversary.
A widely accepted security model is proposed by [42],
[43]. Such an adversary model was proposed for smart-card
based password authentication. We adopt the characteristics
of the adversary for our quality-time framework, and list the
characteristics as follows.

Characteristics of the Attacker

C1 We give the adversary full control over the communi-
cation channel during the time period for which the
adversary can access the channel. During the listening
period, the adversary is assumed to have the ability to
monitor the communication or modify the communica-
tion.

C2 The adversary can enumerate all the possibilities in the
password space based on their collection of clues.
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C3 It is possible for the adversary to gain the knowledge
of the key of any of the previous sessions.

3.3.2 Usability Requirements

These requirements ensure that the protocol is functional
for large-scale deployment, and a user not familiar with the
intricacies of a protocol can still be able to use the protocol
without any significant issues. Consequently, we adopt the
usability benefits listed in [57] for a quality-time-advantage-
based key establishment protocol.

U1l The devices engaged in the key establishment protocol
usually do not have to remember any of the previously
established keys. Due to the nature of the quality-
time-advantage, the secret needs to evolve periodically.
Therefore, such a memory allocation for remembering
a secret is not desired.

U2 The protocol should be applicable to a large-scale ap-
plication without increasing the burden on a device.

U3 It is expected that a device should not require any
additional physical object, such as a piece of paper or a
key, to conform to the protocol.

U4 The protocol should not require any physical user effort
and should be automatic and stand-alone. If the user
effort is limited, we shall refer to the protocol as Quasi-
Effortless.

U5 The protocol should be flexible to allow a valid device
to establish a key with the clue issuing device, even if
the receiving device misses several clues.

U6 The protocol should correctly identify the valid user
and not reject a genuine user even in the presence of an
active adversary.

3.3.3 Evaluation Metrics

Finally, we shall present several evaluation metrics against
which we shall compare our proposed protocols. Note that
the metrics were introduced in [43] as evaluation criteria for
smart-card verification, and therefore, some of the criteria
related to smart cards do not apply to our time-advantage-
based protocols. We adopted the rest of the metrics to
appropriately reflect the evaluation criteria for quality-time-
advantage-based protocols.

E1 Neither the sender nor the receiver should maintain a
database of the previously used keys.

E2 The protocol should be resistant to any known attacks,
such as online/ offline password guessing attacks or key
reuse attacks.

E3 A session key should be established between the sender
and receiver after the completion of the protocol.

E4 The protocol should be start time-independent, and any
valid user can establish a key with the sender if they
follow the protocol properly.

E5 The sender and receiver should authenticate each other
at the end of the protocol.

E6 The protocol should ensure forward secrecy. Therefore,
even if the most recent key is compromised, the ad-
versary should gain minimal information regarding the
current session.
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3.4 Problem Statement

With both the system and attack models and evaluation
framework already explained, it is now time to formalize
the problem statement. Following a similar design path as
in [5], a secure key establishment protocol based on quality-
time advantages should aspire to be:

1) (g, w)-robust. It is desirable that g is as small as possi-
ble, while w is as large as possible.

2) (m,p,d)-secure, with m as large as possible, and p as
small as possible for some given security parameter 6.

3) (g,v,m,p,r)-resilient, with v, m, r as large as possible,
and g,p as small as possible. This property covers
resistance to replay attacks, fake clue injection and clue
jamming.

4) start-time independent, meaning that any legitimate
party can start from any time and if he follows the
protocol accordingly, he will be able to successfully
learn the secret key.

5) completely automatic and stand-alone.

The first three requirements deal with the fact that a valid
party may receive erroneous clues, miss some clues from the
clue issuing device, or see some injected clues. The proposed
protocol employs some redundancy, in the form of erasure
codes, along with a separate mechanism for error detection
to deal with these missing clues. This is preferable to a single
error correction code because it yields better robustness and
efficiency. The fourth property is required to ensure that
the system is invulnerable against trivial denial of service
attacks and leads to the clue-issuing device maintaining a
single session for all potential legitimate parties. The last
property renders the protocol independent of other security
protocols and thus enables it to have context-free security
guarantees [5].

4 THE ZEROPROKES KEY ESTABLISHMENT PRO-
TOCOL

4.1 ZeroProKeS Algorithm

4.1.1 Clue generation and coding across clues

We will refer to the clue issuing device as Alice, the legiti-
mate listening party as Bob, and the attacker as Mallory. As
a first step, Alice has to generate some random numbers
and broadcast them as clues. Recall that ZeroProKeS has
to be non-interactive, as feedback from Bob may render
it susceptible to trivial denial of service (DoS) attacks. For
generating the random numbers, we will assume that Alice
is in possession of a true random number generator. Finally,
the key could be a hash of the concatenation of these random
numbers. In such a case, Bob will have no idea if the
numbers he received are correct or erroneous. Additionally,
Mallory could easily inject fake clues or modify a clue.

To learn the secret, Bob needs to know the indices of
the clues that are erroneous or completely missing. To
address this issue, after a certain number of clues, Zero-
ProKeS proposes that Alice transmits a separate list of hashes
corresponding to those clues — these provide clue integrity
verification. Once Bob has the list, he will compute the
hash for all the previously received clues and perform a
set intersection between his list of clues and the received
list of hashes. This method has a few helpful properties.
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If Bob receives any clue incorrectly or receives injected or
modified clues, the hash of that clue would be different
(with high probability), and it will not show up in the
intersection. Additionally, suppose Bob receives a repeated
clue, i.e.,, Mallory performs a reply attack. In that case, the
hash of the clue would be the same, and the set intersection
ensures that the hash is displayed only once.

Once Bob performs the set intersection and gets the
list of correctly received clues, he will check to see if he
has collected enough clues to find the secret. Therefore,
the protocol needs to include some redundancy. For this
purpose, we will employ an (n,n — k) erasure coding
[58]. The erasure coding scheme ensures that if Bob receives
(n — k) correct clues out of the n consecutive clues, then he
would be able to obtain the rest of the k clues. Once Bob
performs the intersection, he knows exactly which clues are
correct and which are wrong. Using an erasure code rather
than a simple error-correction code achieves a higher error
correction rate — albeit at the cost of the additional overhead
associated with the transmission of the hash list.

Alice will use an (n,n — k) erasure code with generator
matrix, G1. The elements of G; are in the field GF(2),
where [. is the length (in bits) of the clue. Alice first
generates (n — k) random numbers, and afterwards uses
the matrix Gy, of size ((n — k) X n), to generate the rest
of k clues. The matrix G; is in canonical form, so the first
(n — k) columns will represent an identity matrix and the
last k columns will represent the weights to calculate the %
redundant clues. If we represent this latter matrix as A, then
Gi = [ Itn—k) Akx(n—k) |- The matrix Gy can be either
public knowledge, or it can be communicated by Alice, once
in a while, as part of the protocol.

4.1.2 Blocks of clues and coding across blocks

So far, we have discussed how Bob will get the correct clues
from Alice. It required a set intersection, computation of
hashes, and employing erasure coding. However, Mallory
can perform these operations as well. The security of Zero-
ProKeS relies on the expectation that Bob will spend more
quality time with Alice, and therefore, Mallory should miss
more than k clues out of every consecutive n clue. But
there is also a possibility that Mallory can modify more
than £ clues and thus prevent Bob from learning the secret.
Otherwise, Mallory could interfere with the list of hashes.

To address this problem, we provide an additional re-
dundancy mechanism that extends beyond the reach r of
Mallory. The entire clue stream is further divided into sev-
eral blocks — each block corresponds to a codeword, along
with an additional header and tail, as explained below —and
the protocol ensures the correctness of clues for each block.
The final secret can be computed to accommodate this new
development by concatenating the clues from every block
and then hashing the resulting string once more.

Now, to maintain the functionality of the protocol, even
when Mallory jams the list of hashes meant for the identifi-
cation of erroneous clues in each block, the protocol employs
a linkage between the blocks, similar to the linkage between
the clues within a block. Once Bob has a sufficient number
of blocks, he can compute the rest of the blocks as well and
subsequently produce the final secret.

© 2022 IEEE. Personal use is permitted, but reﬁyblication/redistribution requires |IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
ibrary. Downloaded on December 02,2022 at 17:38:03 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: lowa State University

6

For linking the blocks, the protocol again utilizes the
erasure coding mechanism, with the generator matrix being
Go, the elements of which belong to G'F(2("~*)l). For this
purpose, we will consider N blocks, and if Bob gathers the
correct clues for at least (N — K) blocks, among those N
blocks, he will have the correct clues for the rest of the
K blocks. The protocol will have a total of N, blocks.
Alice will generate the clues for the first (N — K) blocks,
then use the (n — k) independent clues of each of these
blocks (so a total of (N — K) strings of (n — k) bits each)
to generate the (n — k) “independent” clues for each of the
rest of the K blocks, using the matrix Go. Such generation
of independent clues for K blocks is possible because of
the utilization of (N, N — K) erasure coding [58]. The
matrix Gg, in its canonical form, is a combination of identity
matrix and some other matrix B and can be represented
as [ Iiw_k) Brx(n—k) |. Finally, for each of the new K
blocks, Alice will use the matrix G; to generate the rest of
k dependent clues. Similar to G;, G2 can also be public
knowledge, or can be sent periodically by Alice.

To further secure the protocol against active attackers,
each block incorporates information from a selected number
of previous blocks. Recall that an attacker can listen to at
most m consecutive clues. Let us assume that m clues span
a total of (Z —1) blocks. We will include, in each block, some
verification information regarding the previous Z blocks.
The information regarding a block will be in the form of the
hash of the clues in the block, in reverse order. For example,
if the clues for the first block are ci,1,¢2,1,¢3,1....... ,Cn1,
where the second subscript indicates the block number and
the first subscript indicates the position of the clue in that
certain block, then the verification information regarding
this block will be encoded as H(cy 1|lc(n—1)1]]-- .- llei,1).
The purpose of this mechanism is to enable Bob to recognize
if the blocks that he has gathered previously are correct or
not. To recognize the correct blocks, Bob will gather the
clues of up to (Z + 1) blocks and then perform this hash
computation for the previous Z blocks. Bob keeps verifying
the correctness of the previous blocks until he accumulates a
total of (N — K) correct blocks. It should be noted that (Z —1)
should be less than (N — K) to ensure the security of the protocol.

4.1.3 An instantiation of the ZeroProKeS algorithm

To summarize, ZeroProKeS establishes the key in two steps.
The first step ensures that the clues in each of the blocks
are correct; the second step, shown in Sub-Protocol 1, shows
how to extend the previous algorithm to establish the secret.
Note that in Sub-Protocol 1 we instantiated the clue length
as l. = 512 bits to provide a sense of the complexity of the
algorithm in a real-world implementation.

We refer to the linking of clues in each of the blocks as
the inner-code and the linking of the blocks as the outer-
code. When we say the inner code is (n,n — k), we mean
that for each block, Bob needs to collect at least (n — k) clues
to recover all the clues of the block. Similarly to the inner
code, if we consider the outer code to be (N, N — K), it
means that Bob can have all the clues corresponding to N
consecutive blocks if he collects at least n — & correct clues
from each of (N — K) blocks among the N.

Now we look at the structure of the block. Each of the
blocks can be divided into three parts. The Header contains
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TABLE 1: Summary of notations

Z hashes: each hash is the digest of the concatenation of the
clues, in reverse order, of one of the previous Z blocks. The
Body contains the n clues, and the Tail consists of the list of
hashes of the current blocks clues. Each clue is of length [, =
512 bits, and there are in total n clues in each block. Now for
computing the hash, we have various options. We can either
use a secure cryptographic hash function such as SHA256 or
a cyclic redundancy check (CRC) code such as CRC64. The
output of SHA256 is 256 bits. Therefore, the length of the
header would be 2567, and it would be equivalent to the
length of Z clues. Similarly, the length of the tail would be
256n, which is the length of % clues. So, using SHA256 will
introduce an overhead of “%% clue lengths. Now, if we use
CRC64, the header would be the length of % clues (i.e., Zle

8
bits), and the tail would be the length of % clues (”éc bits).
Thus the overhead will be reduced to % clue lengths.

We should note here that, for the protocol to function
properly, we don’t need secure cryptographic hash func-
tions to compute the headers and tails of our blocks. In
the worst-case scenario, Mallory can interfere with at most
(Z — 1) consecutive blocks. However, as each block has the
information about the previous Z blocks, Bob will be able
to identify the correct blocks nevertheless. That is why we
can allow a CRC64 implementation of the clue digests. It
should also be noted that we don’t need to worry about the
overhead for computing the final secret, and thus, we can
use a cryptographic hash function such as SHA256.

For simplifying the presentation, in the remainder of the
paper, we shall refer exclusively to this instantiation of the
protocol, with I, = 512 and CRC64 clue digests. We call it
the 512-64 protocol. All the other parameters are kept in an
alpha-numeric form. The summary of the notations used in
the protocol can be found in Table 1.

4.2 Summary of ZeroProKeS Algorithm

This subsection summarizes the ZeroProKeS Algorithm
and explains some steps of Sub-Protocol 1. The algorithm
primarily works on two basic ideas: the linking between
several clues inside a single block (referred to as inner-
code) and the linking between several blocks themselves
(referred to as outer-code). The inner code assures that if
Bob has n — k correct clues for each block, he can make use
of these codes to get the rest k clues of that specific block.
Likewise, the outer code ensures that if Bob collects N — K
blocks correctly, he can utilize these collected blocks to get
the n — k£ independent clues of the rest of the K blocks.
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Symbol | Meaning i Sub-Protocol 1 Method for Establishing the Secret Key
n Total no. of clues in inner-code
k Redundancy in inner-code « Bob collects up to (Z + 1) blocks and concatenates the
E IT{(;?lllggaﬁi bliﬁcgitlé}igﬁ'mde clues in reverse order for each of the previous Z blocks
I Length of tk}:e clue to compute the hash of each block.
Niot Total no. of blocks in the protocol o The header of the (Z + 1)th block contains those hashes
m No. of consecutive clues an attacker can listen to of the previous Z blocks. Bob will compare the hash
Z-1 No. of blocks spanned by m clues . that he computed, to the header of the (Z + 1)*" block
P No. of clues attacker must miss after seeing m consec. R .

clues to identify any damaged blocks.
r No. of injected clues by an attacker over the span of m o As the outer-code is (N, N — K), Bob checks to see

clues . N .
s Probability of attacker getting the secret if he has at least (N — K) valid blocks among those

(Z + 1) blocks. An important point to note here is that
the maximum number of blocks Mallory can inject, over
the span of N blocks, has to be less than (N — K) in
order to prevent her from interfering with the outer-
code.

o Once Bob identifies (N — K) valid blocks, he would use
the (n—k) independent clues of each of the valid blocks
to compute the (n — k) independent clues for each of
the rest of the K blocks using the generator matrix Geo.

« If Bob fails to verify (N — K) valid blocks, he will collect
an additional (Z + 1) blocks and try to verify (N — K)
valid blocks among these 2(Z + 1) blocks.

« Subsequently, if Bob fails again to verify correct number
of blocks, Bob will collect another (Z + 1) blocks, and
this time he is guaranteed to be able to correctly identify
(N — K) valid blocks. Later, he will use the header of
the correct blocks to determine rest of the correct blocks
among the collected (3(Z + 1)) blocks.

o Next, Bob will use G; to compute the k additional clues
for each of the K blocks.

e Finally, Bob computes the secret key as key =
H(eralleaal] oo llen.N,., ), where H(-) may be imple-
mented as SHA256 and c¢,, ; indicates the nt" clue of the
tt" block.

Moreover, the protocol also employs an additional linking
between a certain number of blocks to secure the protocol
against active attackers. Our attack model lets the adversary
observe m consecutive clues encompassing (Z — 1) blocks.
Once the adversary observes these (Z —1) blocks, she misses
p consecutive clues, which encompass at least (Z+1) blocks.

At the beginning of the protocol, Bob will collect (Z + 1)
blocks and then check if he has (IV — K) valid blocks among
these collected (Z + 1) blocks. If not, he will repeat the
process and check if there are (N — K') valid blocks in the
collected 2(Z + 1) blocks. If Bob fails to obtain (N — K)
valid blocks again, he will repeat the process one final time,
and this time he is guaranteed to have at least (N — K)
valid blocks among the collected 3(Z + 1) blocks. Once Bob
has obtained the (N — K) correct blocks, he will utilize
the linking (i.e., outer-code) between the blocks to find the
(n — k) independent clues of the rest of the K blocks. Once
Bob generates (n — k) independent clues for K blocks,
he shall use the inner-code to generate the rest of the k
dependent clues for each of those K blocks. Therefore, Bob
will have each of the clues for all N blocks. Finally, he will
hash them together to generate the secret. The flowchart of
the summarized method is shown in Figure 2.

Now, note that we have mentioned that Bob is guar-
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Fig. 2: Flowchart of the summarized ZeroProKeS algorithm

anteed to find at least (N — K) valid blocks once he has
collected 3(Z + 1) blocks. We shall now demonstrate such
reasoning with an example. Recall that to ensure the security
of the protocol, (Z — 1) should be less than (N — K) as indi-
cated in subsection 4.1.2. If such a constraint is maintained,
it is possible for Bob to recover (N — K) valid blocks, even
in the worst-case scenario.

For explanation, let us assume (Z — 1) = 5, N = 10,
and K = 2. Initially, Bob collects (Z 4 1) = 7 blocks. Let us
assume among those collected 7 blocks, Mallory has injected
the first 5 blocks. Therefore, Bob has 2 valid blocks (6th and
Tth respectively), which is less than (N — K) = 8 blocks.
After listening to 5 blocks, Mallory will miss (Z + 1) =
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Fig. 3: Pictorial representation of the reasoning of why Bob
is guaranteed to have (N — K) valid blocks among 3(Z +
1) blocks. I indicates the blocks injected by Mallory and V
indicates the valid blocks that are not corrupted.

7 blocks. Thus, if Bob collects further 7 blocks, the first 5
blocks are valid, and Mallory can interfere with the last two
blocks. Thus, once Bob collects 2(Z + 1) = 14 blocks, he
has 7 valid blocks, which is insufficient. Finally, when Bob
collects further 7 blocks, at most, the first 3 blocks can be
injected by Mallory. Therefore, the rest 4 blocks are intact,
and consequently, Bob has 11 valid blocks, which is higher
than (N — K) = 8. This example shows why Bob is bound
to have at least (N — K) valid blocks among his collected
3(Z + 1) blocks. The pictorial representation of the example
is shown in Figure 3.

5 ROBUSTNESS OF THE PROTOCOL
5.1 Error Correction Ability

For each of the blocks, ZeroProKeS can detect any erroneous
or incorrect clue and can retrieve all the clues from any
subset of (n — k) clues. The incorrect clues can be found
by computing the intersection between the hash list and
the hashes of the clues collected by Bob. Similar to the
association of the clues within a block, the relation between
the blocks can also be utilized to correct block errors.

The matrix G; has size ((n — k) X n) and rank (n — k).
The corresponding parity check matrix, H; has size k x n
and rank k. Therefore, any k£ x k sub-matrix of the matrix
H; is invertible. Take a codeword C' (of size 1 x n) and let
(' represent a shorter version of C, produced by removing
the incorrectly received (or missing) clues from C. If H] is
obtained from H; by removing the columns corresponding
to the missing components, then the resulting syndrome
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= [H’l]T is nonzero. If the missing components are
C" (of size 1 x k", with k¥’ < k), and HY (of size k x k")
represents the columns of H; corresponding to the missing
components, then we can also write C"[H/]T = 5. As the
rank of H is k, any k" subset of the rows of HY can be used
to produce an invertible matrix of size k" x k. The inverse
of this matrix can be used to recover C” from s'. It should
be noted that no matrix inversion is necessary in practice —
rather, a simple LU decomposition should suffice.

Similarly, the matrix Gz has rank (N — K) and the rank
of corresponding parity check matrix, Hy, is K. Using a
similar approach to the one demonstrated above, we can
find the independent clues for all NV blocks by utilizing the
independent clues of at least (N — K') blocks.

The following theorem quantifies the robustness of the
protocol. The block structure for the proposed 512-64 pro-
tocol is shown in Figure 1, from where we note that each
block is the length of W clues. In Figure 1, the orange-
colored arrow indicates the linking between the headers
of the blocks, and the black-colored arrow indicates the
utilization of inner and outer code.

Theorem 1. Given (Nyy, N, K, n,k, Z), the pro Eosed 512-
64 protocol is (g, w)-robust, where g = Ny 9”+ and w =
(K+D)((k+1)/8+1)—1.

Proof. We have a total number of Ny, blocks, and each block
is the length of 2252 clues. Thus the total number of clues
tr%nsmzltted during Bob’s allowed listening time is g = Nyt
x s

For Bob to fail to establish the secret key with Alice, he
must fail to receive at least (K + 1) blocks out of a codeword
of N blocks. Recall that the outer codewords contain N
blocks, and there is a total of % outer codewords available
during Bob’s allowed listening time. Missing any single
outer codeword results in incomplete keying information.

There are various ways in which Bob can miss the blocks
in a codeword. He can miss k + 1 clues per block, or he can
miss the parts of the tail of the block that corresponds to
these k + 1 clues (a tail is the length of n/8 clues, so this
part of the tail would span the length of (k + 1)/8 clues).
If Bob misses part of the tail of a block, he is still able to
recognize a correct block body by using the header of the
blocks that follow it. However, this capability vanishes if
Bob misses only one additional clue from the block’s body.
So, in total, Bob must miss (k + 1)/8 + 1 clues of the block.
To summarize, the minimum number of clues that must be
missed to invalidate an outer codeword is (K + 1)((k +
1)/8 4+ 1). Any fewer missed clues and Bob will be able to
correctly recover the entire secret. O

6 SECURITY ANALYSIS
6.1

Based on the structure of a block, as shown in Figure 1, the
attack taxonomy of the protocol can be represented as follows:

Attack Taxonomy

1) Secret key leakage: attacker listens passively according
to the allowed access pattern and reconstructs the es-
tablished secret key.

2) DoS attacks
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a) The protocol does not complete successfully — this
takes modifying (by jamming or inserting) K + 1
blocks out of any one outer codeword of N blocks.

b) The protocol completes with mismatched secrets.

The protocol’s immunity against secret key leakage attacks
is formalized in Definition 5, while its immunity against
both types of DoS atacks is formalized in Definition 6. In
the remainder of this section, we discuss the active attacks
and derive two theorems that further enable us to choose
the design parameters for the ZeroProKeS protocol.

6.2 Protocol Completion in the Presence of Active At-
tackers

This subsection deals with the ways in which Mallory could
attempt to prevent the completion of the ZerProKeS protocol.

6.2.1 The Effect of Block Injection

We shall first look into the case in which Mallory modifies
the content of blocks transmitted by Alice to Bob (by in-
jecting a block we mean overwriting a block transmitted by
Alice). Note here that from Mallory’s perspective, listening
to the channel before injecting a block does have some
benefits — if Mallory wants to insert a block that fits in the
sequence of previous blocks, she needs to know the body of
some of the previous blocks, so that she can include them in
the header of the inserted block.

Bob can begin to verify the validity of the previous
blocks if and only if the previous Z blocks and the current
block are all received correctly (up to small errors that
are correctable at the block level by the inner code). This
implies that Bob needs to observe at least Z + 1 correct
consecutive blocks. Once the verification process is started
in this manner, it can then be further bootstrapped to verify
the validity of any blocks preceding this sequence of Z + 1
blocks.

Let us assume the value of the maximum number of
blocks Mallory can inject during a single listening interval is
(Z—1) = 15. Thus, each block has a hash list of the previous
Z =15+ 1 = 16 blocks. This means that the header of the
ith block contains H(Cn,(ifl) ‘ |cn71,(7ﬁ71) H ...... Cl,(ifl))l
H{(cn,(i—16)l|Cn—1,(i—16)|-----C1,(i=16)), Where ¢y, ; stands for
the kth clue of block i. Bob needs to observe at least
(Z + 1) = 17 correct consecutive blocks. Therefore, once
Bob has access to the 18th block, he can check and later
verify the previous 16 blocks.

We now consider the following scenario: Mallory missed
the first 12 blocks, then listened to 4 blocks, and then
injected 7 more blocks. After that, she let 2 valid blocks pass
and then injected 2 blocks again before losing access to the
channel. This is represented by Figure 4. Here, V' represents
valid blocks that Mallory allowed to be transmitted without
modification, and I represents injected (or modified) blocks.

N | I {1 3 R
A\ I A\ I

Attacker Access

Fig. 4: Attacking header after listening to some blocks
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When Bob gets the 18th block, he tries to verify the
previous 16 blocks and fails. The verification procedure is
that once Bob has 18 consecutive blocks, he compares the
header of the 18th block with the hash list of the previous
16 blocks that he prepared. If they are the same, Bob labels
those 16 blocks as valid. Note that even though Mallory
injected the block after listening to previous 4 blocks, she
does not have any information about the 12 blocks that
preceded those 4 blocks. She can never get that information
because if she decides to listen to 15 consecutive blocks,
she will not have time to modify any more blocks. This
argument also addresses the potential completion of the
protocol with mismatched secret keys: such an event is not
possible — the protocol either fails or completes correctly.

When Bob fails to verify the previous 16 blocks for the
first time, he collects the next 18 blocks, tries to verify again
in the same manner, and fails again. Next, Bob collects
another 18 blocks and tries to verify them as well. This
time, he is successful. Subsequently, using the header of
those verified blocks, he is able to then verify all the rest
of the valid blocks in the system. In Figure 4, Bob will at
first verify the last 18 blocks, and then, using the header of
those last 18 blocks, Bob will be able to verify the 5 blocks
that he collected immediately after Mallory left the channel.
Afterward, using the header of these 5 blocks, he will be able
to verify the 2 blocks that are between the injected blocks.
Similarly, using this back propagation approach, he would
be able to verify all the valid blocks in the sequence. Even
if Mallory injects the full 15 blocks, Bob will still be able to
verify all the valid blocks.

It is important to note that if we used the hash list of
the previous 15 (i.e., (Z — 1)) blocks in the header instead
of 16 (i.e., Z), Bob would be able to recognize the injected
blocks, but he wouldn’t be able to make sure that the initial
16 blocks were valid as well. This is demonstrated in Figure
5. If the protocol used 15 block hashes in the header, Bob
would check every 17th block. In this case, once Bob had
access to the 17th block, he would fail to verify the previous
15 blocks. He would fail to verify previous 15 blocks again
once he reached the 34th block. Finally, when Bob reached
the 51st block, he would be able to verify the previous 15
blocks. Using the header of those verified blocks, he would
be able to verify the 2 blocks after the injected blocks, and
using those 2 blocks; Bob would recognize the injected 15
blocks. However, as each block has the block hash of the
previous 15 blocks, there would not be any link between
the verified 2 blocks that are after the injected blocks and
the valid 15 blocks that are sent prior to the interference of
Mallory.

[ | [ ] [o] [ ]
I

<+
Attacker Access

Fig. 5: Limitation of using (Z — 1) block hashes in header

In terms of our parameters, this means that the number
of clues p that the attacker has to miss between observations
must cover at least Z 4 1 blocks, or, for our protocol
instantiation,
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p>(Z+1)HE, )

Taking this together with the definition of m:
m=(Z-1)"¢, @

we obtain the following two equations that, given the
attacker’s description by parameters (m, p), can be used to
calculate the protocol parameters Z, n:

pt+m
z > et ®)
m Z
n= 9(271) 9 @

with the observation that the protocol requires p > m + 1.

6.2.2 What it Takes to Inject a Block

The body of a block consists of the clues emitted by Alice
during the transmission of that block. Mallory has several
ways in which she may attempt to distort the block.

Repeated clues: Mallory may replay a clue that was pre-
viously transmitted. As established in the description of the
protocol, once Bob gathers the body, he will compute the
hash of these clues and then perform a set intersection. If
there are repeated clues, the set intersection will return only
their first appearance.

Jammed /arbitrarily modified clues: Mallory chooses to jam
either a part or the whole body, thus arbitrarily modifying
the transmitted clues. If the number of jammed clues is less
than k, Bob will be able to identify the jammed clues and
recover the rest of the body with the help of the inner-code.
Thus, the block is only compromised when at least k + 1
clues are successfully jammed.

Jammed block tail: Mallory chooses to simply jam the
block’s tail, which contains the hashes of all clues in the
block. To achieve any damage, Mallory has to jam at least
k + 1 of the clue hashes in the tail. This may appear to be
the most efficient way of “modifying” a block, as, without
the tail, Bob would not be able to recognize which clues
are valid. Interestingly, however, once enough new blocks
are gathered, the valid clues of the affected block can be
identified, as illustrated above, using the headers of the new
blocks, hence neutralizing the effect of the attack. The whole
block is thus not entirely lost, and Bob need not rely on the
outer code to recover it.

However, jamming a single additional clue of the block
has the effect of creating a hash mismatch with the headers
of the following blocks — recall that the hashes in the
headers correspond to entire blocks, not to individual clues.
To conclude, the single most effective way for Mallory to
modify an entire block to the point where it needs to be
recovered using the outer code is to jam/modify k 4 1 clue
hashes from the block’s tail, along with any single one of the
block’s clues — a total of @ + 1 clue lengths, as described
in Theorem 1.

6.2.3 Comparison between Protocols

The comparison between ZeroProKeS and various other
protocols, such as QTAB-KEP, Diffie-Hellman Protocol, Key
Wrapping, and Common Randomness Extraction, is presented
in Table 2. From the comparative analysis, we can see that
Diffie-Hellman Protocol is not (m,p,d) secure and Common
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Randomness Extraction is not start time independent. More-
over, neither of them are (g, v, m, p, r) resilient. Even though
Key Wrapping can be (g,v,m,p,r) resilient, it is not start
time independent. Note that an argument can be made that
the Diffie-Hellman key agreement can resist an attacker
from breaking the protocol even if she gets the total mes-
sage. Such an adversary framework is not compatible with
the concept of the quality-time-advantage key establishment
protocol, as the adversary is bound to miss p consecutive
clues after observing m consecutive clues.

Protocol Authenticated| Start (m,p,0) | (g,v,m,p,7)
Time secure resilient
Indep.

ZeroProKeS | Co-location v v v

QTAB-KEP Co-location v v X

[5]

Diffie Hell- | PKI v X X

man [59]

Common Co-location X v X

Random-

ness [14]

Key Wrap- | Co-location X v v

ping [60]

TABLE 2: Comparison between protocols

6.3 Parameter Selection

From Theorem 1, we know that the total number of clues
is Nyt X 9"; Z_ Mallory has (m,p,r) active access, and
during this time she can listen to (Z — 1) blocks. This can be
represented by the Figure 6.

r r r
Z-1 ‘ Z-1 : ‘ Z-1 d
P Bl S Sty
[T T[T [ [T T [ T T[T
m m m
P p
’ Neoe X ((Qn e Z)/5) | q ‘

Fig. 6: Diagram for attacking model representation

From Figure 6, we see that over the span of am—+ (a—1)p
clues, the attacker can listen to at most am clues. The integer
a can be found from the following two equations:

am+ (a — 1)p < (Ngor X 9”;2) 5)
(a+1)m +ap > (Nioy X %Q_Z)» (6)
or equivalently:
NO X In+2
a0 < (Niot ] )+p @)
(m+p)
No In+Z
a>(tt>< 8 )+p_1. (8)
(m 4+ p)

Theorem 2. Given (g, w, m, p, r), if a is given by (7)
and (8), then a (g, w) robust ZeroProKeS protocol is also
(g,v,m, p,r) resilient, where v = w — ar — min{r,m — ¢}
and ¢ = min{m, (a + 1)m + ap — g}.

Proof. We know g = Ny X W and the value of n and Z
can be computed from (3) and (4), using m and p.
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Now, if we look at Figure 6, we can see that Mallory can
inject r clues over the span of m clues. Therefore, over the a
sequences of m consecutive clues seen by Mallory, she can
inject at least ar clues. However, the maximum number of
clues that Mallory can inject is a bit larger, and is given by
ar + min[r,m — ¢], where ¢ = min[m, (a + 1)m + ap — g|
(see Figure 6). These injected clues decrease the number of
additional clues that may be missed by Bob due to non-
malicious reasons, such as interference. Hence, the resilience
of the protocol is now v = w — ar — min[r,m — g|. O

Theorem 3. Given (m, p, n, k, Niot), if a is given by (7) and
(8), the probability that an attacker can recover the correct
secret key from the 512-64 ZeroProKeS protocol is § <

max |2~ Neot(n=k)=L)le 2’448}, where L = a(Z — 1)(n — k)
+ [ gazz 1(n = k).
8

Proof. We first note that finding a clue from its CRC-64-
based digest included in the blocks” headers involves a
brute-force effort with complexity in the order of 2512764 =
2448 This is for a single clue, but since the complexity is
overwhelming, we choose not to consider this case at all —
rather, we include the term 2~%*® in the maximum above.
Now, without inverting CRC-64 digests, we can focus
exclusively on eavesdropping information-bearing clues.
We know that each clue consists of /. bits. As each block
has (n — k) information-bearing clues, the total number of
information-bearing clues that Mallory can listen to, over
the a sequences of m consecutive clues, is a(Z — 1)(n — k).
Additionally, she can access m — g more clues — see Figure 6.
As each block is of length 9”; Z clues, the additional number
of full blocks that she has access to is | g, 7% |. Each of these

8
blocks has (n — k) information-bearing clues, so Mallory can

eavesdrop an additional | 4% | (n—k) information-bearing

clues. Finally, out of the remefining clues (which do not cover
a full block), Mallory can only access fewer than (n — k)
information-bearing clues. Consequently, in total she can
access fewer than L = a(Z—1)(n—k)+ [gork 97,+Z Z1(n—k). The

total number of information-bearing clues is N tot(n—k), and
so the probability of guessing all information-bearing clues

L 9-WNi(n—K)=L)le ]

tot (n_k)lc

correctly is less than 9N,

Since for our 512-64 protocol I, = 512, it should suffice
to have Nyot(n — k) > L, or equivalently:

Ntot > Cl(Z ) + [97”, —| (9)

7 COMPUTATIONAL COST

The cost for Alice arises from the matrix multiplication.
She has to perform matrix multiplication both over GF(2)
and GF(2("=Rl), For coding across clues, Alice has to do
multlphcatlons over GF 821 ). The multiplication in G F(2!<)
has a complexity of O(I.”) [61]. However, using an efficient
algorithm, such as Kamtsubas algorithm [62], this can be
reduced to O(I.'°%). As Alice does this multiplication
k(n — k) times (the generator matrix is in canonical form,
so the first elements of the codeword coincide with the
independent clues), the complexity can now be written as
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O(k(n — k)I.2°%) = O(nkl.""®). Moreover, Alice has to
perform (n — k) (k — 1) additions over the same field as well
and the addition in the field has a complexity of O(l.) [61].
Thus, the complexity of Alice for coding across clues can be
written as : O(nkl,"**®) + O(nkl.) = O(nkl. ).

For coding across blocks, Alice has to do K(N — K)
multiplications and (N — K)(K — 1) additions in the field
of GF(2(n—Ml). Using a similar approach, we see that this
complexity reduces to O(NK (I.(n — k))!-58).

Now, we analyze the complexity of Bob’s task. For this,
we will consider the parity check matrix, H, corresponding
to the generator matrices. For decoding across clues, Bob needs
to first find the syndrome s’ of the codeword, which is of
size at most (1 x k), formed by the clues he gathered. For this,
he needs to do k(n — k) multiplications and k(n —k —1) ad-
ditions in G F(2'). This has the complexity of O(nkl. ')
+ O(nkl,) = O(nkl, %),

Next, Bob needs to solve for C” from the equation
C"H'"" = s'. Using LU decomposition, this will take at
most k3 /3 + k2 multiplications, and as many additions
over GF(2!¢). The complexity of the computation is thus
O(k31.""7%%). Using a similar analysis, it can be shown that
for decoding across blocks, the complexity for Bob’s task is at
most O(K?(l.(n — k))1-585).

Thus, in the worst-case scenario (for computational
effort) when Bob has to correct £ — 1 missed clues
out of each one of N — K blocks in each outer code-
word (for a total of % outer codewords), and then
has to determine the remaining K blocks of each outer
codeword, the overall complexity can be written as
O (Mg [V = )kt ™) & (K (1e(n — )15 ).

In [5], the authors needed to run the basic QTAB-KEP
in parallel to make it start time-independent. If we apply
our framework to [5] and compare the computational cost,
we can see that for Alice, ZeroProKeS performs better than
QTAB-KEP whereas, for Bob, the costs are comparable when
K < Niot. The details of the comparison are given in Table
3. Note that Table 3 compares the cost of the protocols that
are start-time independent, and (m, p, ) secure.

Computational ZeroProKeS QTAB-KEP [5]
Cost
Alice O(NK lcgn — k)% + | O(Nior
O(nklc .5 5) X%)S
Bob O(Ftet [(N — K)(nkll-585) [ O(Niot
% E)ng—Z)Q
K3 (le(n — k)159)))

TABLE 3: Comparison of computational cost between pro-
tocols that are start-time independent and (m, p, §) secure.

8 CONTROLLING THE INFORMATION TRANSFER
FUNCTION

The information transfer function controls how much in-
formation is leaked, about the secret, over time. This infor-
mation transfer function should be customizable to allow
flexibility for the user. Suppose a user wants to establish a
symmetric key between his car and the car key. In that case,
he may wish the protocol to leak more information about
the secret key while the vehicle is running. The attacker is
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more likely to have a smaller listening interval in this case
than when the car is stationary.

Therefore, the protocol is expected to emulate any mono-
tonic increasing transfer function. In [5], this was achieved
by executing multiple instances of the protocol in parallel,
each instance consisting of a different-length codeword. This
approach suffers from significant overhead but cannot be
avoided because the basic protocol of [5] communicates all
the information at once (when the (n — k)th clue becomes
available). By contrast, our proposed protocol delivers in-
formation in small increments as each clue leaks a small
amount of information. The challenge is thus how to make
this amount of information count more or less, depending
on the desired information transfer function.

First, we need to understand how information transfer is
achieved for each block. The inner code for the protocol is
(n,m — k). So, if Bob has (n — k) correct clues, he can have
access to all the correct n clues. Therefore, the information
increases over the duration of the first n — k clues and then
remains constant over the next k clues, as can be seen from
the red line in Figure 7.

Approximated Transfer Function

ﬁ

Original Transfer
Function

Gained Information

Number of Clues
| | n |

Y

Fig. 7: Information transfer function for each block

Now the trick is to make different blocks convey more
information. This is not straightforward, as due to the start-
time independence requirement, all blocks have to look
exactly the same. The solution is to assign different weights
to different blocks a posteriori. That is, once Bob signals
Alice that he has gathered enough clues, Alice and Bob
both look back at the gathered blocks and assign different
information gains to different blocks, according to the spec-
ified information transfer function. This is reflected in the
production of the secret key by using a two-level hashing
mechanism. For example, if the last block is supposed to
convey less information than the second-last block, then the
clues in the last block will be hashed into fewer bits than the
clues in the second-last block. The results of all block hashes
will then be concatenated and hashed again into a number
of bits equal to the desired key length.

An implementation of this paradigm is illustrated in
Figure 8. Notice that the whole information transfer function
is sliced vertically into N — K equal-width slices (in Figure
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t Information

b1{

b2+

b3

b1
Clue
number

Fig. 8: Information transfer function for whole protocol

8, N — K = 4). Each slice is associated with a block and
is further divided into n thinner sub-slices representing the
clues in each block (in Figure 8, n = 7). Each slice is assigned
an integer number proportional to the information transfer
function’s increase over the slice and represents the number
of bits to which the clues in the corresponding block are
going to be hashed in the first stage of the hashing process
(in Figure 8, these integers are denoted as by, b, b3, bs). No-
tice that, over each slice, the information transfer function
will be approximated by a stepped slope of (n — k) equal
steps, followed by a constant segment of length equal to
the length of k steps, similar to the red curve of Figure 7
(in Figure 8, we have n = 7 and k = 2). By increasing
the number of blocks in the protocol - i.e., by transmitting
more frequent clues — we can approximate the information
transfer function in this manner with arbitrary precision.

9 EXPERIMENTAL RESULTS AND DISCUSSION

We implemented our proposed protocol using a Raspberry
pi [63] as Alice and simulated an Android application, in
Android Studio [64], as Bob. Our instantiation of ZeroProKeS
uses the values N = 16, K =8, n =16,k =4, Z = 8. If
Niot = 32, then for this example we have g = 608, w = 17,
m =133, and p > 171.

9.1

A suitable measurement quantity for such a low-cost proto-
col is power consumption. For measuring power, we have
used the USB voltage, and current meter [65]. On average,
the protocol draws an additional 49.56 mW power (with
an standard deviation of 0.1813 mW) above the baseline
benchmark of 2 W. Thus, only an additional 2.478 % of the
benchmark power is consumed by the protocol.

Another appropriate quantity to measure would be the
average load on the processor while executing the protocol.
The average load on the processor is defined as the ratio
of the total computation time to the execution time of the
protocol. As execution time is the parameter of the protocol,

Performance Measurements
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we have varied it to measure the effect of the execution of
the protocol on the processor. The details of the average
computation time for Alice and Bob can be found in Table
4. For computing over Galois field, we have used the imple-
mentation provided by Bouncy Castle [66].

Operation Sample 95% Confidence
Mean (us) | Interval (us)
Creating Header 0.97 [0.75, 1.19]

Alice Creating Body 20.9 [16.65, 25.15]
Creating Tail 35.42 [25.57,46.27]
Veritying Header 128.40 [104.13,152.66]

Bob Verifying Body 42.00 [34.51,49.49]
Verifying Tail 52.36 [44.79, 59.93]

TABLE 4: Average computation time
+«10® Mean Load vs Key Establishment time for Bob

gt 2 5

%Mean Load Processor —

D L - e L = 4
0 5 10 15 20 25
Time to establish the key (in hours) —

Fig. 9: % Mean load vs execution time for Bob

For each block, Alice generates (n — k) random numbers
and then uses G; to generate the rest of the &k numbers.
Along with generating these numbers, Alice also computes
the CRC-64 hash of the concatenation of these n random
numbers in reverse order. The computational time to per-
form these operations is captured by the operation “Creat-
ing Body”. “Creating Tail” simply indicates the computa-
tional time required to generate the CRC-64 hash of each of
the numbers separately. And finally, the computational time
to add the list of the hash of the concatenation of clues in
reverse order for previous Z blocks is shown in “Creating
Header”.

For “Verifying Tail”, Bob collects the clues, computes the
CRC64 hash of each clue, and performs set intersection.
“Verifying Body” captures the computational time for the
generation of n clues for each block. We have considered
the worst-case where Bob needs to compute k erasures from
the correct (n — k) clues.

For “Verifying Header”, Bob has to perform three op-
erations (in the worst-case scenario). At first, Bob needs to
identify the correct (N — K) blocks among all the collected
blocks. After that, he needs to use Gy to reproduce the
correct “independent” clues of these N blocks. And finally,
using these “independent” clues and G;, Bob will need to
find the dependent clues for all blocks.
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Now we analyze the load, that is introduced on the
processor, by execution of the protocol. Figure 9 shows
the increase in the load percentage while executing Bob.
Similar graph is obtained for Alice as well. The plot follows
the exponential equation ae®® + ce?®. In this specific case,
the values are : ¢ = 7.369 x 10786 = —0.4288,¢c =
6.727 x 1079, d = —0.05162.

It is apparent from Figure 9 that there is a trade-off
between the time required for key establishment and the
computation load. Note that “the time to establish the
key” is a parameter of the clue-issuing device for the
time-advantage-based protocols. The co-located devices are
guaranteed to spend longer uninterrupted time together,
while an adversary may gain access to such an environment
after breaching the defense of the facility. Moreover, the
attacker can not afford to have uninterrupted access to the
facility without being found. Our protocol can exploit such a
long time frame to establish a secure key among co-located
devices while ensuring the nominal increase in the power
usage for the device while implementing the protocol, as
demonstrated by Figure 9.

9.2 Comparative Evaluation
9.2.1 Comparison against Adversary Characteristics

Now we shall compare several protocols against the
characteristics of the adversary that were introduced in
3.3.1. Characteristic C1 portrays an active adversary who
can interfere with the communication between Alice and
Bob. We know that QTAB-KEP is not secure against such
an adversary, whereas both the primitive Diffie Hellman
and common randomness algorithms are susceptible to
man-in-the-middle attacks. Moreover, the C2 characteristic
illustrates an adversary who has a significant resource to
enumerate all possible secrets based on her collection of
clues. None of the protocols are susceptible to such an
adversary. Finally, the final characteristic of the adversary
ensures the compromising of the current session of the
protocol if she gains knowledge of the previous session key.
However, such an attacker can have access to the secret for
key wrapping-based protocols. The summary of the result is
shown in Table 5. Note that the v" sign indicates the protocol
is resistant against such an adversary, and the x indicates
that the protocol is vulnerable to an attacker having such a
characteristic.

Protocol
ZeroProKeS
QTAB-KEP [5]

Diffie Hellman [59]
Common Randomness [14]
Key Wrapping [60]

< x[x|x|«[Q
NSRRI
SAASENRNRNIS

TABLE 5: Comparison among protocols against adversary
characteristics

9.2.2 Comparison of Utility Requirements

The utility requirements ensure the ease of usability of
a protocol. The first four requirements (U1 - U4) ensure the
minimization of a device effort even in the scenario of a
large-scale deployment. The rest two (U5 and U6) ensure
that a key is established even if some clues are missed by a
device or modified by an adversary. Table 6 summarizes the
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result where v points out that the protocol meets the utility
requirement, and x illustrates that such a protocol does not
meet such a requirement.

Protocol Ul | U2 | U3 | U4 | U5 | U6
ZeroProKeS v v v v v v
QTAB-KEP [5] v v v v v X
Diffie Hellman [59] v X v v X X
Common Randomness v v v X v X
[14]

Key Wrapping [60] X v X v v v

TABLE 6: Comparison among protocols for utility require-
ments

9.2.3 Comparison of Evaluation Metrics

Finally, we compare each of the protocols against several
evaluation metrics. E1 ensures that the protocol does not
need to maintain a list of keys. Both E2 and E3 assure that
the protocol completes successfully and can prevent any
known attacks. Both E4 and E5 ensure the protocol authen-
ticates the user and is start time-independent, whereas E6
ensures the forward secrecy of the protocol. The details of
the analysis of these metrics are summarized in Table 7.

Protocol
ZeroProKeS
QTAB-KEP [5]
Diffie Hellman [59]
Common Randomness [14]
Key Wrapping [60]

x| s8] 8 8 H
x| x| x| S B
ENRNANENANIS
X[ x| <[ E
NSRRI
ENRNANENANjEX

TABLE 7: Comparison among protocols for evaluation met-
rics

9.3 Discussion on the application scenario

It is to be noted that our threat model may not be completely
applicable for some body-area network applications. For ex-
ample, in several body-area network applications, a new de-
vice is expected to be integrated into the already established
network quickly. These scenarios are not directly related to
the extent of the protocol. However, the protocol can still be
utilized in such scenarios, albeit with little human input. The
new device can be initialized with a “weaker key”, and the
devices, already interconnected in the same network, will
share minimal information with the new device. Once the
new device gathers enough clues to generate a “stronger
key”, it will be added to the network, and the devices
can start sharing sensitive information, encrypted by this
“stronger key.” Such a modification will make our proposed
protocol “Quasi-Effortless” (see usability requirement U4).

10 CONCLUSION

This paper proposes ZeroProKeS, an automatic key estab-
lishment protocol between the two legitimate parties who
enjoy more quality time with each other than the attacker.
The protocol applies the set intersection method and erasure
coding to achieve such a feat. It identifies the limitation of
the basic QTAB-KEP protocol and improves it. Moreover, we
have also formalized the definition of robustness, security,
and resilience for the protocol and evaluated it against these
definitions to provide the limit for all of them. Furthermore,
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we have shown how the protocol is impervious to many
possible attacks. The paper also shows how to achieve any
arbitrary information transfer function by adhering to the
proposed protocol. We have demonstrated that the Zero-
ProKeS algorithm can securely pair two devices through the
implementation between Raspberry pi and an Android app.
We have found that the computational cost of the protocol
is comparable to the QTAB-KEP protocol, even though our
protocol is also resilient against an active attacker. Moreover,
our proposed protocol only draws an additional 2.478%
of the benchmark power of Raspberry pi. Finally, we have
shown that the computational load for performing the key
establishment, using ZeroProKeS, decays exponentially with
the increase of time for key establishment, making the
protocol suitable for low-cost, large-scale applications.
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