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Abstract. This work addresses a novel variant of the Maximum Range-
Sum (MaxRS) query for settings in which spatial point objects occur
dynamically and, upon occurrence, their significance (i.e., weight) decays
over time. The objective of the original MaxRS query is to find a loca-
tion to place (the centroid of) a fixed-size spatial rectangle so that the
sum of the weights of the point objects in its interior is maximized. The
unique aspect of the problem studied in this paper, which we call DDW-
MaxRS (Dynamic and Decaying Weights MaxRS), is that the placement
of its solution can vary over time due to the joint impact of the arrival of
new objects and the change of the corresponding weights of the existing
objects over time. To improve the efficiency of the DDW-MaxRS prob-
lem processing, we propose a memory-efficient approximate algorithmic
solution that will naturally infuse uncertainty in the answer. We formally
analyze the error bounds’ properties and provide experimental results to
quantify the effectiveness of the proposed approach.
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1 Introduction

The advances in GPS-equipped mobile devices and networking technologies have
enabled generation of large volumes of location-aware data [7,20]. Often, in
addition to location and time, such data includes various semantic (numerical
and/or categorical) attributes, which are of interest in many applications relying
on location-based services (LBS), such as social networks, emergency response,
recommendations, etc. [18]. These settings, in turn, have brought about novel
problems and challenges in query processing and analytics, the efficient manage-
ment of which requires methodologies that extend the traditional spatial/Spatio-
temporal and Moving Objects Database (MOD) approaches [8,25].

One such problem (re)addressed in the recent years is the Maximum Range-
Sum (MaxRS) query, also known as the Maximum-enclosing Rectangle Prob-
lem [26], described as follows: given a set of (weighted) spatial point-objects O
and a rectangle R with fixed dimensions (a× b), determine the location for plac-
ing R such that the sum (of weights) of the objects in R’s interior is maximized.
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Figure 1 shows the positions of a set of input points and their respective
weights. The shaded region indicates the position of the query rectangle such
that the sum of the weights of the (red-colored) objects in its interior is maximum
among all the other possible placements in the horizontal plane.

What motivates this work is that in certain domains, in addition to the
arrival/occurrence of new points, one may face a situation in which the weights
of the previously inserted objects need not be constant over time (e.g., it may
decay). For example, when monitoring a CO concentration through participatory
sensing [3], mobile citizens periodically report the value of the measurement from
their current location, based on incentives [11]. One of the objectives of managing
carbon footprint is to avoid uneven distribution in urban environments [14,19].
A traffic management system may want to enforce reduced driving through an
area of a given size (limited by the constraint not to cause too severe congestion)
for some time. As time evolves, when re-evaluating the critical area to reduce
traffic, one must consider that the value of ppm (particles per million) measured
in a previous location of the mobile volunteer may have declined over time.

A complimentary scenario comes from burglary crime management. To deter-
mine the placement of a fixed-size region that will cover a maximum number of
ongoing burglaries [17] – upon reporting a new one, one needs to consider that
the typical “stay-time” of burglars for each previously reported one in a loca-
tion is between 8–12 min [13]. Similarly, when estimating the (placement of a)
fixed size region in which there is the highest likelihood of getting infected by
a virus due to the concentration of infected persons, one needs to consider that
the capacity of transmitting the infection decays over time [21].

While at their core, such problems resemble the settings of the MaxRS prob-
lem, they also accentuate the joint impact of two factors: (i) dynamic appear-
ances of objects at given locations, with varying weight/importance (e.g., the
severity of symptoms); and (ii) variability over time of the objects’ weights.

None of the available variants of the MaxRS problem can be straightfor-
wardly applied to address the settings described above. Towards that, the main
contributions of this work are threefold: (i) We take a first step towards for-

Fig. 1. Location of MaxRS at time t;
weights of each object are shown as its
third dimension over the z axis.

Fig. 2. MaxRS at time t + 1; decayed
weights changed the answer and a new
WD object arrived (shown in orange).
(Color figure online)
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malizing a novel Dynamic and Decaying Weights MaxRS (DDW-MaxRS) query;
(ii) We identify and formally prove properties that ensure desired bounds for a
novel approximate solution and introduce a corresponding algorithm; and (iii)
We present experiments showing the effectiveness of the proposed approach.

We introduce the notation and formalize the problem in Sect. 2, followed by
the algorithmic solutions in Sect. 3. We discuss generalizations of the parameters
in Sect. 4 and present experimental observations in Sect. 5. Related literature is
presented in Sect.6 and the concluding remarks in Sect. 7.

2 Preliminaries

We consider a time-varying set of objects Ont
(t) = {o1, o2, . . . , ont

}, each of
which is associated with a location in 2D Euclidean space, within a suitable
coordinate system. Each object oi is a triplet ((xi, yi), wi(t), ti), where i is its
unique identifier, ti is the time step in which this object arrived, (xi, yi) repre-
sents its location, and wi(t) is a scalar indicating its (relative) importance – e.g.,
the capability for spreading infection over time – defined as:

wi(t) =

{
wi × λ

(t−ti)
i , if t ≥ ti

0, otherwise
(1)

where wi indicates its initial importance/weight, and λi < 1 captures the decay
over time – i.e., the diminishing of the importance of a particular object. In the
rest of this paper, we assume that at each time step t, at most, one new object oi

is generated in the regions of interest. For brevity, we will refer to such objects
as WD (weighted and decaying) objects in the rest of this paper. For a given
axis-parallel rectangle R, we use C(lR, R) to denote the planar region covered
by R when its center is placed in location lR.

The Dynamic and Decaying Weights variant of the MaxRS over a time inter-
val Δ(t) = [ts, te] (DDW-MaxRS((Ons

(t)), R, (ts, te))) is defined as follows:

Definition 1. Given a (starting) set Ons
(ts) of WD objects Ons

(t) = {o1, o2, ...,
ons

}, and a query rectangle R, the answer to DDW-MaxRS((Ons
(t)), R,

(ts, te)), denoted ADDW-MaxRS (Ons
(t), R, (ts, te)) is a sequence of locations

LR = {lR(ts), . . . , lR(te)} for placing the centroid of R, such that at each
t ∈ [ts, te],

∑
{oi∈(Ont (t)∩C(lR,R))} wi(t) is maximal.

We are interested in two key aspects: (1) trade-offs that arise when sacrificing
the accuracy of the answer for the benefit of the efficiency of the processing
algorithm; and (2) avoiding a complete re-computation of the ADDW-MaxRS
(Ons

(t), R, (ts, te)) at every time instant (i.e., naively invoking the traditional
Max-RS algorithm for each Ont

(t)). For (1), we consider a variant similar to [22],
introducing a factor of ε to quantify the error compared with the exact answer.
We have the following definition (updating the corresponding definition of (1−ε)-
Approximate MaxRS from [22]) for an approximate answer at a time instant t:
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Definition 2. Given a set On(t) of n WD objects On(t) = {o1, o2, ..., on}, the
answer to (1 − ε) Approximate DDW-MaxRS query at any time t, denoted
Aε DDW-MaxRS(Ont

(t), R), is a position lR(t) for placing the center of R such
that the covered wight of R is a (1 − ε)-approximate answer, i.e.,

(1 − ε) × m∗ ≤ m ≤ m∗ (2)

where m =
∑

{oi∈(On(t)∩C(lR,R))} wi(t) is the weight returned by Aε DDW-MaxRS

(On(t), R), and m∗ is the weight returned by A DDW-MaxRS(On(t), R).

However, in our case, answers may vary over time. For illustration, consider
Fig. 2, showing a future time instant of the scenario in Fig. 1. It shows the
change of the (location of the) answer due to the different decays of the weights
over time. In addition, it shows an arrival of a new object (bottom-right) which,
however, does not affect the answer.

3 Approximate Solution to DDW-MaxRS

We note that a naïve way to calculate the answer to DDW-MaxRS would be to
invoke the traditional MaxRS solution (cf. [6]) at each time step, incorporating
a new WD object, and weight modifications of the older object due to the decay
over time. The time complexity of the exact solution, in this case is O(nt log nt)
for each time instant t, where nt is the (progressively increasing) number of WD
objects at time t. To avoid such re-computations every time instant, one can rely
on the approach to maintain the MaxRS in dynamic settings [2].

In the rest of this Section, we focus on a specific case of the DDW-MaxRS
problem, where we assume a fixed decay – i.e., λi = λ for all objects/points (we
will later relax this assumption in Sect. 4).

To explain the intuition behind the approximate solution, let S denote the 2D
space of all the possible locations for all the objects. Assuming a query rectangle
R of size [a× b], we partition this space into cells of the same size [a/j × b/j] for
some value j. Without loss of generality (i.e., with small “boundary zones”), we
assume that S is fully covered by a 2D array of a whole number of cells. Upon
arrival, each new object oi, based on its location, is mapped to a cell. For each
cell cu,v, we store a list of points mapped to it. Given this discretization of S,
upon an arrival of a new object om at some time instant tm, we introduce its
extended dual rectangle Re

om
of a size [(2j + 1)a/j × (2j + 1)b/j] cells, centered

in the center of the cell to which om belongs.
As we will formally demonstrate below, Re

om
enables a more efficient calcula-

tion of the Aε DDW-MaxRS (OnM
(tm), R) based on the solution at the previous

time instant tm − 1. The rationale is that if there is a change in the solution
since tm − 1, it must be due to om and a subset of the older points located in
the cells that are intersecting Re

om
.
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Fig. 3. For j = 2: (a) extended cell ExtCell(c) (b) All extended cells containing c, (c)
Naive approach provides at least a 1

4
-approximate solution to DDW-MaxRS.

Algorithm 1: Grid-based Approximate Solution
input: ExtCList is the sorted list of ExtCells based on their weights, p∗ the

solution to Aε DDW-MaxRS(On(t), R) with weight w∗

// Target rectangle R is of size a × b
1 if new arrival oi then
2 Find the cell c that oi maps into
3 CellSet(c) ← CellSet(c) ∪ oi

4 W (c, t) ← W (c, t) + wi(t)
5 for ExtCell(d) containing c do // There are j2 of such extended cells
6 W (ExtCell(d), t) ← W (ExtCell(d), t) + wi(t)
7 Update the position of ExtCell(d) in ExtCList to keep it sorted

// this step takes O(logN), where N is the total number
of cells

8 end
9 p∗ ← center of ExtCList[−1] // ExtCList[−1] is the ExtCell with the

maximum weight
10 w∗ ← W (ExtCellList[−1], t)

11 end
12 else
13 w∗ ← λ × w∗

14 end

Recall that we aim for an approximate solution(s) which, at each time instant,
provides a faster calculation of the answer(s) at the price of sacrificing accuracy in
terms of the covered weight. We quantify this error by ε as defined in Definition 2.

For each cell c, we store a list of points mapped to it (OList(c)). At any
time t, the weight of a cell c is computed as: W (c, t) =

∑
{oi∈OList(c)} wi(t).

We also define an extended cell ExtCell(c) as the set of cells (CellSet(c)) in the
grid of j × j cells with cell c as its most left-bottom cell (shown in Fig. 3a).
The weight of an extended cell ExtCell(c) is computed as: W (ExtCell(c), t) =∑

{cell∈CellSet(c)} W (cell, t).
We propose an approximate solutions based on the idea of diving the space

S into cells, and the pseudo code is shown in Algorithm 1.
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3.1 Properties of the Approximate Solution

To return an approximate solution to the DDW-MaxRS problem, we do as fol-
lows: (i) At the initial time t0, we keep a list of extended cells and order them
based on their weights (we will refer to this list as ExtCList)). We then return
the extended cell with the highest weight as the approximate solution. (ii) Let
ExtCell(c∗) be our approximate solution to DDW-MaxRS at time t − 1 (for any
t > t0). We will not change the approximate solution if no new point arrives
at time step t. We only update its weight. However, if a new point arrives, we
first find the cell c this point maps into it. Note that there are j2 extended cells
containing c (shown in Fig. 3b for the choice of j = 2). We update the weight of
c and the associated extended cells and their position in the ExtCList so that
our list remains sorted. We then return the extended cell with the maximum
weight as the solution to our DDW-MaxRS. The critical thing to remember is
that the relative order of all the other extended cells remains the same.

Lemma 1. At any time t > t0, upon arrival of a new point o, the relative order
of extended cells, that o does not map into, remains intact.

The proof is rather straightforward, based on the fact that the weight of each
extended cell that the new point is not mapped to decay by a factor of λ < 1.
This algorithm provides at least 1

4 -approximate solution (cf. Lemma 2).

Lemma 2. At any time t, the grid-based algorithm returns at least 1
4 -

approximate solution to the DDW-MaxRS problem.

Proof. For simplicity, we discuss j = 2, but the proof for larger values of j is
similar. Let m be the weight of the extended cell returned by the algorithm at
time t. Also, let the exact solution to the DDW-MaxRS problem, at time t, be as
shown in Fig. 3c, which means it does not fall within any of our defined extended
cells but rather overlaps with multiple of them (R1, R2, R3, and R4).

The proof follows the fact that the weight of points covered in the intersection
of the exact solution R with each of them is bounded by m, and hence, the total
weight covered by R cannot be more than 4m. Note that this is a tight bound �.

Intuitively, larger values for j imply a finer grid, and one may expect that it
will improve the accuracy. However, having a very large j could result in cells
containing only 1 (or 0) point, and there will be no benefit in dividing the space
into cells. There is a trade-off in the choice of j between the accuracy of results
and the computational efficiency. We study the effect of this parameter on the
results in Sect. 5.

3.2 Memory-Efficient Approximate Solution

When mapping WD objects to grids, not all cells will include a point. A sig-
nificant number of cells will be either empty or receive objects infrequently. It
does not makes sense to store such objects or keep track of these sparse cells.
This sub-section introduces an approach to clear sparse cells without hurting the
accuracy. To this end, let us formally define a sparse cell:



244 A. Tahmasbi and G. Trajcevski

Definition 3. A cell c is called θ-sparse at time t if:

W (c, t) ≤ θ (3)

According to Definition 3, we call a cell θ-sparse at time t if its weight is less
than θ, where θ > 0 is a threshold we set. Later, We will discuss how to choose
this threshold. Lemma 3 investigates lower and upper bounds on the sum of all
WD objects’ weights present in the system at any time t:

Lemma 3. Let tl be the last time step in which a new point arrived. At any
time step t ≥ tl, we have:

(n0 + 1)λt <
∑

{oi∈Ont}
wi(t) < (n0 − 1)λt +

1
1 − λ

(4)

where n0 is the number of points in the system at time t = 0.

Proof. The proof is straightforward: given n0 WD objects were present in the
system at time t0, the total weight is at least n0λ

t+λt−tl . On the other hand, in
the worse case, we had one new WD object added at each time step from t = 0
to t = tl, and the total weight of those objects is bounded by 1

1−λ . �

In the rest of this section, we assume n0 = 1 for simplicity, but the results
are generalizable to n0 > 1.

Let an algorithm clear all the θ-sparse cells (for some predetermined θ). One
question that arises is how does it affect our grid? How many nonempty cells
will remain after clearing such cells? Lemma 4 answers this question:

Lemma 4. At any time t, the number of nonempty cells after deleting the θ-
sparse cells will never exceed L = logλ θ(1 − λ).

Proof. The proof is similar to the proof of Theorem 4.4 in [23]. Let tc be the last
time instant in which cell c received a new point. Therefore, we have:

W (c, t) = λt−tc × W (c, tc) (5)

Consider the case when t − tc > L = logλ θ(1 − λ), then we have:

W (c, t)
(i)
= λt−tcW (c, tc) < λLW (c, tc)

(ii)
<

λL

1 − λ
=

θ(1 − λ)
1 − λ

= θ (6)

Where (i) holds because of (5) and (ii) is true because, according to Lemma 3,
the sum of all weights at time t is less than 1/(1−λ) (for n0 = 1); therefore, the
weight of each cell is also less than this upper bound. 6 concludes that any cell
c that has not received any points within the last L time steps will be θ-sparse
and erased at time t. Therefore, the number of non-empty cells is at most L. �
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Our proposed memory-efficient solution is quite similar to Algorithm 1 with
the main difference that θ-sparse cells (and consequently empty ExtCells) will
be removed after line 4. As a consequence of this change, we need to address two
fundamental questions:

Q1: For any cell c, how much does the new weight differ from the actual weight
of c if it was never cleared before? Lemma 5 answers this question.

Lemma 5. Suppose the last time a cell c was cleared because of being θ-sparse
was td. If at current time t the weight of c is Ŵ (c, t), then we have:

W (c, t) ≤ Ŵ (c, t) + (
θ

1 − λL
)λt−td (7)

where L = logλ θ(1 − λ) and W (c, t) is the actual weight of c if it was never
deleted before.

Proof. The proof follows a similar approach as the proof of Theorem 4.3 in [23].
Suppose cell c has been previously deleted at time steps t1, t2, ..., td. Therefore, we
knew that: Ŵ (c, ti) ≤ θ for i = 1, 2, ..., d. Thus, if we choose θ to be a constant
(not a function of tis) and if we never cleared all these previous weights, the
actual weight would be:

W (c, t) − Ŵ (c, t) =
d∑

i=1

Ŵ (c, ti)λt−ti ≤
d∑

i=1

θ × λt−ti = θλt−td ×
d∑

i=1

θλtd−ti

On the other hand, according to Lemma 4, for each i = 2, ...., d, we have
ti − ti−1 ≥ L + 1, where L = logλ θ(1 − λ). Therefore W (c, t) − Ŵ (c, t) ≤
θλt−td

(
1

1−λL

)
. �

Q2: How does the error in the weights of cells (as the result of clearing sparse
cells) affect our approximate solution ? Lemma 6 addresses this question.

Lemma 6. At any time t, the proposed memory-efficient approximate solution
with the choice of θ ≤ 1

(1−λ)

(
1 − λ

α

)
, returns at least 1

4(1+α) -approximate solution
to a DDW-MaxRS query, where α > λ.

Proof. Let c denote the cell with the maximum weight at time t. According to
Lemma 5, we have W (c, t) ≤ Ŵ (c, t) + θλ

1−λL , where L = logλ θ(1 − λ). Now,
similar to the proof of Lemma 2, we can argue that the weight covered by R (the
true answer of DDW-MaxRS at time t) is bounded as follows:

W (R, t) ≤ 4 × W (c, t) ≤ 4 ×
(

Ŵ (c, t) +
θ

1 − λL

)
≤ 4 ×

(
1 +

λ

1 − λL

)
Ŵ (c, t)

For the choice of θ ≤ 1
(1−λ)

(
1 − λ

α

)
, we have λL = θ(1−λ) ≤ (1− λ

α ). Therefore,
(1 + λ

1−λL ) ≤ (1 + α). �

Upon arrival of a new point, the time complexity of the update is O(j2 logL),
where L = logλ θ(1 − λ).
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4 Generalization

So far, we have used certain assumptions on the settings of the DDW problem
– i.e., having an equal initial weight for all objects, the same decaying factor,
and a specific exponential decaying function. This section discusses how these
assumptions can be relaxed and the consequences, i.e., what needs to be changed
in the proposed solutions to make them suitable for more generalized variant(s).

Generalization to Different Initial Weights: The presented results can be
generalized to cases where initial weights are of an interval value [wmin, wmax]
(i.e., wmin ≤ wi ≤ wmax). Lemma 1 and 2 are directly applicable to such WD
objects . Consequently, the approximate solution presented in Algorithm 1 can
be applied and used for this generalized version. In addition, if we define θ′ =
wmax × θ, Lemmas 4, 5, and 6 will hold for this generalized version (i.e., by
replacing θ with θ′). Thus, the proposed memory-efficient approximate solution
can also be used to answer this particular generalized variant.

Generalization to Different Decaying Factors: If the initial weights for
all WD objects are equal (i.e., wi = 1), but their decaying factor is different
(λmin ≤ λi ≤ λmax), Lemma 1 does not hold anymore, and the relative order of
cells changes over time. One possible modification to Algorithm 1 is to check all
the non-empty cells upon arrival of a new object and find the one with maximum
weight. This would result in O(mt) time complexity at each time step t, where
mt is the number of the non-empty extended cells at time t (mt ≤ j2 × nt).
A complimentary observation is that one could (“naïvely”) consider an upper
bound, say, λmax in the statements of the corresponding Lemmas. This would
retain the properties in terms of the respective inequalities (possibly affecting
the discrepancy between the values on the left-hand sides and right-hand sides).
We note that while we provide experimental observations about the impact of λ
in Sect. 5, a more detailed investigation is left for our future work.

Generalization to a Broader Class of Decaying Functions: Let us consider
a class of functions F such that ∀f ∈ F : f(t) ≤ ε(t)× f(t− 1), where ∀t : ε(t) ≤
ε(t − 1) < 1. If the decaying function of the weight of each WD object is from
F , then Lemma 1 and 2 hold and apply directly to this more generalized case.
As a result, Algorithm 1 can be used to provide an approximation solution to
a DDW-MaxRS query. In addition, similar results can be proven by replacing λ
with ε(1) in Lemmas 3–6.

5 Experimental Study

Since there are no existing solutions to the DDW-MaxRS problem, we imple-
mented an adapted (i.e., no external memory) version of the grid-based solution
from [6] as the baseline. We compared it against the Memory Efficient Approx-
imate Solution (MEAS for short)1 from Sect. 3.2. The comparison was done in
1 Implementation and the datasets used are publicly available at

https://github.com/Ashraf-T/DDW-MaxRS.

https://github.com/Ashraf-T/DDW-MaxRS
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two aspects: (1) Efficiency (in terms of speed up compared to the baseline) and
(2) Accuracy of the results in terms of (1 − ε).

Dataset: We use both synthetic and real-world datasets in our experiments. In
synthetic datasets, objects are created using uniform and Gaussian distributions
in a 2D space with a (relative) reference coordinate system . The real dataset we
used is based on the check-ins in NYC collected for about ten months (from 12
April 2012 to 16 February 2013) [24]. We extracted the unique GPS coordinates
(Latitude and Longitude) and mapped them to a Cartesian coordinate system.
This transformation is done using pyproj, cartographic projections, and coor-
dinate transformations library in Python2 We converted the GPS coordinates
from EPSG:4326 to a regional system EPSG:2263.

Table 1. Parameters

Parameter Name and Symbol Possible Values Default value

Object distribution Uniform, Gaussian, Real Uniform

No. of initial objects N0 500, 1000, 5000, 10000, 50000 5000

Size of R 1.0× 1.0, 1.5× 1.5, 2.0× 2.0, 2.5× 2.5 1.0× 1.0

Decay Factor (λ) 0.9, 0.8, 0.7, 0.6 0.9

Ratio of R to cells (j) 1, 2, 4, 8 2

Sparsity threshold (θ) 0.01, 0.05, 0.1, 0.2, 0.5 0.1

Parameters: The list of the studied parameters and their values is provided
in Table 1. We note that the overall area of interest (i.e., the possible range for
the locations of the objects) was bound by a rectangle of size (100×100). Unless
otherwise indicated, when investigating the impact of a specific parameter, we
keep the rest of them fixed to their respective default values, which are indicated
in the rightmost column of Table 1. We scaled the x-y coordinates for the real
dataset to be mapped to a rectangle of size (100 × 100). Also, for the experiments
studying the impact of the number of initial objects, if available, we sampled as
many data points uniformly at random from the dataset.

Environment: All the algorithms were implemented in Python 3.7. The exper-
iments were executed on a machine with an Intel 2.2GHz core i7 processor and
8GB of RAM. We measured the median of the processing time and accuracy for
the reported results over five runs.

Results: We now present the results in the two categories mentioned above.

(1)Efficiency: The results are presented in Fig. 4, which shows the values
corresponding to the ratio of the processing time of Aε DDW-MaxRS relative to
the processing time taken by the exact solution. The colored bars indicate the
different datasets, and for each of them, the reported processing time is obtained

2 cf. https://github.com/pyproj4/pyproj.

https://github.com/pyproj4/pyproj
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by averaging the processing time over 100-time steps through five iterations. We
considered the impact of different parameters:
– N0 - the initial number of WD objects present in the system: MEAS signifi-
cantly reduces the processing time (about 45%) when there are a large number
of initial objects. The processing time for the exact solution does not change
much over time because its time complexity is a function of nt (number of
objects present at time t), which increases by (at most) one at each time step.
Although the impact of the initial number in our settings is quite high, even in
such cases, our proposed solution yields efficiency benefits. The processing time
for the approximate solution also does not vary much over time, as its worst-case
complexity is in order of O(logN), where N is the number of extended cells in
MEAS and does not change over time. Note that there is no bar corresponding
to the real dataset with N0 = 50000 since the number of unique x-y coordinates
in the used dataset was not enough to sample these many records.
– R: As one would expect, the larger |R|, the faster the execution of the approx-
imate algorithm. For the default values of the other parameters, in Fig. 4-b, we
show the impact of the size of R on the speed up relative to executing the exact
algorithm. We observe that similar trends hold in both approximate solutions,
except for the results of the memory-efficient solution for the real dataset.

Fig. 4. Efficiency impact of (a) N0, (b) |R|, (c) λ, and (d) θ

– λ: Larger decaying factor (λ) values diminish the weights of points by a greater
factor after each time step. Therefore, MEAS will remove more cells as their total
weights fall below the threshold and achieve a faster processing time than the
exact solution and the first approximate solution in which the time complexity
depends on the number of objects. Figure 4-c illustrates these results.
– θ: This parameter determines the cut-off line for the weight of sparse cells.
MEAS clears more cells for the larger values of θ and achieves a higher speed up
in its processing time. Figure 4-d shows the results for various choices of θ.
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(2)Accuracy: This part presents the impact of the following four parameters:
N0, j, |R| and θ. The results are shown in Fig. 5 only for the real-world dataset
(the results for uniform and Gaussian distributions were similar).
– N0: The effect of initial objects on the solution of DDW-MaxRS lasts longer
for larger values of N0. This means it may take a while before the solution of
DDW-MaxRS changes due to the arrival of new objects. Figure 5-a shows the
results of this experiment for MEAS. Again, no result is shown when N0 = 50K
since there are not enough unique x-y coordinates in the real dataset to sample
50K of them.
– j - the ratio of the size of R to the size of the cells: Intuitively, a higher accuracy
should be achieved for larger choices of j ; because the intersection of the optimal
solution and the corner cells of an extended dual rectangle (illustrated by the
hatch pattern in Fig. 3c) decrease by having smaller cells and consequently, the
chance of objects being located in those areas also decreases. Figure 5-b confirms
this expectation. Also worth mentioning that time complexity of the approximate
solution is dominated by log(N), where N is the number of extended cells,
and the increase in the number of cells as the result of increasing j does not
significantly affect the processing time.

Fig. 5. Accuracy impact of (a) N0, (b) j, (c) |R|, and (d) θ on MEAS for real-world
dataset over time.

–R: One would expect that the larger size of the query rectangle decreases the
accuracy of the approximate solution because there is a higher chance of having
scenarios similar to the one shown in Fig. 3c. The reported results in Fig. 5-c
support this expectation.

– θ: Choosing larger values of θ expectedly hurts the accuracy of the returned
solution by MEAS. Setting larger values to θ will prune and erode more cells
as sparse cells. Figure 5-d suggests that the memory-efficient solution performs
pretty robust when θ is less than 0.5.

6 Related Work

The MaxRS problem has a long history, during which different variants have
been addressed. It was first tackled by researchers in the computational geometry
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community, where a technique that finds connected components and a maximum
clique of an intersection graph of rectangles in the plane was proposed in [10].
A solution based on the plane sweep strategy was presented in [15], where the
input points/objects were “dualized” into rectangles, centered at the locations of
the input points and with dimensions equivalent to the query rectangle R. To
obtain the regions with the highest number of intersecting (dual) rectangles, an
interval tree was used, updated by a sweep line technique, with events at the
input points (i.e., centroids of the respective dualized rectangles). The algorithm
for possible locations for placing the (center of the) query rectangle yielding the
maximal number of points in its interior had O(n log n) time complexity.

The next “era” of the MaxRS research was motivated by the observations that
the scalability of the existing solutions may not be good for LBS application, and
a scalable solution was proposed in [5]. An extension, considering imprecision vs.
efficiency trade-off and providing an approximate solution, was presented in [22].
Dynamic settings, in which objects can be inserted and/or deleted, were consid-
ered in [2], based on an aggregate graph and yielding an efficient approximation.
The work considered a sliding window-based model, in which the appearance of
new objects implies the removal of old objects. Recently, the dynamic variant
with a constraint on the minimal number of elements from different classes that
must be inside the query rectangle was addressed in [9].

Other variants of the MaxRS problem have also been considered, such as
constraining the locations of spatial points to the underlying road network [16,
26]; considering moving objects, and detecting the “trajectory” of the motion
of the centroid of MaxRS; MaxRS [4] where rectangles do not need to be axes
parallel.

A couple of recent works have addressed uncertain variants. In [1], an index
structure was proposed for efficiently answering the MaxRS query in the d
dimension, in which each point was associated with an existential probability.
PMaxRS (cf. [12]) considered inherent location uncertainty of spatial objects,
coupling candidates generation (pruning), and sampling-based approximation
(refinement) to efficiently solve the problem.

While many of the above results have motivated our present work, there
are some fundamental distinguishing aspects. Namely, we jointly consider the
probabilistic nature of the dynamics of the arrival of new points along with the
impact of the decay factor (i.e., the value of the weight) over time.

7 Conclusions and Future Work

We introduced a novel variant of the MaxRS query – the DDW-MaxRS, which,
given a spatial region of interest, combines the consideration of the arrival of
new objects and the decay of their weight over time. We took the first step
toward providing an approximate algorithm Aε DDW-MaxRS(On(t), R) and for-
mally analyzed error bounds properties compared with the exact solution. Our
experiments demonstrated the impact of the various parameters and the benefits
of the Aε DDW-MaxRS(On(t), R).
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Our future work will focus on three main topics. Firstly, we will investigate
data structures that can improve scalability. Secondly, will address the comple-
mentary settings of data streams – i.e., the arrival rate of the objects is fast,
and the available memory is limited – and devise approximate algorithms based
on effective sampling strategies. In parallel, we will explore the extension of our
results to higher dimensions and the potential joint impact of different param-
eters (e.g., combining N0 and |R|, with different distributions for N0 and the
newly arriving objects).
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