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ARTICLE INFO ABSTRACT

Article history: With advancements in technology, people are taking advantage of mobile devices to access e-mails,
search the web, and video chat. Therefore, extracting evidence from mobile phones is an important
component of the investigation process. As Android app developers could leverage existing native li-
braries to implement a part of the program, evidentiary data are generated and stored by these native
libraries. However, current state-of-art Android static analysis tools, such as FlowDroid (Arzt et al., 2014),
Evihunter (Cheng et al., 2018), DroidSafe (Gordon et al., 2015) and CHEX (Lu et al., 2012) adopt the
conservative approach for data-flow analysis on native method invocation. None of those tools have the
capability to capture the data-flow within native libraries.

In this work, we propose a new approach to conduct native data-flow analysis for security vetting of
Android native libraries and build an analysis framework, called LibDroid to compute data-flow and
summarize taint propagation for Android native libraries. The common question app users and de-
velopers often face is whether certain native libraries contain hidden functions or utilize user private
information. LibDroid aims to answer this question. Therefore, we build a precise and efficient data-flow
analysis with the support of SummarizeNativeMethod algorithm, and pre-compute an Android Native
Libraries Database (ANLD) for 13,138 native libraries collected from 2,627 real-world Android applica-
tions. The ANLD includes the taint propagation summary of each native method and potential eviden-
tiary data generated or stored within the native library. We evaluate LibDroid on 52 open-source native
libraries and 2,627 real-world apps. Our results show that LibDroid can precisely summarize the infor-
mation flow within the native libraries.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

As of 2021, millions of Android apps have been published and
updated in open markets such as Google Play Store (Google Play
Store), Mi Store (Mi App Market) and ApkPure (Apkpure). Along
with the increasing popularity of apps, the security and reliability
have become a raising concern of the apps’ usage.

In 2019, Jingdong Financial App (JD Finance Android App), with
over 300 million customers, was reported and officially confirmed
that cached the screenshots of other apps without users' awareness
in the background by security analysts. At the beginning of 2020,
another security issue that app developers leveraged vulnerable
APIs and resulted in kids’ privacy leakage can be observed in (30
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Popular mHealth Apps Vulnerable to API Attacks). To mitigate the
vulnerability of the raising privacy concern, hundreds of research
studies are published yearly to improve the techniques of detecting
privacy leakages in Android apps.

Android app taint analysis, one of countermeasures proposed to
analyze and report the existence of data flows causing privacy
leakages, is implemented by many existing static program analysis
studies such as FlowDroid (Arzt et al., 2014), CHEX (Lu et al., 2012),
(Calzavara et al., 2017; Wei et al., 2014; DroidBench benchmark;
Gordon et al., 2015) etc. These prior studies proposed and imple-
mented taint propagation rules over the program code extracted
from the Android application package (APK) files. The taint analysis
approach starts from tainting a variable by given user-defined
source APIs that return the private data. After applying the data-
flow propagation in the analyzed app, if the tainted variable can
reach the given sink APIs that store or send data out, the privacy
leakage is found.

However, one of the challenges shared by all existing Android
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taint analysis studies is the data-flow propagation inside the li-
braries (system and third-party). Due to the complexity and size of
their code-base, analyzing data-flow propagation of system and
third-party libraries generally takes more time than analyzing the
app's code itself. Alternatively, existing studies (Arzt et al., 2014; Lu
et al., 2012; Calzavara et al., 2017; Wei et al., 2014; DroidBench
benchmark; Gordon et al., 2015) apply their specific data-flow
summaries to skip analyzing the libraries' code. Since these spe-
cific data-flow summaries are manually crafted and only a small
number of APIs included, over- or under-approximation is naively
introduced when an API out of the summary is analyzed. StubDroid
(Arzt and Bodden, 2016) was therefore proposed to automatically
generate taint data-flow summaries for Java libraries programs
through FlowDroid (Arzt et al., 2014).

Nevertheless, none of existing works can summarize native li-
braries written by C/C++, despite its heavy usage in both system
libraries (Android native development kit, a.k.a NDK) and third-
party libraries. Without a precise and large-scale data-flow sum-
maries for these native libraries, the performance and efficiency of
these prior Android static analysis approaches are not reliable
when delivering the results of app privacy leakage. Thus, we pro-
pose LibDroid to automatically generate data-flow summary of
given Android native libraries.

Goal: We proposed an online-offline approach to solve existing
Android program analysis tools' challenges, i.e. precisely and
completely summarize data-flow information inside the Android
native libraries. In the offline phase, given a native library program,
LibDroid parses it and updates the corresponding data-flow sum-
mary to our Android native libraries database (ANLD). When
analyzing an Android app having various native APIs usage, the
existing analysis tool can query the database and apply our data-
flow summary. To bridge the gap between existing Android anal-
ysis tools and our database of native APIs’ data-flow summaries, we
implement a helper plugin program that can be coupled with the
existing tools.

In implementing LibDroid, we leverage McSema (Framework for
lifting x86) to transform an Android Native Library.so file to LLVM IR
(the most commonly used intermediate representation) (Clang
Static Analyzer) and build control flow graph and entry points.
Then, LibDroid performs forward analysis of the control flow graph
and construct the condition dependencies by leveraging the sym-
bolic execution techniques. We evaluate LibDroid using 52 open
source library and 13,138 native library collected from 2,627 real-
world application downloaded from Google Play Store (Google
Play Store). Our results show that LibDroid can precisely and
accurately retrieve the information flow of native library. Moreover,
we performed a best-efforts manual verification of the results for
52 open source library. Our results show that LibDroid achieves a
precision of 97% at constructing the information flow and reporting
potential sensitive information leakage. Finally, we discuss in detail
of several cases to showcase how LibDroid can offer an in-depth
look with valuable information for researcher and app developer
in their quest to pinpoint the native library to integrate with.

In summary, our contributions are as follows:

[e]We develop LibDroid to automatically identify the native
source and sink and construct information flow within native
library.

[¢]We evaluate LibDroid using both 52 open-source libraries and
other popular libraries. Our results show that LibDroid achieves
high precision in both open-source native libraries and native
libraries collected from real-world applications.

[e]We create a Android Native Library Database (ANLD) which
will provide comprehensive insights to app developers.
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The rest of this paper is organized as follows. Section II in-
troduces the background information with a motivating example.
Section III describes the details of design and implementation. We
discuss the evaluation results of LibDroid in Section IV, related
words in Section V, limitations in Section VI, and conclude the
paper in Section VIII.

2. Motivating example

According to previous studies (Qian et al., 2014; Wei et al., 2018),
16.7% of apps utilize native libraries based on a large scale of app
collection in 2014 and the percentage increased to 21.2% in 2018. To
improve the performance of the application, increasing number of
Android developers take advantage of Native Development Kit
(NDK) to build their own native library or to leverage native li-
braries implemented by others.

On the other hand, Android malware developers also make use
of NDK to develop part of the app's functionality in order to bypass
the security vetting. For example, the clicker malware family - an
Android malware creates ad fraud by mimicking user clicks on
advertisements. It relies on loading a native library (named ’kagu-
lib’) to inject into legitimate Ad-SDKs.

We also provide a motivating example to discuss the challenges
to retrieve data-flow for Android native libraries. Fig. 1 illustrates a
real world app (named com.hdtotokmessenger.v doalexchat). It
consists of code written in 1) Java code: An activity component
which load a native library "face_swap_android” and imports a
native method mainActivity_sendData(); 2) Native library: Export
the native function which leverage NDK libraries to read Java
objects.

Take this application as an example, a sequence of events will be
triggered as shown in Fig. 1:

1. MainActivity invokes native method mainActivity_sendData()
where it pass by visited URL via argument.

2. Native method mainActivity_sendData() calls a native API to
obtain timestamp information.

3. String variable str receives the visited URL and concatenate with
timestamp.

4. Native method mainActivity_sendData() receives the sensitive
data which contain visited URL and timestamp and writes to file.

3. Design and implementation
3.1. Android Native Library Database (ANLD)

Fig. 2 demonstrates the use scenario of LibDroid and Android
Native Library Database (ANLD). ANLD currently contains the in-
formation flow analysis result and evidentiary data of over 2,000
popular native libraries. Specifically, each row of ANLD represents
the analysis result of a native method which presents the taint
propagation logic between the return value and input parameters
and the types of evidentiary data that method generated. ANLD has
three columns: the first column includes the native library name;
the second column includes method summary; and the third col-
umn indicates the types of potential evidence generated of the
certain native method. Existing studies (Arzt et al., 2014; Lu et al,,
2012; Calzavara et al., 2017; Wei et al., 2014; DroidBench bench-
mark; Gordon et al., 2015) make an over-approximation for each
argument and return value in the native method calls. Specifically,
they take the union of taint tags of all input variables and assign the
union to the output variable. However, this approach overlooks the
native sources and sinks, such as AKeyEvent_getEventTime(const
AlnputEvent key_event) which get the time when the event
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package com.hdtotokmessenger.vdoalexachat
2 //code snippet

N

4 public class MainActivity extend Activity{
static{ 5
System.loadLibrary("Agora_Native_SDK");

//load library face_swap_android.so

¥

10 protected void onSaveInstanceState(Bundle state){ 10
1 WebView w = findViewById(R.id.webView);

String url = w.getUrl(); 12
13 //source method 3
14 if(url != null & url.length() > 0){
5 w.saveState(state); 5

Agora_Native_SDK.so
//code snippet

., INIEXPORT void JINICALL
mainActivity_sendData(JINIEnv *env, jobject thisOBJ, jstring url){

int fd = AAssetDir_getDir();
//Native API which return file descriptor.
int timestamp = ASurfaceTransactionStats_getLatchTime(*env, thisOBJ);
//Native API which get the timestamp when the current activity was latched.
string str = url + to_string(timestamp);
if(fd < @)
//handle error
ssize_t written = write(fd, str, 100);
if(written >= @)
//handle successful write

16 state.putBoolean(WEBVIEW_STATE_PRESENT, true); 6 else
7 mainActivity_sendData(url); 7 //handle error
} return;
} 9 3
20 } //visited URL is leaked and stored in file
Fig. 1. Code snippet of real world app ToTok Messenger.
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Fig. 2. The workflow of generating data flow analysis result.

occurred in the java.lang.System.nanoTime() time base. On the other
hand, it has an over-tainting problem since it fails to disclose the
true relationship between input arguments and output variable.

Given the package name and version number of an android
native library, the native library matcher matches against all the
records in the ANLD. It contains the taint propagation logic and
native source and sink information for app developers, researchers
to utilize the summary for an accurate and completed analysis
result. If an app has a native library that is not included in ANLD, we
will analyze the native library using LibDroid and add the sum-
maries into ANLD. Moreover, we are going to collect more android
native SDKs and update the ANLD.

Next, we discuss how LibDroid builds the ANLD.

3.2. Building the ANLD via LibDroid

Our goal is to provide an efficient native library summary to
avoid potential evidence being mishandled by app developers and
existing analysis tool-kits. Thus, we leverage static analysis to build
the ANLD. In particular, we develop a static data-flow analysis
method to build the ANLD for a large amount of Android native
libraries, including widely used open-source native libraries as well
as the native libraries we collected from real-world popular apps.
Specifically, in our static data-flow analysis, we uncover the taint
propagation rules between input parameters and return value,
define a customized taint structure for local and global variables
and propagate the taints through forward analysis. We leverage
existing source and sink methods found by previous works (SuSi;

which has been used by several popular broadcast apps, such as
com.dongby.android. mmshow.inter with over 10,000,000 down-
loads,com.xgblliveoktv with more than 5,000,000 downloads and
com.qixingzhibo.living with 3,000,000 downloads. The Agora Native
SDK supports both voice communication and live audio broadcast,
it enables one-to-many and many-to-many audio or video live
streaming. Different from the traditional content delivery network
live broadcast, which only allows one-way communication from
the hosts to the audience, the Agora SDK empowers the audience to
interact with the hosts through hosting-in, like a viewer jumping
onto the stage in the middle of a play to perform.Thus, we will use
Agora Native SDK as an example to demonstrate the process of
generating the data flow summary.

3.2.2. Pre-processing

Given an app, we first unpack the .apk and modify the properties
in build.gradle file to pre-query the dynamic loading libraries. After
obtaining the native library, we use McSema (Framework for lifting
x86) to transform the.so file into LLVM IR (Clang Static Analyzer),
which can be converted and linked into machine-dependent as-
sembly language code. Second, we generate the method list (MList)
and leverage the LLVM analyzer (Clang Static Analyzer) to build the
control flow graph for each method and construct entry points. To
be noted, LLVM analyzer itself is insufficient to build ANLD, it is
unable to identify data-flow from sources to sinks as well as
identify the file paths where the evidence is written to.

Take the Agora Native SDK as the example, after the code lifting
and pre-processing through McSema and LLVM, we obtain its MList
of 153 native methods and their corresponding control flow graphs
which are used as the input for generating the data-flow analysis
summary.

3.2.3. Native sources & sinks

There are three kinds of source and sink APIs in the native code:
1) Linux system calls; 2) JNI functions that invoke Java methods; 3)
Native APIs which may generate or store sensitive information. We
first combined the publicly available sources and sinks in existing
tools including FlowDroid (Arzt et al., 2014), SuSi (SuSi), and
DroidSafe (Gordon et al., 2015). We manually analyze all the native
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APIs available for the Android system and collect 47 native source
APIs and 17 native sink APIs where we define a sink as a system API
that writes data to file system or sends out data through the socket,
while a source is where sensitive data are created.

In this work, we focus on the types of evidence including visited
URL, time, sensor and textinput. To be noted, LibDroid can be
extended to other kinds of evidence simply through update the
source and sinks list and extend the TaintSet. Next, we discuss each
type of evidentiary data in detail.

1) Visited URL: We add 11 new native source methods for visited
URL and obtained 13 Java API which return URLs from existing
tools (Arzt et al., 2014; SuSi; Gordon et al., 2015). As user
browsing web pages via mobile device, the visited URL can be
saved by browser app or other app that using the WebView. We
find that visited URL is useful evidence as searching and
browsing histories have begun to appear in more criminal
prosecutions (How your search history can send you to jail).

2) Timestamp: We include 17 new native source methods for
timestamp and 20 Java source method from previous work. For
example, we find that ASurfaceTransactionStats_getLatchTime()
return the timestamp of current activity.

3) Sensor: We include 14 native source methods for sensors.
Through our experiment, we discover several application take
photos or record audio secretly, they create fake SurfaceView to
hide the camera capturing and start the recording in back-
ground service. These are the reason that we include sensor as
one category of source methods.

4) Text input: We include 5 new native source methods and 3 Java
APIs from existing tools (Arzt et al., 2014; SuSi; Gordon et al.,
2015) for user's text input. For example, the account email
address and password user entered are text inputs; a search
keyword is a text input.

Therefore, we extend the source and sink methods for native
APIs and we will make the sources and sinks publicly available.

3.2.4. Tag for a variable

We define a Taint structure for each variable, e.g., basic type,
enumerated types and derived type. Then, from the entry point in
the control flow graph,we propagate variables'taint tags by
applying forward data-flow analysis. We denote by taint(v) the tag
for a variable v. The taint tag can be used to identify the types of
evidence. At meanwhile, we track where the evidence is written to
by monitoring the invocation of the native file paths. Thus, we
propose a taint structure that includes the following information:

[e] Evidence type (TaintSet): Taint tag number of the types of
sensitive information that a variable is carried.

[e] File path (Path): File path where the variable which contain
sensitive information are written to. For instance, when a native
method writes data to file system via native sink API, the Path
associated with the file descriptor is the file where data are
written to.

3.2.5. Propagation rules

Propagation rules define how tags are updated when analyzing
each statements in native libraries. Our rules are applied to the
ARM/Thumb instructions of a.so native library. We classify in-
structions into two groups, i.e., explicit flow and indirect flow. We
discuss the propagation rules for them separately.

Explicit flow: Table 1 shows the propagation rules for the
possible explicit flow in the ARM/Thumb instructions. For example,
when a statement assigns a constant to a variable, we set the
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(TaintSet) of the variable's tag to be empty; if a statement assigns
one variable's value to another variable, i.e., v, = v which is movRy,
R in instruction format, we assign v, ’s tag to v, ’s taint set where
the destination register (Rq) was assigned with union set of all
taints from source registers (R;). Next, we discuss about the
statements with more complex assignment relationships.

[e]Load and Store instructions: TaintSet(mAddr) is the taint of
memory at address mAddr and cup is used to combine the taint
tags from registers.

[e]Binary operator: We propagate the union of the TaintSet of
the two operands for all binary operators. We handle unary,
binary and move operations.

[e]Array and String access: For array and string variable v,, the
TaintSet(v,) is carrying the union set of all tags of its elements.

Indirect flow: Indirect flow is difficult to handle and we classify
indirect flow into two types.

vo = method(vy,va, ...) (1)

[e] Method-invoking statement: take the equation (1) as an
example, we analyze data flow in the called method() and assign
the taint tags of the return value to TaintSet of the variable vg.
When analyzing method calls, we discover that sometimes we
could get into a loop of method calls. To avoid re-analyzing the
same method twice, we create a stack to keep track of method
calls and skip the same method call if the method is already on
the stack. In this way, we can ensure to analyze each method in a
loop only once.

[e] Conditional branches: In order to detect all conditional
branches and propagate taint accordingly, we leverage the
control flow graph (Clang Static Analyzer) to determine
branches in the conditional structure. We design a Summary-
based Data-flow Tracer (SDT) to detect flow with condition-
dependencies.

3.3. Summary-based data-flow tracer (SDT)

Given the control flow graph of a native method, we apply the
SummarizeNativeMethod to construct the data-flow summary. The
benefit of this method is that we keep track of all the methods
which have been analyzed, while still preserving a flow and
context-sensitive data-flow analysis result. In the meantime, we
update the native source and sink list as if we discover any method
invoking existing source or sink APIs.

SDT takes the control flow graph of the native method as input,
then we calculate the in-degree of each vertex in the control flow
graph to verify that a basic block(B;) does not have any successor
that has not been analyzed, in this way, each block needs to be
analyzed only once. If there is a cycle in the control flow graph, we
will break the cycle arbitrarily to calculate the in-degree of the basic
block. For each basic block B; in BList, we apply a taint propagation
as listed in Table 1 to update the taint set of the corresponding
register and generate the summary 6B;. The called method's sum-
mary will propagate to its caller methods until the return is
reached.

As mentioned before, we discovered 153 native methods from
the Agora Native SDK through the pre-processing procedure. We
take the mainActivity_sendData method as an example to demon-
strate the process of propagating the taint and generating the data-
flow summary. Taking the control flow graph of main-
Activity_sendData method as input, we generate the BList of
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Table 1
Propagation Rule for ARM/Thumb instructions.
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Instruction Format Propagation Rule

TaintSet|
TaintSet

load Ry, Ry, C
push regL, R,, C

Rq) < TaintSet(R,) U TaintSet(mAddr)
mAddr) « TaintSet(R;, R;)

R4.Path < Ry.Path
Rg.Path < Ri.Path + --- + Rj.PUth

TaintSet Path

mov Ry, C TaintSet(Ry) — @ Ry.Path —@
mov Ry, Rin TaintSet(Ryq) < TaintSet(Ry,) Rg.Path < Ry,.Path
unary-op Ry, R TaintSet(Rq) < TaintSet(Ry,) Rg.Path < Ry,.Path
binary-op Ry, R, Ry TaintSet(Ry) « TaintSet(Ry,) u TaintSet(R,) Rg.Path — Ry,.Path + Ry.Path
binary-op R4, Ri TaintSet(Rq) < TaintSet(R,,) u TaintSet(Ry,) Rgq.Path «— Ry,.Path + Rp.Path
binary-op Ry, R, C TaintSet(Ryq) < TaintSet(Ry) Rg.Path < Ry.Path
store Ry, Ry, C TaintSet(mAddr) < TaintSet(Ry) Rg.Path < R,.Path

(

(

(

pop regL, Ry, C TaintSet

mAddr) < TaintSet(R;, R;)

Rq.Path — Ri.Path + --- + R;.Path

mainActivity_sendData method by calculating the in-degree of each
block within the control flow graph.

3.3.1. Summary of basic block (6(B))

In order to generate the summary of each basic block, we mainly
focus on three types of instructions: Data Movement Instructions,
Arithmetic and Logic Instructions and Control Flow Instructions.

[e]Data Movement Instructions: In this category, we only track
two instruction mov and lea where mov instruction copies the
data item referred to by its first operand (i.e. register contents,
memory contents, or a constant value) into the location referred
to by its second operand and lea instruction places the address
specified by its first operand into the register specified by its
second operand which is used for obtaining a pointer into a
memory region or to perform simple arithmetic operations. As
the block By in our example, the first argument argy was initially
push into register r4 and cmp instruction compare the value
with register r3 where we need to propagate the TaintSet of argy
to register r4.

[e]Arithmetic and Logic Instructions: We will propagate the
TaintSet of its first operand to second operand for all the in-
structions in this category, including add, sub, inc, etc.
[e]Control Flow Instructions: We focus on four instructions in
this category. 1) mov transfers program control flow to the in-
struction at the memory location based on the operand. 2)
jcondition is a conditional jump that is based on the status of one
or a set of condition codes. Conditions of jumpare stored in a
special register which is called machine status word. The con-
tents of that special register include the result information of
the last performed arithmetic operation. cmp compares the
values of the two specified operands, where the condition codes
were stored in the machine status word. This instruction is
equivalent to the sub instruction, the difference is that the result
of the subtraction is discarded while the result is stored in the
first operand for cmp. cal, ret correspond to call and return. The
call instruction first pushes the current code location into the
stack, and then performs an unconditional jump to the code
location based on the label operand.

In order to identify both the types of evidence and the file paths,
we propose a data structure summary(B;) which consists of TaintSet
and Path to store corresponding information.

Summary(B_i): We design three custom structures to assist
data-flow analysis: (1) TaintSet: It illustrates the tainted informa-
tion, such as, taint type (source or sink) and taint tag. Native code
can utilize JNI functions to create and manipulate Java objects,
invoke Java methods, catch and throw exceptions, which means
native code has the capability to pass sensitive data back to Java

method and objects. Therefore, SDT adds tags to TaintSet to capture
data related to Java operations in native code. (2) Path: File path
associated with the target register. For instance, when an app
writes data to a file system via a file descriptor, the Path associated
with the file descriptor is the file where data held within the reg-
ister are written to. (3)Abstract syntax tree (AST):It is challenging to
analyze data-flow sensitive to all conditional branches. When
performing an arithmetic comparison with variables, we model the
condition to a tree of operations - an abstract syntax tree (AST).
ASTs can later on be translated into constraints for an SMT solver
(Moura and Bj @ rner, 2008). The control flow graph consists of
nodes of basic blocks and directed edges represent the jumps, we
detect the flow of condition dependencies from blocks in the
control flow graph using the ASTs.

Instead of tracking a variable's concrete numerical value, when
assigning a variable to another, we treat them as symbols. Later on,
when performing arithmetic operations or assignment with that
variable, we will propagate the symbolic variable. For example, if
we have v; = argp + 1 and later we have a if condition of if v; > 0. If
we assign argp as symbolic variable, then v will transform as argg +
1 and comparison condition will be if argp + 1 > 0. In this way, we
can construct condition dependencies ASTs.

We leverage the SMT solver to compute the results of two ASTs.
To be noted, it can only apply to same type of ASTs. When per-
forming merge between two different-typed ASTs, for example, int
i = 0 which was cast to a float number by float f = float (i + 1). As we
discussed above, variable f will be transformed as i + 1, however,
these two ASTs cannot be solved by SMT solver due to their
different types. For the native method consists of more than one
ASTs, we leverage the SMT solver to construct the final comparison
condition related to method arguments.

[e] When the SDT starts, it will first add summary structure to
each argument including argument index and taint information.
As an example, the summary of basic block 6(Bg) is 14 < argy|
;.

[e] As data-flow tracer perform the forward analysis, those
summary(B;) will properly update and propagate TaintSet. Take
the example of Fig. 1, native code concatenates the string from
input parameter url with local variable timestamp and assign it
to str. We will update the TaintSet with the combination of taint
tags of input parameter url and local variable timestamp.

[e] If SDT encounters a condition jump, it will compute an AST
and update it with summary structure. For example, before
writing the visited URL together with timestamp to a file, native
method mainActivity_sendData first checks whether the file
descriptor is valid.

[e] When data-flow tracer encounters any method/function
invocation, it will first check whether it is a source or sink API. If
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so data-flow tracer will add new tag to corresponding TaintSet.
For method invocation rather than source and sink API, we will
check with SDT to obtain its summary ¢ and apply it on the
summary structure of the return value.

[e] When data-flow analysis of all the blocks is over, we extract
the TaintSet together with Path related to the return node to
build the summary of native method which illustrate the rela-
tionship between return value and arguments, invoked source
and sink APIs within the method.

We have a control flow graph of method mainActivity_sendData,
and we calculate the in-degree of all the basic blocks. We start
generating the summary ¢ from block with 0 in-degree which is By
in our case.

Native function mainActivity_sendData receives one input
parameter. We create a summary structure {@, @}|@ which is in the
format of {TaintSet, Path|TaintCondition}. At line 8, it invokes a
native API to get the current timestamp where we create a sum-
mary structure and add timestamp taint tag to its TaintSet. Then
summary(str) get summary(url) and summary(timestamp) and
propagate it to variable str.

After finish running data-flow analysis, we collect the TaintSet,
Path and TaintCondition related to each argument and return value
to construct the summary é(mainActivity_sendData) = {{Time, argo},
/data/data/com.hdtotokmessenger.vdoalexchat/| @}. It tells us under
file path /data/data/com.hdtotokmessenger.vdoalexchat/, we can
retrieve timestamp type of evidence. If input parameter url carries
any type of evidence, it is also stored under the same file path.
Therefore, we solved the native evidence problem.

3.4. Data-flow summary result

When app developer and researcher query against ANLD of
Agora Native SDK as shown in Fig. 3, our database will provide
detailed analysis result of each native method within the native
SDK including information of:

[e] explicit taint propagation rules for arguments and return
value.

[¢] detected source APIs and its evidence type.

[e] discovered sink APIs and retrieved file path.

Taking the Figs. 4 and 5 as an example, it shows the analysis
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result of two native methods in Agora native SDK - main-
Activity_sendData() and getActualVoiceType(), <method> provides
the method signature of a native method included in that native
SDKs. <source> identify the source detected within the native
method, it could either be one or more arguments of the method or
a source method defined in the source API list. As for the source AP,
<source category > indicates the type of evidentiary data, such as
Time and Visited URL. <source name> is the source APl <sink>
could either be return value of the method containing the type of
evidentiary data from <source>, or a sink API that store the type of
evidence from <source>.

For example, native method mainActivity_sendData() in Fig. 4
demonstrate that it has two sources: 1) the first argument of the
method; 2) source API ASurfaceTransactionStats_getLatchTime(). In
addition, it identifies the file path /data/data/com.hdtotokmesseng
er.vdoalexchat/ where the evidentiary data is written to. While
native method getActualVoiceType() shows an example of native
method with return value where the return value should be
assigned with the taint set of its first argument and add taint tag of
Time evidence type.

4. Evaluation

In this section, we aim to evaluate the ANLD generated by Lib-
Droid. First, we evaluate LibDroid using 52 open-source Android
native libraries, including several flagship imaging processing li-
braries as having significant additional bundled functionality on
top of the standard Android platform. In addition, we conduct a
performance measurement of our system in terms of the accuracy
of its Summary-based Data-flow Analysis Tracer based on the open-
source native libraries. Second, we evaluate LibDroid on the 13,138
native libraries retrieved from 2,627 randomly selected real-world
apps from Google Play Store (Google Play Store). Third, we present a
case study on how forensic investigators can utilize LibDroid and
ANLD to retrieve evidence from Android applications with the us-
age of native libraries.

We conduct experiments to answer the following questions:

Q1: How does LibDroid perform on open-source native
libraries?

Q2: Is LibDroid capable of discovering critical evidentiary data
generated by Android native libraries?

File System Image

| S0

Installed APK

Native Library
Analysis Report

Android Native Library Database

Library Name Summary Evidence Type
lib1 method(vs): t(return) <- t(vo) location

lib1.1 method(ve, v.) : t(return) <- t(vo) + t(v,) time

lib2 method1(v,, v) : t(return) <- t(vs) visited URL
lib2 method2(v.) : t(return) <- t(v) text input

Fig. 3. Overview of ANLD

6
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<source>

</source>

. </method>
10 </library>

<library = "Agora_Native_SDK:3.0.1">
2 <method = " mainActivity_sendData(arg_0)">

<parameter class="jString" parameter="1" />
<source category="timestamp" |

6 source API="ASurfaceTransactionStats_getLatchTime()"/>

<sink "/data/data/com.hdtotokmessenger.vdoalexchat/">

Fig. 4. Analysis result of native method mainActivity_sendData() of Agora Native SDK.

0 N

<returnValue
<source>

8 </source>
9 /returnValue>
10 </method>

11 </library>

<library = "Agora_Native_SDK:3.0.1">
<method ="getActualVoiceType(arg_0, arg_1)">

<parameterclass="getActualVoiceType" parameter="1"/>
6 <source category="timestamp" |
7 sourcename="AKeyEvent_getEventTime"/>

Fig. 5. Analysis result of native method getActualVoiceType() of Agora Native SDK.

Q3: How to use the data-flow result of native libraries to
discover crucial security issues?

4.1. Results on benchmark apps

Previous studies on Android app security have designed a
collection of native benchmark apps, e.g., NativeFlowBench
(NativeFlowBench) provides 22 benchmark apps targeting on the
challenge of native and inter-language data flow analysis.

We compare the effectiveness of LibDroid with FlowDroid (Arzt
et al.,, 2014) and JN-SAF (Wei et al., 2018). Since LibDroid take.so file
as input, we first compute the native library summary and add the
summary to EviHunter (Cheng et al., 2018) to handle the taint
propagation in Java for a fair comparison. We run each tool against
all the benchmark apps to check if the tool can correctly report the
potential data leakage and corresponding data paths. The result is
shown in Table 2. We use True Positive (), False Positive (%) and
False Negative (x) to mark different scenarios. For apps contain
more than one leakage path, we mark each of the leakage path
separately. Among the 22 benchmark apps, JN-SAF (Wei et al., 2018)
reports two false positive, while LibDroid (with EviHunter (Cheng
et al., 2018)) only has one false alarm on native_complexdata_s-
tringop. It's caused by no precise string analysis implemented by
EviHunter (Cheng et al., 2018). On the other hand, FlowDroid (Arzt
et al., 2014) treats all native method calls as black box and applies
conservative model to taint all other arguments if one argument is
tainted, thus it identifies one false positive path at native_source_-
clean and fails to detect most of data paths among the 22 bench-
mark apps.

4.2. Results on 52 open source native libraries

Previous studies on mobile security have developed and pub-
lished Android benchmark apps, such as DroidBench (DroidBench

benchmark), however, these applications are not suitable to eval-
uate LibDroid as their functionalities all written in Java without the
usage of Android native libraries. We collected 52 open-source
Android native libraries to measure the performance of LibDroid.
To analyze these open-source native libraries, we include source
and sink collected by Susi (SuSi) as well as the native source and
sink discovered from documentation of Android native APIs.
Developer and researcher can leverage the detailed data-flow
analysis result as the taint propagation rule for native methods.

For the 5 native libraries, LibDroid finds 17 static file paths
which store one or more type of evidentiary data. LibDroid dis-
covers 10 Time type of evidence, 4 Text Input type of evidentiary
data, 1 Sensor type and 3 Visited URLs. Among the 52 open-source
native libraries, we notice that 5 of them invoke and generate
Sensor type of evidence; 45 of these native libraries will access and
store Time to the file system; 17 native libraries store user's Text
Input and 14 of them obtain Visited URLs. In addition, we finds that
many of native libraries acquire Device ID, UUID, Contact and Mobile
Country Code which are listed as Others in the Table 3.

4.3. Results on native libraries retrieved from real-world apps

We randomly collected 2,627 real-world app from Google Play
Store (Google Play Store) where we unpack the .apk and obtain the
native libraries file .so.We use LibDroid to build the ANLD for these
Android native libraries. For a large scale of analysis, we created an
automated testing script where we set a 60-min timeout for each
Android native library. To be more specific, we force the analysis to
stop when it reaches the time limit and report the result. According
to the result, only 486 native libraries stop early (3.7% of the total
number). Note that the 60-min timeout does not include the pre-
processing where we transform the .so to LLVM IR via McSema
(Framework for lifting x86).

Table 4 summarizes our analysis results for each type of the
evidentiary data on 13,138 Android Native libraries where we
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Table 2
NativeFlowBench evaluation results.
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Benchmark App

JN-SAF | FlowDroid | LibDroid

native _source

X

native_nosource

native_source_ clean

native leak

native leak dynamic register

native dynamic_register multiple

x| X| X| *

native noleak

native_noleak _array

native _method_overloading

native multiple interactions

x

native multiple libraries

native complexdata

native complexdata_stringop

native_heap_modify

native_set_field_from_ native

native set field from arg

native set field from arg field

native pure

native pure_ direct

native_pure_ direct customized

icc_javatonative

icc_nativetojava

Table 3

Summary of the analysis results for each type of evidentiary data on 52 Android
open-source native libraries.The column “Native Library” indicates the number of
native libraries. “Others” indicates a file that include the other than the four spec-
ified types of evidentiary data.

Evidence Type Native Library Evidence File Path
Static File Path Dynamic File Path
Sensor 5 12 0
Time 45 67 2
Text Input 17 16 1
Visited URL 14 32 2
Others 22 40 7

collected from 2,627 real-world popular apps. A reported record
contains at least one type of evidentiary data including Time, Text
Input, Sensor and/or Visited URLs. We categorize a file path as dy-
namic file path if the file path includes the patterns <timestamp>,
<UUID>, <android version> and <intent>, otherwise, we treat it as
static file paths.

From our analysis result, we find that 87.5% of the file path are
static file path which shows static file paths are used more
frequently by Android native libraries. Among the four types of
evidence, Time is the most common evidence that can be retrieved

Table 4

Analysis results for each type of evidentiary data on the 13,138 native libraries
collected from 2,627 real-world apps. The column “App” indicates the number of
apps. “Others” indicates a file that include the other than the four specified types of
evidentiary data.

Evidence Type  Native Library App  Evidence File Path
Static File Path  Dynamic File Path
Sensor 145 35 12 0
Time 1745 398 267 2
Text Input 203 157 161 1
Visited URL 52 14 155 2
Others 2893 514 1723 327

from a mobile device, and 36.6% of Android native libraries store
Time in the local file system. As for Sensor type of evidentiary data,
camera is the most prevalent Sensor requested by application.

Current state-of-art Android static analysis tool FlowDroid (Arzt
et al., 2014) bypass the analysis of native method invocation and
apply the conservative approach to propagate the taint. Specifically,
for each native method call, FlowDroid (Arzt et al., 2014) make an
over-approximation of the taint set for each argument and return
value where they take all taint tags from all input variables and
assign the union set to each input variables and output variables.
On the other hand, FlowDroid (Arzt et al., 2014) only treat a limited
number of Java APIs as source and sink methods without the
recognition of any native source and sink APIs. In conclusion,
FlowDroid (Arzt et al., 2014) is suffered from both under-tainting
problem and over-tainting problem. We summarize the results
comparing with FlowDroid (Arzt et al., 2014) based on 2,627 real-
world apps. 745 of 2,627 apps suffer the under-tainting problem
and have a certain type of evidence undocumented. On the other
hand, 16.48% of apps are over-tainted due to FlowDroid (Arzt et al.,
2014) applying the over-approximation tainting strategy when
dealing with Native APIs invocation. Without the data-flow sum-
mary of native methods, this approach generates more false
positives.

Manual verification: It is very challenging to evaluate our re-
sults for the native libraries collected from real-world apps without
the ground truth. Thus, we perform a best-efforts manual verifica-
tion. Specifically, we randomly selected 10 applications that utilize
34 native libraries in total. We installed these 10 applications on a
real device and leverage Monkey (Ul/Application Exerciser
Monkey), which can generate pseudo-random streams of user
events, such as clicks, touches as well as a number of system-level
events, to test each application for 2-h. Then we manually examine
each file generated by the apps. In total, we discovered 493 files
created by the application and LibDroid reported 23 of them con-
taining evidentiary data.

For a file reported by LibDroid that contain a certain type of
evidence, we consider the data-flow summary is a false positive if
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that file does not include the type of evidentiary data reported;
Take the Fig. 4 as an example, if we manually examine the file /data/
data/com.hdtotokmessenger.vdoalexchat/ and cannot find Time type
of evidence, we will mark this data-flow summary as false positive.
Since the evidence may be generated through the Java code of the
app itself, it is very hard to define the false negative. Therefore, we
only compute the precision for each type of evidence considered in
this paper. We find that LibDroid achieves an average precision of
97% over 34 native libraries.

44. Case study

We use a case study to demonstrate that our Android Native
Library Database can help to identify evidentiary data. To bypass
the app security vetting process, malware developers use Com-
mand and Control (C&C) server to conceal the malware command
and control information generation process into network commu-
nication. LibDroid detected a app named com.goo-
ders.pdfscanner.gpmalware from Joker malware family which hide
its C&C communication in the native advertisement libraries.

com.gooders.pdfscanner.gpmalware launches a thread to invoke
the native methods in userServiceStatus class. While the native
methods get access to the user Mobile Country Code (MCC) and
send it to the server to get the malicious payload and then subscribe
user with premium service.

In addition, it gains the IP address of device through native API
android_getaddrinfofornetwork(). Then it send the IP address taint
source to the third argument of Java method networkinfoFrom(),
where it store the information at /data/data/com.goo-
ders.pdfscanner.g pmalware/databases/Idata.db.

LibDroid detects the native source API which queries user MCC
code and IP address and generates data-flow summary. LibDroid
models the Linux system calls that can execute shell command in
which way to track the behaviors of communicating with the C&C
server.

5. Related works
5.1. Forensics analysis by static analysis

Among the static analysis tools, Flowdroid (Arzt et al., 2014)is a
well known data-flow analysis framework for detecting potential
privacy leakage of Android application. It creates a dummy main
method for an app, detects and propagates the taints through a
flow and context-sensitive algorithm. However, FlowDroid (Arzt
et al., 2014) did not cover the native method invocation and treat
all native libraries as black box settings. IccTA (Li et al., 2015) ex-
tends FlowDroid (Arzt et al.,, 2014) framework and models regular
Intent calls and returns to track data flows.

Chex (Lu et al., 2012) is designed to detect component hijacking
problem on Android platform and is the first static analysis tool to
consider different types of entry points of an Android app. It is built
on top of Wala (Wala) where it first parses app code and constructs
app-splits. Each app-splits is a code segment that can be reached
from an entry point. Then it builds the data-flow summary for each
of the app-split utilizing the data-flow engine from Wala (Wala).
Finally, it constructs the possible information flows by linking app-
splits summaries in all possible permutations.

DroidSafe (Gordon et al., 2015) proposed a technique to model
the Android framework and adopted a flow-insensitive points-to
analysis algorithm to handle all possible run-time event order-
ing.However, DroidSafe (Gordon et al., 2015) fails to analyze real-
world apps which cannot be applied to native libraries.

EviHunter leverage Soot (Vall é e-Rai et al., 1999) to perform
code lifting from an Android app to Jimple code, IC3 (Li et al., 2015)
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to build inter-connected component communication models, and
FlowDroid (Arzt et al., 2014) to construct call graphs and entry
points. It could discover both the types of sensitive data and asso-
ciated file paths where the data are written to which is suitable for
our research purpose. However, it make an over-approximation of
evidence types for each input and output variable involved in the
native method call.

JN-SAF (Wei et al., 2018) utilize Amandroid (Wei et al., 2014) and
Angr (Yan et al., 2016) to capture inter-language data-flow. How-
ever, JN-SAF (Wei et al., 2018) only support a limited number of
Native source and sink APIs. In addition, it cannot identify the file
path where the evidence is written to.

5.2. Forensics analysis by dynamic analysis

TaintDroid (Enck et al., 2014) modified DVM to carry out dy-
namic taint propagation and uses variable level tracking within the
DVM interpreter. However, it could not work with newer version of
Android system and only support up to 32 different tags, which is
insufficient for the forensic purposes.

NDroid (Qian et al., 2014) is built on the top of QEMU and
contains a customized OS-level view reconstructor to obtain in-
formation from processes and memory. It instruments important
JNI-related, such as JNI entry, NI exit, object creation functions, and
performs dynamic taint analysis tracks information flows through
JNL. NDroid re-use the modules implemented by Taindroid and
follow their format to store taint tags. However, NDroid suffers
from path coverage issue and it does not track control flow.

While TaintART (Sun Tao et al., 2016) applies dynamic taint
tracking by instrumentation the ART compiler and runtime since
the newer version of Android system replaced DVM since Android
Lollipop and uses Ahead of Time Approach (AOT) instead of JIT.

Dyn-EviHunter (Xu et al., 2018) modified the ART platform with
taint propagation implementation which force the Android system
enter interpreter mode and bypass the checking of trusted mirror
class. It support two different modes of operation: Bit-wise mode
and Tag-id mode which can be scale up to 232 types of taint tags.

In conclusion, in order to treat file system as a type of sink and
further discover the file paths where data are written to, we
decided to implement LibDroid which addresses these challenges.

5.3. Library and framework analysis

A series of work has demonstrated the importance of third-party
libraries for managed code of Android apps (i.e., Dalvik code) and
their security effects and implications (Telecommunication Union,
2017; Alyahya and Kausar, 2017; Satrya et al,, 2016; Lessard and
Kessler, 2010). (Akarawita et al., 2015; Daryabar et al., 2016; Lee
et al., 2009) investigated the outdated libraries in Android apps by
conducting a survey with more than 200 app developers. They re-
ported that a substantial number of apps use outdated libraries and
that almost 98% of 17K actively used library versions have known
security vulnerabilities (Bayu Satrya et al., 2016). report, for managed
code-level libraries, that app developers are slow to update to new
library versions— discovering that two long-known security vul-
nerabilities remained present in top apps during the time of their
study. None of these studies examined native third-party libraries in
Android apps nor did they look at the security impact of vulnerable
libraries or whether these vulnerabilities are on the attack surface.
LibRARIAN now explores the attack surface of native libraries, closing
this important gap and calling platform providers to action.

6. Discussion and limitations

At this point, native library matching is based on the package
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name and version number. Several researches (Li et al., 2017; Zhang
et al.,, 2019; Ma et al., 2016) proposed and implemented different
approaches to identify specific versions of third-party libraries from
apps through comparison of call graph or static analysis of app
binaries coupled with a database of third-party libraries. Since the
library matching is beyond the scope of our project, and existing
works can easily solve this matching problem, we will work on
integrate LibDroid with library matching tool to achieve better
accuracy on library identification.

As many other Android static analysis tools, LibDroid has limi-
tations on dynamic file path construction. Specifically, if a dynamic
file path includes intent from inter-component communication,
LibDroid uses <intent> instead of the concrete value as part of the
file path.

LibDroid only supports constant string propagation, if the string
is manipulated, LibDroid will not be able to construct the precise
resolution of a string value. As precise string analysis is expensive in
binary analysis, we leave this for future research.

Moreover, LibDroid only has basic support for system native
APIs. In particular, we manually summarize the data flows for
system native APIs that are related to file path constructions and
commonly used data structures. It would be an interesting future
work to model all system native APIs.

There are many methods to obfuscate native libraries in Android
in order to evade the security vettings, such as string encryption
and control flow obfuscation. The latter re-organizes the control
flow of the native method, injectes dead/ dummy code and removes
functions’ prototypes, and uses proxy methods to redirect the flow
of execution. LibDroid currently does not provide a solution for
such obfuscations. We will apply anti-obfuscation techniques
(Baumann et al., 2017) in the future.

7. Conclusion

In this work, we design LibDroid to automatically identify the
evidentiary data generated and stored on the file system by the
Android native library. LibDroid builds an App Native Library
Database (ANLD) of a large number of Android native libraries
collected from real-world apps by applying the forward static data
flow analysis. In addition, app developers and researchers of the
existing static analysis tools could leverage the data-flow summary
to compute the analysis sensitive to the native method invocation.
We summarize the data-flow of commonly used system native
APIs, and extend the current publicly available sources and sinks
with native APIs. Our evaluations, based on both open-source
native libraries and native libraries collected from real-world
apps, show that LibDroid can precisely and accurately identify the
evidentiary data that a native library could store to file systems and
the file paths where the evidentiary data are written to.
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