
�
�����
����

�������������������������
���� �
 !"���
��#���
������# �����������

9������+%�� !�
�


����	
��
���
�����������
����

���
����
����
�����	����
������	���
���
�
�����	
���
�����
����

�������������������������
���� �
 !"���
��#���
������#
$%&���������'�( )��&�!������*�+,,�����������	-%	!�������*�+,,������.	-%
,!����/-0�-�������	-%	!�
�����*��%&0�
����/-0�-������1�&!%	!������

��

������

����
 
��
�� �!
���"��������

�!"#$%&��'�(�)�'��&�#*"&!&�"&+�#*

2�&!	�� -	0�!�
� -
��3%-,�� -
�3 !��%0������-
� -	0��0�,�! -�,�
��,�! 
, ����-
- -	��	&	��,�� ��0

4���� %!-	0� 3������,	0����
�,
�������������������������
���� �
 !"���
��#���
���'���

+��	���-"�	��! 	,��� �
%!3	,��� ���-"
4���� %!-	0� 3������,	0����
�,
�������������������������
���� �
 !"���
��#���
���'���

50�!	�3	
��
��������!�,	0�6%	-�%��,����
�!��3 !���"����! %"��%��, ��%�	�� -	0
,	��	�"-
�7����$�	!! 7
4���� %!-	0� 3������,	0����
�,
�����������8�������������
���� �
 !"���
��#���
���#���

https://images.scitation.org/redirect.spark?MID=176720&plid=2023708&setID=378408&channelID=0&CID=740896&banID=520944490&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3baaf36e92ffc5850302086a0099c51d2f33b374&location=
https://doi.org/10.1063/5.0135456
https://doi.org/10.1063/5.0135456
https://orcid.org/0000-0001-5242-3281
https://aip.scitation.org/author/Bondarenko%2C+Anna+S
https://orcid.org/0000-0003-0786-7304
https://aip.scitation.org/author/Tempelaar%2C+Roel
https://doi.org/10.1063/5.0135456
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0135456
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0135456&domain=aip.scitation.org&date_stamp=2023-02-07
https://aip.scitation.org/doi/10.1063/5.0129073
https://aip.scitation.org/doi/10.1063/5.0129073
https://doi.org/10.1063/5.0129073
https://aip.scitation.org/doi/10.1063/5.0139734
https://doi.org/10.1063/5.0139734
https://aip.scitation.org/doi/10.1063/5.0136404
https://aip.scitation.org/doi/10.1063/5.0136404
https://doi.org/10.1063/5.0136404


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Overcoming positivity violations
for density matrices in surface hopping

Cite as: J. Chem. Phys. 158, 054117 (2023); doi: 10.1063/5.0135456
Submitted: 19 November 2022 • Accepted: 12 January 2023 •
Published Online: 7 February 2023

Anna S. Bondarenko and Roel Tempelaara)

AFFILIATIONS
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA

a)Author to whom correspondence should be addressed: roel.tempelaar@northwestern.edu

ABSTRACT
Fewest-switches surface hopping (FSSH) has emerged as one of the leading methods for modeling the quantum dynamics of molecular
systems. While its original formulation was limited to adiabatic populations, the growing interest in the application of FSSH to coherent
phenomena prompts the question of how one should construct a complete density matrix based on FSSH trajectories. A straightforward
solution is to define adiabatic coherences based on wavefunction coefficients. In this paper, we demonstrate that inconsistencies introduced
in the density matrix through such treatment may lead to a violation of positivity. We furthermore show that a recently proposed coherent
generalization of FSSH results in density matrices that satisfy positivity while yielding improved accuracy throughout much (but not all) of
parameter space.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0135456

I. INTRODUCTION

Many dynamical phenomena in chemistry and physics are
effectively described by partitioning the problem of interest into
a system and its environment while limiting an explicit quantum
treatment to the system in the form of a reduced density matrix.
Given that appropriate approximations are made, this enables the
accurate computational modeling of phenomena that are otherwise
intractable. The multitude of approximations that can be taken has
led to a wide variety of quantum dynamical methods that have
been proposed over the years. When invoking approximations, in
addition to the sheer accuracy of the method, it is of particular
importance that the physical properties of the (reduced) density
matrix are conserved. A well-known example of a violation of such
physical properties is the breaking of positivity of the density matrix
under the Markov approximation.1–3 Both the Nakajima–Zwanzig
and Redfield master equations violate positivity in principle,4 with
manifestations of this being particularly well documented for the
latter.5–7 Within Redfield theory, positivity can be preserved by addi-
tionally invoking the secular approximation,8–10 albeit at the cost of
additional approximations.

In 1990, Tully introduced fewest-switches surface hopping
(FSSH),11 which has grown into one of the most widely used quan-
tum dynamical methods.12–15 FSSH is a mixed quantum–classical

technique that represents the quantum system by means of a swarm
of “active” surfaces that are allowed to switch between adiabats
(instantaneous eigenstates of the quantum Hamiltonian) as a result
of interactions with a classical environment. Intended for the mod-
eling of (incoherent) scattering phenomena,11,16 FSSH in its original
form exclusively specified adiabatic populations, i.e., diagonal ele-
ments of the density matrix. However, a growing interest in the
application of FSSH to coherent phenomena17–28 prompted the
question of how to construct the entire density matrix based on
FSSH. Arguably the most straightforward and common approach to
constructing coherent (off-diagonal) density matrix elements is by
invoking the wavefunction coefficients that are propagated through
the time-dependent Schrödinger equation and which govern the
hopping probabilities.17,29 Although it was immediately recognized
that this approach (henceforth simply referred to as FSSH) yields
inconsistencies between populations and coherences, only recently
has a systematic survey of the spin-boson model shown that it intro-
duces inaccuracies in some cases, although no unphysical behavior
was observed.30

The purpose of this paper is twofold. First, it demonstrates
that the aforementioned inconsistencies between populations and
coherences may yield unphysical density matrices. This is exem-
plified in Fig. 1, where a violation of positivity is observed in the
local (diabatic) basis for a trimer (a three level system) coupled to
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FIG. 1. Example of a violation of positivity by FSSH. Shown is the transient popula-
tion of the second level of a homogeneous trimer in the local basis (see Sec. IV A
for details). Region of negative populations is highlighted in gray for ease of
demonstration. Applied parameters are V = 1.0, λ = 0.005, � = 1.0, and T = 0.1,
using a reference unit of energy of 208.5 cm−1 (300 K), which corresponds to
the adiabatic regime under low temperatures. Also shown are numerically-exact
results.

a harmonic environment. These observations underscore the impor-
tance of recent efforts aimed at finding consistent FSSH-like formu-
lations of the entire density matrix,30–35 leading up to the second
purpose of this paper of singling out a recently proposed gener-
alization of FSSH, called coherent fewest-switches surface hopping
(C-FSSH).30 C-FSSH uniquely provides a consistent formulation of
the entire density matrix based on the existing (and practically unal-
tered) FSSH method by invoking pairs of active surfaces. Meanwhile,
the classical coordinates are represented by Gaussian wavepackets,
allowing zero-point fluctuations to be represented without invok-
ing a Wigner distribution. We demonstrate that not only does
C-FSSH resolve the positivity violations of FSSH, but it also pro-
duces comparatively superior results throughout much (but not all)
of parameter space for a trimeric system.

The remainder of this paper is organized as follows: In Sec. II,
we provide a summary of the physical properties of density matri-
ces. In Sec. III A, we describe some general concepts of mixed
quantum–classical dynamics, while in Secs. III B and III C, we intro-
duce method details specific to FSSH and C-FSSH, respectively. In
Sec. IV A, we introduce the model system used in this study, after
which we discuss the results in Sec. IV B. Finally, we present our
conclusions and outlook in Sec. V.

II. PHYSICAL PROPERTIES OF DENSITY MATRICES
Before evaluating density matrices within the FSSH and

C-FSSH formalisms, we begin by iterating the physical properties
a valid (reduced) density matrix should satisfy. First, it should be
noted that the density matrix of a pure state in some basis is given
by ρnm = c∗n cm, with cn as the wavefunction coefficient in the basis
at hand (for which basis states are labeled by n). For a mixed
state, the density matrix instead takes the form ρnm = �c†ncm�, where�⋅ ⋅ ⋅� denotes an average over pure states. The physical properties
emanating from these principles are as follows:

(1) Hermitian property: The density matrix should be Hermi-
tian, ρ† = ρ. It should be noted that the Hermitian property
survives a unitary transformation of ρ, meaning it carries
over from one basis to another.

(2) Normalization: Populations represent probabilities, and
therefore their sum should add up to one. As a result,
the trace of the density matrix should amount to unity,
tr(ρ) = 1. Like the Hermitian property, normalization sur-
vives a unitary transformation of ρ.

(3) Positivity: Positivity of a density matrix can be evaluated in
various forms, as outlined in the following.
(3a) Positive populations: As populations represent prob-

abilities, the values they assume should be strictly
positive, ρnn ≥ 0. However, this positivity criterion
does not necessarily survive a unitary transforma-
tion, meaning that positivity in one basis does not
imply positivity in another basis. This is the result of
a mixing of populations and coherences by the basis
transformation. Hence, positivity in all possible bases
requires these elements of ρ to be consistent, leading
up to the next two properties.

(3b) Cauchy–Schwartz (CS) inequality: The CS inequal-
ity puts bounds on the off-diagonal elements of the
density matrix in terms of the diagonal elements, as

ρnnρmm ≥ ρnmρmn. (1)

The CS inequality is saturated for pure states, i.e.,
ρnnρmm = ρnmρmn, which is the result of the diagonal
and off-diagonal elements being interrelated through
ρnm = c∗n cm. For mixed states, on the other hand,
it takes the form ρnnρmm ≥ ρnmρmn, since taking the
average �⋅ ⋅ ⋅� may yield destructive interference for
off-diagonal elements but not for diagonal elements.
When a 2 × 2 density matrix satisfies the CS inequal-
ity, positivity is ensured in any basis, rendering the CS
inequality a more complete requirement than positiv-
ity in a given basis (Property 3a). However, density
matrices of size 3 × 3 and larger involve multiple
CS inequalities (invoking pairs of basis states) that
become basis dependent. The importance of having
a basis-independent metric of positivity leads to the
next and last property.

(3c) Positive eigenvalues: Eigenvalues of a matrix repre-
sent the extrema of diagonal elements as a func-
tion of all possible unitary rotation angles. Hence,
the extrema for the density matrix can be found by
introducing the density operator,

ρ̂ =�
m,n

ρm,n�m� �n�, (2)

and solving the eigenvalue equation ρ̂�α� = rα�α�. Pos-
itivity of the density matrix then implies that rα ≥
0 for all α. This forms an unambiguous and basis-
independent definition of positivity, regardless of the
size of the density matrix.
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III. THEORY AND METHODS
Having summarized the physical properties a density matrix

should satisfy, we now proceed to evaluate density matrices within
the FSSH and C-FSSH formalisms, after first introducing the general
concept of mixed quantum–classical dynamics.

A. Mixed quantum–classical dynamics
Mixed quantum–classical dynamics approximates the environ-

ment as classical, yielding a total Hamiltonian given by

Ĥ(p, q) = Ĥq + Ĥq−c(q) +Hc(p, q), (3)

where q and p are the classical position and momentum vec-
tors, respectively. In Eq. (3), we differentiate contributions from
the quantum system (q) and the classical environment (c), as well
as their mutual interaction (q–c), the latter two depending para-
metrically on the classical coordinates. From here onward, this
dependence will be omitted in order to simplify the notation.

A mixed quantum–classical simulation amounts to propagat-
ing a swarm of classical trajectories, while quantities of interest are
evaluated as a trajectory average. (For simplicity, we will use the
same notation for a trajectory average as for an average over pure
states, i.e., �⋅ ⋅ ⋅�, even though these two averages are not strictly
interchangeable.) Within each trajectory, the classical coordinates
evolve according to Hamilton’s equations using the Hamiltonian
Ĥq−c(q) +Hc(p, q). Appropriately taking the expectation value of
Ĥq−c(q) in order to arrive at a meaningful classical potential energy
is a source of ambiguity, leading to the many variants by means of
which mixed quantum–classical dynamics can be implemented.

In concert with the classical dynamics, the quantum wave-
function is propagated through the time-dependent Schrödinger
equation (setting h = 1),

i�Ψ̇� = (Ĥq + Ĥq−c)�Ψ�. (4)

At any given time, the quantum wavefunction can be expanded in
the adiabatic basis as

�Ψ� =�
k

ck �k�, (5)

with the adiabatic basis states following from the instantaneous
eigensolution of the time-independent Schrödinger equation,

(Ĥq + Ĥq−c) �k� = �k �k�. (6)

Here, �k is the associated (adiabatic) energy.
While it may serve to intuitively assess quantities of interest,

the adiabatic basis strictly does not allow for a trajectory average to
be taken, as the basis itself is trajectory dependent. Rather, a diabatic
(trajectory independent) basis needs to be adopted, such as the local
basis, within which the adiabatic states are expanded as

�k� =�
n

Uk,n �n�, (7)

where the unitary transformation Uk,n itself is trajectory dependent.
Here and henceforth, we use k and l to denote adiabatic states and
n and m to denote local basis states. Moreover, as much as possible,
we will use the local basis to assess whether a given density matrix
satisfies the physical properties summarized in Sec. II.

B. Fewest-switches surface hopping (FSSH)
We proceed with a quick summary of FSSH, referring to earlier

literature for a more elaborate explanation.16 FSSH is an example
of a broader class of surface hopping methods, wherein the clas-
sical potential energy is derived from an expectation value of the
quantum–classical Hamiltonian with respect to a single adiabatic
surface, i.e., �a�Ĥq−c�a�. FSSH allows for stochastic switches between
surfaces to happen at any time, with the probability of switching
from surface k to l being governed by the probability

Pa:k→l = 2Re�p ⋅ dk,l
cl

ck
�t�. (8)

Here, ck is the wavefunction expansion coefficient from Eq. (5), �t is
the time integration step, and dk,l is the nonadiabatic coupling vector
defined as

dk,l ≡ �k�∇q�l�. (9)

In order to limit the number of switches, a uniform random number
ξ ∈ (0, 1) is drawn at each time step, and the switch from k to l is
allowed to occur only when

�
l′≤l−1

Pa:k→l′ < ξ <�
l′≤l

Pa:k→l′. (10)

Moreover, in order to conserve (quantum plus classical) energy,
the change in quantum energy upon a switch, εk − εl, needs to be
absorbed or donated in the form of an adjustment of the clas-
sical kinetic energy, p2�2. Accordingly, the classical momentum
is rescaled in the direction of the nonadiabatic coupling vector.
Whenever there is insufficient classical kinetic energy available, the
switching event is abandoned.

As mentioned in the introduction, FSSH was originally devel-
oped with the intention to study scattering phenomena. In such
cases, the active surface can be initiated in some adiabatic state as
a = i, and scattering probabilities can be assessed by taking a tra-
jectory average of a at a later time. As pointed out in Sec. III A,
such a trajectory average within the adiabatic basis is not strictly
allowed, yet it provides a good approximation in the asymptotic
regimes of scattering phenomena where the adiabatic basis becomes
near-diabatic. A more rigorous approach to quantifying scattering
outcomes, however, is to consider the density matrix in the local
basis,29,36,37

ρn,m = ��
k,l

Uk,nρk,lU
∗
l,m�, (11)

with the trajectory-dependent adiabatic contributions given
by29,36,37

ρk,l = δk,lδk,a. (12)

In order to assess whether ρn,m satisfies the physical properties
summarized in Sec. II, it is worth pointing out that the adiabatic
contributions given by Eq. (12) each trivially satisfy these properties,
which carries over to ρn,m.

Where Eqs. (11) and (12) fall short is in their inability to
account for a sharing of the initial quantum population among dif-
ferent surfaces. This can be straightforwardly incorporated by taking
ρn,m = �∑i ρ(i)n,m�, with ρ(i)n,m = ∑k,l U(i)k,n ρ(i)k,l U(i)l,m

∗
and with
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ρ(i)k,l = ρ(i)0 δk,lδk,a(i). (13)

Here, i refers to a “branch” of the trajectory that was initiated at
surface i, meaning that a(i) = i initially. In addition to the active
surface, this branch comes with its own set of classical coordinates
p(i) and q(i), as well as wavefunction coefficients c(i)k , each initiated
using the same (branch-independent) value. Moreover, each branch
is weighted by ρ(i)0 in Eq. (13). If ∑i ρ(i)0 = 1 is enforced, it follows
that∑n ρn,n = 1 and normalization is satisfied. Likewise, ρn,m can be
shown to satisfy the other physical properties summarized in Sec. II.

The adiabatic contribution to the density matrix embodied by
Eq. (13) is still diagonal and, as such, completely neglects adiabatic
coherences. Such coherences can be incorporated by supplement-
ing Eq. (13) with off-diagonal elements based on the wavefunction
coefficients, as17,18,21,22,24,29,38

ρ(i)k,l = ρ(i)0 �δk,lδk,a(i) + (1 − δk,l)c(i)k c(i)∗l �. (14)

(This implementation was referred to as “Method 3” in Ref. 29.)
It can be easily checked that this supplement does not contribute
to ∑n ρn,n so that normalization is satisfied as long as ∑iρ

(i)
0 = 1.

Moreover, if the wavefunction coefficients are initiated such that
ρ(i)0 = �ci�2, it can be shown that initially ρn,m = c∗n cm as a result of
which the physical properties outlined in Sec. II are automatically
satisfied. However, as time evolves, the diagonal and off-diagonal
elements start to behave markedly different, being constructed out
of active surfaces and wavefunction coefficients, respectively. As a
result of such inconsistencies, positivity may become violated, which
is most intuitively understood as a consequence of the inconsisten-
cies breaking the CS inequality (Property 3b). As a result, negative
populations may arise in some basis, as found in Fig. 1.

C. Coherent fewest-switches surface hopping
(C-FSSH)

If one propagates multiple branches for each trajectory as
outlined in Sec. III B, one can in principle construct off-diagonal
elements of the density matrix based on pairs of branches. This
is the core idea behind C-FSSH. A flowchart of this approach is
provided in the supplementary material, and further details can be
found in Ref. 30. Within C-FSSH, the density matrix is constructed
as ρn,m = �∑i,jρ

(i,j)
n,m �. Here, ρ(i,j)n,m = ∑k,lU

(i,j)
k,n ρ(i,j)k,l U(i,j)l,m

∗
with

ρ(i,j)k,l = ρ(i,j)0 δk,a(i)δl,a( j)F(i,j)e−i(ϕ(i)
k −ϕ( j)

l ), (15)

where (i, j) labels the pair of branches, the contribution of which
is weighted by ρ(i,j)0 . When this weight is derived from the initial
wavefunction coefficients as ρ(i,j)0 = c∗i cj, it can again be shown that
initially ρn,m = c∗n cm. Interestingly, the branch-dependent wavefunc-
tion coefficients do not need to be uniformly initiated (as c(i)k = ck),
and it has been found that c(i)k = δk,i yields improved accuracy.30

In addition to the wavefunction coefficients and the active sur-
face, initiated as a(i) = i, each branch features a phase factor that
is propagated as ϕ̇(i)k = ε(i)k . Here, ε(i)k is the kth eigenvalue of the

quantum Hamiltonian Ĥq + Ĥ(i)q−c, which depends parametrically on
the branch-dependent classical coordinates q(i) through Ĥ(i)q−c. One
can also define a Hamiltonian for each branch pair, Ĥq + Ĥ(i,j)q−c ,
from which the unitary transformation U(i,j)k,n is derived. This Hamil-
tonian depends parametrically on branch pair-dependent classical
coordinates, which can simply be taken to be q(i,j) = (q(i) + q( j))�2.

In Eq. (15), F(i,j) represents a classical overlap factor. Accord-
ingly, the classical coordinates are interpreted as describing the
centers of wavepackets with a finite spread in position and momen-
tum space. This allows incorporation of the Heisenberg uncertainty
principle within the classical environment and, consequently, zero-
point fluctuations. When constructing the reduced density matrix
of the quantum system by tracing out the classical coordinates, the
classical wavepackets contribute an overlap factor of the form39

F(i,j) = �p(i), q(i)�p( j), q( j)�, (16)

with

�p(i), q(i)�p( j), q( j)� =�
α

exp�−σ2
q

4
(p(i)α − p( j)

α )2�
× exp�− 1

4σ2
q
(q(i)α − q( j)

α )2�
× exp � i

2
(p(i)α + p( j)

α )(q(i)α − q( j)
α )�. (17)

Here, σq represents the width of the classical wavepackets. Upon
introducing C-FSSH,30 this width was taken to be a constant, con-
sistent with the concept of frozen Gaussians introduced by Heller.40

However, whereas Heller’s approach shaped the Gaussian after the
original wavepacket, σq was effectively treated as an arbitrary para-
meter in C-FSSH, following previous examples in the literature.41,42

In the following, we demonstrate that this parameter can be elimi-
nated by maximizing the overlap, thus minimizing the argument in
Eq. (17) and yielding

�p(i), q(i)�p( j), q( j)� =�
α

exp �−1
2
�(p(i)α − p( j)

α )(q(i)α − q( j)
α )��.

(18)
The resulting parameter-free treatment of the classical overlap is
consistently adopted in the present paper, and based on the favor-
able results it generates (vide infra), we conclude that this treatment
forms an improvement over the original C-FSSH method.

As before, in order to assess whether the density matrix
satisfies the physical properties summarized in Sec. II, one
can examine the adiabatic contributions, which are now trajec-
tory and branch-pair dependent. First, it can easily be verified
that Eq. (15) by construction satisfies Property 3b, i.e., the CS
inequality,

ρ(i,j)k,k ρ(i,j)l,l ≥ ρ(i,j)k,l ρ(i,j)l,k , (19)

which is a result of the preserved consistency between diagonal and
off-diagonal elements. However, it can also easily be verified that
Eq. (15) does not strictly satisfy normalization, since a switching
resulting in a(i) = j within branch (i, j) yields an excess contribution
to the trace of the density matrix. Although this can be remedied by
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renormalizing the density matrix, for C-FSSH, it was instead sug-
gested to decouple each off-diagonal density matrix elements from
all other elements, such that for k ≠ l only the branch pair with i = k
and j = l contributes,

ρ(k,l)
k,l = ρ(k,l)

0 δk,a(k)δl,a(l)F(k,l)e−i(ϕ(k)
k −ϕ(l)

l ). (20)

This leaves diagonal density matrix elements of the form

ρ(i,i)k,k = ρ(i,i)0 δk,a(i) , (21)

upon which the conservation of the trace is restored. As a down-
side of this decoupling, it can no longer be trivially shown that the
CS inequality is automatically satisfied, as Eq. (19) can no longer be
formulated. What can be shown, however, is that at instances where
all branches happen to share the same classical coordinates, q(i,j) = q,
meaning there is a well-defined, branch-pair-independent adiabatic
basis, we have

�
i,j

ρ(i,j)k,k ρ(i,j)l,l ≥�
i,j

ρ(i,j)k,l ρ(i,j)l,k . (22)

Although rather restrictive, this example suggests that the CS
inequality would have to be satisfied at least approximately in the
more general case. For a less ambiguous demonstration, however,
numerical calculations are necessary, as presented in Sec. IV. This
also applies to Property 3c, for which no analytical relationship can
generally be given.

IV. APPLICATION TO A TRIMER
In Sec. III C, we contributed analytical arguments of why

unphysical density matrices arise in FSSH but not in C-FSSH. In
the present section, we substantiate these arguments with numerical
results for a trimer system. We should point out that no pronounced
unphysical behaviors were observed in dimeric systems (not shown
here, but for a comprehensive characterization, we refer to Ref. 30).
It therefore seems that the combination of multiple pairwise inter-
actions between quantum levels is necessary for such behaviors to
become prevalent. In addition to being the simplest system to incor-
porate multiple pairwise interactions, a trimer is an important model
for donor–bridge–acceptor systems widely used for energy and spin
transfer processes.43–45

A. Model
The trimer model considered here is effectively a three-site

tight-binding model with open boundary conditions, such that
interactions are limited to nearest-neighbors. Within the local basis,
the Hamiltonian is given by

Ĥq =
������

E1 V 0

V E2 V

0 V E3

������
, (23)

where V is the interaction strength and En is the diagonal energy
associated with local basis state n.

The classical coordinates are represented by harmonic oscil-
lators, as detailed in Ref. 30. Bilinear coupling between these
coordinates and the quantum system is incorporated through the
quantum–classical interaction Hamiltonian

Ĥq−c =
������

K1 0 0

0 K2 0

0 0 K3

������
, (24)

with Kn ≡ ∑α gn,αqα, and where gn,α is the coupling constant asso-
ciated with quantum level n and classical coordinate qα. We assume
that each coordinate couples exclusively to a single level n, so that the
different Kn are fully uncorrelated. The coupling constants are deter-
mined based on a Drude–Lorentz spectral density (also known as the
overdamped Brownian oscillator model46,47), taken to be identical
for each n,

Jn(ω) ≡ π
2�α

gn,α

ωα
δ(ω − ωα) = 2λ

ω�
ω2 +�2 , (25)

where ωα is the frequency associated with classical coordinate qα,
and where � and λ are the spectral density characteristic frequency
and reorganization energy, respectively. It should be stressed, how-
ever, that mixed quantum–classical methods are generally capable of
treating arbitrary spectral densities as well as anharmonic effects.

For a given temperature T, the initial classical coordinates p0
and q0 can be sampled from a Boltzmann distribution

P(p0, q0)∝�
α

exp�−β�1
2

p2
0,α + 1

2
ω2

αq2
0,α��, (26)

where β = 1�T and the Boltzmann constant and classical masses are
taken to be unity. For FSSH, this distribution can be replaced by the
Wigner distribution,

P(p0, q0)∝�
α

exp �− 2
ωα

tanh �βωα

2
��1

2
p2

0,α + 1
2

ω2
αq2

0,α��, (27)

in order to account for zero-point fluctuations that may become par-
ticularly significant at low temperatures. For C-FSSH, however, such
fluctuations are already represented by the classical wavepackets,
such that no Wigner sampling is necessary (or desirable).

B. Results
For a systematic survey of the trimer system, we refer to the

supplementary material, where results from C-FSSH are compared
against those from FSSH under Boltzmann sampling [FSSH (B)]
and Wigner sampling [FSSH (W)] (through Eqs. (26) and (27),
respectively) as well as numerically-exact results from the hierarchi-
cal equations of motion48 (as implemented in the Parallel Hierarchy
Integrator49). Here, a high-dimensional sweep over parameter space
is performed including variations in V , λ, �, and T. Moreover,
three different trimer systems are considered, characterized by the
diagonal energies En, the first being a homogeneous trimer with
E1 = E2 = E3, the second being a biased trimer with E1 − E2 = E2− E3 = 0.5, and the third being a donor–bridge–acceptor system with
E2 − E1 = E1 − E3 = 1.0, where the reference unit of energy is taken
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to be 208.5 cm−1 (which is the thermal quantum at 300 K). In all
cases, the quantum system is initiated at the first level, n = 1. In the
following, we will be discussing select cases of interest.

The result shown in Fig. 1 was obtained using FSSH (W)
for a homogeneous trimer with V = 1.0, λ = 0.005, � = 1.0, and
T = 0.1, which corresponds to the adiabatic regime at low
temperature. It should be pointed out that the low tempera-
ture regime, where � > T, is notoriously demanding for mixed
quantum–classical methods, although a previous survey for the spin-
boson model has shown C-FSSH to reach surprising accuracy in this
regime.30 Regardless, it is of interest to assess whether violations of
positivity also occur in the high temperature regime where instead
� < T and mixed quantum–classical dynamics is generally expected
to behave well. To this end, we show in Fig. 2 the complete set of
local populations for a biased trimer with V = 1.0, λ = 0.005, � = 0.1,
and T = 1.0. Results are shown for FSSH (B), FSSH (W), as well as
C-FSSH, alongside numerically exact results.

FIG. 2. Transient population of a biased trimer in the local basis. The region of
unphysical values is highlighted in gray for ease of demonstration. Applied para-
meters are V = 1.0, λ = 0.005, � = 0.1, and T = 1.0, using a reference unit of
energy of 208.5 cm−1 (300 K), which corresponds to the adiabatic regime under
high temperatures. Numerically-exact results are shown alongside the results from
C-FSSH and FSSH under Boltzmann [FSSH (B)] and Wigner sampling of classical
coordinates [FSSH (W)].

Interestingly, in Fig. 2, C-FSSH is shown to yield improved
accuracy compared to FSSH (B) and FSSH (W), but none of the
methods predict negative populations in the local basis. However,
as pointed out in Sec. II, this does not necessarily mean that pos-
itivity is preserved in any basis. To assess this, one should instead
consider Property 3c, that is, the eigenvalues of the density matrix,
which are depicted in Fig. 3. From this, violations of positivity are
observed for both FSSH (B) and FSSH (W), as eigenvalues assume
negative values.

Whereas Property 3c is the most robust means to assess pos-
itivity violations, a more intuitive assessment is provided by Prop-
erty 3b, i.e., the CS inequality, as it directly invokes the density
matrix elements in some given basis. To this end, we plot in Fig. 4
the quantity ρnnρmm − ρnmρmn for each pair of states. Once this quan-
tity becomes negative, we have a violation of the CS inequality and
thus a violation of positivity. From Fig. 4, FSSH (B) and FSSH
(W) are seen to violate the CS inequality, particularly for n = 2 and
m = 3, although the degree at which this violation occurs is very
small.

An even more intuitive analysis of positivity is provided by the
CS inequality in the adiabatic basis, as this is the basis in which
analytical expressions for the involved density matrix elements are
given; cf. Eqs. (14) and (15). As noted in Sec. III A, however,

FIG. 3. Same as Fig. 2, but for eigenvalues of the density matrix.
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FIG. 4. Same as Fig. 2, but for CS inequalities.

such analysis is only meaningful when, at a given time, the clas-
sical coordinates are taken to be the same for every branch and
every trajectory, so that a well-defined adiabatic basis exists. We
have performed an additional simulation, continuously reinforcing
this condition by initiating all classical coordinates identically and
by neglecting the quantum contribution to the classical potential
energy as well as the adjustment of the classical kinetic energy upon
a switch of the active surface. Under these constraints, C-FSSH rig-
orously satisfies the CS inequality, cf. Eq. (22), which is borne out
in Fig. 5, where the CS inequality is assessed for the same para-
meters as in Fig. 4. Here, FSSH (B) and FSSH (W) are seen to
significantly violate the CS inequality as the product of wavefunc-
tion coefficients statistically exceeds the average contributions due to
active surfaces. Overall, the CS inequalities behave markedly differ-
ent in the adiabatic basis as compared to the local basis, underscoring
the basis dependence of this property. It should be pointed out that
the entanglement between the system and environment prohibits the
extraction of numerically exact results within the adiabatic basis, as
a result of which no numerically exact results are shown in Fig. 5.

Finally, we revisit the low-temperature regime, and present
results for a homogeneous trimer with V = 1.0, λ = 0.025, � = 1.0,
and T = 0.1. Shown in Figs. 6 and 7 are the local populations and
eigenvalues of the density matrix, respectively. Significant violations
of Property 3c are seen for FSSH (B) and FSSH (W), with eigenval-
ues being strongly negative. For FSSH (B), this leads to pronounced

FIG. 5. Transient CS inequalities in the adiabatic basis (which is assured to be
well-defined by restricting the classical coordinates to be identical among different
branches/trajectories). Parameters are as in Fig. 2.

FIG. 6. Same as Fig. 2, but for a homogeneous trimer with V = 1.0, λ = 0.025,
� = 1.0, and T = 0.1, using a reference unit of energy of 208.5 cm−1 (300 K).
This corresponds to the adiabatic regime at low temperatures.
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FIG. 7. Same as Fig. 6, but for eigenvalues of the density matrix.

negative values of ρ11 and ρ33. Interestingly, FSSH (W) leads to an
overall improvement in accuracy while enforcing positive values for
ρ11 and ρ33, but yields negative values for ρ22 instead. C-FSSH is once
again seen to satisfy positivity throughout, while yielding superior
accuracy.

C-FSSH consistently satisfies positivity throughout all of the
parameter space covered in the systematic survey presented in the
supplementary material, underscoring the robustness of this method
in reinforcing the physical properties of the density matrix. FSSH (B)
and FSSH (W), on the other hand, are seen to frequently violate pos-
itivity in the form of negative density matrix eigenvalues. At high
temperatures, this is particularly prevalent for small reorganization
energies, whereas at low temperatures violations are observed more
consistently. It should be noted that imposing physical properties
on the density matrix does not necessarily imply an improvement in
accuracy. As reported before,30 C-FSSH is oftentimes seen to yield
radically improved accuracy compared to FSSH (B and W), but not
always, which is underscored by the survey presented in the supple-
mentary material. In particular, FSSH oftentimes performs better in
the Marcus regime, where the interaction strength V is weak.

V. CONCLUSIONS AND OUTLOOK
With the growing interest in the application of FSSH to

evaluate the quantum dynamics of an entire reduced density
matrix, this method is increasingly prompted to satisfy the physical

properties that alternative quantum dynamical methods have been
subject to. In this paper, we have demonstrated a violation of pos-
itivity for density matrices obtained within FSSH following the
prevalent implementation17,29 where adiabatic coherences are con-
structed based on wavefunction coefficients rather than the active
surfaces that determine populations. We have furthermore shown
that C-FSSH,30 which invokes a density matrix constructed entirely
out of active surfaces, does not suffer from such positivity violations.
While a formal proof of positivity within C-FSSH is complicated by
the secular approximation, taken to conserve the trace of the den-
sity matrix, our numerical survey for a trimeric system revealed this
property to be consistently satisfied.

In many cases, the reinforcement of positivity by C-FSSH yields
an overall improvement in accuracy over FSSH when compared to
numerically exact results. This renders C-FSSH an attractive for-
malism, especially considering that it comes at virtually the same
cost as FSSH. Moreover, as shown in the present paper, it does not
require the introduction of additional parameters. However, there
are instances where FSSH provides better accuracy, especially when
interactions between quantum levels are weak, reorganization ener-
gies are large, and quantum levels are degenerate. In such cases,
inaccuracies for C-FSSH are predominantly manifested as exces-
sive coherence decay, likely due to an overestimation of hopping
rates that cause the adiabatic off-diagonal density matrix elements
to become zero [cf. Eq. (20)]. Interestingly, overestimations of hop-
ping rates within this very parameter regime have previously been
shown to be resolvable by augmented FSSH (A-FSSH),50–52 which
was introduced with the aim to address overcoherence known to
occur for FSSH. Correcting for overcoherence involves a damping
of off-diagonal matrix elements within the adiabatic basis, which
should mitigate violations of the CS inequality within this basis and
could, therefore, lead to an overall improvement in physical behavior
in addition to enhanced accuracy. It would therefore be of interest
to combine A-FSSH with the coherent generalization embodied by
C-FSSH in order to take advantage of the beneficial properties of
both approaches.

It would furthermore be of interest to assess positivity for other
methods providing consistent formulations of the entire density
matrix based on surface-hopping approaches.30–35 Assuring phys-
ical and consistent density matrices based on surface hopping is
of particular importance for applications to spectral simulations as
well as phenomena that lie markedly outside the Marcus regime. As
such, the present work may also be of interest to the recently pro-
posed reciprocal-space formulation53 of FSSH54 for the modeling of
bandlike phenomena.

SUPPLEMENTARY MATERIAL

See the supplementary material for a flowchart of the C-FSSH
algorithm and a systematic survey of a trimeric system.
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