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ARTICLE INFO ABSTRACT

Keywords: Self-organized spatial patterns of vegetation are frequent in drylands and, because pattern shape correlates
Ecological patterns with water availability, they have been suggested as important indicators of ecosystem health. However, the
Competition mechanisms underlying pattern emergence remain unclear. Some theories hypothesize that patterns could

Scale-dependent feedback
Ecological transitions
Spatial self-organization
Mathematical models

result from a water-mediated scale-dependent feedback (SDF) whereby interactions favoring plant growth
dominate at short distances and growth-inhibitory interactions dominate in the long range. However, we
know little about how the presence of a focal plant affects the fitness of its neighbors as a function of
the inter-individual distance, which is expected to be highly ecosystem-dependent. This lack of empirical
knowledge and system dependency challenge the relevance of SDF as a unifying theory for vegetation pattern
formation. Assuming that plant interactions are always inhibitory and only their intensity is scale-dependent,
alternative theories also recover the typical vegetation patterns observed in nature. Importantly, although
these alternative hypotheses lead to visually indistinguishable patterns, they predict contrasting desertification
dynamics, which questions the potential use of vegetation patterns as ecosystem-state indicators. To help
resolve this issue, we first review existing theories for vegetation self-organization and their conflicting
predictions about desertification dynamics. Second, we discuss potential empirical tests via manipulative
experiments to identify pattern-forming mechanisms and link them to specific desertification dynamics. A
comprehensive view of models, the mechanisms they intend to capture, and experiments to test them in the
field will help to better understand both how patterns emerge and improve predictions on the fate of the
ecosystems where they form.

1. Introduction A well-known example of ecological self-organization is vegetation
pattern formation in water-limited ecosystems [8,9]. Flat landscapes

From microbial colonies to ecosystems extending over continental can show vegetation spots regularly distributed on a matrix of bare soil,

scales, complex biological systems often feature self-organized patterns, soil-vegetation labyrinths, and gaps of bare soil regularly interspersed

which are regular structures that cover large portions of the system
and emerge from nonlinear interactions among its components [1-5].
Importantly, because harsh environmental conditions provide a context
in which self-organization becomes important for survival, emergent
patterns contain crucial information about the physical and biological
processes that occur in the systems in which they form [3,6,7].
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throughout a homogeneous layer of vegetation (Fig. 1). Importantly,
water availability strongly influences the specific shape of the pattern.
In agreement with model predictions [10,11], a Fourier-based analysis
of satellite imagery covering extensive areas of Sudan revealed that
more humid regions are dominated by gapped patterns, whereas spot-
ted patterns dominate in more arid conditions [12]. However, imagery
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Fig. 1. Aerial images of self-organized vegetation patterns. In all panels, vegetated regions are darker and bare-soil regions lighter. (a) Spot pattern in Sudan (11°34’55.2”N;
27°54°47.52”E). (b) Labyrinthine pattern in Mali (12°27°50”N; 3°18’30”E). (c) Gap pattern in Niger (11°1’12”N; 28°10’48”E). (d) Band pattern in Sudan (11°3’0”N; 28°17°24”E).
Source: Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

© 2021 Maxar.

time series are in general not long enough to observe whether vege-
tation cover in a specific region undergoes these transitions between
patterns when aridity increases over time (but see [13]).

Following the spotted pattern, if precipitation continues to decrease,
models predict that patterned ecosystems undergo a transition to a
desert state. This observed correlation between pattern shape and
water availability suggests that the spotted pattern could serve as a
reliable and easy-to-identify early-warning indicator of this ecosystem
shift [14-18]. This potential application of vegetation patterns as early-
warning indicators of ecosystem shift has reinforced the motivation
to develop several models aiming to explain both pattern formation
and their dependence on environmental parameters [10,11,19-22].
Although there have been some attempts to test model predictions
with satellite imagery and remote-sensed indices [13,23,24], model-
based theoretical studies remain the dominant approach to study this
hypothesized transition.

All existing models successfully reproduce the sequence of
gapped, labyrinthine, and spotted patterns found in satellite imagery
(Fig. 2a) [11,19,21,25,26]. However, further analyses have found that
each of these models predicts a different desertification transition
following the spotted pattern. For example, Rietkerk et al. [19] and von
Hardenberg et al. [10] predict that ecosystems undergo abrupt deser-
tification, including a hysteresis loop, following the spotted pattern
(bottom panel of Fig. 2d). Siteur et al. [27], however, mathematically
showed that patterns can be adaptive and change their periodicity in
response to worsening environmental conditions. This study further
showed that such pattern adaptability might help ecosystems avoid
abrupt desertification processes, thus rendering the discontinuous tran-
sitions predicted by [10] and [19] continuous. Martinez-Garcia et al.
[28] and Yizhaq and Bel [29] also predict that desertification could
occur gradually with progressive loss of vegetation biomass (top panel
of Fig. 2d). Finally, Bastiaansen et al. [30] suggested that patterned
ecosystems collapse abruptly when environmental changes are fast and
smoothly when the environmental conditions change slowly. Using
alternative modeling approaches, other studies have supported the
idea that whether an ecosystem will collapse gradually or abruptly is

system-dependent and determined by the intensity of stochasticity [23],
vegetation and soil type [31], colonization rates [32], and intensity
of external stresses, such as grazing [33]. This system dependence
complicates the assessment and prediction of ecosystem health. Because
drylands cover ~40% of Earth’s land surface and are home to ~35%
of the world population [34], determining whether these ecosystems
will respond abruptly or gradually to aridification is critical both from
ecosystem-management and socio-economic points of view.

Active lines of theoretical research aiming to address this ques-
tion have focused on understanding how different components of the
ecosystem may interact with each other to determine its response
to aridification [29,35], as well as on designing synthetic feedbacks,
in the form of artificial microbiomes, that could prevent ecosystems
collapses or make such transitions smoother [36-38]. The question has
also attracted considerable attention from empirical researchers [39],
and recent evidence suggests that certain structural and functional
ecosystem attributes respond abruptly to aridity [40]. Despite current
efforts, whether desertification is more likely to occur gradually or
abruptly remains largely unknown [41].

Here, we discuss how self-organized vegetation patterns may help
understand desertification processes. To this end, we review existing
theoretical models and outline potential empirical approaches that will
help test these models and ultimately elucidate how ecosystems re-
spond to aridification. In Section 2, we discuss the ecological rationale
behind existing models for vegetation self-organization. We review
such models in Section 3, and summarize their opposing predictions
about the ecosystem collapse in Section 4. In Section 5, we describe
possible manipulative experiments and empirical measures that can
help when selecting among the previously scrutinized models. Finally,
in Section 6, we discuss different research lines that build on current
knowledge and discuss how to apply lessons learned from studying
self-organized vegetation patterns to other self-organizing systems.

2. Ecological rationale behind current models for vegetation spa-
tial self-organization

Depending on the number of individuals that form each patch,
we can establish a categorization of non-random vegetation spatial
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patterns into two families: segregated and aggregated patterns (Fig. 2b).
We define a segregated pattern as a spatial distribution of vegetation in
which plant biomass arranges in a usually hexagonal lattice of patches,
with each individual representing one patch. Segregated patterns are
very common in drylands and are expected to emerge exclusively from
ecological interference or competition [4,42]. On the other hand, we
define an aggregated pattern as a spatial distribution of vegetation in
which plants form spatially-distant patches with several individuals in
each patch. Aggregated patterns, which are the focus of our review,
are ecologically more intriguing than segregated patterns because they
might result from a richer set of mechanisms acting at different spatial
scales [9,43,44]. This diversity of potential pattern causes is important
because, at the ecosystem level, the ecological implications of the
pattern strongly depend on the nature of the mechanisms that create
it (Fig. 2¢, d). Moreover, direct evidence of which feedback type drives
aggregated patterns of vegetation in drylands remains elusive.

Existing theories to explain the emergence of self-organized aggre-
gated patterns are based on the biophysical effects that the plant canopy
and the root system exert on the microclimate underneath and on the
soil conditions, respectively [45] (Fig. 2c). These theories ultimately
connect these biophysical effects to the net biotic interaction between
plants, i.e. the effect that plants have on each other’s survival, repro-
duction, and growth rate, and how it changes with inter-individual
distance. To guide our discussion, we classify these theories in two
broad categories, depending on whether they assume that the net biotic
interaction between plants changes from positive to negative with
increasing inter-individual distance (scale-dependent feedback; SDF) or
remains negative at all spatial scales and only weakens with inter-
individual distance (purely competitive feedback; PCF). Importantly,
these two categories can be seen as the extremes of a continuum
of models characterized by the ratio between the intensity of short-
range positive and negative interactions. Next, we briefly review the
mechanisms that have been suggested to underpin models within each
of these two categories and the type of patterns that might emerge from
them.

Scale-dependent feedbacks. Biotic facilitation is a very common in-
teraction in semiarid and arid ecosystems [46]. The SDFs invoked
to explain vegetation self-organization are caused by the facilitative
effects of plants nearby their stems coupled with negative effects at
longer distances. Several ecological processes have been suggested to
support these SDFs. One is the positive effects of shade, which can
overcome competition for light and the effects of root competition for
water, and lead to under-canopy facilitation [47]. In this context, focal
plants have an overall facilitative effect in the area of most intense
shade at the center of the crown. This effect progressively loses inten-
sity with distance to the center of the crown and ultimately vanishes,
leaving just below-ground competition in areas farther from the plant.
A complementary rationale is that plants modify soil crust, structure,
and porosity, and therefore enhance soil water infiltration [48,49].
Enhanced water infiltration has a direct positive effect close to the
plant because it increases soil water content. However, as a by-product,
it has negative consequences farther away from the plant’s insertion
point because, by increasing local infiltration, plants also reduce the
amount of water that can infiltrate in distant bare soil locations [50,51].
The spatial heterogeneity in water availability due to plant-enhanced
infiltration is higher in sloped landscapes where down-slope water
runoff leads to the formation of banded vegetation patterns [52-54],
but it is also significant in flat landscapes and might cause the of
emergence gaps, labyrinths, and spots of vegetation [55-57] (Fig. 2a).

Purely competitive feedbacks. Competition for resources is a ubiqui-
tous interaction mechanism that affects the relationship between any
two plants when the distance between them is short enough. Above
ground, plants compete for light through their canopies; below ground,
they compete for several soil resources, including water and nitrogen,
through their roots [58]. If only competitive mechanisms occur, we
should expect plants to have a negative effect on any other plant within
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their interaction range (top panel in Fig. 2c) and the intensity of this ef-
fect to peak at intermediate distances between vegetation patches [59].
Because finite-range competition is the only interaction required by
PCF models to explain vegetation self-organization, PC is the most
parsimonious feedback type that generates vegetation patterns.

3. Models for vegetation self-organization

Mathematical frameworks for self-organized vegetation patterns are
grouped into two main categories: individual-based models (IBM) and
partial differential equations models (PDEM). IBMs describe each plant
as a discrete entity whose attributes change in time following a stochas-
tic updating rule [60,61]. PDEMs describe vegetation biomass and
water concentration as continuous fields that change in space and time
following a system of deterministic partial differential equations [62].
IBMs are the most convenient approach to study segregated patterns
where single individuals are easy to identify and central to the forma-
tion of vegetation patches [63-66]. Conversely, PDEMs are a better
approximation to aggregated patterns because they focus on a con-
tinuous measure of vegetation abundance and describe the dynamics
of patches that can spread or shrink without any upper or lower
limit on their size. Natural multi-individual patches can change in size
and shape depending on the interaction among the individual plants
that form them, whereas the size of single-plant patches is subject to
stronger constraints (they usually grow, not shrink, and their maximum
size is bounded by plant physiology). Therefore, PDEMs represent a
simplification of the biological reality that is more accurate in ag-
gregated than in segregated patterns. Because here we only consider
aggregated patterns, we will focus our review of the mathematical
literature on PDEMs. Within PDEMs, we first discuss reaction—diffusion
formalisms, based on a system of coupled equations describing the
dynamics of vegetation and water. Second, we discuss kernel-based
models that only describe the dynamics of vegetation biomass density
and encapsulate all interactions between vegetation patches in an effec-
tive kernel function. This kernel function can model only competitive
interactions (kernel-based PCF models; center panel of Fig. 2c) or short-
range facilitation and long-range inhibition (kernel-based SDF models;
bottom panel of Fig. 2c).

3.1. Reaction—diffusion SDF models

In 1952, Turing showed that differences in the diffusion coeffi-
cients of two reacting chemicals can lead to the formation of stable
spatial heterogeneities in their concentration [67]. In Turing’s original
model, one of the chemicals acts as an activator and produces both
the second chemical and more of itself via an autocatalytic reaction.
The second substance inhibits the production of the activator and
therefore balances its concentration (Fig. 3a). Spatial heterogeneities
in the concentrations can form if the inhibitor diffuses much faster
than the activator, so that it inhibits the production of the activator
at a long range and confines the concentration of the activator locally
(Fig. 3b). This activation-inhibition principle thus relies on a SDF to
produce patterns: positive feedbacks (autocatalysis) dominate on short
scales and negative, inhibitory feedbacks dominate on larger scales. In
the context of vegetation pattern formation, plant biomass acts as the
self-replicating activator. Water is a limiting resource and thus water
scarcity is an inhibitor of vegetation growth [9,68].

3.1.1. Two-equation water-vegetation dynamics: the generalized Klaus-
meier model

Initially formulated to describe the formation of stripes of vege-
tation in sloping landscapes (Fig. 1d) [54], subsequent studies have
generalized the Klausmeier model to flat surfaces [13,69,70]. Mathe-
matically, the generalized version of the Klausmeier model is given by
the following equations:

ow(r,t)

o = R—-1lw(r,t)—ag(w) f (v)v(r,t) + Dszw(r, 1), (€8]
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Fig. 2. Conceptual summary of existing theories for vegetation self-organization, their emergent patterns and the type of desertification processes they predict. (a) Graphical
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through an autocatalytic reaction. The inhibitor degrades the activator at rate k,, and diffuses at rate D, > D,. (b) Schematic of the pattern-forming process in a one-dimensional

system.

au(r,t)
ot
where w(r,t) and u(r,t) represent water concentration and density of
vegetation biomass at location r and time ¢, respectively. In Eq. (1),
water is continuously supplied at a precipitation rate R, and its concen-
tration decreases due to physical losses such as evaporation, occurring
at rate / (second term), and local uptake by plants (third term). In the
latter, a is the plant absorption rate, g(w) describes the dependence
of vegetation growth on water availability, and f(v) is an increasing
function of vegetation density that represents the positive effect that
the presence of plants has on water infiltration. Finally, water dif-
fuses with a diffusion coefficient D,,. Similarly, Eq. (2) accounts for
vegetation growth due to water uptake (first term), plant mortality

= aqgw) f ) v(r,1) = mo(r,1) + D,V2u(r,1), @)

at rate m (second term), and plant dispersal (last term). In the plant
growth term, the parameter g represents the yield of plant biomass
per unit of consumed water; although the original model assumed for
mathematical simplicity linear absorption rate and plant response to
water (i.e., g(w) = w(r,1) and f(v) = v(r,1)), other biologically-plausible
choices can account for processes such as saturation in plant growth
due to intraspecific competition [71].

The generalized Klausmeier model with linear absorption rate and
plant responses to water has three spatially-uniform equilibria obtained
from the fixed points of Egs. (1)—(2): an unvegetated state (v* = 0, w* =
R/1), stable for any value of the rainfall parameter R; and two states in
which vegetation and water coexist at different non-zero values. Only
the vegetated state with higher vegetation biomass is stable against
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non-spatial perturbations, and only for a certain range of values of
R. The latter suffices to guarantee bistability, that is, the presence
of alternative stable states (vegetated vs unvegetated), and hysteresis.
For spatial perturbations, however, the stable vegetated state becomes
unstable within a range of R, and the system develops spatial patterns.

3.1.2. Three-equation water—vegetation dynamics: the Rietkerk model

The Rietkerk model extends the generalized Klausmeier model by
splitting Eq. (1) into two equations (one for surface water, and another
one for soil water) and including a term that represents water infiltra-
tion (see also [57]). Moreover, in the Rietkerk model, the functions that
represent water uptake and infiltration are nonlinear, which introduces
additional feedbacks between vegetation, soil water, and surface water.
The model equations are as follows:

v(r, 1) + ky wy

ou(r, 1) ,
— = R—-q——— = D
5 a oy + 00,0 u(r,t)+ D, V-u(r,t) 3)
ow(r,1) u(r, 1) + ky wy u(r, ) w(r,t)
=a ur,t) =gy ——————
ot ky + o(r, 1) k; + w(r,?)
— 8, w(r, ) + D, V2uw(r,1) (€]
ou(r,1) u(r,t) w(r,t) _ 2
a g k1 0(n,0 6, v(r,t)+ D, V-u(r,t) 5)

where u(r, 1), w(r,t), and o(r,7) are the density of surface water, soil
water, and vegetation, respectively. In Eq. (3), R is the mean annual
rainfall (mm day~!), providing a constant supply of water to the
system; the second term accounts for infiltration; and the diffusion term
accounts for the lateral circulation of water on the surface. In Eq. (4),
the first term represents the saturating infiltration of surface water
into the soil, which is enhanced by the presence of plants; the second
term represents water uptake; the third one accounts for physical losses
of soil water, such as evaporation; and the diffusion term describes
the lateral circulation of underground water. Finally, the first term in
Eq. (5) represents vegetation growth due to the uptake of soil water,
which is a function that saturates for high water concentrations; the
second term accounts for biomass loss at constant rate due to natural
death or external hazards; and the diffusion term accounts for plant
dispersal. The meaning of each parameter in the equations, together
with the values used in Rietkerk et al. [19] for their numerical analysis,
are provided in Table 1.

In the spatially uniform case, this model allows for two different
steady states: a vegetated state in which vegetation, soil water, and sur-
face water coexist at non-zero values; and an unvegetated (i.e., desert)
state in which only soil water and surface water are non-zero. Con-
sidering the parameterization in Table 1, the stability of each of these
states switches at R = 1. For R < 1, only the unvegetated equilibrium
is stable against non-spatial perturbations, whereas for R > 1 the
vegetated equilibrium becomes stable and the desert state, unstable.
When allowing for spatial perturbations, numerical simulations using
the parameterization in Table 1 show the existence of spatial patterns
within the interval 0.7 < R < 1.3, which is in agreement with analytical
approximations [72]. Within this range of mean annual rainfall, the
patterns sequentially transition from gaps to labyrinths to spots with
increasing aridity. For R ~ 0.7, the system transitions abruptly from
the spotted pattern to the desert state.

In its original formulation, the Rietkerk model assumes constant
rainfall, homogeneous soil properties, and only local and short-range
processes. Therefore, all the parameters are constant in space and time,
and patterns emerge from SDFs between vegetation biomass and water
availability alone. This simplification is, however, not valid for most
ecosystems. Arid and semi-arid regions feature seasonal variability in
rainfall [73] and depending on the functional dependence between
water uptake and soil moisture, stochastic rainfall might increase the
amount of vegetation biomass in the ecosystem compared to a constant
rainfall scenario [74]. Moreover, the properties of the soil often change
in space. A widespread cause of this heterogeneity is soil-dwelling
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Table 1
Typical parameterization of the Rietkerk model [19].
Parameter Symbol Value
c Water-biomass conversion factor 10 (g mm~! m—2)
a Maximum infiltration rate 0.2 (day™)
&n Maximum uptake rate 0.05 (mm g~! m~2 day™!)
wy Water infiltration in the absence of plants 0.2 (-)
ky Water uptake half-saturation constant 5 (mm)
k, Saturation constant of water infiltration 5 (g m2)
8y Soil water loss rate 0.2 (day™)
Plant mortality 0.25 (day™)

0.1 (m?> day™)
0.1 (m? day™!)
100 (m? day™')

s,

D, Soil water lateral diffusion

D, Vegetation dispersal

D Surface water lateral diffusion

macrofauna, such as ants, earthworms, and termites [4]. Heterogene-
ity in substrate properties induced by soil-dwelling macrofauna, and
modeled by space-dependent parameters, might interact with SDFs
between water and vegetation and introduce new characteristic spatial
scales in the pattern [35]. Finally, researchers have also extended
the Rietkerk model to account for long-range, nonlocal processes. For
example, a nonlocal mechanism in the interaction between vegetation
biomass and soil water of Egs. (4)—(5) can model the water conduction
of lateral roots towards the plant canopy [56]. As explained in the next
section, although the model in [56] accounts for nonlocal processes, it
is conceptually very different from kernel-based models.

3.2. Kernel-based SDF models

Kernel-based models are those in which all the feedbacks that
control the interaction between plants are encapsulated in a single
nonlocal net interaction between plants. The nonlocality in the net
plant interaction accounts for the fact that individual (or patches
of) plants can interact with each other within a finite neighborhood.
Therefore, the vegetation dynamics at any point of the space is coupled
to the density of vegetation at locations within the interaction range.
Because all feedbacks are merged into a net interaction between plants,
kernel-based models do not describe the dynamics of any type of water
and use a single partial integro-differential equation to describe the
spatiotemporal dynamics of the vegetation. The kernel is often defined
as the addition of two Gaussian functions with different widths, with
the wider function taking negative values to account for the longer
range of competitive interactions [75] (center plot in Fig. 2c).

3.2.1. Models with additive nonlocal interactions

In the simplest kernel-based SDF models, the spatial coupling is
introduced linearly in the equation for the local dynamics [75],
w =h(u)+/dr’G (r’;r) [v (r',t)—l)o]. (6)
The first term describes the local dynamics of the vegetation, i.e., tem-
poral changes in vegetation density at a location r due to processes
in which neighboring vegetation does not play any role. The integral
term describes any spatial coupling, i.e., changes in vegetation density
at r due to vegetation density at neighbor locations r’. Assuming spatial
isotropy, the kernel function G(r,r’) decays radially with the distance
from the focal location, |r' —r|, so G (r',r) = G(|r' — r|). Therefore, two
main contributions govern the dynamics of vegetation density: first,
if the spatial coupling is neglected, the vegetation density increases
or decreases locally depending on the sign of h(v) until reaching a
uniform steady state v, solution of A(v,) = 0; second, the spatial
coupling enhances or diminishes vegetation growth depending on the
sign of the kernel function (i.e., whether the spatial interactions affect
growth positively or negatively) and the difference between the local
vegetation density and the uniform steady state vj,.



R. Martinez-Garecia et al.

Assuming kernels that are positive close to the focal location and
negative far from it (modeling a SDF), local perturbations in the veg-
etation density around v, are locally enhanced if they are larger than
vy and attenuated otherwise. As a result, the integral term destabilizes
the homogeneous state when perturbed, and spatial patterns arise in
the system. Long-range growth-inhibition interactions, together with
nonlinear terms in the local-growth function A(v), avoid the unbounded
growth of perturbations and stabilize the pattern. However, although
this mechanism imposes an upper bound to vegetation density, nothing
prevents v from taking unrealistic, negative values. To avoid this issue,
the model must include an artificial bound at v = 0 such that vegetation
density is reset to zero whenever it becomes negative.

3.2.2. Models with multiplicative nonlocal interactions

A less artificial way to ensure that vegetation density remain always
positive is to modulate the spatial coupling with nonlinear terms. For
example, the pioneering model developed by Lefever and Lejeune [14]
consists of a single integro-differential equation describing the spatio
temporal dynamics of vegetation biomass, v,

du(r,t)
ot

(co2 * U) (r,1)
K

=p o * 01 +Qv)|(r.0) [1 - ]—n (w3 * v) (r,1)

)

Eq. (7) is a modified logistic equation with seed production rate # and
an additional facilitation term modulated by the parameter €. 7 is the
rate at which vegetation biomass is lost due to spontaneous death and
external hazards such as grazing, fires, or anthropogenic factors (last
term). Each of the terms includes a spatial convolution that encodes
long-range spatial interactions via a weighted average of vegetation
density within a neighborhood of the focal location,

(w; % f(V)) (r,t)=/dr'wi(r—r';f,»)fi[v(r’,r)] i=1,2,3(8)

In the convolutions defined by Eq. (8), the model assumes spatial
isotropy. Each w; is a weight function with a characteristic spatial
scale #; that defines the size of the neighborhood contributing to
the focal process. For instance, w,(r — r’;¢,) defines ¢, as linear the
size of the neighborhood that contributes to the growth of vegetation
biomass at r. Similarly, #, defines the scale over which plants inhibit
the growth of their neighbors, and ¢; the scale over which vegetation
density influences the spontaneous death rate of vegetation at the focal
location. These scales, however, are rarely parameterized using field
measurements of root extent and crown size (but see [76,77]). Instead,
they are set to meet the conditions of a scale-dependent feedback with
long-range growth inhibition and short-range activation. In Lefever and
Lejeune [14], the authors assume ¢, > #;, and the model includes a SDF
with short-range facilitation and long-range competition.

Expanding upon this work, other studies have introduced non-linear
spatial couplings via spatial convolutions multiplying only some of
the terms of the model equation [78-80], and others have expanded
the integral terms and studied the formation of localized structures of
vegetation [79,81,82].

3.3. Kernel-based PCF models

In previous sections, we invoked the existence of SDFs in the inter-
actions among plants to explain the emergence of self-organized spatial
patterns of vegetation. Both theoretical and empirical studies, however,
have highlighted the importance of long-range negative feedbacks on
pattern formation, suggesting that short-range positive feedbacks might
be secondary actors that sharpen the boundaries of clusters rather
than being key for the instabilities that lead to the patterns [9,43,59].
Following these arguments, Martinez-Garcia et al. [28], [21] proposed
a family of purely competitive models with the goal of identifying
the smallest set of mechanisms needed for self-organized vegetation
patterns to form.
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The simplest PCF models consider additive nonlocal interactions
[21]. Alternatively, nonlocal interactions can be represented through
nonlinear functions modulating either the growth or the death terms.
In both cases, the models develop the full sequence of patterns (gaps,
labyrinths, and spots). The model proposed by Martinez-Garcia et al.
[28] introduces competition through the growth term:

ou(r,1 ~ 1
”gt )=PE(U,5)ﬂU(r,t)<l—%> —nur 1), ©

where f and K are the seed production rate and the local carrying
capacity, respectively. P is the probability that seeds overcome com-
petition and establish as new vegetation biomass. 6 is the competition-
strength parameter, and o(r,?) is the average density of vegetation
around the focal position r:

B = / dro (I —r) v(F.1). 10)

where the kernel function w is a weight function and thus plays the
same role and has the same properties described for the w; functions in
Section 3.2. The model further assumes that vegetation losses occur at
constant rate n and vegetation grows through a three-step sequence of
seed production, local dispersal, and establishment [83], represented
by the three factors that contribute to the first term in Eq. (9). First,
plants produce seeds at a constant rate #, which leads to the growth
term pu(r,t). Second, seeds disperse locally and compete for space
which defines a local carrying capacity K. Third, plants compete for
resources with other plants, which is modeled using the plant estab-
lishment probability, P;. Because the only long-range interaction in the
model is root-mediated interference, and competition for resources is
more intense in more crowded environments, Py is a monotonically
decreasing function of the nonlocal vegetation density &(r,7) defined
in Eq. (10). Moreover, P; also depends on the competition-strength
parameter, §, representing resource limitation. In the limit § = 0,
resources are abundant, competition is weak, and P; = 1. Conversely, in
the limit § - o0, resources are very scarce, competition is very strong,
and P; — 0.

In PCF models, spatial patterns form solely due to long-range com-
petition. If the characteristic range of competition is comparable to
the inter-patch distance, individuals attempting to establish in between
patches compete with vegetation from more than one adjacent patch,
whereas individuals within a patch only interact with plants in that
same patch. As a result, competition is more intense in the regions
between patches than inside each patch, which stabilizes an aggregated
pattern of vegetation (Fig. 4) whose shape (gaps, labyrinths or spots)
will depend on the model parameterization. This same mechanism has
been suggested to drive the formation of clusters of competing species
in niche space [84-88] and the aggregation of individuals in models of
interacting particles with density-dependent reproduction rates [89].

4. Self-organized patterns as indicators of ecological transitions

Models using different forms for the net biotic interaction between
neighbor patches (SDF vs PCF) have succeeded at reproducing qual-
itatively the spatial patterns of vegetation observed in water-limited
ecosystems [12]. All these different models also predict that a spotted
pattern precedes a transition to an unvegetated state, suggesting that
clumped vegetation patterns could be an early-warning indicator of
desertification transitions [16,17]. Models assuming different underly-
ing mechanisms for the formation of these patterns, however, result in
different desertification processes.

The Rietkerk model from Section 3.1.2, for example, predicts that
self-organized ecosystems eventually collapse following an abrupt tran-
sition that includes a hysteresis loop (Fig. 5a). Abrupt transitions such
as this one are typical of bistable systems in which the stationary
state depends on the environmental and initial conditions. Bistability
is a generalized feature of models for vegetation pattern formation,
sometimes occurring also in transitions between patterned states [10].
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Fig. 4. In PCF models, patchy distributions of vegetation in which the distance between patches is between one and two times the range of the nonlocal interactions are stable.
Individuals within each patch only compete with the individuals in that patch (a,b), whereas individuals in between patches compete with individuals from both patches (c). Color
code: green trees are focal individuals, and dashed circles limit the range of interaction of the focal individual. Dark gray is used for individuals that interact with the focal one,
whereas light gray indicates individuals that are out of the range of interaction of the focal individual. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

It also denotes the existence of thresholds in the system that trig-
ger sudden, abrupt responses in its dynamics. These thresholds are
often created by positive feedbacks or quorum-regulated behaviors,
as is the case in populations subject to strong Allee effects [90]. In
the Rietkerk model, as rainfall decreases, the spatial distribution of
vegetation moves through the gapped-labyrinthine-spotted sequence
of patterns (Fig. 5a). However, the system responds abruptly when
the rainfall crosses a threshold value, and all vegetation dies. Setting
up the simulations as indicated by Rietkerk et al. [19] and using the
parameterization of Table 1, this threshold is located at R ~ 0.55 mm
day~!. Once the system reaches this unvegetated state, increasing water
availability does not allow vegetation recovery until R ~ 0.70 mm
day~!, which results in a hysteresis loop and a region of bistability
(R € [0.55,0.70] in Fig. 5a). Bistability and hysteresis loops make
abrupt, sudden transitions like this one extremely hard to revert. Hence,
anticipating such abrupt transitions is crucial from a conservation and
ecosystem-management point of view [16,17].

Extended formulations of the Rietkerk model have suggested that
the interaction between vegetation and other biotic components of
the ecosystem may change the transition to the unvegetated state.
Specifically, soil-dwelling termites, in establishing their nests (mounds),
engineer the chemical and physical properties of the soil in a way that
turns the abrupt desertification into a two-step process (Fig. 5b) [35].
At a certain precipitation level (R ~ 0.75 mm day~! using the pa-
rameterization in Table 1 and the same initial condition used for the
original Rietkerk model), vegetation dies in most of the landscape (T1
in Fig. 5b) but persists on the mounds due to improved properties for
plant growth created by the termites. On-mound vegetation survives
even if precipitation continues to decline, and is finally lost at a rainfall
threshold R ~ 0.35 mm day~! (T2 in Fig. 5b). As a consequence of
the two-step transition, the ecosystem collapse is easier to prevent,
because a bare soil matrix with vegetation only on mounds serves as an
early-warning signal of desertification, and it is easier to revert because
termite-induced heterogeneity breaks the large hysteresis loop of the
original model into two smaller ones (compare the hysteresis loops in
Figs. 5a and 5b).

Alternative stable states can also occur among patterns. The gener-
alized Klausmeier model exhibits a range of stable patterned states for
a given rainfall value, and thus pattern multistability [27]. Therefore,
observed patterns only contain partial information about the ecosystem
state since they will be very strongly determined by the system history.
Likewise, this model predicts that a pattern with a specific periodicity
is stable for a wide range of rainfall values, which means that it could
persist if environmental conditions worsen as long as they remain
within the range in which the pattern is stable. As a general rule,
the generalized Klausmeier model predicts that patterns with higher

wavenumbers are stable at higher rainfall values, and lower wavenum-
bers become stable as rainfall decreases. Therefore, this model predicts
that patterned ecosystems can respond to decreasing water availability
by adjusting the pattern wavenumber, which can eventually allow the
system to evade abrupt desertification processes [27]. This possibility
is more likely if environmental conditions change slowly [30]. More
recent work has hypothesized that a similar multistability could appear
in the Rietkerk model, challenging the importance of spatial patterning
as an early-warning indicator of abrupt desertification processes and
regime shifts [41].

Finally, the PCF model discussed in Section 3.3 predicts a smooth
desertification in which vegetation biomass decreases continuously in
response to decreasing seed production rate (a proxy for worsening
environmental conditions) [91]. According to this model, the spotted
pattern would persist as precipitation declines, with vegetation biomass
decreasing in the patch until it eventually disappears (Fig. 5c). Dif-
ferent from the catastrophic shift described for the Rietkerk model,
smooth transitions such as the one depicted by this model do not
show bistability and do not feature hysteresis loops. This difference
has important socio-ecological implications, because it enables easier
and more affordable management strategies to restore the ecosystem
after the collapse [36]. Moreover, continuous transitions are also more
predictable because the density of vegetation is univocally determined
by the control parameter (seed production rate, g in Fig. 5¢) and does
not depend on the system history. Importantly, this specific model
assumes that vegetation dispersal is local, and hence Eq. (9) does
not include a diffusion term. Further bifurcation analysis should be
performed to determine whether the spotted pattern bifurcates from the
unvegetated state following a supercritical transition due to the absence
of a positive feedback or the lack of diffusion.

In the three scenarios discussed above, self-organized vegetation
patterns appear as an inexpensive and reliable early indicator of eco-
logical transitions [16,17]. We have shown that widespread spotted
patterns can form in models accounting for very different mechanisms
(Fig. 5). Therefore, the different predictions that models make about
the transition highlights the need for tailored models that not only
reproduce the observed patterns but do so through mechanisms rel-
evant to the focal system. Because ecosystems are highly complex,
it is very likely that spotted patterns observed in different regions
emerge from very different mechanisms (or combinations of them)
and thus anticipate very different transitions [23,31-33]. Therefore, a
reliable use of spotted patterns as early warning indicators of ecosystem
collapse requires (i) mechanistic models that are parameterized and val-
idated by empirical observations of both mechanisms and patterns; (ii)
quantitative analyses of field observations involving as many variables
as possible; and (iii) manipulative experiments.
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Fig. 5. Although different models for vegetation pattern formation may recover the same sequence of gapped-labyrinthine-spotted patterns from different mechanism, the type
of desertification transition that follows the spotted pattern strongly depends on the model ingredients. (a) Abrupt desertification as predicted by the Rietkerk model [19]. (b)
Two-step desertification process as predicted in Bonachela et al. [35] when soil-dwelling insects are added to the Rietkerk model. (c) Progressive desertification as predicted by
the PCF model introduced in Martinez-Garcia et al. [28]. For each panel, numerical simulations were conducted using the same setup described in the original publications.

5. Testing models for vegetation self-organization in the field

As evidenced through this review, the study of self-organized veg-
etation patterns has been mostly theoretical and empirical evidence of
the self-organization hypotheses explaining the formation of vegetation
spatial patterns are much less widespread. In this section, we explore
possible empirical approaches to understanding the mechanisms re-
sponsible for the formation and persistence of self-organized aggregated
patterns and propose a two-step protocol to this end.

At least three possible approaches exist to testing existing self-
organization hypotheses for pattern formation in natural systems. First,
the observation and measurement of the spatial structure of patterns
from aerial and satellite photography (the observational approach).
Within this observational approach, we can distinguish between a
single objective optimization approach that only aims to match pattern
shapes, and a multiobjective optimization approach in which models
must simultaneously be consistent with multiple output variables (pat-
tern shape, vegetation density, water infiltration rates...) when properly
parameterized. Second, the assessment of the net interactions among
plants or plant patches as a function of the distance between them
(the net-interaction approach). Third, the investigation of the specific
mechanisms underpinning that interaction (the selective mechanistic
approach). The observational approach, mainly on its single-objective
optimization variant, has been relatively common, and is the one that
has motivated the development of most existing models [20,92]. Nev-
ertheless, without a more detailed understanding of the focal systems,
one cannot discard whether agreement between model predictions and
natural observations is coincidental. The mechanistic approach has
been relatively common. Some studies have investigated selectively
the mechanisms potentially leading to pattern formation in tiger bush

banded vegetation in Niger [93], plant tussock and cushions in the An-
dean Altiplano [76], vegetation rings in Israel [94,95], or fairy circles
in Namibia [96,97] and Australia [98]. To our knowledge, the net-
interaction approach is conspicuous by being absent, and researchers
have scarcely measured directly the net interaction among plants or
vegetation patches and its variation with the inter-plant distance in
patterned ecosystems.

Because we are discussing here aggregated patterns, a first step in
such an approach is to confirm that vegetation patches are formed by
several aggregated individuals. In the case of segregated patterns, we
recommend the use of point pattern analysis under the hypothesis of
the dominance of competition forces [99]. Following this preliminary
test, we propose a two-step protocol to conduct future field research on
the emergence and maintenance of vegetation spatial patterns.

First step: phenomenological investigation of the net interaction among
plants within the vegetated patch and in bare soil. This first step is
needed because a myriad of alternative mechanisms can explain the
formation of spatial patterns, some of them well aligned with the
idea of vegetation self-organization and others dependent on external
biological or geological factors. For example, in the case of fairy circles
researchers have explored the role of higher evaporation [100] and
increased termite activity [101] within the circles; spatial heterogeneity
in hydrological processes, such as increased infiltration in the circles
of bare soil [97] or increased water runoff in the circles and in the
matrix [98]; and the geological emanation of toxic gases [102] and
the presence of allelochemical substances [103] in the circles. By using
a phenomenological approach as a first step, researchers can discard
many of these potential mechanisms, directing their efforts towards
more specific hypotheses in a second step. For this first step, a simple
experimental setup, based on mainstream methods to measure plant
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Fig. 6. Schematic representation of a simple experimental setup to test in the field whether the mechanism of spatial patterning is a purely competitive feedback (PCF) or a classic
scale-dependent feedback (SDF). Plant (a) is an experimental plant growing under-canopy, (b) is growing in bare soil, and (c) is a control plant growing in artificial conditions,
free from the biotic interaction using root barriers in bare soil areas of the same environment.

biotic interaction would reveal whether PCF, SDF, or none of them are
responsible for the emergent pattern [104]. Our proposed experiment
would compare a fitness proxy (e.g., growth, survival) of experimental
plants planted in the system under study, where we observe a regu-
lar vegetation pattern and we assume that the vegetation dynamics
has reached a stationary state for the location-specific environmental
conditions. Each experimental block would consist of a plant growing
under-canopy (Fig. 6a), a plant growing in bare soil (i.e., between
two vegetation patches) (Fig. 6b), and a control plant growing in
the same ecosystem but artificially isolated from the interaction with
pattern-forming individuals (Fig. 6c). To isolate control plants from
canopy interaction they need to be planted in bare soil areas. To isolate
them from below-ground competition, one can excavate narrow, deep
trenches in which a root barrier can be inserted [105]. To isolate them
from the competition for runoff water with the vegetation patches,
root barriers should protrude from the soil a few centimeters, prevent-
ing precipitation water to leave the area and runoff water to enter.
Comparing the fitness proxy of the control plant with that of plants
growing in vegetation patches or bare soil reveals the sign and strength
of the net biotic interaction. By replicating this experimental block,
we can statistically determine whether the pattern formation results
from a SDF, a PCF, or whether it involves a different process. The
SDF hypothesis would be validated if a predominantly positive net
interaction is observed under the canopy, and a negative interaction
is observed in bare soils. Conversely, the PCF would be validated if we
observe a negative net interaction in bare soils and under canopy (see
Table 2). Any other outcome in the spatial distribution of the sign of the
net interaction between plants would suggest that other mechanisms
are at play, which could include the action of different ecosystem
components, such as soil-dwelling macrofauna [106], or abiotic factors,
such as micro-topology.

Second step: direct measurement of the biophysical processes responsible
for the pattern. After confirming the PCF, SDF, finding an alternative
spatial distribution of plant interactions, or rejecting the self-organizing
hypothesis, a second experimental step would test specific biophysical
mechanisms responsible for the measured interaction and driving the
spatial pattern. For example, PCF models hypothesize that spatial pat-
terns are driven by long-range below-ground competition for a limiting

Table 2

Testing the PCF versus SDF hypotheses in the experimental setup introduced in Fig. 6.
Double signs indicate stronger intensity. Indexes to calculate the sign of the net
interaction can be taken from Armas et al. [104].

Under canopy vs control Bare soil vs control Outcome

0/~ - -
+ _

Purely competitive feedback
Scale-dependent feedback

resource through the formation of exclusion regions. As discussed in
Section 3.3, these exclusion regions are territories between patches
of vegetation in which the intensity of competition is higher than
within the patch [59], possibly because they present a higher density
of roots (Fig. 4) [21,28]. To test for the existence of exclusion regions
and confirm whether below-ground competition is driving the spatial
pattern, researchers can measure the changes in root density using
coring devices [107] across soil transects going from the center of
a vegetated patch to the center of a bare soil patch. Field tests and
manipulative experiments to confirm that SDFs are responsible for
vegetation patterns are not easy to perform but researchers can do a
handful of analyses. For example, ecohydrological SDF models assume
that water infiltration is significantly faster in vegetation patches than
in bare soil areas [19]. Many empirical researchers have tested this
assumption in patterned vegetation using mini disk infiltrometers to
quantify unsaturated hydraulic conductivity, dual head infiltrometers
to measure saturated hydraulic conductivity, or buried moisture sensors
connected to data loggers to record volumetric soil moisture con-
tent [95,97,98,108]. The measures should show higher infiltration rates
and moisture under vegetated patches than in bare soil. Note, however,
that infiltration rates might be very hard to measure due to small-scale
soil heterogeneities. Ecohydrological models make other assumptions
that are less often considered in the field. For instance, they assume
that the lateral transport of water is several orders of magnitude larger
than vegetation diffusion (i.e., patch growth speed), which might be
true or not depending on soil properties. To test these assumptions,
field researchers need to measure the intensity of the water runoff
and compare it to a measure of the lateral growth rate of vegetation
patches. Water runoff is very challenging to measure directly, but
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estimates can be calculated using the infiltration rates obtained with
infiltrometers [109]. The lateral growth rate of vegetation patches
can be estimated based on drone or satellite images repeated over
time [110]. Combining measures of both water runoff and expansion
rates of vegetation patches, one can estimate approximated values for
the relative ratio of the two metrics.

6. Conclusions and future lines of research

As our ability to obtain and analyze large, high-resolution im-
ages of the Earth’s surface increases, more examples of self-organized
vegetation patterns are found in water-limited ecosystems. Here, we
have reviewed different modeling approaches employed to understand
the mechanistic causes and the predicted consequences of those pat-
terns. We have discussed how different models, relying on different
mechanisms, can successfully reproduce the patterns observed in nat-
ural systems despite the fact that each of these models predicts very
different ecosystem-level consequences of the emergent pattern. This
discrepancy limits the utility of vegetation patterns as applied ecolog-
ical tools. To solve this issue we propose a new approach to studying
vegetation pattern formation in water-stressed systems. This new ap-
proach should abandon the development of phenomenological models
that are validated qualitatively via the visual comparison of simulated
and observed (macroscopic) patterns and pursue a more mechanistic
and system-specific description of vegetation self-organization. This
new approach must necessarily focus on isolating the system-specific,
key feedbacks for vegetation self-organization. To achieve this goal, we
identify two main directions for future research.

In the first direction, we propose to extend the current model
validation based on comparing simulated and observed pattern to
other ecological variables that can be predicted by existing models.
Recent developments in remotely sensed imagery have enabled the
measurement of an ecosystem’s state indicators, which will allow re-
searchers to compare observed and simulated patterns quantitatively
and to extend this comparison to other model outputs such as soil
moisture or water infiltration rates. This more comprehensive compar-
ison between simulations and data would allow researchers to conduct
a model selection analysis based on a multi-objective optimization
process and thus classify existing models from more to less realistic de-
pending on whether (and how many) features of the focal ecosystem the
model manages to reproduce in the correct environmental conditions.
For example, models could be classified depending on whether, after
proper parameterization, they can predict ecosystem responses such
as transitions between pattern types at the correct aridity thresholds.
To elaborate this model classification, the use of Fourier analysis for
identifying regularity in natural patterns, geostatistics for quantifying
spatial correlations, and time series analysis for tracking changes in the
ecosystem properties through time will be essential.

In the second direction, biologically-grounded studies should aim to
combine system-specific models with empirical measures of vegetation-
mediated feedbacks. Experimental measures of the (microscopic) pro-
cesses and feedbacks central to most models of vegetation pattern
formation are hard to obtain, leading to arbitrary (free) parameter
values and response functions. For example, very few models incorpo-
rate empirically-validated values of water diffusion and plant dispersal
rates, despite the crucial role of these parameters in the emergence of
patterns. Instead, these models fine-tune such values to obtain patterns
similar in, for example, their wavelength, to the natural pattern. Simi-
larly, we are only beginning to understand how plants rearrange their
root system in the presence of competing individuals [111,112], and
hence kernel-based models still do not incorporate realistic functional
forms for the kernels. Instead, these models use phenomenological
functions to test potential mechanisms for pattern formation by quali-
tatively comparing model output and target pattern, thus limiting the
potential of the models to make quantitative predictions. To establish
a dialogue between experiments and theory, these purely mechanistic
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models should develop from a microscopic description of the sys-
tem [60,61], which allows for a more realistic and accurate description
of the plant-to-plant and plant-water interactions as well as for a better
reconciliation between model parameters and system-specific empirical
measures. Subsequently, existing tools from mathematics, statistical
physics, and/or computer science can be used to reach a macroscopic
PDEM that captures the key ingredients of the microscopic dynamics.
Statistical physics, which was conceived to describe how observed
macroscopic properties of physical systems emerge from the underly-
ing microscopic processes, provides a compelling and well-developed
framework to make such a micro-macro connection.

Beyond water-limited ecosystems, SDFs have been invoked to ex-
plain spatial pattern formation in mussel beds [9], freshwater and salt
marshes [113-115], and seagrasses [116,117]. Conversely, nonlocal
competition drives the emergence of aggregated patterns in freshwater
marshes [43] and in theoretical models of population dynamics [118-
124]. Understanding the conditions in which negative feedbacks dom-
inate over positive feedbacks, finding the key features that distinguish
the patterns caused by these different feedbacks, and contrasting their
divergent ecological consequences constitutes an exciting venue for
future research that has just started to develop [44].

CRediT authorship contribution statement

Ricardo Martinez-Garcia: Conceptualization, Visualization, Writ-
ing - original draft, Project administration. Ciro Cabal: Conceptual-
ization, Visualization, Writing — original draft. Justin M. Calabrese:
Conceptualization, Writing — review & editing. Emilio Hernandez-
Garcia: Conceptualization, Writing — review & editing. Corina E. Tar-
nita: Conceptualization, Writing — review & editing. Cristébal Lopez:
Conceptualization, Writing — review & editing. Juan A. Bonachela:
Conceptualization, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgments

We thank Robert M. Pringle, Rubén Juanes, and Ignacio Rodriguez-
Iturbe for various discussions at different stages of the development
of this work. This work is supported by FAPESP through grants ICTP-
SAIFR 2016,/01343-7, 2019/24433-0 and 2019/05523-8; ICTP through
the
Associates Programme; Simons Foundation through grant number
284558FY19 (RMG). The Princeton University May Fellowship in the
department of Ecology and Evolutionary Biology (CC); the Spanish
State Research Agency, through the Severo Ochoa and Maria de Maeztu
Program for Centers and Units of Excellence in R&D (MDM-2017-
0711) funded by MCIN/AEI/10.13039/501100011033 (EHG & CL).
The NSF RoL:FELS:EAGER-1838331 (CET); Gordon and Betty Moore
Foundation, grant #7800 (CET & JAB). NSF grant DMS-2052616;
Simons Foundation (award #82610) (JAB). This work was partially
funded by the Center of Advanced Systems Understanding (CASUS)
which is financed by Germany’s Federal Ministry of Education and
Research (BMBF) and by the Saxon Ministry for Science, Culture and
Tourism (SMWK) with tax funds on the basis of the budget approved
by the Saxon State Parliament (JMC).



R. Martinez-Garecia et al.

References

[1]
[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Meinhardt H. Models of biological pattern formation. Academic Press; 1982.
Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Bonabeau E, Theraula G.
Self-organization in biological systems. Princeton University Press; 2003.

Solé RV, Bascompte J. Self-organization in complex ecosystems. Princeton
University Press; 2006, https://press.princeton.edu/titles/8224.html.

Pringle RM, Tarnita CE. Spatial self-organization of ecosystems: Integrat-
ing multiple mechanisms of regular-pattern formation. Annu Rev Entomol
2017;62:359-77. http://dx.doi.org/10.1146/annurev-ento-031616-035413.
Martinez-Garcia R, Tarnita CE, Bonachela JA. Spatial patterns in ecological sys-
tems: from microbial colonies to landscapes. Emerg Top Life Sci 2022;6:245-58.
http://dx.doi.org/10.1042/ETLS20210282.

Meron E. From patterns to function in living systems: Dryland ecosystems as a
case study. Annu Rev Condens Matter Phys 2018;9:79-103. http://dx.doi.org/
10.1146/annurev-conmatphys-033117-053959.

Zhao L-X, Xu C, Ge Z-M, Van De Koppel J, Liu Q-X. The shaping role
of self-organization: linking vegetation patterning, plant traits and ecosystem
functioning. Proc R Soc B 2019;286:20182859. http://dx.doi.org/10.1098/rspb.
2018.2859.

Deblauwe V, Barbier N, Couteron P, Lejeune O, Bogaert J. The global bio-
geography of semi-arid periodic vegetation patterns. Global Ecol Biogeogr
2008;17:715-23. http://dx.doi.org/10.1111/j.1466-8238.2008.00413.x.
Rietkerk M, van de Koppel J. Regular pattern formation in real ecosystems.
Trends Ecol Evol 2008;23:169-75, http://linkinghub.elsevier.com/retrieve/pii/
50169534708000281.

von Hardenberg J, Meron E, Shachak M, Zarmi Y. Diversity of vegetation
patterns and desertification. Phys Rev Lett 2001;87:198101. http://dx.doi.org/
10.1103/physrevlett.87.198101.

Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y. Vegetation patterns
along a rainfall gradient. Chaos Solitons Fractals 2004;19:367-76. http://dx.
doi.org/10.1016/5s0960-0779%2803%2900049- 3.

Deblauwe V, Couteron P, Lejeune O, Bogaert J, Barbier N. Environmental
modulation of self-organized periodic vegetation patterns in sudan. Ecography
2011;34:990-1001.

Bastiaansen R, Jaibi O, Deblauwe V, Eppinga MB, Siteur K, Siero E, et al. Multi-
stability of model and real dryland ecosystems through spatial self-organization.
Proc Natl Acad Sci 2018;115:11256-61.

Lefever R, Lejeune O. On the origin of tiger bush. Bull Math Biol
1997;59:263-94. http://dx.doi.org/10.1007/bf02462004.

Rietkerk M, Dekker SC, De Ruiter PC, van de Koppel J. Self-organized
patchiness and catastrophic shifts in ecosystems.. Science 2004;305:1926—
9. http://dx.doi.org/10.1126/science.1101867, http://www.ncbi.nlm.nih.gov/
pubmed/15448261, http://www.sciencemag.org/content/305/5692/1926.
Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et
al. Early-warning signals for critical transitions. Nature 2009;461:53-9. http:
//dx.doi.org/10.1038/nature08227.

Dakos V, Kéfi S, Rietkerk M, Van Nes EH, Scheffer M. Slowing down in spatially
patterned ecosystems at the brink of collapse. Amer Nat 2011;177:E153-66.
Dakos V, Carpenter SR, van Nes EH, Scheffer M. Resilience indicators: prospects
and limitations for early warnings of regime shifts. Philos Trans R Soc B
2015;370:20130263.

Rietkerk M, Boerlijst MC, van Langevelde F, HilleRisLambers R, van de
Koppel J, Kumar L, et al. Self-organization of vegetation in arid ecosystems.
Amer Nat 2002;160:524-30. http://dx.doi.org/10.1086,/342078.

Borgogno F, D’Odorico P, Laio F, Ridolfi L. Mathematical models of vegetation
pattern formation in ecohydrology. Rev Geophys 2009;47. http://dx.doi.org/
10.1029/2007rg000256.

Martinez-Garcia R, Calabrese JM, Hernandez-Garcia E, Lépez C. Minimal
mechanisms for vegetation patterns in semiarid regions. Phil Trans R Soc A
2014;372:20140068. http://dx.doi.org/10.1098/rsta.2014.0068.

Gowda K, Riecke H, Silber M. Transitions between patterned states in vegetation
models for semiarid ecosystems. Phys Rev E 2014;89:022701. http://dx.doi.org/
10.1103/PhysRevE.89.022701.

Weissmann H, Kent R, Michael Y, Shnerb NM. Empirical analysis of vegetation
dynamics and the possibility of a catastrophic desertification transition. PLoS
ONE 2017;12:1-13.

Veldhuis MP, Martinez-Garcia R, Deblauwe V, Dakos V. Remotely-sensed
slowing down in spatially patterned dryland ecosystems. 2021, p. 1-26, bioRxiv.
Lejeune O, Tlidi M. A model for the explanation of vegetation stripes (tiger
bush). J Veg Sci 1999;10:201-8. http://dx.doi.org/10.2307/3237141.

Kealy BJ, Wollkind DJ. A nonlinear stability analysis of vegetative Turing
pattern formation for an interaction—diffusion plant-surface water model system
in an arid flat environment. Bull Math Biol 2012;74:803-33.

Siteur K, Siero E, Eppinga MB, Rademacher JDM, Doelman A, Rietkerk M.
Beyond Turing: The response of patterned ecosystems to environmental
change. Ecol Complex 2014;20:81-96. http://dx.doi.org/10.1016/j.ecocom.
2014.09.002.

Martinez-Garcia R, Calabrese JM, Hernindez-Garcia E, Lépez C. Vegetation
pattern formation in semiarid systems without facilitative mechanisms. Geophys
Res Lett 2013;40:6143-7. http://dx.doi.org/10.1002/2013gl058797.

11

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112881

Yizhaq H, Bel G. Effects of quenched disorder on critical transitions in pattern-
forming systems. New J Phys 2016;18. http://dx.doi.org/10.1088/1367-2630/
18/2/023004, arXiv:1601.04330.

Bastiaansen R, Doelman A, Eppinga MB, Rietkerk M. The effect of climate
change on the resilience of ecosystems with adaptive spatial pattern formation.
Ecol Lett 2020;23:414-29. http://dx.doi.org/10.1111/ele.13449.

Kéfi S, Rietkerk M, van Baalen M, Loreau M. Local facilitation, bistability
and transitions in arid ecosystems. Theor Popul Biol 2007;71:367-79. http:
//dx.doi.org/10.1016/j.tpb.2006.09.003.

Corrado R, Cherubini AM, Pennetta C. Critical desertification transition in semi-
arid ecosystems: The role of local facilitation and colonization rate. Commun
Nonlinear Sci Numer Simul 2015;22:3-12. http://dx.doi.org/10.1016/j.cnsns.
2014.08.041.

Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, ElAich A, et al.
Spatial vegetation patterns and imminent desertification in Mediterranean arid
ecosystems. Nature 2007;449:213-7. http://dx.doi.org/10.1038/nature06111.
Mortimore M, Anderson S, Cotula L, Davies J, Faccer K, Hesse C, et al.
Dryland opportunies: A new paradigm for people, ecosystems and development.
Technical report, International Union for Conservation of Nature (IUCN); 2009.
Bonachela JA, Pringle RM, Sheffer E, Coverdale TC, Guyton JA, Caylor KK, et al.
Termite mounds can increase the robustness of dryland ecosystems to climatic
change. Science 2015;347:651-5. http://dx.doi.org/10.1126/science.1261487.
Villa Martin P, Bonachela JA, Levin SA, Mufioz MA. Eluding catastrophic
shifts. Proc Natl Acad Sci 2015;112:E1828-36. http://dx.doi.org/10.1073/pnas.
1414708112

Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, de Lorenzo V,
et al. Synthetic biology for terraformation lessons from Mars, Earth, and the
microbiome. Life 2020;10:14. http://dx.doi.org/10.3390/1ife10020014.
Vidiella B, Sardanyés J, Solé R. Synthetic soil crusts against green-desert
transitions: a spatial model. R Soc Open Sci 2020;7:200161. http://dx.doi.org/
10.1101/838631.

Maestre FT, Eldridge DJ, Soliveres S, Kéi S, Delgado-Baquerizo M, Bowker MA,
et al. Structure and functioning of dryland ecosystems in a changing world.
Annu Rev Ecol Evol Syst 2016;47:215-37. http://dx.doi.org/10.1146/annurev-
ecolsys-121415-032311.

Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernddez-Clemente R, Zhao Y,
Gaitan JJ, et al. Global ecosystem thresholds driven by aridity. Science
2020;367:787-90. http://dx.doi.org/10.1126/science.aay5958.

Rietkerk M, Bastiaansen R, Banerjee S, van de Koppel J, Baudena M, Doelman A.
Evasion of tipping in complex systems through spatial pattern formation.
Science 2021;374:eabj0359. http://dx.doi.org/10.1126/science.abj0359.
Tilman D, Kareiva PM. Spatial ecology. the role of space in population
dynamics and interspecific interactions. Princeton, NJ: Princeton University
Press; 1997, https://books.google.com/books?hl=en&lr=&id=xF5dDWAAQBAJ&
oi=fnd&pg=PA1&dq=david+tilman+kareiva&ots=wbeBYB7CmF&sig=
LavEgwLMya51Yex0va2P160L_YQ#v=onepage&q=davidtilmankareiva&f=false.
van de Koppel J, Gascoigne JC, Theraulaz G, Rietkerk M, Mooij WM, Her-
man PM. Experimental evidence for spatial self-organization and its emergent
effects in mussel bed ecosystems. Science 2008;322:739-42. http://dx.doi.org/
10.1126/science.1163952, http://www.sciencemag.org/content/322/5902/739.
short.

Lee ED, Kempes CP, West GB. Growth, death, and resource competition in
sessile organisms. Proc Natl Acad Sci 2021;118:€2020424118. http://dx.doi.
org/10.1073/pnas.2020424118.

Cabal C, Martinez-Garcia R, Valladares F. The ecology of plant interactions:
A giant with feet of clay. 2020, 2020090520. http://dx.doi.org/10.20944/
preprints202009.0520.v1, Preprints.

Holmgren M, Scheffer M. Strong facilitation in mild environments: the stress
gradient hypothesis revisited. J Ecol 2010;98:1269-75.

Valladares F, Laanisto L, Niinemets U, Zavala MA. Shedding light on shade: eco-
logical perspectives of understorey plant life. Plant Ecol Divers 2016;9:237-51.
http://dx.doi.org/10.1080/17550874.2016.1210262.

Eldridge DJ, Zaady E, Shachak M. Infiltration through three contrasting
biological soil crusts in patterned landscapes in the Negev, Israel. Catena
2000;40:323-36. http://dx.doi.org/10.1016/50341-8162(00)00082-5.

Ludwig F, De Kroon H, Berendse F, Prins HH. The influence of savanna trees on
nutrient, water and light availability and the understorey vegetation. Plant Ecol
2004;97:199-205. http://dx.doi.org/10.1023/B:VEGE.0000019023.29636.92.
Montafia C. The colonization of bare areas in two-phase mosaics of an arid
ecosystem. J Ecol 1992;80:315-27. http://dx.doi.org/10.2307/2261014.
Bromley J, Brouwer J, Barker AP, Gaze SR, Valentin C. The role of surface water
redistribution in an area of patterned vegetation in a semi-arid environment,
south-west niger. J Hydrol 1997;198:1-29. http://dx.doi.org/10.1016/5S0022-
1694(96)03322-7.

Deblauwe V, Couteron P, Bogaert J, Barbier N. Determinants and dynamics
of banded vegetation pattern migration in arid climates. Ecol Monograph
2012;82:3-21. http://dx.doi.org/10.1890/11-0362.1.

Valentin C, d’Herbés J-M, Poesen J. Soil and water components of banded
vegetation patterns. Catena 1999;37:1-24.


http://refhub.elsevier.com/S0960-0779(22)01060-8/sb1
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb2
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb2
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb2
https://press.princeton.edu/titles/8224.html
http://dx.doi.org/10.1146/annurev-ento-031616-035413
http://dx.doi.org/10.1042/ETLS20210282
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053959
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053959
http://dx.doi.org/10.1146/annurev-conmatphys-033117-053959
http://dx.doi.org/10.1098/rspb.2018.2859
http://dx.doi.org/10.1098/rspb.2018.2859
http://dx.doi.org/10.1098/rspb.2018.2859
http://dx.doi.org/10.1111/j.1466-8238.2008.00413.x
http://linkinghub.elsevier.com/retrieve/pii/S0169534708000281
http://linkinghub.elsevier.com/retrieve/pii/S0169534708000281
http://linkinghub.elsevier.com/retrieve/pii/S0169534708000281
http://dx.doi.org/10.1103/physrevlett.87.198101
http://dx.doi.org/10.1103/physrevlett.87.198101
http://dx.doi.org/10.1103/physrevlett.87.198101
http://dx.doi.org/10.1016/s0960-0779%2803%2900049-3
http://dx.doi.org/10.1016/s0960-0779%2803%2900049-3
http://dx.doi.org/10.1016/s0960-0779%2803%2900049-3
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb12
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb12
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb12
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb12
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb12
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb13
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb13
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb13
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb13
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb13
http://dx.doi.org/10.1007/bf02462004
http://dx.doi.org/10.1126/science.1101867
http://www.ncbi.nlm.nih.gov/pubmed/15448261
http://www.ncbi.nlm.nih.gov/pubmed/15448261
http://www.ncbi.nlm.nih.gov/pubmed/15448261
http://www.sciencemag.org/content/305/5692/1926
http://dx.doi.org/10.1038/nature08227
http://dx.doi.org/10.1038/nature08227
http://dx.doi.org/10.1038/nature08227
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb17
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb17
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb17
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb18
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb18
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb18
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb18
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb18
http://dx.doi.org/10.1086/342078
http://dx.doi.org/10.1029/2007rg000256
http://dx.doi.org/10.1029/2007rg000256
http://dx.doi.org/10.1029/2007rg000256
http://dx.doi.org/10.1098/rsta.2014.0068
http://dx.doi.org/10.1103/PhysRevE.89.022701
http://dx.doi.org/10.1103/PhysRevE.89.022701
http://dx.doi.org/10.1103/PhysRevE.89.022701
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb23
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb23
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb23
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb23
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb23
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb24
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb24
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb24
http://dx.doi.org/10.2307/3237141
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb26
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb26
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb26
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb26
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb26
http://dx.doi.org/10.1016/j.ecocom.2014.09.002
http://dx.doi.org/10.1016/j.ecocom.2014.09.002
http://dx.doi.org/10.1016/j.ecocom.2014.09.002
http://dx.doi.org/10.1002/2013gl058797
http://dx.doi.org/10.1088/1367-2630/18/2/023004
http://dx.doi.org/10.1088/1367-2630/18/2/023004
http://dx.doi.org/10.1088/1367-2630/18/2/023004
http://arxiv.org/abs/1601.04330
http://dx.doi.org/10.1111/ele.13449
http://dx.doi.org/10.1016/j.tpb.2006.09.003
http://dx.doi.org/10.1016/j.tpb.2006.09.003
http://dx.doi.org/10.1016/j.tpb.2006.09.003
http://dx.doi.org/10.1016/j.cnsns.2014.08.041
http://dx.doi.org/10.1016/j.cnsns.2014.08.041
http://dx.doi.org/10.1016/j.cnsns.2014.08.041
http://dx.doi.org/10.1038/nature06111
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb34
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb34
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb34
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb34
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb34
http://dx.doi.org/10.1126/science.1261487
http://dx.doi.org/10.1073/pnas.1414708112
http://dx.doi.org/10.1073/pnas.1414708112
http://dx.doi.org/10.1073/pnas.1414708112
http://dx.doi.org/10.3390/life10020014
http://dx.doi.org/10.1101/838631
http://dx.doi.org/10.1101/838631
http://dx.doi.org/10.1101/838631
http://dx.doi.org/10.1146/annurev-ecolsys-121415-032311
http://dx.doi.org/10.1146/annurev-ecolsys-121415-032311
http://dx.doi.org/10.1146/annurev-ecolsys-121415-032311
http://dx.doi.org/10.1126/science.aay5958
http://dx.doi.org/10.1126/science.abj0359
https://books.google.com/books?hl=en&lr=&id=xF5dDwAAQBAJ&oi=fnd&pg=PA1&dq=david+tilman+kareiva&ots=wbeBYB7CmF&sig=LavEgwLMya51Yex0va2P160L_YQ#v=onepage&q=davidtilmankareiva&f=false
https://books.google.com/books?hl=en&lr=&id=xF5dDwAAQBAJ&oi=fnd&pg=PA1&dq=david+tilman+kareiva&ots=wbeBYB7CmF&sig=LavEgwLMya51Yex0va2P160L_YQ#v=onepage&q=davidtilmankareiva&f=false
https://books.google.com/books?hl=en&lr=&id=xF5dDwAAQBAJ&oi=fnd&pg=PA1&dq=david+tilman+kareiva&ots=wbeBYB7CmF&sig=LavEgwLMya51Yex0va2P160L_YQ#v=onepage&q=davidtilmankareiva&f=false
https://books.google.com/books?hl=en&lr=&id=xF5dDwAAQBAJ&oi=fnd&pg=PA1&dq=david+tilman+kareiva&ots=wbeBYB7CmF&sig=LavEgwLMya51Yex0va2P160L_YQ#v=onepage&q=davidtilmankareiva&f=false
https://books.google.com/books?hl=en&lr=&id=xF5dDwAAQBAJ&oi=fnd&pg=PA1&dq=david+tilman+kareiva&ots=wbeBYB7CmF&sig=LavEgwLMya51Yex0va2P160L_YQ#v=onepage&q=davidtilmankareiva&f=false
http://dx.doi.org/10.1126/science.1163952
http://dx.doi.org/10.1126/science.1163952
http://dx.doi.org/10.1126/science.1163952
http://www.sciencemag.org/content/322/5902/739.short
http://www.sciencemag.org/content/322/5902/739.short
http://www.sciencemag.org/content/322/5902/739.short
http://dx.doi.org/10.1073/pnas.2020424118
http://dx.doi.org/10.1073/pnas.2020424118
http://dx.doi.org/10.1073/pnas.2020424118
http://dx.doi.org/10.20944/preprints202009.0520.v1
http://dx.doi.org/10.20944/preprints202009.0520.v1
http://dx.doi.org/10.20944/preprints202009.0520.v1
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb46
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb46
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb46
http://dx.doi.org/10.1080/17550874.2016.1210262
http://dx.doi.org/10.1016/S0341-8162(00)00082-5
http://dx.doi.org/10.1023/B:VEGE.0000019023.29636.92
http://dx.doi.org/10.2307/2261014
http://dx.doi.org/10.1016/S0022-1694(96)03322-7
http://dx.doi.org/10.1016/S0022-1694(96)03322-7
http://dx.doi.org/10.1016/S0022-1694(96)03322-7
http://dx.doi.org/10.1890/11-0362.1
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb53
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb53
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb53

R. Martinez-Garecia et al.

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]
[62]
[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Klausmeier CA. Regular and irregular patterns in semiarid vegetation. Science
1999;284:1826-8. http://dx.doi.org/10.1126/science.284.5421.1826.
HilleRisLambers R, Rietkerk M, van den Bosch F, Prins HHT, de Kroon H. Vege-
tation pattern formation in semi-arid grazing systems. Ecology 2001;82:50. http:
//dx.doi.org/10.2307/2680085, http://www.jstor.org/stable/2680085?origin=
crossref.

Gilad E, von Hardenberg J, Provenzale A, Shachak M, Meron E. Ecosys-
tem engineers: From pattern formation to habitat creation. Phys Rev Lett
2004;93:098105. http://dx.doi.org/10.1103/PhysRevLett.93.098105, https://
journals.aps.org/prl/pdf/10.1103/PhysRevLett.93.098105.

Okayasu T, Aizawa Y. Systematic analysis of periodic vegetation patterns. Progr
Theoret Phys 2001;10:705-20. http://dx.doi.org/10.1143/ptp.106.705.

Craine JM, Dybzinski R. Mechanisms of plant competition for nutrients, water
and light. Funct Ecol 2013;27:833-40. http://dx.doi.org/10.1111/1365-2435.
12081.

van de Koppel J, Crain CM. Scale-dependent inhibition drives regular tussock
spacing in a freshwater marsh. Amer Nat 2006;168:E136-47. http://dx.doi.org/
10.1086/508671.

DeAngelis DL, Yurek S. Spatially explicit modeling in ecology: A review.
Ecosystems 2016;20:284-300. http://dx.doi.org/10.1007/s10021-016-0066-z.
Railsback SF, Grimm V. Agent-based and individual-based modeling: A practical
introduction. Princeton University Press; 2019.

Meron E. Nonlinear physics of ecosystems. CRC Press; 2015.

Bolker BM, Pacala SW. Spatial moment equations for plant competition:
Understanding spatial strategies and the advantages of short dispersal. Am Nat
1999;153:575-602. http://dx.doi.org/10.1086,/303199.

Iwasa Y. Lattice models and pair approximation in ecology. In: Cambridge.
2010, p. 227-51. http://dx.doi.org/10.1017/cbo9780511525537.016.
Wiegand T, Moloney KA. Handbook of spatial point-pattern analysis in ecology.
CRC Press; 2013.

Plank MJ, Law R. Spatial point processes and moment dynamics in the
life sciences: a parsimonious derivation and some extensions. Bull Math Biol
2015;77:586-613.

Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc London
[Biol] 1952;237:37-72. http://dx.doi.org/10.1007/BF02459572.

Meron E. Pattern-formation approach to modelling spatially extended ecosys-
tems. Ecol Model 2012;234:70-82. http://dx.doi.org/10.1016/j.ecolmodel.
2011.05.035.

Kealy BJ, Wollkind DJ. A nonlinear stability analysis of vegetative turing pattern
formation for an interaction—diffusion plant-surface water model system in an
arid flat environment. Bull Math Biol 2011;74:803-33. http://dx.doi.org/10.
1007/s11538-011-9688-7.

Eigentler L, Sherratt JA. Effects of precipitation intermittency on vegetation
patterns in semi-arid landscapes. Physica D 2020;405:132396. http://dx.doi.
org/10.1016/j.physd.2020.132396, arXiv:1911.10878.

Eigentler L. Intraspecific competition in models for vegetation patterns: De-
crease in resilience to aridity and facilitation of species coexistence. Ecol
Complex 2020;42:100835. http://dx.doi.org/10.1016/j.ecocom.2020.100835.
Gowda K, Chen Y, Iams S, Silber M. Assessing the robustness of spatial pattern
sequences in a dryland vegetation model. Proc R Soc A 2016;472:20150893.
http://dx.doi.org/10.1098/rspa.2015.0893.

Salem B, et al. Arid zone forestry: A guide for field technicians. Vol. 20, Food
and Agriculture Organization (FAO); 1989.

Kletter AY, von Hardenberg J, Meron E, Provenzale A. Patterned vegetation
and rainfall intermittency. J Theoret Biol 2009;256:574-83. http://dx.doi.org/
10.1016/j.jtbi.2008.10.020.

D’Odorico P, Laio F, Ridolfi L. Patterns as indicators of productivity enhance-
ment by facilitation and competition in dryland vegetation. J Geophys Res
2006;111:1-7. http://dx.doi.org/10.1029/2006jg000176.

Couteron P, Anthelme F, Clerc M, Escaff D, Fernandez-Oto C, Tlidi M. Plant
clonal morphologies and spatial patterns as self-organized responses to resource-
limited environments. Phil Trans R Soc A 2014;372. http://dx.doi.org/10.1098/
rsta.2014.0102.

Tlidi M, Clerc MG, Escaff D, Couteron P, Messaoudi M, Khaffou M, et
al. Observation and modelling of vegetation spirals and arcs in isotropic
environmental conditions: dissipative structures in arid landscapes. Phil Trans
R Soc A 2018;376:20180026. http://dx.doi.org/10.1098/rsta.2018.0026.
Fernandez-Oto C, Tlidi M, Escaff D, Clerc MG. Strong interaction between
plants induces circular barren patches: fairy circles. Phil Trans R Soc A
2014;372:20140009. http://dx.doi.org/10.1098/rsta.2014.0009.

Escaff D, Fernandez-Oto C, Clerc MG, Tlidi M. Localized vegetation pat-
terns, fairy circles, and localized patches in arid landscapes. Phys Rev E
2015;91:022924. http://dx.doi.org/10.1103/physreve.91.022924.

Berrios-Caro E, Clerc M, Escaff D, Sandivari C, Tlidi M. On the repulsive
interaction between localised vegetation patches in scarce environments. Sci
Rep 2020;10:5740.

Lejeune O, Tlidi M, Couteron P. Localized vegetation patches: A self-organized
response to resource scarcity. Phys Rev E 2002;66:010901. http://dx.doi.org/
10.1103/PhysRevE.66.010901.

Parra-Rivas P, Fernandez-Oto C. Formation of localized states in dryland
vegetation: Bifurcation structure and stability. Phys Rev E 2020;101:052214.

12

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112881

Calabrese JM, Vazquez F, Lépez C, San Miguel M, Grimm V. The independent
and interactive effects of tree-tree establishment competition and fire on
savanna structure and dynamics. Amer Nat 2010;175:E44-65. http://dx.doi.
org/10.1086/650368, http://www.ncbi.nlm.nih.gov/pubmed/20100108.
Scheffer M, van Nes EH. Self-organized similarity, the evolutionary emergence
of groups of similar species. Proc Natl Acad Sci USA 2006;103:6230-5.
http://dx.doi.org/10.1073/pnas.0508024103, http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=1458860&tool=pmcentrez&rendertype=abstract.
Pigolotti S, Léez C, Herndndez-Garcia E. Species clustering in competitive
Lotka-Volterra models. Phys Rev Lett 2007;98:258101.

Hernddez-Garcia E, Lopez C, Pigolotti S, Andersen KH. Species
competition: coexistence, exclusion and clustering. Philos Trans R Soc
Lond Ser A 2009;367:3183-95. http://dx.doi.org/10.1098/rsta.2009.0086,
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263774&tool=
pmcentrez&rendertype=abstract.

Fort H, Scheffer M, van Nes EH. The paradox of the clumps mathematically
explained. Theoret Ecol 2009;2:171-6.

Leimar O, Sasaki A, Doebeli M, Dieckmann U. Limiting similarity, species
packing, and the shape of competition kernels. J Theoret Biol 2013;339:3-13.
http://dx.doi.org/10.1016/j.jtbi.2013.08.005.

Hernédndez-Garcia E, Lépez C. Clustering, advection, and patterns in a model
of population dynamics with neighborhood-dependent rates. Phys Rev E
2004;70:016216, http://www.ncbi.nlm.nih.gov/pubmed/15324161.
Courchamp F, Clutton-Brock T, Grenfell B. Inverse density dependence and the
allee effect. Trends Ecol Evol 1999;14:405-10.

Martinez-Garcia R, Calabrese JM, Lépez C. Spatial patterns in mesic savannas:
The local facilitation limit and the role of demographic stochasticity. J Theoret
Biol 2013;333:156-65. http://dx.doi.org/10.1016/j.jtbi.2013.05.024.

Wu X, Thurow T, Whisenant S. Fragmentation and functional change of tiger
bush landscapes in niger. 88, 2000, p. 790-800.

Valentin C, Poesen J. The significance of soil, water and landscape processes
in banded vegetation patterning. Catena 1999;37.

Sheffer E, Yizhaq H, Shachak M, Meron E. Mechanisms of vegetation-ring
formation in water-limited systems. J Theoret Biol 2011;273:138-46. http://
dx.doi.org/10.1016/j.jtbi.2010.12.028, http://www.ncbi.nlm.nih.gov/pubmed/
21187102.

Yizhaq H, Stavi I, Swet N, Zaady E, Katra I. Vegetation ring formation by
water overland flow in water-limited environments: Field measurements and
mathematical modelling. Ecohydrology 2019;12:e2135.

Tlidi M, Lefever R, Vladimirov A. On vegetation clustering, localized bare soil
spots and fairy circles. In: Dissipative solitons: from optics to biology and
medicine. Springer; 2008, p. 1-22.

Ravi S, Wang L, Kaseke KF, Buynevich IV, Marais E. Ecohydrological interac-
tions within fairy circles in the Namib desert: Revisiting the self-organization
hypothesis. J Geophys Res: Biogeosci 2017;122:405-14.

Getzin S, Erickson TE, Yizhaq H, Mufioz-Rojas M, Huth A, Wiegand K.
Bridging ecology and physics: Australian fairy circles regenerate following
model assumptions on ecohydrological feedbacks. J Ecol 2021;109:399-416.
Franklin J. Spatial point pattern analysis of plants. In: Perspectives on spatial
data analysis. Springer; 2010, p. 113-23.

Vlieghe K, Picker M. Do high soil temperatures on Namibian fairy circle discs
explain the absence of vegetation? Plos One 2019;14:e0217153.

Juergens N. The biological underpinnings of namib desert fairy circles. Science
2013;339:1618-21.

Naudé Y, van Rooyen MW, Rohwer ER. Evidence for a geochemical origin of
the mysterious circles in the Pro-Namib desert. J Arid Environ 2011;75:446-56.
http://dx.doi.org/10.1016/j.jaridenv.2010.12.018.

Meyer JM, Schutte CE, Hurter JW, Galt NS, Degashu P, Breetzke G, et al.
The allelopathic, adhesive, hydrophobic and toxic latex of Euphorbia species is
the cause of fairy circles investigated at several locations in namibia. BMC Ecol
2020;20:45.

Armas C, Ordiales R, Pugnaire FI. Measuring plant interactions: a new
comparative index. Ecology 2004;85:2682—6.

Morgenroth J. A review of root barrier research. Arboricul Urban Forestry
2008;34:84-8.

Tarnita CE, Bonachela JA, Sheffer E, Guyton JA, Coverdale TC, Long RA, et
al. A theoretical foundation for multi-scale regular vegetation patterns. Na-
ture 2017;541:398-401. http://dx.doi.org/10.1038/nature20801, http://www.
nature.com/doifinder/10.1038/nature20801.

Cabal C, De Deurwaerder H, Matesanz S. Field methods to study the spatial
root density distribution of individual plants. Plant Soil 2021;462:25-43.
Cramer MD, Barger NN. Are namibian fairy circles the consequence of
self-organizing spatial vegetation patterning? PLoS One 2013;8:e70876.

Cook HL. The infiltration approach to the calculation of surface runoff, Eos.
Trans Am Geophys Union 1946;27:726-47.

Trichon V, Hiernaux P, Walcker R, Mougin E. The persistent decline of
patterned woody vegetation: The tiger bush in the context of the regional sahel
greening trend. Global Change Biol 2018;24:2633-48.

Cabal C, Martinez-Garcia R, De Castro A, Valladares F, Pacala SW. The
exploitative segregation of plant roots. Science 2020;1199:1197-9.


http://dx.doi.org/10.1126/science.284.5421.1826
http://dx.doi.org/10.2307/2680085
http://dx.doi.org/10.2307/2680085
http://dx.doi.org/10.2307/2680085
http://www.jstor.org/stable/2680085?origin=crossref
http://www.jstor.org/stable/2680085?origin=crossref
http://www.jstor.org/stable/2680085?origin=crossref
http://dx.doi.org/10.1103/PhysRevLett.93.098105
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.93.098105
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.93.098105
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.93.098105
http://dx.doi.org/10.1143/ptp.106.705
http://dx.doi.org/10.1111/1365-2435.12081
http://dx.doi.org/10.1111/1365-2435.12081
http://dx.doi.org/10.1111/1365-2435.12081
http://dx.doi.org/10.1086/508671
http://dx.doi.org/10.1086/508671
http://dx.doi.org/10.1086/508671
http://dx.doi.org/10.1007/s10021-016-0066-z
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb61
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb61
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb61
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb62
http://dx.doi.org/10.1086/303199
http://dx.doi.org/10.1017/cbo9780511525537.016
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb65
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb65
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb65
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb66
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb66
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb66
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb66
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb66
http://dx.doi.org/10.1007/BF02459572
http://dx.doi.org/10.1016/j.ecolmodel.2011.05.035
http://dx.doi.org/10.1016/j.ecolmodel.2011.05.035
http://dx.doi.org/10.1016/j.ecolmodel.2011.05.035
http://dx.doi.org/10.1007/s11538-011-9688-7
http://dx.doi.org/10.1007/s11538-011-9688-7
http://dx.doi.org/10.1007/s11538-011-9688-7
http://dx.doi.org/10.1016/j.physd.2020.132396
http://dx.doi.org/10.1016/j.physd.2020.132396
http://dx.doi.org/10.1016/j.physd.2020.132396
http://arxiv.org/abs/1911.10878
http://dx.doi.org/10.1016/j.ecocom.2020.100835
http://dx.doi.org/10.1098/rspa.2015.0893
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb73
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb73
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb73
http://dx.doi.org/10.1016/j.jtbi.2008.10.020
http://dx.doi.org/10.1016/j.jtbi.2008.10.020
http://dx.doi.org/10.1016/j.jtbi.2008.10.020
http://dx.doi.org/10.1029/2006jg000176
http://dx.doi.org/10.1098/rsta.2014.0102
http://dx.doi.org/10.1098/rsta.2014.0102
http://dx.doi.org/10.1098/rsta.2014.0102
http://dx.doi.org/10.1098/rsta.2018.0026
http://dx.doi.org/10.1098/rsta.2014.0009
http://dx.doi.org/10.1103/physreve.91.022924
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb80
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb80
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb80
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb80
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb80
http://dx.doi.org/10.1103/PhysRevE.66.010901
http://dx.doi.org/10.1103/PhysRevE.66.010901
http://dx.doi.org/10.1103/PhysRevE.66.010901
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb82
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb82
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb82
http://dx.doi.org/10.1086/650368
http://dx.doi.org/10.1086/650368
http://dx.doi.org/10.1086/650368
http://www.ncbi.nlm.nih.gov/pubmed/20100108
http://dx.doi.org/10.1073/pnas.0508024103
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1458860&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1458860&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1458860&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb85
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb85
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb85
http://dx.doi.org/10.1098/rsta.2009.0086
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263774&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263774&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3263774&tool=pmcentrez&rendertype=abstract
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb87
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb87
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb87
http://dx.doi.org/10.1016/j.jtbi.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/15324161
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb90
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb90
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb90
http://dx.doi.org/10.1016/j.jtbi.2013.05.024
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb92
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb92
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb92
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb93
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb93
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb93
http://dx.doi.org/10.1016/j.jtbi.2010.12.028
http://dx.doi.org/10.1016/j.jtbi.2010.12.028
http://dx.doi.org/10.1016/j.jtbi.2010.12.028
http://www.ncbi.nlm.nih.gov/pubmed/21187102
http://www.ncbi.nlm.nih.gov/pubmed/21187102
http://www.ncbi.nlm.nih.gov/pubmed/21187102
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb95
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb95
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb95
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb95
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb95
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb96
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb96
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb96
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb96
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb96
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb97
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb97
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb97
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb97
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb97
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb98
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb98
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb98
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb98
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb98
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb99
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb99
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb99
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb100
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb100
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb100
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb101
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb101
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb101
http://dx.doi.org/10.1016/j.jaridenv.2010.12.018
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb103
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb103
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb103
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb103
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb103
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb103
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb103
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb104
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb104
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb104
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb105
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb105
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb105
http://dx.doi.org/10.1038/nature20801
http://www.nature.com/doifinder/10.1038/nature20801
http://www.nature.com/doifinder/10.1038/nature20801
http://www.nature.com/doifinder/10.1038/nature20801
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb107
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb107
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb107
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb108
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb108
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb108
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb109
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb109
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb109
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb110
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb110
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb110
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb110
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb110
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb111
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb111
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb111

R. Martinez-Garecia et al.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Cabal C, Martinez-Garcia R, De Castro A, Valladares F, Pacala SW. Future paths
for the ’exploitative segregation of plant roots’ model. Plant Signaling Behav
2021;16:€1891755. http://dx.doi.org/10.1080/15592324.2021.1891755.

van de Koppel J, van der Wal D, Bakker JP, Herman PM. Self-organization
and vegetation collapse in salt marsh ecosystems. Amer Nat 2005;165:E1-E12.
http://dx.doi.org/10.1086/426602.

Van Wesenbeeck BK, Van De Koppel J, Herman PM, Bouma TJ. Does scale-
dependent feedback explain spatial complexity in salt-marsh ecosystems? Oikos
2008;117:152-9. http://dx.doi.org/10.1111/j.2007.0030-1299.16245.x.

Zhao LX, Zhang K, Siteur K, Li XZ, Liu QX, van de Koppel J. Fairy circles
reveal the resilience of self-organized salt marshes. Sci Adv 2021;7:eabe1100.
http://dx.doi.org/10.1126/sciadv.abe1100.

van der Heide T, van Nes EH, van Katwijk MM, OIlff H, Smolders AJ. Positive
feedbacks in seagrass ecosystems - Evidence from large-scale empirical data.
PLoS ONE 2011;6:e16504. http://dx.doi.org/10.1371/journal.pone.0016504.
Ruiz-Reynés D, Gomila D, Sintes T, Herndndez-Garcia E, Marba N, Duarte CM.
Fairy circle landscapes under the sea. Sci Adv 2017;3:e1603262, http://
advances.sciencemag.org/content/advances/3/8/e1603262.full.pdf.

Fuentes MA, Kuperman MN, Kenkre VM. Nonlocal interaction effects on pattern
formation in population dynamics. Phys Rev Lett 2003;91:158104. http://dx.
doi.org/10.1103/PhysRevLett.91.158104.

13

[119]

[120]

[121]

[122]

[123]

[124]

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112881

Dornelas V, Colombo E, Anteneodo C. Single-species fragmentation: The role of
density-dependent feedback. Phys Rev E 2019;99:062225.

Maruvka YE, Shnerb NM. Nonlocal competition and logistic growth: Patterns,
defects, and fronts. Phys Rev E 2006;73:011903. http://dx.doi.org/10.1103/
PhysRevE.73.011903.

Da Cunha JA, Penna AL, Oliveira FA. Pattern formation and coexistence
domains for a nonlocal population dynamics. Phys Rev E 2011;83. http://dx.
doi.org/10.1103/PhysRevE.83.015201, 015201(R).

Clerc MG, Escaff D, Kenkre VM. Patterns and localized structures in population
dynamics. Phys Rev E 2005;72:056217. http://dx.doi.org/10.1103/PhysRevE.
72.056217.

Maciel GA, Martinez-Garcia R. Enhanced species coexistence in Lotka—
Volterra competition models due to nonlocal interactions. J Theoret Biol
2021;530:110872. http://dx.doi.org/10.1016/].jtbi.2021.110872.

Piva G, Colombo E, Anteneodo C. Interplay between scales in the nonlocal
FKPP equation. Chaos Solitons Fractals 2021;153:111609. http://dx.doi.org/10.
1016/j.chaos.2021.111609, https://www.sciencedirect.com/science/article/pii/
$0960077921009632.


http://dx.doi.org/10.1080/15592324.2021.1891755
http://dx.doi.org/10.1086/426602
http://dx.doi.org/10.1111/j.2007.0030-1299.16245.x
http://dx.doi.org/10.1126/sciadv.abe1100
http://dx.doi.org/10.1371/journal.pone.0016504
http://advances.sciencemag.org/content/advances/3/8/e1603262.full.pdf
http://advances.sciencemag.org/content/advances/3/8/e1603262.full.pdf
http://advances.sciencemag.org/content/advances/3/8/e1603262.full.pdf
http://dx.doi.org/10.1103/PhysRevLett.91.158104
http://dx.doi.org/10.1103/PhysRevLett.91.158104
http://dx.doi.org/10.1103/PhysRevLett.91.158104
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb119
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb119
http://refhub.elsevier.com/S0960-0779(22)01060-8/sb119
http://dx.doi.org/10.1103/PhysRevE.73.011903
http://dx.doi.org/10.1103/PhysRevE.73.011903
http://dx.doi.org/10.1103/PhysRevE.73.011903
http://dx.doi.org/10.1103/PhysRevE.83.015201
http://dx.doi.org/10.1103/PhysRevE.83.015201
http://dx.doi.org/10.1103/PhysRevE.83.015201
http://dx.doi.org/10.1103/PhysRevE.72.056217
http://dx.doi.org/10.1103/PhysRevE.72.056217
http://dx.doi.org/10.1103/PhysRevE.72.056217
http://dx.doi.org/10.1016/j.jtbi.2021.110872
http://dx.doi.org/10.1016/j.chaos.2021.111609
http://dx.doi.org/10.1016/j.chaos.2021.111609
http://dx.doi.org/10.1016/j.chaos.2021.111609
https://www.sciencedirect.com/science/article/pii/S0960077921009632
https://www.sciencedirect.com/science/article/pii/S0960077921009632
https://www.sciencedirect.com/science/article/pii/S0960077921009632

	Integrating theory and experiments to link local mechanisms and ecosystem-level consequences of vegetation patterns in drylands
	Introduction
	Ecological rationale behind current models for vegetation spatial self-organization
	Models for vegetation self-organization
	Reaction–diffusion SDF models
	Two-equation water–vegetation dynamics: the generalized Klausmeier model
	Three-equation water–vegetation dynamics: the Rietkerk model

	Kernel-based SDF models
	Models with additive nonlocal interactions
	Models with multiplicative nonlocal interactions

	Kernel-based PCF models

	Self-organized patterns as indicators of ecological transitions
	Testing models for vegetation self-organization in the field
	Conclusions and future lines of research
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


