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ABSTRACT

Uncertainties in ocean-mixing parameterizations are primary sources for ocean and climate modeling
biases. Due to lack of process understanding, traditional physics-driven parameterizations perform
unsatisfactorily in the tropics. Recent advances in the deep-learning method and the new availability of

long-term turbulence measurements provide an opportunity to explore data-driven approaches to

parameterizing oceanic vertical-mixing processes. Here, we describe a novel parameterization based on an

artificial neural network trained using a decadal-long time record of hydrographic and turbulence

observations in the tropical Pacific. This data-driven parameterization achieves higher accuracy than current
parameterizations, demonstrating good generalization ability under physical constraints. When integrated
into an ocean model, our parameterization facilitates improved simulations in both ocean-only and coupled

modeling. As a novel application of machine learning to the geophysical fluid, these results show the

teasibility of using limited observations and well-understood physical constraints to construct a

physics-informed deep-learning parameterization for improved climate simulations.
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INTRODUCTION

Climate models serve as powerful tools in climate
research. Unfortunately, large and systematic bi-
ases remain in all state-of-the-art climate models.
One of the largest sources of model biases is re-
lated to ocean processes whose spatial scales are
smaller than the model grid resolution. Such un-
solved subgrid ocean processes must be approxi-
mated or ‘parameterized’ in ocean and climate mod-
eling to represent their effects on the processes at re-
solved scales. Limited by computational resources,
current climate models typically resolve ocean pro-
cesses on horizontal length scales not smaller than 10
km. Ocean turbulence at scales of O (107-10' m)
controls thermodynamic mixing of heat, salt, nu-
trients and other tracers, and greatly affects local
and global climates [1-3]. These scales are orders
of magnitude smaller than those at which models
can resolve, and hence net effects of mixing must
be parameterized in numerical models of the cou-
pled ocean-atmosphere system. In particular, turbu-

lent mixing in the tropical oceans is critically im-
portant in controlling seasonal sea-surface cooling
in the eastern equatorial Pacific and balancing the
zonal pressure gradient that drives the equatorial un-
dercurrent (EUC) [4,5]. On the upper flank of the
EUC, instability of the sheared flow drives turbu-
lence [6]. Thus, it is not surprising that model bi-
ases in the tropical oceans are extremely sensitive
to shear-driven mixing parameterizations [7,8]. In-
stability of a sheared flow depends on the gradi-
ent Richardson number (Ri; a non-dimensional ra-
tio of stratification, or density gradient, to squared
vertical current shear. Strong stratification inhibits
instability, whereas strong vertical shear favors in-
stability. Thus, Ri defines the instability condition
for stratified shear flows). Physics-driven parameter-
izations based on Ri have been employed in many
ocean and climate models [9-11]. However, there is
large uncertainty in turbulence properties estimated
by the Ri-based parameterizations. For example,
the K-profile parameterization (KPP) significantly
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overestimates the downward turbulent heat flux in
the Pacific cold tongue region [12]. Yet this param-
eterization is widely used in many ocean and climate
models; more than one-third of the climate mod-
els participating in the Coupled Model Intercom-
parison Project (CMIP) have adopted KPP, thus
increasing uncertainties in CMIP-based climate sim-
ulations and projections.

The lack of process understanding primarily
causes the poor performance of traditional physics-
driven parameterizations. For example, vertical eddy
diffusivity (Kr) estimated by Ri-based parameteri-
zations monotonically increases with decreasing Ri.
But different states of flow can exist at the same value
of Ri, so the parameterized diffusivity is significantly
different to observed values [12,13]. In order to re-
duce uncertainties in vertical-mixing parameteriza-
tions, new methods are clearly needed to explore
the functional relationship between K and resolved
oceanic variables. Based on the universal approxima-
tion theorem [14,15], it is feasible to parameterize
shear-driven mixing using the deep-learning method
[16].

Indeed, deep learning has emerged as a pow-
erful data-driven approach to earth science studies
[17-19]. For example, this technique has been used
for eddy identification [20], El Nifio-Southern Os-
cillation prediction [21] and tropical instability wave
forecasting [22]. In recent years, subgrid parame-
terizations based on deep-learning methods have
been investigated [23-25]. In these studies, artificial
neural networks learn from high-resolution simula-
tions that have their own subgrid parameterizations.
Ultimately, we must directly use observations in
deep-learning-based techniques, a significant chal-
lenge because in situ observations are sparse in both
time and space [19,23]; sparse coverage of in situ
observations can decrease the generalization of
deep-learning parameterization (in this study, the
ability of a neural network to perform well in the re-
gions where in situ observations are absent is called
generalization). By introducing physical constraints
to neural networks, physics-informed deep learn-
ing [26] is a promising approach to addressing this
challenge. Thus, this study has developed a novel
physics-informed mixing parameterization based on
the deep-learning method, which acquires knowl-
edge directly from turbulence observations in the
Pacific cold tongue region. To improve the general-
ization of our parameterization, we used a traditional
physics-driven parameterization as a physical con-
straint on the deep-learning application. Our new
parameterization demonstrates good generalization
ability, and can improve ocean temperature simula-
tions when employed in ocean-only and coupled cli-
mate modeling.
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RESULTS
Data sources and neural network

Ocean models parameterize turbulent mixing pro-
cesses in terms of Ky and vertical eddy viscosity (K, ),
so that vertical diffusion of tracers and momentum
is expressed as 3,(Ky d.Y), where ¥ is the tracer
concentration or momentum of a fluid parcel. Anal-
ogous to a traditional physics-driven parameteriza-
tion, the task of our parameterization is to predict
Kr and K, as functions of large-scale oceanic vari-
ables. The candidate variables that have strong cor-
relations with Ky and K, may include Ri, squared
shear S, stratification N?, density p and velocity U.
Thus in our first attempt to construct the neural-
network-based (NN-based) parameterization, one
input vector contains four features [p, N?, U, §*]7
(Ri is absent from the input features because Ri is
simply the ratio N*/S?). Output variables are K1 and
K,. Compared to direct observations of the input
variables, turbulence observations are sparse in time
and space. Fortunately, decadal-long time records
of turbulence observations [4,27] from the equato-
rial cold tongues are now available, providing an op-
portunity to use the neural network to represent the
connection between the large-scale ocean state and
the shear-driven turbulence. Therefore, temperature
T(z), salinity SA(z) and current U(z) profiles are ob-
tained from the Tropical Atmosphere Ocean (TAO)
mooring array [28] at (0°, 140°W) and the Pilot
Research Moored Array in the Tropical Atlantic
(PIRATA) [29] at (0°,23°W) to calculate the input
variables. The output variable Kr is obtained from
Oregon State University (OSU) x pod instruments
[27] mounted on the TAO and PIRATA moorings
(Materials and Methods: Data sources for training
the neural network). K, is not measured by the x pod
instruments, thus it is estimated as a function of
Ri and K7 in our parameterization (Supplementary
Data: Parameterization of K, ), consistent with some
previous studies [10,11].

In our first attempt to construct the NN-based
parameterization, 3400 samples from (0°, 140°W)
are randomly selected to train a fully connected neu-
ral network (Fig. S1a). The remaining samples (869
samples from (0°, 140°W) and all samples from (0°,
23°W)) are used for validation (Materials and Meth-
ods: Training of NN-based parameterization). In
general, diffusivities predicted by the NN-based pa-
rameterization fit well with the observed ones in the
validation data set (Fig. S1b in Supplementary Data
online). Before the NN-based parameterization is
applied to ocean models, its generalization ability is
tested; the full-depth (40-300 m) observations of in-
putvariables at (0°, 140°W) from 20052017 are in-
putinto the neural network to predict corresponding
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Figure 1. (a—c) The 2D histograms between the observed and the predicted vertical
eddy diffusivities. The colors represent the number of data points in each bin. Cor-
relation coefficients (r, 95% confidence interval in brackets; P-value < 0.001 for all
parameterizations) and root-mean-square errors (rmse) between the predicted and the
observed Logso(K7) are noted in the bottom-right corner. The unit is m? s~

diffusivities, particularly in the deep oceans where
in situ turbulence observations are absent. The pre-
dicted diffusivities above 150 m agree well with our
understanding of shear-driven mixing in the upper
equatorial ocean (Fig. S1c). But there exist unreal-
istically large values of Ky below 150 m, implying
that the generalization of the NN-based parameteri-
zation must be improved.

Physical constraint improves
the generalization of NN-based
parameterization

The failure of our parameterization in predicting
K7 below 150 m can be understood from a data
science perspective. The data sources for train-
ing the neural network are the observations above
119 m and the deeper ocean variables are outside
the range of the training data, which presents the key
problem in restricting applications of deep-learning
parameterizations [23,26]. The pronounced overes-
timation of Ky can also be understood from a physi-
cal oceanographic perspective. Physically, subject to
intense deep-cycle turbulence [3,6,30], ocean trac-
ers and momentum are well mixed above the EUC
core, leading to a weak stratification and a weak
shear in the regions where the training data are mea-
sured. In contrast, vertical diffusion is very weak in
the ocean interior. Meanwhile, without significant
local heat and momentum sources, both stratifica-
tion and shear are weak in the ocean interior. In such
a case, when the NN-based technique is used to pre-
dict K1 below the EUC core, our parameterization
tends to use the knowledge learned from the regions
of deep-cycle turbulence, where a weak stratification
and shear corresponds to a large Kr. As a conse-
quence, the predicted Ky is severely overestimated
below 150 m.

To improve the generalization of our NN-based
parameterization, we incorporated a physical con-
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straint into the neural network to develop a physics-
informed deep-learning parameterization (Materi-
als and Methods: Physical constraint; to better un-
derstand the methods and terminologies in deep
learning, an analogy is provided in Supplementary
Data: An analogy for physical constraint). In such
a case, an additional parameter, Rj, is included in
the NN-based parameterization; so the input vector
now contains five features [p, N?, U, S, Ri]T, and
850 training samples based on a physics-driven pa-
rameterization [ 10] are added to the training data set
(Fig. S2a). After training, the NN-based parameteri-
zation is evaluated in the validation data set. Figure 1
shows that the NN-based parameterization repre-
sents the observations better than the PP (param-
eterization proposed by Pacanowski and Philander
[10]) and KPP. In addition, the generalization of
the NN-based parameterization is greatly improved
when a physical constraint is incorporated into the
neural network (Fig. S2c). Consistent with our un-
derstanding of shear-driven mixing in the equatorial
Pacific, the predicted values of Ky are elevated most
strongly above the EUC core and less so in the more
weakly sheared region beneath the core (also see
Fig S4b and c).

One remaining question is why the NN-based pa-
rameterization performs better than the traditional
physics-driven parameterizations. Based on the uni-
versal approximation theorem [14,15], a feedfor-
ward neural network with enough hidden neurons
can approximate any function we want to learn.
Thus, it is not surprising that the NN-based parame-
terizations with and without physical constraint can
both learn the observed dependences of K on N2
and §? (Fig. 2a—c). However, without physical con-
straint, the lack of observations under the condition
of weak stratification and weak shear (bottom-left
corner in Fig. 2a) leads to the predicted Kr in the
deep ocean being seriously overestimated (Fig. 2f).
That is to say, a better fitting to observations can-
not guarantee that neural networks correctly learn
the underlying physical mechanisms. Therefore, it is
necessary to add a physical constraint to develop an
NN-based parameterization that considers the laws
of physics (Fig. 2e) and the observational evidence
(Fig. 2b).

Improved simulations in both ocean-only
and coupled climate modeling

To assess the performance of the NN-based param-
eterization, we conduct several numerical experi-
ments, in which the ocean-only modeling is based
on the Modular Ocean Model version S (MOMS),
and the coupled climate modeling is based on the
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Figure 2. Dependences of K7 on N2 and S? in the validation and physics-constraint
data sets. The colors represent logio(K7). (a) The observed dependence from x pod in-
struments. (b and ¢) The predicted dependence from the NN-based parameterizations
with and without physical constraint respectively. (d) The dependence in the physical-
constraint data set is based on the PP relation. (e) By adding the physical-constraint
data set to training samples, the NN-based parameterization is constrained by a pos-
itive correlation between K7 and S? and a negative correlation between K and N?;
(f) these correlations are invalid in the parameterization without physical constraint.
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Figure 3. (a and b) Vertical eddy diffusivity and vertical turbulent heat flux in the NN
run and in the KPP run. The black lines are the x pod observations at (49 m, (0°, 140°W);
gray shading in Figs S5 and S6); the red lines (NN run) and the blue lines (KPP run) are
corresponding simulations from the ocean-only modeling. Time-mean values are noted
in the bottom-left corner. The NN run produces a better fit to observations, whereas
the KPP run overestimates the K7 and downward (negative) turbulent heat flux.

Climate Model version 2.1 (CM2.1) from the Geo-
physical Fluid Dynamics Laboratory. Shear-driven
mixing in the control run is parameterized by KPP
(KPP run). For comparison, we also conducted the
sensitivity run with the NN-based parameterization
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(NN run) to test the improved simulations (Supple-
mentary Data: Numerical experiments).

In the ocean-only modeling, Kr from the NN
run exhibits a better agreement with the observation
than the KPP run (Figs 3a and SS). Especially above
the EUC core, K7 is significantly overestimated in
the KPP run but is very close to the observed value
in the NN run. The magnitude of Ky directly affects
ocean thermal structure through its influence on the
vertical turbulent heat flux (J; = —pC,K; T, where
p, C, and T are the density, heat capacity and ver-
tical derivative of temperature, respectively). Con-
sistent with the overestimated diffusivity, downward
turbulent heat fluxin the KPP run is generally greater
than the observed value over 2005 to 2017 (Figs 3b
and S6). In contrast, the vertical turbulent heat flux
is more realistic in the NN run.

The improved simulation of turbulent heat
flux provides a more realistic simulation of ocean
thermal structure. Figures 4a and S7a demonstrate
the temperature bias in the upper equatorial Pacific.
In general, the KPP run produces a warm (cold)
bias above (below) ~120 m, which is a typical
problem in the ocean-only simulations [31]. Phys-
ically, compared with the observation, downward
turbulent heat flux is overestimated between 29 m
and 69 m but is underestimated at 119 m (Fig. S6b),
leading to a heat accumulation above ~120 m and
the consequent warm bias. Meanwhile, the under-
estimated heat flux is insufficient to heat the ocean
layers below 119 m, and the cold bias arises below
~120 m. The NN run shows a notable improvement
in the simulated temperature relative to the KPP
run (Figs 4c and d, and S7c). Since the downward
turbulent heat flux is more realistic in the NN run
(Fig. S6a), the equatorial Pacific temperature bias
in the KPP run is greatly reduced.

It is more challenging to evaluate mixing param-
eterizations in the coupled simulations because the
large-scale oceanic variables treated as input data
to the neural network can be poorly simulated due
to deficiencies in the atmospheric model. Neverthe-
less, coupled climate modeling also shows improve-
ments in temperature simulations of the tropical
Pacific. The coupled KPP run produces a cold bias
in the equatorial upper ocean (Fig. S8a), leading to
the well-known Pacific cold tongue bias in climate
simulations (Fig. Sa). NN-based parameterization
reduces the Pacific cold tongue bias in the coupled
KPP run by ~30% (Fig. Sc and d).

It is worth noting that the PP performs better
than the KPP in the validation data set (Fig. 1b
and c). Since the PP relation is used to constrain
our neural network, the improvements in tem-
perature simulations can be caused by the differ-
ence between the PP and the KPP. In order to
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Figure 4. Improved temperature simulations in ocean-only modeling when the NN-
based parameterization is implemented into MOMb. (a and b) Temperature bias at
(0°, 140°W) in the KPP run and NN run relative to the TAQ observation. (c) The temper-
ature difference between the NN run and the KPP run. Warm bias above and cold bias
below ~120 m can be reduced when the NN-based parameterization is employed. (d)
Temperature bias averaged from 2005 to 2017 in the KPP run (blue), and the temper-
ature improvement in the NN run (red). Warm bias between 60 m and 80 m can be
reduced by ~44%. The unit is °C.
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Figure 5. Improved temperature simulations in coupled climate modeling when the
NN-based parameterization is implemented into CM2.1. (a and b) Sea surface temper-
ature (SST) bias in the coupled KPP run and NN run relative to Optimum Interpolation
SST (OISST) [32] averaged from 1982 to 2017. (c) The SST difference between the NN
run and the KPP run. (d) Equatorial SST bias in the KPP run (blue), and the alleviation
of cold tongue bias in the NN run (red). The cold SST bias can generally be reduced by
~30% when the NN-based parameterization is employed. The unit is °C.

demonstrate that the improvements are primarily
caused by the NN-based parameterization rather
than the PP scheme, two additional numerical exper-
iments are conducted. The PP scheme replaces the
shear-driven mixing in ocean-only and coupled NN
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runs. Figures S9 and S10 demonstrate the improved
temperature simulations in the NN runs relative to
the PP runs. The PP run still has the warm (cold) bias
above (below) ~120 min the ocean-only simulation
(Fig. S9a), and the Pacific too-cold tongue bias in
the coupled climate simulation (Fig. S10a). By in-
troducing the NN-based parameterization, tempera-
ture bias in the PP runs can also be reduced substan-
tially (Figs S9c and S10c).

DISCUSSION

The Pacific equatorial cold tongue is a key region
whose sea surface temperature (SST) variations im-
pact worldwide through atmospheric teleconnec-
tions. It is widely accepted that oceanic turbulent
mixing plays a major role in the equatorial heat bud-
get [3,4,30]. However, great uncertainties still exist
in the parameterizations of oceanic turbulent mixing
[7,8,12,33-35], which has been a primary source for
model biases in ocean and climate modeling. Tradi-
tional physics-driven parameterizations struggle to
explicitly formulate the relationship between large-
scale ocean variables and turbulent mixing prop-
erties. Unfortunately, the complicated behaviors of
ocean turbulent mixing are still not fully under-
stood, and the performance of the corresponding
physics-driven parameterizations are not satisfac-
tory. Instead, we have developed a novel parameter-
ization for shear-driven mixing based on a physics-
informed deep-learning method in this study. Unlike
the traditional physics-driven approach, this data-
driven approach learns the underlying relationships
directly from the turbulence observations from the
Pacific cold tongue. The vertical eddy diffusivity pre-
dicted by the NN-based parameterization agrees
quite well with the observations, and the NN-based
parameterization demonstrates good generalization
ability when physical constraint is applied. The feasi-
bility and effectiveness of this NN-based parameteri-
zation are further justified by its success in improving
ocean temperature simulations in the equatorial Pa-
cific when used in both ocean and coupled climate
models.

Parameterizations grounded in theory and tested
against observations are an essential part of ocean
and climate modeling [36]. However, a lack of
theoretical understanding impedes the develop-
ment of subgrid-scale process parameterizations.
Deep learning provides a data-driven approach
to parameterizing subgrid processes. An artificial
neural network can learn the physical relationships
between the unresolved subgrid and resolved large-
scale processes without assuming the relational
expression in advance. In this way, the NN-based
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parameterizations can better fit observations than
the traditional physics-driven parameterizations.
However, the traditional parameterizations based
on physical knowledge should not be abandoned
completely, and a hybrid physics-informed ap-
proach to parameterizations should be considered.
Limited by observational technology and funding,
observed oceanic variables, such as the vertical eddy
diffusivity, have insufficient space-time coverage.
These issues decrease the generalization ability of
the NN-based parameterizations and cannot be sim-
ply solved by adjusting the network structure and
parameters. In this case, a constraint on the neural
network according to physical knowledge, such as
the negative correlation between K and Ri in this
study, would benefit the improved generalization
ability of the NN-based parameterizations.

This study applies physical constraint by adding
training samples artificially designed based on phys-
ical knowledge. In addition, other avenues are very
promising—for example, adding a new term repre-
senting physical knowledge to loss function or mod-
ifying the neural network architectures by adding
constraint layers [37,38]. The choice of avenue de-
pends on the accuracy of physical knowledge. In this
study, the PP relation is only approximately true,
and hence the first two avenues are suitable. But for
the neural networks, which must strictly satisfy mass
and energy conservation, the latter avenue is more
effective.

Many issues remain. Obtaining enough train-
ing samples is still key to improving the perfor-
mance of neural networks. Although many ob-
servational programs have shared their turbulence
observations generously [2], there are still difficul-
ties in using these observations to improve the accu-
racy and generalization of the NN-based parameteri-
zation. In particular, most of these observations span
less than one month, and yield limited data for deep
learning. Insufficient data may be partially solved
by using large eddy simulations [39] and transfer
learning techniques [40]. Specifically, a neural net-
work is trained first on the outputs from large eddy
simulations and subsequently on in situ turbulence
observations. Thus, transfer learning techniques, in
situ turbulence observations and large eddy simula-
tions should be combined to construct robust pa-
rameterizations of oceanic mixing by turbulence. Be-
sides the Ri-based parameterizations, two-equation
turbulence models are also widely used in ocean gen-
eral circulation models. In these turbulence mod-
els, turbulent kinetic energy (TKE) must be pre-
dicted through a prognostic equation, and hence
TKE mixing schemes are computationally costly for
climate studies. Developing a data-driven TKE mix-
ing scheme with high accuracy and computational
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efficiency is a promising approach to reducing ocean
and climate modeling biases.

MATERIALS AND METHODS

Data sources for training
the neural network

The data sources for deep learning are from the TAO
and PIRATA moorings from 2005 to 2017. For the
input features, U and S§*> = (dU/dz)* are calcu-
lated using the current profiles observed by Acous-
tic Doppler Current Profiler (ADCP), p and N* =
—(g/p)(dp/dz) are calculated using the tempera-
ture and salinity profiles. Note that there are many
missing values in the salinity observations, thus the
salinity averaged above 120 m is used to calculate
the density. The averaged salinity is 35.2 psu at (0°,
140°W) and is 36.0 psu at (0°,23°W). The use of av-
eraged salinity may degrade the results of our param-
eterization since the salinity in the eastern equato-
rial Pacific usually displays a strong vertical gradient.
However, our neural network is not very sensitive to
the small errors in the training samples. For exam-
ple, introducing the approximately true PP relation
(Materials and Methods: Physical constraint) can-
not degrade the accuracy of NN-based parameteri-
zation (Figs 1a and S1b). Ri = N?/S%. As the xpod
instruments are mounted separately between 29 m
and 119 m at (0°, 140°W) and between 21 m and
81 mat (0°,23°W), the input features are further in-
terpolated to the levels of the x pod measurements.
All the input and output variables are daily averaged,
and 4269 samples at (0°, 140°W) and 663 samples
at (0°,23°W) are obtained.

Training of NN-based parameterization

The neural networkis a fully connected network with
three hidden layers (Figs Sla and S2a); this archi-
tecture can provide the best performance in the val-
idation data set (Fig. S3). The input vectors contain
four or five features, each of which is normalized to
zero mean and unit variance. The output variable is
the base-10 logarithm of Ky During the training,
the LeakyReLU activation function is used to pro-
duce the output of hidden neurons, and the Adam
optimizer is used to minimize the squared error be-
tween the predicted and the observed log; o (Kr). Us-
ing the TensorFlow library [41], the neural network
is trained for 2 x 10* epochs. Development of the
NN-based parameterization is completed after the
training.

Physical constraint

In order to improve the generalization of our
NN-based parameterization, physical constraint
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is incorporated into the neural network. First, Ri
is added as the fifth feature of the input vector
(Fig. S2a). Second, 850 samples (named the
physical-constraint data set) physically produced
based on the PP relation [10]
-3
B % +107*
~ 1+4S5Ri

Kr +10° m? st

are added to the training data. Specifically, in one
physically produced sample, p, N2, U and S are ran-
domly selected between 1022-1045 kg m, 107°-
10° 572, —0.4-1.2m s ! and 10°8-1073 572, respec-
tively. Ri is calculated from N*/S*. The correspond-
ing Kr is calculated based on the PP relation. In
this way, we design 850 samples serving as the train-
ing data. In other words, 20% of the training data
(850/(3400 + 850)) provide the physical constraint
that Kr is negatively correlated with the Ri. It is ob-
vious that the NN-based parameterization with the
physical constraint can predict the observed diffusiv-
ities rather well (Fig. S2b and c).

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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