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Abstract

Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clin-
ical and diagnostic settings. During development, a sensor’s design and external factors are rigorously optimized, but
improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A
common solution involves digital signal processing after sample analysis, but these methods frequently fall short in provid-
ing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and
using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated
hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need
for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a com-
prehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining
the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are
applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance
cytometer, 9 um polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing
digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved
by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate
filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems
to determine their appropriately optimized filtering configuration.

Keywords Impedance Cytometry - Microfluidics - Signal Processing - Leukocyte counting

1 Introduction

Highly sensitive and accurate biosensors are continuously
researched and sought out to measure critical and often
microscopic analytes, providing decisive and time-dependent
information in biological systems. This imperative form is
used in diverse settings, from critical care disease diagnostics
(Ashley and Hassan 2021a; Murdock et al. 2017; Lu et al.
2015b; Zhang et al. 2020), continuous and discrete physi-
ological monitoring (Ashley et al. 2019; Brown et al. 2018;
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Gao et al. 2016; Koh et al. 2016), environmental monitoring
(Alam et al. 2020; Lu et al. 2015a; Marinov et al. 2018), and
manufacturing/product development quality control (Cinti
et al. 2017; Izadi et al. 2016; Verma and Singh 2003). The
assorted materials and compounds to measure additionally
prompts a variety of detection modalities in which to meas-
ure them, each with their advantages in specific conditions.
This includes modalities such as fluorescence microscopy
(Hu et al. 2014; Maetzig et al. 2017; Volpetti et al. 2015),
acoustic imaging (Gnyawali et al. 2019; Khateib et al. 2020;
Sarimollaoglu et al. 2014), surface plasmon resonance (Sun
et al. 2020; Yoo et al. 2020), and biochemical assays (Cho
and Irudayaraj 2013; Han et al. 2007). Among the vast tech-
nologies, electrochemical impedance spectroscopy (EIS)
stands out as a versatile, accurate, and rapid technique and
has demonstrated minimal reagent preparation, miniscule
sample volumes, and non-destructive sample measurement
for a variety of materials (Bredar et al. 2020; Hassan et al.
2017; Lu et al. 2015b; Stupin et al. 2017). In a subsection of
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«Fig. 1 a Custom printed circuit board (PCB) which onboards micro-
fabricated microfluidic impedance cytometry device. Silver conduc-
tive epoxy adheres and facilitates electron transfer between gold
microelectrodes and computer-connector interface. b Brightfield
microscope image of microfluidic electric field regime. A polydi-
methylsiloxane (PDMS)-based channel has focusing regions between
gold electrodes which increases particle pulse amplitude. The middle
electrode is voltage stimulated (V,,) and exterior detecting electrodes
produces an electric field in the region. ¢ Flowchart of digital filtering
selection criteria and how filtering conditions were ranked for signal
quality optimization. d Time-domain impedance detection data of
9-micron polystyrene particles collected from the microfluidic device
prior to applying digital filtering. A differential signal is collected
from the two detecting electrodes, followed by transimpedance cur-
rent amplification which produces a bipolar pulse for each particle.
e The same impedance data after digital filtering with the most opti-
mized conditions (1% order Butterworth low pass filter at a 60 kHz
cutoff frequency and 3™ order Chebyshev Type I high pass filter at a
30 Hz cutoff frequency) which reveals lower noise band and baseline
drift per polystyrene pulse signal amplitude

EIS, microfluidic impedance cytometry is the recordings of
microscopic materials flowing through a microfluidic chan-
nel and disrupting a defined electric field, and has been used
extensively for its manufacturing ease and simple data pro-
cessing in point-of-care settings (Ashley and Hassan 2021b;
Clausen et al. 2018; Colson and Michel 2021; Zhong et al.
2021).

Unfortunately, each of these choices comes with their
own competitive unvalued noise sources which impedes
the intended analyte’s detection. For EIS, this originates
from interferences such as surrounding electrical genera-
tion, sample volume electrical properties, external ioniza-
tion, and sample collection quantization (Antal et al. 2001;
Pierce et al. 2015; Ram et al. 2012). Perfecting experimen-
tal conditions may reduce noise from these sources, but in
many fields these conditions are uncontrollable and may not
reduce noise to a sufficient degree (Ridgway et al. 2007).

Without alternatives, a capable approach is processing
post-data collection, where property differences between
signal and noise data may be exploited (Hassan et al. 2015).
Transforming the data into frequency space reveals this
exploitation, where specific frequency regimes are notori-
ous for predominate noise. This includes low frequencies
typically below 30 Hz, where high amplitude, low frequency
noise manifests into data drift over time, corrupting the
detection range and primarily disrupting accurate desired
signal recognition (Atakan et al. 1980; Chouhan and Mehta
2007; Liu et al. 2014; Sun et al. 2007). Contrastingly, high
frequencies above 100 kHz also constitute majority noise
results, as frequency data from material recordings gener-
ally fall within 0.03 to 100 kHz (Ashley and Hassan 2021c;
Hassan et al. 2015). This high frequency noise produces a
wide noise band in the data, where signal identities close to
a device’ detection limit may fall underneath and become
degraded (Ashley and Hassan 2021b). While these are the

general values, in practice the specific frequencies which
represent analyte data has not been fully explored, being
only defined from theoretical hypotheses (Antal et al. 2001;
Stupin et al. 2017). There lies a need for understanding and
experimental justification for specific frequency filtering
which may improve sensor data signal quality and accuracy.

Often, digital filtering is used with many detection
modalities, including EIS (Hassan et al. 2015; Manikandan
and Soman 2012; Ram et al. 2012; Redhyka et al. 2015).
However, when critical materials must be measured near
the technology’s detection limit, the smallest of margins and
signal quality optimizations may correspond to significant
detection accuracy improvements. While applied, there is
inadequate research on experimental impedance cytometry
data related to which digital filtering conditions have the
highest performance. Therefore, this article aims to execute
a library of digital filtering conditions and provide a struc-
ture for defining signal quality in impedance cytometry data.
Polystyrene particles 9 pm in diameter are measured through
a microfabricated, microfluidic impedance cytometer
(Fig. 1a, b). As shown by Fig. 1c, when assessing filtering
performance, emphasis will be placed on counting accuracy
first, followed by higher signal-to-noise ratios (SNR) related
to higher signal quality. After transimpedance amplification,
a litany of filter types, filter orders, and cutoff frequencies
will be assessed in transforming the original unfiltered result
(Fig. 1d) to its defined, most optimized form (Fig. 1e). This
approach will further be presented with biologically relevant
samples of isolated human neutrophils to support its for-
mulation. While systematically defined, this article is the
first to explore digital filtering variations in experimental
EIS data and provide guidance on future and more diverse
filtering selections.

2 Materials and methods
2.1 Materials

Phosphate buffered saline (PBS, 1X and 10X), Ficoll-
Paque density gradient, (3-Amino-propyl)triethoxysilane
(APTES), and Roswell Park Memorial Institute medium
1640 (RPMI) were purchased through Sigma Aldrich (St.
Louis, MO, USA). A NE-300 syringe pump was purchased
from Southpoint Surgical Supply (Coral Springs, FL, USA).
A HF2LI lock-in amplifier and HF2TA current amplifier was
purchased through Zurich Instruments (Zurich, SUI). Sil-
ver conductive epoxy was purchased from Digi-Key (Thief
River Falls, MN, USA). Unidentifiable human blood was
obtained from Robert Wood Johnson Medical Hospital (New
Brunswick, NJ, USA) through an institutional review board
(IRB) study. LabView software was purchased and installed
through National Instruments (Austin, TX, USA). MATLAB
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version 2020B was purchased and installed through Math-
works (Natick, MA, USA).

2.2 Microelectrode and microchannel fabrication

Gold-electrodes are microfabricated on borosilicate glass
wafers above a deposited chromium adhesion layer follow-
ing the manufacturers protocol for s1813 photolithogra-
phy. Microfluidic channel molds are also microfabricated
on silicon wafers following the manufacturers protocol
for SU-8 3025 photolithography. Polydimethylsiloxane
(PDMYS) is poured and cured over SU-8 channel molds,
and after removal a biopsy punch creates inlet and outlet
holes to facilitate media perfusion from syringe tubing and a
syringe pump. PDMS and gold electrode surfaces are treated
with oxygen plasma and bonded, where focusing regions
are aligned across electrodes to increase polystyrene parti-
cle volume fraction in the electric field space. Key channel
dimensions include 100 pm in width, with focusing regions
reducing the width to 30 um, 22 um in height, and is 3 cm
long. Microelectrodes are 0.5 pum thick, are 100 pm in width,
and are 150 um apart (Fig. 1b) (Holmes et al. 2006). More
specific microfabrication procedures with this configura-
tion have been previously published, and further detail is
included in the Supplemental Information (Ashley et al.
2021; Ashley and Hassan 2021b).

2.3 Signal acquisition, demodulation, and data
processing

Silver conductive epoxy adheres gold electrodes to a custom
printed circuit board using electrode contact pads, visualized
in Fig. 1a. A5 V AC input is applied to the center electrode
using the HF2LI signal amplifier, and the HF2TA current
amplifier increase recorded signal contributions from the
device. 9 um polystyrene microparticles are diluted in phos-
phate buffered saline at a 35 particle/uL concentration and
undergo flow at a rate of 15 pL./min. The signal is recorded at
a 250 kHz sampling rate using a PCle-6361 data acquisition
card, and dual detecting (grounded) electrode recordings are
subtracted to produce a bipolar impedance pulse.
Impedance cytometry recordings are saved through a
LabView control program and interpreted in a custom MAT-
LAB script. A region manually selected which is absent of
particles is used as the noise reference values, which is the
standard deviation of the selected region. A threshold is
then applied for the absolute value of data 4 times this noise
standard deviation to define the particle pulse, construing the
data as 9 um polystyrene microparticles. If the average of the
threshold triggering data point and the next 10 data points
is less than the threshold, the pulse is neglected, which
removes high frequency noise data that may have triggered
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a false positive hit above the threshold. Additionally, after
collecting all the particle pulses and obtaining their average
peak-to-peak amplitudes, pulses which are 2 times greater
than average are neglected, as these represent two or more
particles traveling across the electric field regime simulta-
neously. For this study, we are only interested in evaluating
the signal quality for individual 9 um polystyrene micropar-
ticles, as more than one particle disrupting the electric field
at once may artificially inflate the average signal quality of
the sample. More detail on instrumentation and microflu-
idic channel framework may be found in the Supplemental
Information (SI Fig. 1).

2.4 Applying and evaluating digital filtering

Using MATLAB, when a data value goes beyond the defined
threshold, the magnitudes of the highest and lowest values of
the next 500 data points are combined to produce the peak-
to-peak bipolar amplitude (AV7) for an individual particle:

AV, = AVmax — AVmin e))

Following this, the standard deviation of the previous 200
data points is measured which defines the local noise prior
to particle pulse detection:

1 X 2)

(o} = X
BG L

The signal-to-noise ratio for each particle is then quanti-
fied as the logarithm ratio of bipolar amplitude with data
standard deviation prior to pulse detection, standardized to
a decibel scale:

B AVy
SNR = 20log— 3)
0BG

For a 60 s recording segment and from the expected
diluted concentration of 35 particles/uL which flows through
the channel at 15 pL/min, the expected particle count is
approximately 525 particles. Accounting for a 10% error
given micro-changes in concentration under flow, different
filtering conditions described next are rated by increasing
SNR if the counted number of particles is within this 10%
error range (Fig. 1c). If the recorded particle counts devi-
ate 10% away from the 525-particle count average, filter
conditions are rated by the closest counts to expected, as
these conditions are rated less favorably since many false
positive or false negative measurements occur, indicating
an unoptimized system. Future experiments are underway
with simultaneous high speed video microscopy to capture
true object incidence, which can reduce the % error range
for defining counting accuracy.
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The original unfiltered data is shown in Fig. 1d, with
examples of baseline drift represented along with an appar-
ent noise band. Dual detecting electrode recordings are
subtracted to produce a bipolar impedance pulse shown
by the zoomed-in insert. Butterworth, Chebyshev Type I
(Chebyl), and Chebyshev Type II (Cheby?2) digital filters are
applied in MATLAB for both high pass and low pass filter-
ing conditions. Both Chebyl and Cheby?2 filters are operat-
ing with a 5 dB ripple for the passband (Cheby1) or stop-
band (Cheby?2). For each experiment, powerline interference
filtering is also applied with 4™ order band-stop filters at
60 Hz and its 120 Hz second harmonic. Figure le represents
the most optimized filtering conditions achieved with this
approach of the 9 um polystyrene particle samples, revealing
a smaller noise-band and removed baseline drift, and will be
determined and discussed in the following sections. Data
Fourier transformations is performed in MATLAB using the
Fast Fourier Transform or fft command.

From previous reports, particle pulse data collected from
micro flowing impedance cytometry lies between 50 Hz
and 90 kHz when flowing at an approximate 15 puL/min
rate (Hassan et al. 2015). Therefore, a significant major-
ity of amplitudes above 90 kHz is contributed from high
frequency noise and produces the large time-domain noise
band. It is expected that eliminating frequencies near or
above this 90 kHz value may reduce this band and improve
signal quality without significantly reducing desired object
pulse data. Thus, for cutoff frequency selection for digital
filtering in the subsequent sections, cutoff frequencies are
varied from 5 to 50 Hz at different filter orders with a 5 Hz
step for high pass filtering. Cutoff frequencies are varied
from 60 to 125 kHz with a 15 kHz with low pass filtering.
Along with filter types, filter orders for each type with each
filtering pass are modulated from 1 to 4" order and dis-
seminated to determine the highest achievable SNR with
measured particle counts close to expected particle counts.

2.5 Isolating neutrophils from whole blood

Deidentified whole blood was obtained from patient sam-
ples and Robert Wood Johnson University Hospital through
an IRB study (Wagner et al. 2021). After collection, blood
was combined with 1X PBS at equal volumes, and layered
above Ficoll-Paque density gradient at a 3 to 4 ratio. This
amalgam is centrifuged for 30 min at 400 g which exploits
density differences to separate platelets, blood cells, and
plasma. Platelets and plasma are aspirated in the superna-
tant, with the blood cell pellet exposed to deionized water for
15 s to dissolve non-neutrophil mononuclear cells. Tonicity
was rebalanced with 10X PBS, and the solution was again
centrifuged for 5 min at 300 g to separate red blood cells
from neutrophils. This process is repeated until a gray pel-
let appears, representing isolated neutrophils, and this pellet

was resuspended in RPMI 1640 media with 50 uL of stock
neutrophils to 5 mL of RPMI 1640 media. Immediately prior
to impedance cytometry experiments, neutrophils are diluted
in IX PBS.

3 Results and discussion

3.1 Data Fourier transformation to determine
filtering ranges

Figure 2 outlines the Fourier transform (Fig. 2b, c) of the
entire unfiltered data (Fig. 2a), highlighting specific regimes
which contain significant noise contributions which are eval-
uated in this report, including low frequency noise (Fig. 2d)
and high frequency noise (Fig. 2e). The goal with cutoff
frequency selections is to produce the highest noise elimi-
nation without additionally eliminated frequency data from
particle pulses. Visualized by Fig. 2d, baseline drift is a large
frequency amplitude contribution below 5 Hz which arises
from external ionization of surrounding electrical devices
and micro-variances in microfluidic flow (Pierce et al. 2015).
These observations affirm the cutoff frequencies used for
both high and low frequency noise filtering for the following
sections to improve signal quality and accuracy.

3.2 Impact of high pass filtering on signal quality

As mentioned previously, eliminating low frequency noise
reduces baseline drift effects, and predicted to increase
object counting accuracy and modestly decrease the noise
amplitude (Atakan et al. 1980; Liu et al. 2014). When
assessing measurement performance for biosensors includ-
ing this impedance cytometry device, the most important
metrics include high SNRs and accurate object determina-
tion. Regarding these experiments, SNR is closely tied to
the bulk noise amplitude, while accurate object counting is
related to the expected object concentration in the sample.
Therefore, the number of particles measured in a constant
time measurement, the samples noise amplitude, and the
composite SNR will define the improvements in signal qual-
ity brought about by the digital filtering conditions. When
no digital filtering is applied, the referenced sample metrics
includes a 0.2468 V noise amplitude, a 20.54 dB SNR, and
counted 971 particles which is significantly inaccurate to the
expected 525 particle counting concentration.

Figure 3 details the noise, SNR, and number of 9 um
polystyrene particles counted in the same sample data with
a myriad of high pass digital filtering conditions used with-
out other simultaneous digital filtering. What remains con-
sistent across filter types is a higher likelihood of reduced
counting accuracy at higher cutoff frequencies (see filter
orders 1 and 2 in Fig. 3a, filter order 2 in Fig. 3d, and filter
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Fig.2 a Full time-domain
recording data of unfiltered 9
micron polystyrene impedance
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orders 1 and 3 in Fig. 3g). This sharp rise in false positive
counts results from removing particle pulse frequency data
in this low frequency regime and producing a thresholding
value less likely to discern pulse data from high amplitude
noise data. As a result, inaccurate and over-counting trickles
down to impact average samples noise amplitude, and with
a reduced average bipolar pulse amplitude measured that
includes lower false positive noise amplitude, the SNR is
lower relative to other conditions (see filter orders 1 and 2
in Fig. 3c, filter order 2 in Fig. 3f, and filter orders 1 and 3
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in Fig. 3i). It would be expected then that the most optimal
cutoff frequency across the filters would be the highest value
that does not trigger an inaccurate count and thereby elimi-
nating baseline drift noise to its fullest degree. Otherwise,
there are no significant trends between filter orders which
dictate filtering roll-off steepness, while Chebyl filters
have a marginally higher average SNR than Butterworth or
Cheby? filters at the same cutoff frequency and filter order.

Using the ranking system outlined in Fig. Ic, each filter
order, cutoff frequency, and filter type iteration was arranged
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Fig.3 High pass filtering results alone when varying the cutoff fre-
quency (10 Hz to 50 Hz) with different filter types (Butterworth
(a-c), Chebyshev Type I (d-f), Chebyshev Type II (g-i) filter types)
and different filter orders: 1% order (gray), 2™ order (red), 3" order
(blue), 4™ order (green). Results compared with the number of parti-

in a hierarchy from most to least optimized to improve signal
quality (Table 1 and SI Table 1). Based on noise reduction,
relative SNR increases, and counting particles within a 10%
margin of error to the expected counts, the high pass filter-
ing alone which improved signal quality the most was the
3" order Cheby] filter with a 30 Hz cutoff frequency. This
aligns with our expected midpoint cutoff frequency value
between 5 and 50 Hz, delivering the highest SNR of the

cles counted through the impedance detection recording (a, d, g), the
average background noise (b, e, h), and the SNR or signal to noise
ratio (¢, f, i) across the different filter types, orders, and cutoff fre-
quencies. Black dotted lines represent unfiltered values for compari-
son

over 100 different filter parameter combinations (SI Table 1).
The highest performing Butterworth filter was ranked 11,
which was a 3" order filter with a 15 Hz cutoff frequency,
while the highest performing Cheby? filter was ranked 39"
with a 4™ order filter at 10 Hz. Of note, Cheby filters typi-
cally outperformed Butterworth and Cheby?2 filters with
similar conditions, and were less likely to experience the
inaccurate counting issue as Cheby? filters made up 10 of
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Table 1 Highest ranking high
pass alone filtering conditions

for each filter type

Filter type, order, and cutoff frequency # of particles ~ Noise (V) SNR (dB) Overall rank
counted

Cheby1, 3™ order, 30 Hz 487 0.1317 25.1761 1

Butterworth, 3 order, 15 Hz 520 0.1679 25.0369 11

Cheby?2, 4" order, 10 Hz 515 0.1599 24.8857 39

the 15 configurations which counted particles outside of the
10% margin of error (SI Table 1). Otherwise, there were no
apparent trends related to filter order throughout the ranks.

3.3 Impact of low pass filtering and the most
optimized high pass filtering on signal quality

While high-pass filtering primarily eliminates baseline drift,
low-pass filtering is expected to greater reduce the noise
band and increase SNR. When evaluating signal quality
alone, however, the lack of baseline drift negation heavily
impairs the counting accuracy and signal quality achieved
from even the most optimized low pass filtering conditions
(ST Fig. 2). As such, the next results will focus primarily on
modulating low-pass filtering conditions in conjunction with
the most optimized high-pass filtering parameters achieved
in the previous Sect. (3" order Cheby]1 filter with 30 Hz
cutoff frequency).

In evaluating low-pass filtering effects, Fig. 4 presents
trends with cutoff frequency across different filter orders and
filter types. Similar to Fig. 3, the graphs are presented as the
key metrics in determining signal quality; the number of
counted particles, average background noise amplitude, and
SNR. Other than 2 iterations with the 4™ order Cheby1 filter
below 75 kHz, all configurations were within 10% of the
counting error and had adequate counting accuracy. Unlike
the high-pass alone conditions, there is a trend with cutoff
frequency and SNR/noise amplitude, as across the filters and
orders a lower cutoff frequency corresponded with a lower
noise amplitude and higher SNR. This is consistent with the
ranked filtering conditions (Table 2), as each filter type’s
highest rank was with a 60 kHz cutoff frequency. For these
parameters, the highest rank overall used a 1% order Butter-
worth filter, while the highest Cheby]1 filter was ranked 4"
and Cheby? filter ranked 7. Contrasting to the high-pass
filtering results alone, there is an even distribution of filter
types in the top ranks of low-pass filtering signal quality (SI
Table 2). However, filter order results did not have consistent
relationships to filter type, as cutoff frequency dominated
the correlation with signal quality ranks. With this com-
binatorial filtering, SNR increased 6.09 dB and placed the
device within an acceptable counting range compared to the
unfiltered data.

It was previously believed that frequencies below 90 kHz
for this device’s configuration also included considerable
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desired signal components, and therefore cutoff frequencies
for a low pass filter below 90 kHz would decrease signal
quality relative to a higher cutoff frequency (Hassan et al.
2015). However, the results presented here reflects a greater
noise reduction offset down to 60 kHz, even as particle bipo-
lar amplitude slightly declines as well (Fig. 1d). This proves
the power noise reduction has on SNR relative to the meas-
ured signal amplitude, and future directions may research
filtering conditions which go below this 60 kHz low pass
cutoff frequency as well to determine optimal signal quality.
In both high-pass and low-pass filtering analysis, the
Cheby] filter generally outperformed the Butterworth and
Cheby? filters in noise reduction at identical filter order
and cutoff frequency conditions. This is expected, as ideal
Cheby] filters have a larger stopband attenuation magnitude
farther halfway through the stopband frequency range com-
pared to a Butterworth filter with the same cutoff frequency
and filter order (Taylor and Williams 2006; Weinberg and
Slepian 1960). Additionally, the Cheby? filter performed
the worst in attenuating baseline drift, most likely due to
the ripple in the stopband inhibiting greater noise reduction
as opposed to the ripple being in the passband for Cheby1
filters (Bianchi and Sorrentino 2007; Singh et al. 2010).
The severity of this effect in the low-pass results was not as
apparent, as the stopband at lower cutoff frequencies also
included polystyrene particle pulse data. One considera-
tion may be computational time for applying digital filters,
as for identical conditions Butterworth filters have a faster
step response (Singh et al. 2010). However, for the reported
analysis, additional time for digital filtering did not exceed
3 s for any experimental condition, including combinato-
rial high-pass and low-pass experiments. When optimal
filtering conditions are determined and real-time filtering
is applied to future experiments, computer memory buffers
settings may be applied to discretize smaller data sections
and accommodate for the required filter computing time.

3.4 Applying filtering conditions to isolated
neutrophil data

To evaluate the procedural robustness of optimizing digital
filtering conditions for time-domain impedance cytometry
data, this approach was translated to more heterogenous
samples with greater biomedical applications. Specifi-
cally, isolated neutrophils from human whole blood were
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Fig.4 Low pass filtering results when varying the cutoff frequency
(60 kHz to 120 kHz) with different filter types (Butterworth (a-c),
Chebyshev Type I (d-f), Chebyshev Type II (g-i) filter types) and dif-
ferent filter orders: 1% order (gray), 2" order (red), 3™ order (blue),
4™ order (green). Results compared with the number of particles
counted through the impedance detection recording (a, d, g), the

average background noise (b, e, h), and the SNR or signal to noise
ratio (c, f, i) across the different filter types, orders, and cutoff fre-
quencies. Statistics presented also simultaneously include filtering
with the most optimized high pass filtering results (Cheby1, 3™ order,
30 Hz). Black dotted lines represent unfiltered values for comparison

Table 2 Highest ranking low
pass alone filtering conditions
for each filter type including

the highest ranking high pass
filtering conditions (Cheby1, 3™
order, 30 Hz)

Filter type, order, and cutoff frequency # of particles ~ Noise (V) SNR (dB) Overall rank
counted

Butterworth, 1% order, 60 kHz 544 0.1211 26.6293 1

Cheby1, 3™ order, 60 kHz 538 0.1255 26.2322 4

Cheby?2, 2™ order, 60 kHz 530 0.1421 25.4292 7
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measured in the designed microfluidic impedance cytometer,
and the same iterative process was used to determine the
low and high pass digital filtering conditions that generated
the highest SNR while also remaining within+ %10 of the
expected number of neutrophils counted across the sample
recording. Here, neutrophils were diluted to 5x 10* cells/
mL, and over a 60 s recording with the same 15 puL/min the
expected number of cells to count was 750.

Figure 5 represents the time-domain impedance data of
counted neutrophils measured with the microfluidic imped-
ance cytometer before (Fig. 5a) and after (Fig. 5b) digital
filtering was applied. Here, there is a more apparent baseline
drift consideration, although this did not greatly impact the
neutrophil counting results the number of counted cells at
769 was still within + %10 of the expected 750 count. Addi-
tionally, only a select number of filters were evaluated based
on filter conditions from this group’s previous publications
as well as the highest-performing filter conditions from the
previous sections in this article (Ashley and Hassan 2021b;

Fig.5 Time domain-data with
isolated neutrophil impedance (a)
pulses before (a) and after (b)

Hassan et al. 2015). It is notable that our previous digital
filtering conditions delivered the lowest increase in SNR
(4" order Butterworth high pass filter with a 20 Hz cutoff,
4% order Butterworth low pass filter with a 120 kHz cutoff),
and changes in filter cutoff frequencies appeared to have
most significant SNR impacts.

Many—but not all—trends remain consistent to the
9 um polystyrene test particle results. This includes lower
low-pass filtering cutoff frequencies between 60 to 75 kHz
delivered higher SNRs, the 25-30 Hz cutoff frequency
range for high-pass filtering was optimal to remove base-
line drift without greatly disrupting neutrophil signal
quality, and the Cheby] filters were found higher ranking
than Butterworth or Cheby? filters (Table 3). However, the
most optimal filtering conditions for the neutrophil data
was not identical to the previous section results: here, the
most optimal filtering conditions were a 3" order Cheby1
high-pass filter with a 30 Hz cutoff and a 3" order Cheby1
low-pass filter with a 60 kHz cutoff, while the filtering

Unfiltered data

optimized digital signal filtering 3
(3 order Chebyshev Type I
high pass filter at a 30 Hz cutoft
frequency and 3. order Cheby-
shev Type I low pass filter at a
60 kHz cutoft frequency)

o
1

Amplitude (V)

[

10 15
Time (s)

20

Data after most optimized filtering conditions

w
1
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Table 3 Highest ranking

. : Filter type, order, and cutoff frequency # of particles  Noise (V) SNR (dB) Overall rank
low and high pass filtering counted
conditions for isolated human
neutrophil impedance data High pass: Cheby1, 3 order, 30 Hz 716 0.1425 26.6806 1
Low pass: Cheby1, 3™ order, 60 kHz
High pass: Chebyl, 3 order, 30 Hz 726 0.1320 26.6108 2
Low pass: Cheby1, 4™ order, 75 kHz
High pass: Cheby1, 3 order, 30 Hz 719 0.1425 26.5687 3
Low pass: Butterworth, 1% order, 60 kHz
High pass: Cheby1, 1% order, 25 Hz 724 0.1455 26.4198 4
Low pass: Butterworth, 1% order, 60 kHz
High pass: Butterworth, 4" order, 20 Hz 726 0.1515 26.4095 5
Low pass: Butterworth, 4t order, 120 kHz
Unfiltered 769 0.1770 19.1833 6
conditions most optimal for the 9 um polystyrene test par- Declarations

ticle results ranked 3™ in signal quality for the neutrophil
data. This most likely arises from the small margins which
separate all these conditions, as only a 0.11 dB change in
SNR exists between these two conditions, so the smallest
impacts in bipolar amplitude frequency data between neu-
trophils and polystyrene particles, flow perturbations, or
local media conductivity may change the final numerical
result. Nonetheless, the aim of these results is to highlight
the methodology for determining the most optimal filtering
conditions and which signal quality metrics contribute to
those decisions.

It has been demonstrated that a lack of experimental
analysis produced sub-ideal signal processing, and the
framework put forth in this article can provide clarity for
other systems to find their own signal processing best fits.
This digital filtering approach may be used with minimal
modulation, including for systems of varying experimental
or instrumental forms, such as different channel dimen-
sions, different electric field magnitudes, or using single-
ended measurements. While exhaustive filtering conditions
were highlighted, future applications of this method can
omit some steps like including Cheby? filters or extreme
cutoff frequency ranges to evaluate filtering results more
efficiently. Collecting the highest feasible signal quality
in a biomedical device is greatly important for measuring
minute but critical analyte changes and lowering a systems
detection limit, which in turn can increase the sensitivity
and accuracy of these highly depended-upon machines.
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