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Abstract
Improving biosensor performance which utilize impedance cytometry is a highly interested research topic for many clin-
ical and diagnostic settings. During development, a sensor’s design and external factors are rigorously optimized, but  
improvements in signal quality and interpretation are usually still necessary to produce a sensitive and accurate product. A 
common solution involves digital signal processing after sample analysis, but these methods frequently fall short in provid-
ing meaningful signal outcome changes. This shortcoming may arise from a lack of investigative research into selecting and 
using signal processing functions, as many choices in current sensors are based on either theoretical results or estimated 
hypotheses. While a ubiquitous condition set is improbable across diverse impedance cytometry designs, there lies a need 
for a streamlined and rapid analytical method for discovering those conditions for unique sensors. Herein, we present a com-
prehensive dissemination of digital filtering parameters applied on experimental impedance cytometry data for determining 
the limits of signal processing on signal quality improvements. Various filter orders, cutoff frequencies, and filter types are 
applied after data collection for highest achievable noise reduction. After designing and fabricating a microfluidic impedance 
cytometer, 9 µm polystyrene particles were measured under flow and signal quality improved by 6.09 dB when implementing 
digital filtering. This approached was then translated to isolated human neutrophils, where similarly, signal quality improved 
by 7.50 dB compared to its unfiltered original data. By sweeping all filtering conditions and devising a system to evaluate 
filtering performance both by signal quality and object counting accuracy, this may serve as a framework for future systems 
to determine their appropriately optimized filtering configuration.
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1  Introduction

Highly sensitive and accurate biosensors are continuously 
researched and sought out to measure critical and often 
microscopic analytes, providing decisive and time-dependent 
information in biological systems. This imperative form is 
used in diverse settings, from critical care disease diagnostics 
(Ashley and Hassan 2021a; Murdock et al. 2017; Lu et al. 
2015b; Zhang et al. 2020), continuous and discrete physi-
ological monitoring (Ashley et al. 2019; Brown et al. 2018; 

Gao et al. 2016; Koh et al. 2016), environmental monitoring 
(Alam et al. 2020; Lu et al. 2015a; Marinov et al. 2018), and 
manufacturing/product development quality control (Cinti 
et al. 2017; Izadi et al. 2016; Verma and Singh 2003). The 
assorted materials and compounds to measure additionally 
prompts a variety of detection modalities in which to meas-
ure them, each with their advantages in specific conditions. 
This includes modalities such as fluorescence microscopy 
(Hu et al. 2014; Maetzig et al. 2017; Volpetti et al. 2015), 
acoustic imaging (Gnyawali et al. 2019; Khateib et al. 2020; 
Sarimollaoglu et al. 2014), surface plasmon resonance (Sun 
et al. 2020; Yoo et al. 2020), and biochemical assays (Cho 
and Irudayaraj 2013; Han et al. 2007). Among the vast tech-
nologies, electrochemical impedance spectroscopy (EIS) 
stands out as a versatile, accurate, and rapid technique and 
has demonstrated minimal reagent preparation, miniscule 
sample volumes, and non-destructive sample measurement 
for a variety of materials (Bredar et al. 2020; Hassan et al. 
2017; Lu et al. 2015b; Stupin et al. 2017). In a subsection of 
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EIS, microfluidic impedance cytometry is the recordings of 
microscopic materials flowing through a microfluidic chan-
nel and disrupting a defined electric field, and has been used 
extensively for its manufacturing ease and simple data pro-
cessing in point-of-care settings (Ashley and Hassan 2021b; 
Clausen et al. 2018; Colson and Michel 2021; Zhong et al. 
2021).

Unfortunately, each of these choices comes with their 
own competitive unvalued noise sources which impedes 
the intended analyte’s detection. For EIS, this originates 
from interferences such as surrounding electrical genera-
tion, sample volume electrical properties, external ioniza-
tion, and sample collection quantization (Antal et al. 2001; 
Pierce et al. 2015; Ram et al. 2012). Perfecting experimen-
tal conditions may reduce noise from these sources, but in 
many fields these conditions are uncontrollable and may not 
reduce noise to a sufficient degree (Ridgway et al. 2007).

Without alternatives, a capable approach is processing 
post-data collection, where property differences between 
signal and noise data may be exploited (Hassan et al. 2015). 
Transforming the data into frequency space reveals this 
exploitation, where specific frequency regimes are notori-
ous for predominate noise. This includes low frequencies 
typically below 30 Hz, where high amplitude, low frequency 
noise manifests into data drift over time, corrupting the 
detection range and primarily disrupting accurate desired 
signal recognition (Atakan et al. 1980; Chouhan and Mehta 
2007; Liu et al. 2014; Sun et al. 2007). Contrastingly, high 
frequencies above 100 kHz also constitute majority noise 
results, as frequency data from material recordings gener-
ally fall within 0.03 to 100 kHz (Ashley and Hassan 2021c; 
Hassan et al. 2015). This high frequency noise produces a 
wide noise band in the data, where signal identities close to 
a device’ detection limit may fall underneath and become 
degraded (Ashley and Hassan 2021b). While these are the 

general values, in practice the specific frequencies which 
represent analyte data has not been fully explored, being 
only defined from theoretical hypotheses (Antal et al. 2001; 
Stupin et al. 2017). There lies a need for understanding and 
experimental justification for specific frequency filtering 
which may improve sensor data signal quality and accuracy.

Often, digital filtering is used with many detection 
modalities, including EIS (Hassan et al. 2015; Manikandan 
and Soman 2012; Ram et al. 2012; Redhyka et al. 2015). 
However, when critical materials must be measured near 
the technology’s detection limit, the smallest of margins and 
signal quality optimizations may correspond to significant 
detection accuracy improvements. While applied, there is 
inadequate research on experimental impedance cytometry 
data related to which digital filtering conditions have the 
highest performance. Therefore, this article aims to execute 
a library of digital filtering conditions and provide a struc-
ture for defining signal quality in impedance cytometry data. 
Polystyrene particles 9 µm in diameter are measured through 
a microfabricated, microfluidic impedance cytometer 
(Fig. 1a, b). As shown by Fig. 1c, when assessing filtering 
performance, emphasis will be placed on counting accuracy 
first, followed by higher signal-to-noise ratios (SNR) related 
to higher signal quality. After transimpedance amplification, 
a litany of filter types, filter orders, and cutoff frequencies 
will be assessed in transforming the original unfiltered result 
(Fig. 1d) to its defined, most optimized form (Fig. 1e). This 
approach will further be presented with biologically relevant 
samples of isolated human neutrophils to support its for-
mulation. While systematically defined, this article is the 
first to explore digital filtering variations in experimental 
EIS data and provide guidance on future and more diverse 
filtering selections.

2 � Materials and methods

2.1 � Materials

Phosphate buffered saline (PBS, 1X and 10X), Ficoll-
Paque density gradient, (3-Amino-propyl)triethoxysilane 
(APTES), and Roswell Park Memorial Institute medium 
1640 (RPMI) were purchased through Sigma Aldrich (St. 
Louis, MO, USA). A NE-300 syringe pump was purchased 
from Southpoint Surgical Supply (Coral Springs, FL, USA). 
A HF2LI lock-in amplifier and HF2TA current amplifier was 
purchased through Zurich Instruments (Zurich, SUI). Sil-
ver conductive epoxy was purchased from Digi-Key (Thief 
River Falls, MN, USA). Unidentifiable human blood was 
obtained from Robert Wood Johnson Medical Hospital (New 
Brunswick, NJ, USA) through an institutional review board 
(IRB) study. LabView software was purchased and installed 
through National Instruments (Austin, TX, USA). MATLAB 

Fig. 1   a Custom printed circuit board (PCB) which onboards micro-
fabricated microfluidic impedance cytometry device. Silver conduc-
tive epoxy adheres and facilitates electron transfer between gold 
microelectrodes and computer-connector interface. b  Brightfield 
microscope image of microfluidic electric field regime. A polydi-
methylsiloxane (PDMS)-based channel has focusing regions between 
gold electrodes which increases particle pulse amplitude. The middle 
electrode is voltage stimulated (Vin) and exterior detecting electrodes 
produces an electric field in the region. c Flowchart of digital filtering 
selection criteria and how filtering conditions were ranked for signal 
quality optimization. d  Time-domain impedance detection data of 
9-micron polystyrene particles collected from the microfluidic device 
prior to applying digital filtering. A differential signal is collected 
from the two detecting electrodes, followed by transimpedance cur-
rent amplification which produces a bipolar pulse for each particle. 
e The same impedance data after digital filtering with the most opti-
mized conditions (1st order Butterworth low pass filter at a 60  kHz 
cutoff frequency and 3rd order Chebyshev Type I high pass filter at a 
30 Hz cutoff frequency) which reveals lower noise band and baseline 
drift per polystyrene pulse signal amplitude

◂
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version 2020B was purchased and installed through Math-
works (Natick, MA, USA).

2.2 � Microelectrode and microchannel fabrication

Gold-electrodes are microfabricated on borosilicate glass 
wafers above a deposited chromium adhesion layer follow-
ing the manufacturers protocol for s1813 photolithogra-
phy. Microfluidic channel molds are also microfabricated 
on silicon wafers following the manufacturers protocol 
for SU-8 3025 photolithography. Polydimethylsiloxane 
(PDMS) is poured and cured over SU-8 channel molds, 
and after removal a biopsy punch creates inlet and outlet 
holes to facilitate media perfusion from syringe tubing and a 
syringe pump. PDMS and gold electrode surfaces are treated 
with oxygen plasma and bonded, where focusing regions 
are aligned across electrodes to increase polystyrene parti-
cle volume fraction in the electric field space. Key channel 
dimensions include 100 µm in width, with focusing regions 
reducing the width to 30 µm, 22 µm in height, and is 3 cm 
long. Microelectrodes are 0.5 µm thick, are 100 µm in width, 
and are 150 µm apart (Fig. 1b) (Holmes et al. 2006). More 
specific microfabrication procedures with this configura-
tion have been previously published, and further detail is 
included in the Supplemental Information (Ashley et al. 
2021; Ashley and Hassan 2021b).

2.3 � Signal acquisition, demodulation, and data 
processing

Silver conductive epoxy adheres gold electrodes to a custom 
printed circuit board using electrode contact pads, visualized 
in Fig. 1a. A 5 V AC input is applied to the center electrode 
using the HF2LI signal amplifier, and the HF2TA current 
amplifier increase recorded signal contributions from the 
device. 9 µm polystyrene microparticles are diluted in phos-
phate buffered saline at a 35 particle/µL concentration and 
undergo flow at a rate of 15 µL/min. The signal is recorded at 
a 250 kHz sampling rate using a PCIe-6361 data acquisition 
card, and dual detecting (grounded) electrode recordings are 
subtracted to produce a bipolar impedance pulse.

Impedance cytometry recordings are saved through a 
LabView control program and interpreted in a custom MAT-
LAB script. A region manually selected which is absent of 
particles is used as the noise reference values, which is the 
standard deviation of the selected region. A threshold is 
then applied for the absolute value of data 4 times this noise 
standard deviation to define the particle pulse, construing the 
data as 9 µm polystyrene microparticles. If the average of the 
threshold triggering data point and the next 10 data points 
is less than the threshold, the pulse is neglected, which 
removes high frequency noise data that may have triggered 

a false positive hit above the threshold. Additionally, after 
collecting all the particle pulses and obtaining their average 
peak-to-peak amplitudes, pulses which are 2 times greater 
than average are neglected, as these represent two or more 
particles traveling across the electric field regime simulta-
neously. For this study, we are only interested in evaluating 
the signal quality for individual 9 µm polystyrene micropar-
ticles, as more than one particle disrupting the electric field 
at once may artificially inflate the average signal quality of 
the sample. More detail on instrumentation and microflu-
idic channel framework may be found in the Supplemental 
Information (SI Fig. 1).

2.4 � Applying and evaluating digital filtering

Using MATLAB, when a data value goes beyond the defined 
threshold, the magnitudes of the highest and lowest values of 
the next 500 data points are combined to produce the peak-
to-peak bipolar amplitude ( ΔV

T
 ) for an individual particle:

Following this, the standard deviation of the previous 200 
data points is measured which defines the local noise prior 
to particle pulse detection:

The signal-to-noise ratio for each particle is then quanti-
fied as the logarithm ratio of bipolar amplitude with data 
standard deviation prior to pulse detection, standardized to 
a decibel scale:

For a 60 s recording segment and from the expected 
diluted concentration of 35 particles/µL which flows through 
the channel at 15 µL/min, the expected particle count is 
approximately 525 particles. Accounting for a 10% error 
given micro-changes in concentration under flow, different 
filtering conditions described next are rated by increasing 
SNR if the counted number of particles is within this 10% 
error range (Fig. 1c). If the recorded particle counts devi-
ate 10% away from the 525-particle count average, filter 
conditions are rated by the closest counts to expected, as 
these conditions are rated less favorably since many false 
positive or false negative measurements occur, indicating 
an unoptimized system. Future experiments are underway 
with simultaneous high speed video microscopy to capture 
true object incidence, which can reduce the % error range 
for defining counting accuracy.
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The original unfiltered data is shown in Fig. 1d, with 
examples of baseline drift represented along with an appar-
ent noise band. Dual detecting electrode recordings are 
subtracted to produce a bipolar impedance pulse shown 
by the zoomed-in insert. Butterworth, Chebyshev Type I 
(Cheby1), and Chebyshev Type II (Cheby2) digital filters are 
applied in MATLAB for both high pass and low pass filter-
ing conditions. Both Cheby1 and Cheby2 filters are operat-
ing with a 5 dB ripple for the passband (Cheby1) or stop-
band (Cheby2). For each experiment, powerline interference 
filtering is also applied with 4th order band-stop filters at 
60 Hz and its 120 Hz second harmonic. Figure 1e represents 
the most optimized filtering conditions achieved with this 
approach of the 9 µm polystyrene particle samples, revealing 
a smaller noise-band and removed baseline drift, and will be 
determined and discussed in the following sections. Data 
Fourier transformations is performed in MATLAB using the 
Fast Fourier Transform or fft command.

From previous reports, particle pulse data collected from 
micro flowing impedance cytometry lies between 50 Hz 
and 90 kHz when flowing at an approximate 15 µL/min 
rate (Hassan et al. 2015). Therefore, a significant major-
ity of amplitudes above 90 kHz is contributed from high 
frequency noise and produces the large time-domain noise 
band. It is expected that eliminating frequencies near or 
above this 90 kHz value may reduce this band and improve 
signal quality without significantly reducing desired object 
pulse data. Thus, for cutoff frequency selection for digital 
filtering in the subsequent sections, cutoff frequencies are 
varied from 5 to 50 Hz at different filter orders with a 5 Hz 
step for high pass filtering. Cutoff frequencies are varied 
from 60 to 125 kHz with a 15 kHz with low pass filtering. 
Along with filter types, filter orders for each type with each 
filtering pass are modulated from 1st to 4th order and dis-
seminated to determine the highest achievable SNR with 
measured particle counts close to expected particle counts.

2.5 � Isolating neutrophils from whole blood

Deidentified whole blood was obtained from patient sam-
ples and Robert Wood Johnson University Hospital through 
an IRB study (Wagner et al. 2021). After collection, blood 
was combined with 1X PBS at equal volumes, and layered 
above Ficoll-Paque density gradient at a 3 to 4 ratio. This 
amalgam is centrifuged for 30 min at 400 g which exploits 
density differences to separate platelets, blood cells, and 
plasma. Platelets and plasma are aspirated in the superna-
tant, with the blood cell pellet exposed to deionized water for 
15 s to dissolve non-neutrophil mononuclear cells. Tonicity 
was rebalanced with 10X PBS, and the solution was again 
centrifuged for 5 min at 300 g to separate red blood cells 
from neutrophils. This process is repeated until a gray pel-
let appears, representing isolated neutrophils, and this pellet 

was resuspended in RPMI 1640 media with 50 µL of stock 
neutrophils to 5 mL of RPMI 1640 media. Immediately prior 
to impedance cytometry experiments, neutrophils are diluted 
in 1X PBS.

3 � Results and discussion

3.1 � Data Fourier transformation to determine 
filtering ranges

Figure 2 outlines the Fourier transform (Fig. 2b, c) of the 
entire unfiltered data (Fig. 2a), highlighting specific regimes 
which contain significant noise contributions which are eval-
uated in this report, including low frequency noise (Fig. 2d) 
and high frequency noise (Fig. 2e). The goal with cutoff 
frequency selections is to produce the highest noise elimi-
nation without additionally eliminated frequency data from 
particle pulses. Visualized by Fig. 2d, baseline drift is a large 
frequency amplitude contribution below 5 Hz which arises 
from external ionization of surrounding electrical devices 
and micro-variances in microfluidic flow (Pierce et al. 2015). 
These observations affirm the cutoff frequencies used for 
both high and low frequency noise filtering for the following 
sections to improve signal quality and accuracy.

3.2 � Impact of high pass filtering on signal quality

As mentioned previously, eliminating low frequency noise 
reduces baseline drift effects, and predicted to increase 
object counting accuracy and modestly decrease the noise 
amplitude (Atakan et  al. 1980; Liu et  al. 2014). When 
assessing measurement performance for biosensors includ-
ing this impedance cytometry device, the most important 
metrics include high SNRs and accurate object determina-
tion. Regarding these experiments, SNR is closely tied to 
the bulk noise amplitude, while accurate object counting is 
related to the expected object concentration in the sample. 
Therefore, the number of particles measured in a constant 
time measurement, the samples noise amplitude, and the 
composite SNR will define the improvements in signal qual-
ity brought about by the digital filtering conditions. When 
no digital filtering is applied, the referenced sample metrics 
includes a 0.2468 V noise amplitude, a 20.54 dB SNR, and 
counted 971 particles which is significantly inaccurate to the 
expected 525 particle counting concentration.

Figure 3 details the noise, SNR, and number of 9 µm 
polystyrene particles counted in the same sample data with 
a myriad of high pass digital filtering conditions used with-
out other simultaneous digital filtering. What remains con-
sistent across filter types is a higher likelihood of reduced 
counting accuracy at higher cutoff frequencies (see filter 
orders 1 and 2 in Fig. 3a, filter order 2 in Fig. 3d, and filter 
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orders 1 and 3 in Fig. 3g). This sharp rise in false positive 
counts results from removing particle pulse frequency data 
in this low frequency regime and producing a thresholding 
value less likely to discern pulse data from high amplitude 
noise data. As a result, inaccurate and over-counting trickles 
down to impact average samples noise amplitude, and with 
a reduced average bipolar pulse amplitude measured that 
includes lower false positive noise amplitude, the SNR is 
lower relative to other conditions (see filter orders 1 and 2 
in Fig. 3c, filter order 2 in Fig. 3f, and filter orders 1 and 3 

in Fig. 3i). It would be expected then that the most optimal 
cutoff frequency across the filters would be the highest value 
that does not trigger an inaccurate count and thereby elimi-
nating baseline drift noise to its fullest degree. Otherwise, 
there are no significant trends between filter orders which 
dictate filtering roll-off steepness, while Cheby1 filters 
have a marginally higher average SNR than Butterworth or 
Cheby2 filters at the same cutoff frequency and filter order.

Using the ranking system outlined in Fig. 1c, each filter 
order, cutoff frequency, and filter type iteration was arranged 

Fig. 2   a Full time-domain 
recording data of unfiltered 9 
micron polystyrene impedance 
pulses. b Full Fourier transfor-
mation of recordings with high-
lighted high-noise frequency 
regimes: low noise amplitude 
(c), powerline interference (d), 
and high frequency noise above 
approximately 90 kHz (e)

Biomedical Microdevices (2022) 24: 3636   Page 6 of 12
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in a hierarchy from most to least optimized to improve signal 
quality (Table 1 and SI Table 1). Based on noise reduction, 
relative SNR increases, and counting particles within a 10% 
margin of error to the expected counts, the high pass filter-
ing alone which improved signal quality the most was the 
3rd order Cheby1 filter with a 30 Hz cutoff frequency. This 
aligns with our expected midpoint cutoff frequency value 
between 5 and 50 Hz, delivering the highest SNR of the 

over 100 different filter parameter combinations (SI Table 1). 
The highest performing Butterworth filter was ranked 11th, 
which was a 3rd order filter with a 15 Hz cutoff frequency, 
while the highest performing Cheby2 filter was ranked 39th 
with a 4th order filter at 10 Hz. Of note, Cheby1 filters typi-
cally outperformed Butterworth and Cheby2 filters with 
similar conditions, and were less likely to experience the 
inaccurate counting issue as Cheby2 filters made up 10 of 
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Fig. 3   High pass filtering results alone when varying the cutoff fre-
quency (10  Hz to 50  Hz) with different filter types (Butterworth 
(a-c), Chebyshev Type I (d-f), Chebyshev Type II (g-i) filter types) 
and different filter orders: 1st order (gray), 2nd order (red), 3rd order 
(blue), 4th order (green). Results compared with the number of parti-

cles counted through the impedance detection recording (a, d, g), the 
average background noise (b, e, h), and the SNR or signal to noise 
ratio (c, f, i) across the different filter types, orders, and cutoff fre-
quencies. Black dotted lines represent unfiltered values for compari-
son
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the 15 configurations which counted particles outside of the 
10% margin of error (SI Table 1). Otherwise, there were no 
apparent trends related to filter order throughout the ranks.

3.3 � Impact of low pass filtering and the most 
optimized high pass filtering on signal quality

While high-pass filtering primarily eliminates baseline drift, 
low-pass filtering is expected to greater reduce the noise 
band and increase SNR. When evaluating signal quality 
alone, however, the lack of baseline drift negation heavily 
impairs the counting accuracy and signal quality achieved 
from even the most optimized low pass filtering conditions 
(SI Fig. 2). As such, the next results will focus primarily on 
modulating low-pass filtering conditions in conjunction with 
the most optimized high-pass filtering parameters achieved 
in the previous Sect. (3rd order Cheby1 filter with 30 Hz 
cutoff frequency).

In evaluating low-pass filtering effects, Fig. 4 presents 
trends with cutoff frequency across different filter orders and 
filter types. Similar to Fig. 3, the graphs are presented as the 
key metrics in determining signal quality; the number of 
counted particles, average background noise amplitude, and 
SNR. Other than 2 iterations with the 4th order Cheby1 filter 
below 75 kHz, all configurations were within 10% of the 
counting error and had adequate counting accuracy. Unlike 
the high-pass alone conditions, there is a trend with cutoff 
frequency and SNR/noise amplitude, as across the filters and 
orders a lower cutoff frequency corresponded with a lower 
noise amplitude and higher SNR. This is consistent with the 
ranked filtering conditions (Table 2), as each filter type’s 
highest rank was with a 60 kHz cutoff frequency. For these 
parameters, the highest rank overall used a 1st order Butter-
worth filter, while the highest Cheby1 filter was ranked 4th 
and Cheby2 filter ranked 7th. Contrasting to the high-pass 
filtering results alone, there is an even distribution of filter 
types in the top ranks of low-pass filtering signal quality (SI 
Table 2). However, filter order results did not have consistent 
relationships to filter type, as cutoff frequency dominated 
the correlation with signal quality ranks. With this com-
binatorial filtering, SNR increased 6.09 dB and placed the 
device within an acceptable counting range compared to the 
unfiltered data.

It was previously believed that frequencies below 90 kHz 
for this device’s configuration also included considerable 

desired signal components, and therefore cutoff frequencies 
for a low pass filter below 90 kHz would decrease signal 
quality relative to a higher cutoff frequency (Hassan et al. 
2015). However, the results presented here reflects a greater 
noise reduction offset down to 60 kHz, even as particle bipo-
lar amplitude slightly declines as well (Fig. 1d). This proves 
the power noise reduction has on SNR relative to the meas-
ured signal amplitude, and future directions may research 
filtering conditions which go below this 60 kHz low pass 
cutoff frequency as well to determine optimal signal quality.

In both high-pass and low-pass filtering analysis, the 
Cheby1 filter generally outperformed the Butterworth and 
Cheby2 filters in noise reduction at identical filter order 
and cutoff frequency conditions. This is expected, as ideal 
Cheby1 filters have a larger stopband attenuation magnitude 
farther halfway through the stopband frequency range com-
pared to a Butterworth filter with the same cutoff frequency 
and filter order (Taylor and Williams 2006; Weinberg and 
Slepian 1960). Additionally, the Cheby2 filter performed 
the worst in attenuating baseline drift, most likely due to 
the ripple in the stopband inhibiting greater noise reduction 
as opposed to the ripple being in the passband for Cheby1 
filters (Bianchi and Sorrentino 2007; Singh et al. 2010). 
The severity of this effect in the low-pass results was not as 
apparent, as the stopband at lower cutoff frequencies also 
included polystyrene particle pulse data. One considera-
tion may be computational time for applying digital filters, 
as for identical conditions Butterworth filters have a faster 
step response (Singh et al. 2010). However, for the reported 
analysis, additional time for digital filtering did not exceed 
3 s for any experimental condition, including combinato-
rial high-pass and low-pass experiments. When optimal 
filtering conditions are determined and real-time filtering 
is applied to future experiments, computer memory buffers 
settings may be applied to discretize smaller data sections 
and accommodate for the required filter computing time.

3.4 � Applying filtering conditions to isolated 
neutrophil data

To evaluate the procedural robustness of optimizing digital 
filtering conditions for time-domain impedance cytometry 
data, this approach was translated to more heterogenous 
samples with greater biomedical applications. Specifi-
cally, isolated neutrophils from human whole blood were 

Table 1   Highest ranking high 
pass alone filtering conditions 
for each filter type

Filter type, order, and cutoff frequency # of particles 
counted

Noise (V) SNR (dB) Overall rank

Cheby1, 3rd order, 30 Hz 487 0.1317 25.1761 1
Butterworth, 3rd order, 15 Hz 520 0.1679 25.0369 11
Cheby2, 4th order, 10 Hz 515 0.1599 24.8857 39
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Fig. 4   Low pass filtering results when varying the cutoff frequency 
(60  kHz to 120  kHz) with different filter types (Butterworth (a-c), 
Chebyshev Type I (d-f), Chebyshev Type II (g-i) filter types) and dif-
ferent filter orders: 1st order (gray), 2nd order (red), 3rd order (blue), 
4th order (green). Results compared with the number of particles 
counted through the impedance detection recording (a, d, g), the 

average background noise (b, e, h), and the SNR or signal to noise 
ratio (c, f, i) across the different filter types, orders, and cutoff fre-
quencies. Statistics presented also simultaneously include filtering 
with the most optimized high pass filtering results (Cheby1, 3rd order, 
30 Hz). Black dotted lines represent unfiltered values for comparison

Table 2   Highest ranking low 
pass alone filtering conditions 
for each filter type including 
the highest ranking high pass 
filtering conditions (Cheby1, 3rd 
order, 30 Hz)

Filter type, order, and cutoff frequency # of particles 
counted

Noise (V) SNR (dB) Overall rank

Butterworth, 1st order, 60 kHz 544 0.1211 26.6293 1
Cheby1, 3rd order, 60 kHz 538 0.1255 26.2322 4
Cheby2, 2nd order, 60 kHz 530 0.1421 25.4292 7
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measured in the designed microfluidic impedance cytometer, 
and the same iterative process was used to determine the 
low and high pass digital filtering conditions that generated 
the highest SNR while also remaining within ± %10 of the 
expected number of neutrophils counted across the sample 
recording. Here, neutrophils were diluted to 5 × 104 cells/
mL, and over a 60 s recording with the same 15 µL/min the 
expected number of cells to count was 750.

Figure 5 represents the time-domain impedance data of 
counted neutrophils measured with the microfluidic imped-
ance cytometer before (Fig. 5a) and after (Fig. 5b) digital 
filtering was applied. Here, there is a more apparent baseline 
drift consideration, although this did not greatly impact the 
neutrophil counting results the number of counted cells at 
769 was still within ± %10 of the expected 750 count. Addi-
tionally, only a select number of filters were evaluated based 
on filter conditions from this group’s previous publications 
as well as the highest-performing filter conditions from the 
previous sections in this article (Ashley and Hassan 2021b; 

Hassan et al. 2015). It is notable that our previous digital 
filtering conditions delivered the lowest increase in SNR 
(4th order Butterworth high pass filter with a 20 Hz cutoff, 
4th order Butterworth low pass filter with a 120 kHz cutoff), 
and changes in filter cutoff frequencies appeared to have 
most significant SNR impacts.

Many—but not all—trends remain consistent to the 
9 µm polystyrene test particle results. This includes lower 
low-pass filtering cutoff frequencies between 60 to 75 kHz 
delivered higher SNRs, the 25–30 Hz cutoff frequency 
range for high-pass filtering was optimal to remove base-
line drift without greatly disrupting neutrophil signal 
quality, and the Cheby1 filters were found higher ranking 
than Butterworth or Cheby2 filters (Table 3). However, the 
most optimal filtering conditions for the neutrophil data 
was not identical to the previous section results: here, the 
most optimal filtering conditions were a 3rd order Cheby1 
high-pass filter with a 30 Hz cutoff and a 3rd order Cheby1 
low-pass filter with a 60 kHz cutoff, while the filtering 

Fig. 5   Time domain-data with 
isolated neutrophil impedance 
pulses before (a) and after (b) 
optimized digital signal filtering 
(3rd order Chebyshev Type I 
high pass filter at a 30 Hz cutoff 
frequency and 3.rd order Cheby-
shev Type I low pass filter at a 
60 kHz cutoff frequency)
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conditions most optimal for the 9 µm polystyrene test par-
ticle results ranked 3rd in signal quality for the neutrophil 
data. This most likely arises from the small margins which 
separate all these conditions, as only a 0.11 dB change in 
SNR exists between these two conditions, so the smallest 
impacts in bipolar amplitude frequency data between neu-
trophils and polystyrene particles, flow perturbations, or 
local media conductivity may change the final numerical 
result. Nonetheless, the aim of these results is to highlight 
the methodology for determining the most optimal filtering 
conditions and which signal quality metrics contribute to 
those decisions.

It has been demonstrated that a lack of experimental 
analysis produced sub-ideal signal processing, and the 
framework put forth in this article can provide clarity for 
other systems to find their own signal processing best fits. 
This digital filtering approach may be used with minimal 
modulation, including for systems of varying experimental 
or instrumental forms, such as different channel dimen-
sions, different electric field magnitudes, or using single-
ended measurements. While exhaustive filtering conditions 
were highlighted, future applications of this method can 
omit some steps like including Cheby2 filters or extreme 
cutoff frequency ranges to evaluate filtering results more 
efficiently. Collecting the highest feasible signal quality 
in a biomedical device is greatly important for measuring 
minute but critical analyte changes and lowering a systems 
detection limit, which in turn can increase the sensitivity 
and accuracy of these highly depended-upon machines.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10544-​022-​00636-w.
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