
1. Introduction
The San Andreas plate boundary fault system comprises dozens of faults that accommodate shearing between 
the Pacific and North America plates. Quantifying the time-dependent seismic hazards presented by this network 
is a major goal of active tectonics research and requires both a detailed accounting of slip recorded by the major 
throughgoing faults (e.g., the San Andreas Fault (SAF)), and an understanding of the roles played by subsidiary 
faults in the system. These secondary faults not only present their own seismic hazards, but may also affect the 
seismic hazard and earthquake potential of neighboring faults (e.g., Fletcher et al., 2016).

One of the most geometrically complex regions of the San Andreas plate boundary system lies northeast of 
Palm Springs, CA, where three zones of deformation connect: the SAF zone, the Eastern Transverse Ranges 
(ETR) province and the Eastern California Shear Zone (ECSZ). Slip accommodated by the Coachella Valley 
section of the SAF splits among three separate fault strands as it approaches the San Bernardino Mountains 
(Figure 1), while due east of the Coachella Valley the ETR comprises a series of E-W-trending left-lateral faults. 
Paleomagnetic data and palinspastic reconstructions suggest that these faults have accommodated 20–40° of 
clockwise block rotation over their <7 Ma lifetimes (Carter et al., 1987; Powell, 1993) in conjunction with slip 
on the SAF. In addition, the rotation of the ETR province has likely helped distribute localized right-lateral slip 
on the SAF system to the ECSZ, a zone of distributed, NW-trending, right-lateral faults in the Mojave Desert 
(Dickinson, 1996). The ECSZ has experienced strong recent seismicity, including three of the four MW > 7.0 
earthquakes to strike southern California in the last 50 years (i.e., the 1992 MW 7.3 Landers, MW 7.1 Hector Mine 
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and the 2019 MW 7.1 Ridgecrest events). Consequently, it has become an area of intense investigation to better 
understand the role of ECSZ faults in the broader plate boundary fault system. The faults of the ETR province 
serve as a pivotal pathway between the SAF and the ECSZ, and investigating the slip histories of these left-lateral 
faults will inform how these two zones may have communicated in recent time and how they may influence each 
other in the future.

This study investigates the slip history of the Blue Cut Fault (BCF) located in Joshua Tree National Park, one 
of the left-lateral faults that runs through the center of the modern ETR province (Figure 1). The BCF is part 
of a system of E-W-trending, throughgoing fault systems including, from north to south, the Pinto Mountain 
Fault (PMF), BCF, and Chiriaco Fault. The ETR province continues to the south with additional left-lateral 
faults that display Quaternary offsets, but not Pleistocene or Holocene age offsets. The PMF and the BCF are 
the two faults that currently experience microseismicity and show geomorphic evidence of modern faulting 
(Powell, 1993). The initiation age of these faults is constrained by K-Ar dating of offset volcanic formations to be 
6–7 Ma, which is consistent in time with the formation of the Salton Trough and modern SAF strand in the region 
(5–6 Ma) (Langenheim & Powell, 2009). Langenheim and Powell (2009) conducted an analysis of block rotation 
along faults of the ETR by comparing recent geologic and geophysical data to show a cumulative left-lateral 
offset along all faults of 34–40 km, which corresponds to 27–39° of clockwise rotation accommodated over the 
last ∼6 Ma. For the BCF, they estimate 3–6 km of offset along the west section and 7–10 km of offset along the 
east section, which, when combined with the estimated fault age of at least 5 Ma, provides a Ma-scale long-term 
slip rate of at most 1–2 mm/yr.

The BCF, along with the PMF to the north, have become recent centers of study due to their proximity to the large 
magnitude seismicity in 1992 (e.g., the MW 6.1 Joshua Tree and MW 7.3 Landers events)—in particular because 
the events did not rupture along these known left-lateral faults, but along a right-lateral, N-NW-trending fault 
plane cutting at a high angle to these faults. This unexpected activity sparked a debate about whether or not the 
PMF or BCF are in fact being replaced by a newly-forming fault system along the trend of the Eureka Peak Fault 
(i.e., the Landers-Mojave Earthquake Line of Nur et al., 1993). If the BCF is being bypassed by a newer, more 
kinematically efficient fault system, its most recent slip rates would likely fall below the long-term fault average. 
If, however, the most recent slip rates along the BCF are at or above the long-term fault average, this newer fault 
may either not be evolving as quickly, or may be evolving in conjunction with motion along the BCF. If we can 
determine the most recent fault slip record of the BCF, we can better inform possible hypotheses of future plate 
boundary evolution, in addition to improving seismic hazard estimates in this area. While there have been recent 
tectonic geomorphic studies of the PMF slip rate, the BCF represents a gap in our knowledge of most recent 
Pleistocene and Holocene slip history (Figure 1), and we set out here to remedy that gap.

Here, we focus our study the eastern end of a fault-controlled valley in the Hexie Mountains (Figure 1) where one 
to three strands of the BCF offset bedrock units composed of Pinto Gneiss and the Augen Gneiss of Monument 
Mountain (Powell et al., 2015) (Figure S1 in Supporting Information S1). This location features well preserved 
left-lateral offsets of geomorphic landforms, including debris flow and alluvial deposits and incised stream chan-
nels. We present results of our LiDAR- and field-based mapping,  10Be surface exposure geochronology from six 
latest Pleistocene geomorphic surfaces and our slip rate calculations that document the slip rate history at our 
study site.

2.  Methods
2.1.  Tectonic Geomorphology

To document the slip rate history of the Hexie Mountains section of the BCF, we identify and estimate offsets of 
landforms using a combination of LiDAR- and field-based mapping efforts and constrain the ages of six offset 
surfaces using  10Be cosmogenic radionuclide geochronology. To determine surface offsets, we first compile a 
geomorphic surface map (Figure 2). We use 1 m resolution LiDAR data to identify and map two sites, located 
500 m apart from each other along the same section of the fault (Figure S1 in Supporting Information S1). We 
characterize seven total surfaces at these sites using relativistic qualitative surface attributes (e.g., levels of clast 
rubification and desert varnish, surface texture and color (Bull, 1991; McFadden et al., 1989)) and topographic 
data analysis (e.g., degree of dissection, orientation of incised streams (Frankel & Dolan, 2007)). Six of these 
surfaces are left-laterally offset and preserved on both sides of the fault, or can be correlated to their depositional 
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source (Figure 2; Table 1; see Table S1 in Supporting Information S1 for list of offset landforms). We reconstruct 
correlated surfaces to determine minimum and maximum estimates of fault offset (Figures S2–S7 in Supporting 
Information S1), and assemble a geomorphic evolution explanation of each site (Figures S8 and S9 in Supporting 
Information S1). We conservatively include all possible offsets in our reconstructions; in general our minimum 
reconstructions are channels incised into their give deposit. These are minimum offsets because incision by the 
channels must have occurred during the emplacement of, or after deposition of the surface. Maximum reconstruc-
tions reunite edges of mapped surface deposits across the fault. In both sites we encounter areas where younger 

Figure 1.  Regional fault map of Eastern Transverse Ranges (ETR) province; faults in the ETR have accommodated 
clockwise block rotation over the last ∼5–7 Ma; (a) shows past configuration of ETR faults, (b) shows the rotated, 
modern-day version; (c) shows the calculation of the transfer of right-lateral shear from the San Andreas Fault (SAF) to 
the Eastern California Shear Zone (ECSZ) using the equations of Dickinson (1996), and an estimated rate of transferred 
shear assuming constant rotation through time. Slip rates are reported in mm/yr at sites bp = Biskra Palms (Behr 
et al., 2010), ep = Eureka Peak (Hislop, 2019), mv = Morongo Valley (Gabriel, 2017), om = Oasis of Mara (Cadena, 2013), 
pc = Pushawalla Canyon (Blisniuk et al., 2021), tp = Thousand Palms (Fumal et al., 2002), ww = Whitewater (Gold 
et al., 2015). Active study sites are cm = Copper Mountain (Dudash, 2019), mc = Mission Creek (Waco & Blisniuk, 2019), 
and tnp = Twentynine Palms (Menges & Dudash, 2019). Focal mechanisms from the USGS earthquake catalog.
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Figure 2.  Final geomorphic surface map and reconstructions of our two study sites along the Blue Cut Fault (BCF), with plotted maximum landform offsets and  10Be 
sample locations; (a) is Site 1, located 500 m to the east of (b) Site 2. Note change in scale between sites; (c–h) show isolated individual surfaces, reconstructed to 
their minimum offset values, with marked landforms with minimum, maximum, or preferred offsets (See Figures S2–S7 in Supporting Information S1 for additional 
reconstruction details).
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surfaces have been deposited atop, or have reworked older surfaces. These appear to occur after the deposition of 
surface Qf2b, perhaps indicating a possible deceleration in slip rate around this time.

2.2.   10Be Cosmogenic Surface Exposure Dating

To constrain the timing of deposition of these offset geomorphic landforms, we apply  10Be exposure dating, 
which has been frequently used to date the arid landscapes of southern California (e.g., Blisniuk et al., 2021; 
Heermance & Yule, 2017; Owen et al., 2014). To mitigate the effects of potential exhumation and inheritance, 
processes that can skew exposure ages younger or older, respectively, we collected multiple sample types from 
each surface, including boulder-tops, cobbles, and amalgamated pebble samples (at least two types, with all 
three types in four of seven dated surfaces). Age agreement between sample types indicates that effects of these 
processes are negligible, because sample types are differentially affected by inheritance/exhumation. Seven of 
our total 38 samples were processed at Arizona State University, while the rest were processed jointly at San 
José State University and Lawrence Livermore National Laboratory, following the procedures of Ditchburn and 
Whitehead (1994). We calculate final  10Be model ages using Version 3 of the exposure age calculator described 
in Balco et al. (2008) (Table S2). To calculate overall ages for each surface we use both the web-based IsoPlot 
program (Vermeesch, 2018) and the MATLAB-based slip rate tools (Zechar & Frankel, 2009) (Table 1; see Table 
S3 in Supporting Information S1 for sample ages organized by surface). We also plot normalized kernel density 
estimate curves for each surface (Figure S10 in Supporting Information S1).

2.3.  Geologic Slip Rate and Strain Transfer Calculations

To calculate slip rates, we use the Python-based Slip Rate Calculator (Styron, 2015), which uses Monte Carlo 
sampling (n = 10,000) from a probability density function for the age and offset of a given landform and fits a 
linear regression to the sample data point. We calculate slip rates using a conservative boxcar approach for offsets, 
and a Gaussian approach for surface ages, wherein we use the IsoPlot-calculated ages and uncertainties. In the 
case of a non-Gaussian distribution of slip rate, we estimate a 95% confidence interval to describe the uncertain-
ties (Figure S11 in Supporting Information S1).

The geometric relationships between rotating crustal blocks has been described by many authors in various 
areas of the globe (e.g., Nur et al., 1986; Ron et al., 1984), including the ETR region (e.g., Carter et al., 1987; 
Dickinson,  1996; Powell,  1993). We employ the equations and analysis of Dickinson  (1996) to determine a 
fault-lifetime rate of shear transfer between the SAF and the ECSZ through rotation in the ETR. Dickinson (1996) 
posits two possible scenarios of transferred right-lateral shear, different due to the uneven mapped block lengths 
(Lc of either 75 or 90 km in Figure 1a) of the ETR blocks. Where he assumes a fault-lifetime clockwise block 
rotation of ∼44° in both cases, we apply a range of 27–39° of clockwise rotation, derived by Langenheim and 

Boxcar 
surface age a

ISOPLOT 
surface age b Min/max offsets

Preferred 
offset c Single long-term rate d

One change in 
rate d (younger)

One change in rate d 
(older)

Surface
Number of  10Be 

samples (ka) ± (2σ) (ka) ± (2σ)
(m) mean ± min/

max (m) (mm/yr) ± (2σ) (mm/yr) ± (2σ)
(mm/yr) ± (median, 

95%CI)

Qf3b 4 13.3 ± 2 13.2 ± 1 9 ± 7 7 ± 2 Using Min/Max Offsets = – –

Qf3a 6 24.3 ± 8 21.9 ± 2 20 ± 5 N/A e 1.26 ± 0.50 0.66 ± 0.20 f 2.93 + 6.14/−1.98

Qf2c 8 57.0 ± 10 55.5 ± 3 33 ± 12 N/A e – –

Qf2b 5 81.1 ± 15 80.9 ± 7 75 ± 30 90 ± 3 Using Preferred Offsets = – –

Qf1b 5 121 ± 30 119 ± 10 188 ± 83 240 ± 5 1.56 ± 0.16 0.64 ± 0.30 g 4.09 + 3.59/−1.91

Qf1a h 4 >121 ± 30 >119 ± 10 330 ± 60 355 ± 5 – –

 aCalculated using MATLAB-based Slip Rate Tools created by Zechar and Frankel (2009).  bCalculated using ISOPLOT (Vermeesch, 2018).  cPreferred offset uncertainty 
calculated as half the width of the reconstructed offset channel (Figures S2–S7 in Supporting Information S1).  dCalculated using the Slip Rate Calculator (Styron, 2015), 
using ISOPLOT-calculated ages.  ePreferred offset not constrained.  fRate change calculated at 71 ± 15 ka (1σ) from Slip Rate Calculator (Styron, 2015).  gRate change 
calculated at 69 ± 11 ka (1σ) from Slip Rate Calculator (Styron, 2015).  hSurface age not used in overall slip rate calculation due to lack of well-constrained age.

Table 1 
Surface Age, Offset, and Slip Rate Results
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Powell (2009), in order to calculate an updated range of estimated right lateral shear. We then build upon the 
analysis of Langenheim and Powell  (2009) and Dickinson  (1996) by dividing the estimated transferred right 
lateral shear of 30–54 km by the approximate lifetime of fault motion, and determining that (assuming constant 
block rotation over 7 ma), this package of rotating blocks could transfer 4.3–7.7 mm/yr of shear from the SAF in 
the northern Coachella Valley to the ECSZ.

3.  Results
 10Be geochronological results, in combination with geomorphic mapping indicate multiple ages of offset allu-
vial surfaces that range from the oldest mapped Qf1a surface of >129 ka, to the youngest offset Qf3b surface of 
13.2 ± 1 ka (2σ) (Table 1). In addition, we find good agreement between ages of different sample types for each 
surface (Table S3 in Supporting Information S1). Figure 2 presents our final mapping interpretation for both 
sites, along with surface offset reconstructions. We find that the combination of minimum/maximum offsets and 
calculated surface ages along the BCF produces a best fit piecewise slip rate of 2.93 + 6.14/−1.98 (median, 95% 
CI) mm/yr before 71 ± 15 (1σ) ka and a best fit slip rate of 0.66 ± 0.20 (2σ) mm/yr after (Figure 3). The age 
of slip rate decrease, and its uncertainty range is solved for during the regression process. When we fit a single 
long term slip rate, this data produces a rate of 1.26 ± 0.50 (2σ) mm/yr (1.56 ± 0.16 (2σ) when using preferred 
offsets). We have not attempted to quantify any amount of off-fault deformation in this study area, and because 
we assume zero erosion rate exposure ages for our samples, these slip rates reflect minimum slip rates on the 
main strand of the fault.

4.  Discussion
While a decrease in apparent slip rate along a fault can imply regional changes in strain accumulation and fault 
organization, we argue that the BCF is more likely maintaining its Ma-scale long-term slip rate of 1–2 mm/yr 
for three main reasons: (a) the Ma-scale slip rates of the BCF, as determined by geologic and geophysical offsets 
(Langenheim & Powell, 2009), match our 100 ka-scale long-term rate, (b) time-averaged block rotation calcu-
lations (Dickinson, 1996) produce consistent transferred right-lateral shear to the cumulative slip rates of the 
ECSZ, an area of modern seismic activity, and (c) observed “slip rate variability” can reflect natural fluctuations 
in earthquake recurrence intervals that average to a secular slip rate over sufficiently long periods of time (e.g., 
Friedrich et al., 2003).

First, our estimated 100 ka-scale long-term fault slip rate agrees with the rate determined from the cumulative 
geologic and/or geophysical offsets along the BCF. Langenheim and Powell  (2009) calculate the present-day 

Figure 3.  Plot of Monte Carlo slip rate calculation trials from a boxcar range of measured offsets and a Gaussian distribution 
of surface ages (Table 1); This illustrates both a best-fit 100-ka-scale long-term slip rate using min/max offsets (yellow line 
with uncertainty shadow) and preferred offsets (orange dashed line and uncertainty shadow) and a best-fit time-variable slip 
rate (white line, with gray uncertainty shadow using min/max offsets). White circles with error bars show individual sample 
ages plotted with min/max offsets. Inset shows the distributions of the younger and older slip rate trial values (upper right).
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offsets between lithologic units and magnetic anomalies measured along these faults and show that the eastern 
section of the BCF has accommodated 7–10 km of offset over the past 5–7 Ma indicating a Ma-scale time-averaged 
slip rate of 1–2 mm/yr. This matches our estimated 100 ka-scale rate of 1.26 mm/yr. Neither our older or younger 
time-variable slip rates can produce a similar total offset in that time span. Our best-fit older rate of 2.93 mm/yr 
produces ∼15–21 km total offset, while our best-fit younger rate of 0.66 mm/yr produces ∼3–5 km total offset. 
This suggests that while variability can appear in the slip rate record, cumulative offsets are best explained by 
the long-term rate.

Second, when we estimate the overall right-lateral shear transferred by the ETR faults over their 5–7 Ma life-
times using previously published rotation estimates, we find that this system alone could have transferred at 
least 4.3–7.7 mm/yr of right-lateral strain from the SAF to the ECSZ (Figures 1a–1c), assuming a constant block 
rotation rate through time. These values correspond intriguingly well to the 4.3–8.1 mm/yr cumulative slip rates 
estimated by Oskin et al. (2008) across the faults of the ECSZ in the Mojave Desert. Such consistency could 
indicate that block rotation in the ETR continues to feed strain into the ECSZ from the SAF, in the same way it 
has in the past. Any disruption of this steady conveyance of strain would have consequences for activity in the 
ECSZ, implying that earthquake clustering in the ECSZ (e.g., Rockwell et al., 2000) may also maintain a steady 
long-term average.

Third, the observation that apparent slip rate can vary within the time window of paleoseismic and geomor-
phic investigation is not unique. Friedrich et  al.  (2003) found that Holocene slip rates on the Wasatch Fault 
could exceed longer-term 100 ka-time scale rates due to clustering of seismic activity on a 10 ka-time scale 
(“Wallace-type” behavior; i.e., Wallace (1987)). In southern California, Weldon et al. (2004) also observe appar-
ent slip rate changes from a paleoseismic record along the SAF, with slip rate within a cluster of earthquakes 
jumping to 89 mm/yr, while the long-term rate averages to 31 mm/yr. Examples along the Garlock (e.g., Dolan 
et  al.,  2016; Rittase et  al.,  2014), White Mountain (e.g., Kirby et  al.,  2006) and San Jacinto (e.g., Kendrick 
et al., 2002; Sharp, 1981) faults also exhibit a similar kind of temporal variability of slip rate. Changes in rate 
may be due to the random variability of stress buildup or fault frictional resistance leading to an irregular pattern 
of seismic release. In the case of southern California, the hypothesis put forth by Dolan et al. (2007) posits that 
cycles of increased seismic activity switch between the SAF and the ECSZ. With the ETR province placed in 
between the two, any cyclic activity observed along faults of the ETR could be evidence of a link between the 
two larger zones. Since, however, the most recently offset surface along the BCF is ∼13 ka old, and there is a 
younger undisturbed surface of <12 ka Holocene age, that would indicate that no surface rupturing events have 
occurred along the BCF since then, while several cycles of activity have occurred between the ECSZ and SAF 
(Dolan et al., 2007).

A fault capable of variable strain release through periods of increased or decreased earthquake activity over time 
would, however, experience time-dependent seismic hazard. Though we can only speculate on when and how 
these changes could occur in the future, the most recently observed minimum surface offset of 2 m (for surface 
Qf3b; see Figure S2 in Supporting Information S1), would require the occurrence of one ∼MW7.2 to five ∼MW6.0 
events (calculated using the relationships of Wells and Coppersmith (1994) (Table S4 in Supporting Informa-
tion S1)). If significant off-fault deformation occurs during events on this fault, however, these magnitudes could 
be underestimated (Milliner et al., 2016). The fact that we can measure large surface displacements implies that 
surface-rupturing earthquake events have occurred in the past, and could occur in the future, in the absence of 
surface creep.

The result that the BCF has recorded a slower slip rate in the recent past can also support an alternative conclusion: 
that the BCF, and potentially block rotation, is coming to a halt. This observation fits with the recent increased 
activity of the Eureka Peak Fault, which likely hosted the Mw 6.1 Joshua Tree earthquake in 1992, and potentially 
two other Holocene events (Rymer, 2000). The Eureka Peak Fault could serve as a new, and more direct, avenue 
of strain transfer between the SAF and the ECSZ, thereby replacing the need for a system of block-rotating faults 
like the ETR system (Hislop, 2019; Nur et al., 1993). Moreover, since the throughgoing left-lateral faults south 
of the BCF (e.g., the Chiriaco Fault, the Salton Creek Fault) have experienced less and less activity over time (to 
the point where there is little to no Late Pleistocene or Holocene slip recorded, nor active microseismicity), the 
BCF may be next in line for a slow-down or halt. The timescales on which plate boundaries reorganize, however, 
suggests that while this hypothesis is certainly possible, more investigation (and time) is required evaluate it.
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5.  Conclusions
The BCF in the ETR province is part of a zone of faults that kinematically links strain from the SAF system to 
the ECSZ, and may be conveying 4.4–7.3 mm/yr of strain from one system to the other. By characterizing its 
slip rate chronology over the late Pleistocene, through detailed geomorphic mapping and  10Be surface exposure 
dating analyses, we have documented a best fit long-term slip rate of 1.26 ± 0.50 (2σ) mm/yr. Our calculated 
long-term rate is consistent with the Ma-scale regional behavior of block rotation, and is in good agreement with 
the time-averaged rate of 1–2 mm/yr previously derived from cumulative geologic and geophysical offsets. We 
argue that the apparent slip rate variability we observe at this site is most likely due to natural fluctuations in 
strain released by earthquakes over time, and that the BCF is likely capable of hosting surface-rupturing events 
of ∼MW 6.0–7.2 in the future.

Data Availability Statement
All LiDAR elevation data presented and used within this analysis is freely available on OpenTopography.org (see 
data set “Slip transfer through the Eastern Transverse Ranges, CA 2017”: https://doi.org/10.5069/G9D21VP1). 
All geochronological data presented and used within this analysis is available within the EarthChem Library 
(Guns et al., 2022; https://doi.org/10.26022/IEDA/112685) and available in Supporting Information S1. All soft-
ware used to process our geochronological and offset measurement data is freely available; Version 3 of the 
exposure age calculator is described by Balco et al. (2008) and freely available at https://hess.ess.washington.
edu/ using the “Calculate exposure age” option; We use the MATLAB-based code camelplot.m, written by Greg 
Balco and available here: http://depts.washington.edu/cosmolab/pubs/gb_pubs/camelplot.m; MATLAB-based 
Slip Rate Tools is described and available within the Supporting Information of Zechar and Frankel (2009), while 
the Python-based Slip Rate Calculator is available on GitHub (https://github.com/cossatot/slip_rate_calculator) 
and cited as Styron (2015).
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