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Toward self‑organizing low‑dimensional 
organic–inorganic hybrid perovskites: 
Machine learning‑driven co‑navigation 
of chemical and compositional spaces
Jonghee Yang, Sergei V. Kalinin, Ekin D. Cubuk, Maxim Ziatdinov, and 
Mahshid Ahmadi*

Low-dimensional hybrid perovskites combine the richness of physical functionalities of 
inorganic materials and complexity and stimulus responsiveness of organic molecules in a 
single bulk dynamic material. The unique aspect of these materials is the thermodynamic 
(meta) stability, allowing for self-organized formation of complex large-period structures. 
Combined with the ease of fabrication, these materials not only have extensively demonstrated 
state-of-the-art high-performance optoelectronics, but also offer the pathway toward versatile 
applications, including sensors, electronic, and neuromorphic devices as well as their cost-
effective mass production. However, discovery and optimization of this material require joint 
optimization of the composition of the inorganic components and selection of the molecular 
moieties, to harness the phase formation and self-assembly processes on the material level, 
and extend it to micro- and macroscale functional devices. Here, we discuss the potential 
of machine learning-driven automated experiments to accelerate the discovery of these 
materials, optimize the processing pathways, and transition from the lab-level to the product-
level manufacturing.

Introduction
Within a decade since discovery,1 the rapid development of 
hybrid perovskites (HPs) achieved an outstanding optoelec-
tronic performance (power conversion efficiency approaching 
26% and light-emitting efficiency >20% for photovoltaics and 
light-emitting diodes, respectively), surpassing silicon-based 
devices.2–4 This incredibly fast rate of progress of HPs for 
semiconductor applications can be attributed to the combi-
nation of excellent optoelectronic functionalities and scal-
ability of solution-processing. The broad range of functional 
responses in these materials suggests potential for other high-
performance and mass-producible device applications, such as 
x-ray and chemical sensors, neuromorphic, and ferroelectric 
devices.5–8 However, practical realization of HP as a universal 
functional material platform that constrains its realization to 

date is the chemical lability and low phase stability of the 
inorganic lattice.

Two-dimensional (2D) HPs offer substantially improved 
robustness compared to three-dimensional (3D) HP systems, 
increasing their potential for device applications. In these 
materials, the HP lattices are spatially confined in 2D space 
by organic cations binding onto the surface. This structure 
not only protects the functional inorganic lattice from external 
chemical and physical stresses, but also results in strong quan-
tum and dielectric confinement effects. The latter, in turn, leads 
to intriguing physical characteristics that are not observed in 
3D counterparts, including tunable bandgap, strong exciton 
binding energy, anisotropy in optoelectronic properties, strong 
Rashba effect, and so on.9,10 These functionalities, in turn, can 
readily be tuned by changing the composition outlay, including 
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both the composition of inorganic component and the nature 
of organic moieties separating them.11 Moreover, as the 2D 
HP shares the inorganic lattice structure with the 3D counter-
part, it is convenient to mix them with 3D HPs to form inter-
growth phases. These so-called as quasi-2D HPs demonstrated 
excellent functionalities and performances for photovoltaics 
and light-emitting technologies.12 As a result, the promising 
potential and functionalities of 2D and quasi-2D HPs make 
these materials an attractive material platform for versatile 
applications.

Structurally, low-dimensional HPs are composed of 
several key components: (1) large organic cation (L), 
called a spacer, that spatially separates and maintains 
the layer-structured HP sheets within quantum-confined 
dimensionalities. Metal cations (B), halide anions (X), 
and small monovalent cations construct the HP sheets 
based on metal halide octahedra [BX6]4− building blocks. 
Depending on the charge of the spacer cations, 2D HPs 
have generally a chemical formula of L2An−1BnX3n+1 or 
LAn−1BnX3n+1.10,13,14 Here, L is a monovalent or divalent 
molecular cation—two monovalent cation heads in a mol-
ecule, respectively, forming a discrete inorganic 2D mono- 
layer (Ruddlesden–Popper structure) or interconnected 2D 
bilayer sheets (Dion–Jacobson structure). The spacer cation 
has a positive-charged functional head (typically, ammo-
nium functional group) in its molecular structure, binding 
onto the surface of 2D sheets by filling the A cation site. 
The n indicates the layer thickness of the HP sheets (i.e., n 
times unit cell length of [BX6]4− octahedron comprising the 
sheet) primarily determining the electronic structure—for 
example, bandgap and exciton binding energy—which can 
be tuned by precursor composition.9

Typical inorganic 2D materials are grown by vapor syn-
thesis in gas phase, resulting in highly ordered and organized 
structures via epitaxial growth.15–17 In contrast, 2D HPs are 
mainly synthesized via a solution-based process where the 
nucleation process is difficult to control. As a result, rather 
than a phase-pure system, multiple phases emerge, subse-
quently rendering somewhat disordered and imperfectly 
organized 2D assemblies on large scales.10,14,18 Notwithstand-
ing their fascinating physical properties, the aforementioned 
structural variability, and the presence of multiple layered sys-
tems with similar compositions, hamper practical applications 
and developments of this rising 2D materials system.

Depending on their molecular structures and the conse-
quent chemical properties, spacer cations can induce mul-
titude effects on the physical and structural properties of 
2D HPs. Increasing the molecular length of these spacers 
separates the interval between neighboring 2D sheets far-
ther, suppressing the electronic coupling over the 2D HP 
stacks.19 Steric hindrance of the spacer molecule can restrict 
the possible binding site onto the 2D HP surface, selectively 
allowing them to bind at specific sites such as lattice edge 
or kink points. The shape and structure of the spacer cation 
(aliphatic/aromatic, specific chirality, etc.) not only determine 

the stacking features of the resulting 2D HPs, but also influ-
ence the in-plane atomic alignments, including lattice strain 
in 2D sheets, directly changing the physical properties.10,20 
Also, add-ons with other functional groups at the spacer 
body impose additional interaction between the spacer-HP 
lattice,20,21 which not only further influence to the stacking 
behaviors between the 2D sheets, but also uncover the hidden 
properties of the HP system. Although it is not feasible to bind 
the larger spacer cations onto the 2D sheet surfaces, they can 
stabilize the edge sites and thereby contribute to dimension-
regulated block formations. Hence, a subtle change in phys-
icochemical properties in spacer cation not only regulates the 
shapes, structures, and geometries of the 2D HPs, but also 
induces substantial changes in their optoelectronic properties 
and the resulting functionalities.

The judicious design, selection, and/or combination of 
appropriate spacer cation, as well as elemental composi-
tion of the HPs can realize a self-organized 2D HP platform 
showing intriguing functionality, which can expand the 
versatility toward various applications. As an example, it is 
envisaged that systematic deployment of molecular interac-
tion/reaction along the spacer cation in HP synthesis real-
ize rigid molecular assemblies in a reaction system, serv-
ing as a template for the 2D HP growths (Figure 1). This 
subsequently allows synthesizing and optimizing unique 
“self-organized” 2D HP superlattice systems, opening a new 
avenue to maximize its functionality.22 However, there are 
massive amounts of organic spacer with different functional 
groups, sizes, shapes, electronic structures, etc. In addition, 
various synthetic parameters—concentration, composition 
ratio, temperature, solvent, growth time, etc.—should be 
controlled to find an optimal condition for synthesis of each 
material system. Thus, the degree of freedom that we have 
to control with an appropriate combination of the spacer 
candidates and the synthetic parameters in this regard are 
infinite, whereas the evaluation of the resulting product with 
appropriate characterizations becomes extremely complex 
and thereby beyond human power.

Automated high-throughput synthesis is an ideal 
approach to explore this giant pool of molecular and syn-
thetic spaces. The robot-based automated synthesis plat-
form, coupled with a high-throughput, fast absorption, 
and emission spectroscopy, enables precise and quick 
assessments of the synthetic parameters while excluding 
human-oriented errors. As a result, dynamic changes of 2D 
phases by stoichiometric/compositional tuning, temporal 
stabilities, and the function of solvent on the crystallization 
kinetics—dependent on the physicochemical properties 
of solvents (i.e., dielectric constant, Lewis acidity/basic-
ity, etc.)—can be precisely and readily assessed. Also, by 
simply changing the spacer molecules in precursors, this 
strategy allows comprehensive explorations of the opto-
electronic properties and functionalities, effectively reveal-
ing the key effect and/or mechanism of the molecules on 
the formation, packing, and electronic structures of 2D HP 
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phases and consequently reaching to the solution that we 
pursue.23–25

The critical component of materials discovery and opti-
mization are advanced characterization techniques that 
can be employed in a high-throughput manner, allowing 
us more comprehensive insight into the quasi-2D HP sys-
tem beyond optical characterizations. For example, high-
throughput grazing incidence wide-angle x-ray scattering 
(GIWAXS) characterization utilizing a synchrotron facil-
ity opens a new avenue to explore the structural evolutions 
in quasi-2D HPs, including lattice orientations, interlayer 
spacings, phase (im)purities, and distributions;26 these are 
complementary with the optical spectroscopies. Thus, the 
combination of these powerful characterizations provides 
a complete understanding of a vast compositional space 
of HPs, suggesting a practical way to realize the desired 
functionalities and/or new materials discovery. Here, incor-
poration of machine learning (ML) techniques is a power-
ful strategy to accelerate the process by guiding key signa-
tures appearing in the massive amounts of data collected in 
the high-throughput approach.23–25 As a result, the workflow 
coupled with high-throughput synthesis/evaluation and ML 
(Figure 2) enables effective and accurate co-navigation of 
the compositional, structural, chemical space, thereby real-
izing demonstration of novel low-dimensional functional 
materials.

In this article, we describe how ML can navigate the rapid 
exploration of low-dimensional HP materials. We describe 
principles and progress of ML in both theoretical calculations 
and experiments on the materials, and propose a conceptual 
strategy to realize a novel versatile self-organized 2D HP sys-
tem in the aid of ML, which can be directly implemented to 
various device applications.

ML in theoretical calculations
Novel material discovery requires the ability to predict the 
relative stability of different compositions in a chemical fam-
ily and the relative formation energy of different structural 
phases of a composition. An attractive promise of computa-
tional methods such as density functional theory (DFT) has 
been to allow such predictions using computer simulations.27 
This can be a challenging task, as the difference between dif-
ferent structural phases can be on the order of several mega- 
electronvolts per atom.28 Recent advances in modeling the 
exchange-correlation functional, such as SCAN,29 have shown 
promising results for being able to rank the energies of differ-
ent phases accurately.30

Although much needed progress has been made on improv-
ing first-principles calculations, a complementary effort has 
been ongoing for aiding or bypassing the DFT simulations 
using ML tools. The basic idea is to collect a set of inputs 
and outputs from DFT simulations to train a neural network 
or some other ML model. Broadly, ML models that can pre-
dict the formation energy of a material can be classified into 
two categories: compositional models,31,32 which predict the 
ground-state formation energy of a composition only based on 
the elements and their fractions that make up the material, and 
structural models,33,34 which predict the energy of a crystal 
based on its composition as well as its structure (positions and 
lattice vectors). State-of-the-art ML models can predict the 
formation energy of materials from Materials Project (MP) 
with 28 meV/atom33,34 and 60 meV/atom32,35 mean-absolute 
error using structural and compositional models, respectively. 
However, it has been challenging to utilize these low-error 
models to discover novel stable materials. Bartel et al. have 
found that compositional models can have difficulty pre-
dicting the relative stability of competing compositions in a 

Figure 1.   Conceptual illustration of self-organized two-dimensional hybrid perovskite (2D HP) building block formation.
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Figure 2.   (a) A representative workflow for (quasi-) two-dimensional hybrid perovskite (2D HP) explorations, including high-throughput automated 
synthesis (here, a pipetting robot platform is presented), rapid material characterizations, and machine learning (ML) techniques. (b) Illustration of 
co-navigation in chemical and compositional spaces for 2D HP system. (c) Molecular parameters categorized by physicochemical properties of 
the spacer candidates. (d) Schematics illustrating basic structure of (quasi-) 2D and three-dimensional (3D) HP lattices.
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chemical family.35 They also reported that although structural 
models can have sufficient predictive power for distinguishing 
the relative stability of different compositions, they require 
knowledge of the ground-state structure beforehand, which 
can defeat the purpose of discovery.

The task of going from the composition of a material to 
its ground-state structure is known as structure prediction. 
ML models have also been utilized for structure prediction. 
A common pathway is to train a force field using ML. The 
first general-purpose ML force fields have been proposed by 
Behler and Parrinello.36 Follow-up work has reported that 
Behler–Parrinello neural networks can learn to represent 
different structural phases of a composition37 and model the 
thermodynamic stability and dynamics of different composi-
tions.38 More recent work39 has evaluated the promise of ML 
force fields for random structure search.40 Another application 
of ML to structure prediction has been via more advanced 
deep learning methods, such as learned optimizers41 and gen-
erative models.42,43 As a proof of concept, generative models 
have been used to sample already known HP structures, as 
evaluated by their reconstruction error.42,43

In addition to generating and predicting the stability of a 
new HP, ML can also be used to predict electronic proper-
ties such as the bandgap. Although the formation energy 
prediction error has been improving with developments in 
deep learning, electronic property prediction has proven to 
be difficult. For example, MEGNet reported a mean-absolute 
error of 0.33 eV for predicting the DFT-based bandgaps of 
nonmetallic materials in MP.34 Given the further problems 
with DFT’s inaccuracy for predicting bandgaps,44 it will be 
unlikely that an ML model trained on DFT-based labels of 
bandgaps will be able to make useful predictions in the near 
future. However, a promising direction could be to train the 
ML model on experimental labels of bandgap measurements, 
done on a predefined family of HPs.

Designing 2D layered perovskites presents unique chal-
lenges for DFT calculations. The ability to choose the com-
position of the inorganic components and selection of the 
organic molecules allow for unprecedented flexibility. How-
ever, navigating through this combinatorial explosion only 
using simulations is prohibitive, given the computational 
expense of DFT. For this reason, we believe that ML can 
play a transformative role for this design problem. Graph 
neural networks have already been shown to model organic 
molecules effectively.45 Graph neural networks have also 
shown promise for modeling more complex systems involv-
ing both inorganic surface slabs and organic molecules in the 
context of catalysis.46 Further developments in graph neural 
networks as well as meta-learning hold the promise to make 
2D layered perovskite design more tractable.

From end members to solid solutions
The unique aspect of the quasi-2D HPs is the potential for 
formation of larger numbers of low-dimensional phases with 
various compositions as solid solutions between the pure 2D 

and 3D HP end members. This gives rise for complex multi-
component phase diagrams containing single- and multicom-
ponent regions and morphotropic phase boundaries between 
crystallographically incompatible phases, which subse-
quently renders drastic functional variabilities. Although 
the properties of the end members can often be ascertained 
using DFT calculations, the variety of possible solid solu-
tions renders theoretical investigations intractable. Similarly, 
the properties of experimentally synthesized materials dif-
fer from theoretical predictions, both due to the systematic 
errors of theoretical models and also the presence of the 
exogenous (to theory) factors such as point and extended 
defect populations, nonstoichiometry, etc. Many of these 
factors are sensitively affected by the synthesis conditions 
including the precursor solutions, solvent and antisolvent, 
and annealing conditions.

These considerations necessitate the use of high-through-
put experimental methods based on automated platforms for 
HP explorations, allowing precise control of compositional, 
dimensional, and synthetic parameters and thereby draw-
ing a complete chemical landscape in the HP system.47–49 
However, a simple increase of throughput is insufficient for 
materials optimization and especially discovery. For exam-
ple, assuming that the materials behavior can change with 
1% composition variation, exploring a  four-dimensional 
(4D) phase diagram using grid search requires 108 samples, 
equally intractable for manual or automated synthesis. This, 
in turn, requires developing ML methods capable of navigat-
ing the multidimensional composition and synthesis (e.g., 
solvent composition or annealing trajectories/gas regime) 
spaces.

The by now well-established approach for such optimi-
zation problems is Bayesian optimization (BO) based on 
Gaussian process (GP) regression. Generally, GP refers to 
an approach for reconstruction of function of interest and its 
uncertainty from a relatively small number of measurements. 
BO is an active learning approach in the sense that a sur-
rogate GP model interacts with the data generation process, 
and it aims to reconstruct the physical property (or proper-
ties) of interest in the minimal number of steps (explora-
tion), or discover the regions of the parameter space where 
this property is maximized (exploitation). The limitation of 
the classical GP methods is their data-driven nature, where 
the kernel function learnt from experimental observations 
represents the correlations across the parameter space. As 
such, simple GP methods have limited applicability in high-
dimensional spaces such as annealing trajectories.

It is conventionally accepted that discovery and optimi-
zation of materials functionalities will be enhanced if the 
underpinning physical mechanisms are known, allowing for 
straightforward answers to the interventional and counter-
factual questions. However, this is generally not the case, 
and deciphering the quantitative mechanisms is a herculean 
effort. The pathway out from this conundrum is a physics-
based structured GP (sGP) and hypothesis learning as shown 
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in Figure 3.50 In the structured GP, prior mean function of the 
GP is no longer constant, but represents the possible physi-
cal behavior of the system, for example, the concentration 
dependence of bandgap, extrema of stability in the vicinity of 
the morphotropic boundaries, etc. The model is defined in the 
probabilistic sense, with the prior knowledge about the physics 
of the system summarized in associated prior distributions on 
the parameters. Hence, during the active learning, the physical 
model is learned jointly with the GP kernel toward the desired 
outcome. This approach can be naturally extended to the sce-
narios where mutually exclusive hypotheses that combine the 
physical mechanistic frameworks and weakly known nature of 
corresponding parameters and mechanisms are available, the 
approach referred to as hypothesis learning.51

Similarly, BO methods can be extended toward the continu-
ous processes (e.g., optimization of annealing trajectories). 

Here, a number of approaches 
based on the encoding of pos-
sible trajectories in the latent 
space of the generative model 
or deep kernel learning are 
possible. Finally, recently BO 
networks were proposed for 
more complex spaces including 
chemical organics with various 
functional groups, and associ-
ated chemical reactions.52

Engineering 
the molecules 
toward a self‑organized 
2D HP system
Organic molecules allow multi-
ple venues for engendering not 
only intermolecular electro-
static interactions such as π–π 
stacking or hydrogen bonding, 
but also the dynamic responses 
to external stimuli, including 
light-induced isomerization, 
cross-linking, pH, and ionic 
strength-induced conforma-
tional changes. However, the 
charge-transport behaviors in 
such organic molecular semi-
conductor systems, based on the 
long-range ordering of discrete 
molecular arrangement, are 
generally limited. In compari-
son, inorganic materials exhibit 
a rich gamut of the electronic, 
optical, and magnetic phenom-
ena highly owing to the proxim-
ity in atomic arrangements over 
a continuous lattice, stimulating 

decades of effort to harness them in multifunctional low-cost 
devices for nonvolatile electronics, environmental monitoring, 
and medical sensing. However, accessing and tuning these 
functionalities has remained limited, with the field effect being 
the primary control knob.

Over the last decade, the field of optoelectronics was 
revolutionized with the advent of HPs that combine excel-
lent photo-physical and electronic properties with low-cost 
solution-based fabrication.53 The key aspect of the 2D HPs is 
that not only tuning the HP building block tunes the function-
ality, but also the dynamic behavior of the component in the 
organic layer can impose similar effects on continuous layers. 
An additional degree of control is the layer spacing that affects 
quantum confinement. Thus, engineering the spacer cation is 
the indispensable step to control the dimensionality and struc-
ture of the low-dimensional HP lattice, thereby realizing the 

a b

c

Figure 3.   Comparison between vanilla Gaussian process (GP) (a) and structured GP (b) for active 
learning of magnetization behavior in the 2D Ising model.50 Unlike vanilla GP, the structured GP with 
only a crude model of system behavior is able to localize a phase boundary within a small number of 
“measurements” as well as provide a reasonable reconstruction of the phase diagram. (c) Schematic of 
hypothesis learning, where at each step, we sample a probabilistic model M of possible system behavior 
according to a predefined policy (e.g., epsilon-greedy) and wrap it into a structured GP with kernel K. 
The GP posterior predictive distribution is used to derive the next measurement point and model prob-
abilities are updated based on the difference in total values of predictive uncertainty over the unmeas-
ured parameter space between the current and the previous step.
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phase-pure self-organized system with on-demand lattice ori-
entations. As an example, by judiciously deploying the molec-
ular interactions appropriately, a dimensionally confined free 
space with a periodic arrangement of organic spacer cations 
could be established, in which the inorganic 2D or quasi-2D 
HP lattice can grow along the spacer template. This subse-
quently expands and maximizes the coherence in functionali-
ties along the entire system, making it fully utilized in device 
applications.

Of course, it is challenging to find such ideal spacer 
candidates which simultaneously serve appropriate spatial 
periodicity in binding head position compatible with the 
HP lattice unit cell and the rigid molecular arrangement that 
are not decomposed readily during synthetic progress. The 
high-throughput robotic platform can play a crucial role 
swiftly confirming each molecular spacer whether it has 
feasibility on these aspects or not among the massive gamut 
of molecular candidates. Mapping the synthetic/chemical/
compositional spaces on specific organic molecules, and a 
series of workflows established in this regard could be an 
invaluable reference to go forward with another molecular 
system. Systematic theoretical calculation based on model 
structures of atomic/molecular arrangements further suggest 
clues on the key design principles. This not only provides 
us with the general parameters such as optimized formation 
energy, chemical potential, etc., but also gives us detailed 
insights into molecular/atomic geometries including prefer-
ential orientation of spacer cation, signatures for hydrogen 
bonding, spacer-induced lattice strain, and spacer–spacer 
interaction associated with layer stacking behaviors over the 
low-dimensional HP ensembles.

From materials to devices
In over a decade since becoming mainstream, 3D HPs have 
successfully demonstrated their indispensable functionality 
ideal to rich gamut of optoelectronic device applications, 
and now they are also showing potential compatibilities 
with flexible electronics, neuromorphic devices, and sen-
sors.4,5,7,8,10,54 Notwithstanding their superiority, the notori-
ous phase stability of 3D HPs has constrained the realization, 
which is the most crucial drawbacks in this system. For 2D 
and quasi-2D cases, the surface covering organic molecules 
protects the HP lattice from external stress, thereby bestow-
ing notably improved stability on these functional systems. 
This subsequently opens an avenue to utilize multifunctional 
2D and quasi-2D HPs as a universal building block toward 
solution-processible device applications, including electron-
ics, sensors, and so on. The self-organized low-dimensional 
HP superlattices, where the major challenges are associated 
with these functional systems, can establish long-range 
coherence in fundamental properties of the materials—such 
as charge-transport behaviors or electronic structures—over 
the entire system,22 thereby maximizing the optoelectronic 
functionalities.55 The key principles on the mechanism and 
optimal conditions for synthesis, which are already proposed 

in the high-throughput material exploration stage, make the 
discovered materials directly employed to versatile device 
application, thereby manifesting its functionality by per-
formance evaluations. Such a workflow allows us intui-
tive realization of intriguing characteristics and function-
alities observed from the materials level directly to device 
applications.

Outlook
Despite tremendous advances and developments in the HP 
system, still only a handful of compositions have been 
majorly utilized. Automated high-throughput exploration in 
3D HP opens a new avenue to comprehensively investigate 
this functional material platform by systematically changing 
composition and its ratio with small increments. Addition-
ally, incorporation of compatible ML methods allows us 
to efficiently analyze massive data sets and derive proper 
solutions, a sequence of which is essentially challenging by 
relying on human power. As a result, a series of these work-
flows are now accelerating discovery of 3D HPs, including 
optimal conditions with desired functionality. Such a joint 
approach becomes much more powerful and indispensable 
for exploration of low-dimensional 2D HP systems where 
the vast number of determinants is associated with materi-
als synthesis—particularly the chemical space associated 
with the physicochemical properties of spacer cations. 
High-throughput theoretical predictions and automated 
synthesis can realize synergistic co-navigation of both 
chemical and compositional spaces. Effectively, this can 
give us a genuine solution for realization of the phase-pure 
self-organized 2D HP system, which is one of the conun-
drums in this functional and versatile material platform. 
This, in turn, opens an avenue to be employed in a wide 
range of high-performance next-generation optoelectronic 
applications including light and chemical sensors, neuro-
morphic devices, memristors, or other electronics that can 
be employed as integrated circuits.
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