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Low-dimensional hybrid perovskites combine the richness of physical functionalities of
inorganic materials and complexity and stimulus responsiveness of organic molecules in a
single bulk dynamic material. The unique aspect of these materials is the thermodynamic
(meta) stability, allowing for self-organized formation of complex large-period structures.
Combined with the ease of fabrication, these materials not only have extensively demonstrated
state-of-the-art high-performance optoelectronics, but also offer the pathway toward versatile
applications, including sensors, electronic, and neuromorphic devices as well as their cost-
effective mass production. However, discovery and optimization of this material require joint
optimization of the composition of the inorganic components and selection of the molecular
moieties, to harness the phase formation and self-assembly processes on the material level,
and extend it to micro- and macroscale functional devices. Here, we discuss the potential
of machine learning-driven automated experiments to accelerate the discovery of these
materials, optimize the processing pathways, and transition from the lab-level to the product-

t')

Check for
updates

level manufacturing.

Introduction

Within a decade since discovery,' the rapid development of
hybrid perovskites (HPs) achieved an outstanding optoelec-
tronic performance (power conversion efficiency approaching
26% and light-emitting efficiency >20% for photovoltaics and
light-emitting diodes, respectively), surpassing silicon-based
devices.”™ This incredibly fast rate of progress of HPs for
semiconductor applications can be attributed to the combi-
nation of excellent optoelectronic functionalities and scal-
ability of solution-processing. The broad range of functional
responses in these materials suggests potential for other high-
performance and mass-producible device applications, such as
x-ray and chemical sensors, neuromorphic, and ferroelectric
devices.”® However, practical realization of HP as a universal
functional material platform that constrains its realization to

date is the chemical lability and low phase stability of the
inorganic lattice.

Two-dimensional (2D) HPs offer substantially improved
robustness compared to three-dimensional (3D) HP systems,
increasing their potential for device applications. In these
materials, the HP lattices are spatially confined in 2D space
by organic cations binding onto the surface. This structure
not only protects the functional inorganic lattice from external
chemical and physical stresses, but also results in strong quan-
tum and dielectric confinement effects. The latter, in turn, leads
to intriguing physical characteristics that are not observed in
3D counterparts, including tunable bandgap, strong exciton
binding energy, anisotropy in optoelectronic properties, strong
Rashba effect, and so on.>'? These functionalities, in turn, can
readily be tuned by changing the composition outlay, including
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both the composition of inorganic component and the nature
of organic moieties separating them.!" Moreover, as the 2D
HP shares the inorganic lattice structure with the 3D counter-
part, it is convenient to mix them with 3D HPs to form inter-
growth phases. These so-called as quasi-2D HPs demonstrated
excellent functionalities and performances for photovoltaics
and light-emitting technologies.'? As a result, the promising
potential and functionalities of 2D and quasi-2D HPs make
these materials an attractive material platform for versatile
applications.

Structurally, low-dimensional HPs are composed of
several key components: (1) large organic cation (L),
called a spacer, that spatially separates and maintains
the layer-structured HP sheets within quantum-confined
dimensionalities. Metal cations (B), halide anions (X),
and small monovalent cations construct the HP sheets
based on metal halide octahedra [BX,]*" building blocks.
Depending on the charge of the spacer cations, 2D HPs
have generally a chemical formula of L,A, B, X;,,, or
LA, B, X;,.. %!*!% Here, L is a monovalent or divalent
molecular cation—two monovalent cation heads in a mol-
ecule, respectively, forming a discrete inorganic 2D mono-
layer (Ruddlesden—Popper structure) or interconnected 2D
bilayer sheets (Dion—Jacobson structure). The spacer cation
has a positive-charged functional head (typically, ammo-
nium functional group) in its molecular structure, binding
onto the surface of 2D sheets by filling the A cation site.
The n indicates the layer thickness of the HP sheets (i.e., n
times unit cell length of [BX4]* octahedron comprising the
sheet) primarily determining the electronic structure—for
example, bandgap and exciton binding energy—which can
be tuned by precursor composition.’

Typical inorganic 2D materials are grown by vapor syn-
thesis in gas phase, resulting in highly ordered and organized
structures via epitaxial growth.'>™'7 In contrast, 2D HPs are
mainly synthesized via a solution-based process where the
nucleation process is difficult to control. As a result, rather
than a phase-pure system, multiple phases emerge, subse-
quently rendering somewhat disordered and imperfectly
organized 2D assemblies on large scales.'®!*!® Notwithstand-
ing their fascinating physical properties, the aforementioned
structural variability, and the presence of multiple layered sys-
tems with similar compositions, hamper practical applications
and developments of this rising 2D materials system.

Depending on their molecular structures and the conse-
quent chemical properties, spacer cations can induce mul-
titude effects on the physical and structural properties of
2D HPs. Increasing the molecular length of these spacers
separates the interval between neighboring 2D sheets far-
ther, suppressing the electronic coupling over the 2D HP
stacks.!? Steric hindrance of the spacer molecule can restrict
the possible binding site onto the 2D HP surface, selectively
allowing them to bind at specific sites such as lattice edge
or kink points. The shape and structure of the spacer cation
(aliphatic/aromatic, specific chirality, etc.) not only determine
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the stacking features of the resulting 2D HPs, but also influ-
ence the in-plane atomic alignments, including lattice strain
in 2D sheets, directly changing the physical properties.'%*°
Also, add-ons with other functional groups at the spacer
body impose additional interaction between the spacer-HP
lattice,®*! which not only further influence to the stacking
behaviors between the 2D sheets, but also uncover the hidden
properties of the HP system. Although it is not feasible to bind
the larger spacer cations onto the 2D sheet surfaces, they can
stabilize the edge sites and thereby contribute to dimension-
regulated block formations. Hence, a subtle change in phys-
icochemical properties in spacer cation not only regulates the
shapes, structures, and geometries of the 2D HPs, but also
induces substantial changes in their optoelectronic properties
and the resulting functionalities.

The judicious design, selection, and/or combination of
appropriate spacer cation, as well as elemental composi-
tion of the HPs can realize a self-organized 2D HP platform
showing intriguing functionality, which can expand the
versatility toward various applications. As an example, it is
envisaged that systematic deployment of molecular interac-
tion/reaction along the spacer cation in HP synthesis real-
ize rigid molecular assemblies in a reaction system, serv-
ing as a template for the 2D HP growths (Figure 1). This
subsequently allows synthesizing and optimizing unique
“self-organized” 2D HP superlattice systems, opening a new
avenue to maximize its functionality.?> However, there are
massive amounts of organic spacer with different functional
groups, sizes, shapes, electronic structures, etc. In addition,
various synthetic parameters—concentration, composition
ratio, temperature, solvent, growth time, etc.—should be
controlled to find an optimal condition for synthesis of each
material system. Thus, the degree of freedom that we have
to control with an appropriate combination of the spacer
candidates and the synthetic parameters in this regard are
infinite, whereas the evaluation of the resulting product with
appropriate characterizations becomes extremely complex
and thereby beyond human power.

Automated high-throughput synthesis is an ideal
approach to explore this giant pool of molecular and syn-
thetic spaces. The robot-based automated synthesis plat-
form, coupled with a high-throughput, fast absorption,
and emission spectroscopy, enables precise and quick
assessments of the synthetic parameters while excluding
human-oriented errors. As a result, dynamic changes of 2D
phases by stoichiometric/compositional tuning, temporal
stabilities, and the function of solvent on the crystallization
kinetics—dependent on the physicochemical properties
of solvents (i.e., dielectric constant, Lewis acidity/basic-
ity, etc.)—can be precisely and readily assessed. Also, by
simply changing the spacer molecules in precursors, this
strategy allows comprehensive explorations of the opto-
electronic properties and functionalities, effectively reveal-
ing the key effect and/or mechanism of the molecules on
the formation, packing, and electronic structures of 2D HP
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Figure 1. Conceptual illustration of self-organized two-dimensional hybrid perovskite (2D HP) building block formation.

phases and consequently reaching to the solution that we
pursue.m’25

The critical component of materials discovery and opti-
mization are advanced characterization techniques that
can be employed in a high-throughput manner, allowing
us more comprehensive insight into the quasi-2D HP sys-
tem beyond optical characterizations. For example, high-
throughput grazing incidence wide-angle x-ray scattering
(GIWAXS) characterization utilizing a synchrotron facil-
ity opens a new avenue to explore the structural evolutions
in quasi-2D HPs, including lattice orientations, interlayer
spacings, phase (im)purities, and distributions;?® these are
complementary with the optical spectroscopies. Thus, the
combination of these powerful characterizations provides
a complete understanding of a vast compositional space
of HPs, suggesting a practical way to realize the desired
functionalities and/or new materials discovery. Here, incor-
poration of machine learning (ML) techniques is a power-
ful strategy to accelerate the process by guiding key signa-
tures appearing in the massive amounts of data collected in
the high-throughput approach.?*2° As a result, the workflow
coupled with high-throughput synthesis/evaluation and ML
(Figure 2) enables effective and accurate co-navigation of
the compositional, structural, chemical space, thereby real-
izing demonstration of novel low-dimensional functional
materials.

In this article, we describe how ML can navigate the rapid
exploration of low-dimensional HP materials. We describe
principles and progress of ML in both theoretical calculations
and experiments on the materials, and propose a conceptual
strategy to realize a novel versatile self-organized 2D HP sys-
tem in the aid of ML, which can be directly implemented to
various device applications.

ML in theoretical calculations
Novel material discovery requires the ability to predict the
relative stability of different compositions in a chemical fam-
ily and the relative formation energy of different structural
phases of a composition. An attractive promise of computa-
tional methods such as density functional theory (DFT) has
been to allow such predictions using computer simulations.?’
This can be a challenging task, as the difference between dif-
ferent structural phases can be on the order of several mega-
electronvolts per atom.?® Recent advances in modeling the
exchange-correlation functional, such as SCAN.,? have shown
promising results for being able to rank the energies of differ-
ent phases accurately.>

Although much needed progress has been made on improv-
ing first-principles calculations, a complementary effort has
been ongoing for aiding or bypassing the DFT simulations
using ML tools. The basic idea is to collect a set of inputs
and outputs from DFT simulations to train a neural network
or some other ML model. Broadly, ML models that can pre-
dict the formation energy of a material can be classified into
two categories: compositional models,*!*> which predict the
ground-state formation energy of a composition only based on
the elements and their fractions that make up the material, and
structural models,**** which predict the energy of a crystal
based on its composition as well as its structure (positions and
lattice vectors). State-of-the-art ML models can predict the
formation energy of materials from Materials Project (MP)
with 28 meV/atom?*-** and 60 meV/atom*>* mean-absolute
error using structural and compositional models, respectively.
However, it has been challenging to utilize these low-error
models to discover novel stable materials. Bartel et al. have
found that compositional models can have difficulty pre-
dicting the relative stability of competing compositions in a
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Figure 2. (a) A representative workflow for (quasi-) two-dimensional hybrid perovskite (2D HP) explorations, including high-throughput automated
synthesis (here, a pipetting robot platform is presented), rapid material characterizations, and machine learning (ML) techniques. (b) lllustration of
co-navigation in chemical and compositional spaces for 2D HP system. (c) Molecular parameters categorized by physicochemical properties of
the spacer candidates. (d) Schematics illustrating basic structure of (quasi-) 2D and three-dimensional (3D) HP lattices.
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chemical family.* They also reported that although structural
models can have sufficient predictive power for distinguishing
the relative stability of different compositions, they require
knowledge of the ground-state structure beforehand, which
can defeat the purpose of discovery.

The task of going from the composition of a material to
its ground-state structure is known as structure prediction.
ML models have also been utilized for structure prediction.
A common pathway is to train a force field using ML. The
first general-purpose ML force fields have been proposed by
Behler and Parrinello.>® Follow-up work has reported that
Behler—Parrinello neural networks can learn to represent
different structural phases of a composition®’” and model the
thermodynamic stability and dynamics of different composi-
tions.® More recent work™ has evaluated the promise of ML
force fields for random structure search.*’ Another application
of ML to structure prediction has been via more advanced
deep learning methods, such as learned optimizers*' and gen-
erative models.***} As a proof of concept, generative models
have been used to sample already known HP structures, as
evaluated by their reconstruction error.*>*?

In addition to generating and predicting the stability of a
new HP, ML can also be used to predict electronic proper-
ties such as the bandgap. Although the formation energy
prediction error has been improving with developments in
deep learning, electronic property prediction has proven to
be difficult. For example, MEGNet reported a mean-absolute
error of 0.33 eV for predicting the DFT-based bandgaps of
nonmetallic materials in MP.* Given the further problems
with DFT’s inaccuracy for predicting bandgaps,** it will be
unlikely that an ML model trained on DFT-based labels of
bandgaps will be able to make useful predictions in the near
future. However, a promising direction could be to train the
ML model on experimental labels of bandgap measurements,
done on a predefined family of HPs.

Designing 2D layered perovskites presents unique chal-
lenges for DFT calculations. The ability to choose the com-
position of the inorganic components and selection of the
organic molecules allow for unprecedented flexibility. How-
ever, navigating through this combinatorial explosion only
using simulations is prohibitive, given the computational
expense of DFT. For this reason, we believe that ML can
play a transformative role for this design problem. Graph
neural networks have already been shown to model organic
molecules effectively.*> Graph neural networks have also
shown promise for modeling more complex systems involv-
ing both inorganic surface slabs and organic molecules in the
context of catalysis.*® Further developments in graph neural
networks as well as meta-learning hold the promise to make
2D layered perovskite design more tractable.

From end members to solid solutions

The unique aspect of the quasi-2D HPs is the potential for
formation of larger numbers of low-dimensional phases with
various compositions as solid solutions between the pure 2D

and 3D HP end members. This gives rise for complex multi-
component phase diagrams containing single- and multicom-
ponent regions and morphotropic phase boundaries between
crystallographically incompatible phases, which subse-
quently renders drastic functional variabilities. Although
the properties of the end members can often be ascertained
using DFT calculations, the variety of possible solid solu-
tions renders theoretical investigations intractable. Similarly,
the properties of experimentally synthesized materials dif-
fer from theoretical predictions, both due to the systematic
errors of theoretical models and also the presence of the
exogenous (to theory) factors such as point and extended
defect populations, nonstoichiometry, etc. Many of these
factors are sensitively affected by the synthesis conditions
including the precursor solutions, solvent and antisolvent,
and annealing conditions.

These considerations necessitate the use of high-through-
put experimental methods based on automated platforms for
HP explorations, allowing precise control of compositional,
dimensional, and synthetic parameters and thereby draw-
ing a complete chemical landscape in the HP system.*’
However, a simple increase of throughput is insufficient for
materials optimization and especially discovery. For exam-
ple, assuming that the materials behavior can change with
1% composition variation, exploring a four-dimensional
(4D) phase diagram using grid search requires 10® samples,
equally intractable for manual or automated synthesis. This,
in turn, requires developing ML methods capable of navigat-
ing the multidimensional composition and synthesis (e.g.,
solvent composition or annealing trajectories/gas regime)
spaces.

The by now well-established approach for such optimi-
zation problems is Bayesian optimization (BO) based on
Gaussian process (GP) regression. Generally, GP refers to
an approach for reconstruction of function of interest and its
uncertainty from a relatively small number of measurements.
BO is an active learning approach in the sense that a sur-
rogate GP model interacts with the data generation process,
and it aims to reconstruct the physical property (or proper-
ties) of interest in the minimal number of steps (explora-
tion), or discover the regions of the parameter space where
this property is maximized (exploitation). The limitation of
the classical GP methods is their data-driven nature, where
the kernel function learnt from experimental observations
represents the correlations across the parameter space. As
such, simple GP methods have limited applicability in high-
dimensional spaces such as annealing trajectories.

It is conventionally accepted that discovery and optimi-
zation of materials functionalities will be enhanced if the
underpinning physical mechanisms are known, allowing for
straightforward answers to the interventional and counter-
factual questions. However, this is generally not the case,
and deciphering the quantitative mechanisms is a herculean
effort. The pathway out from this conundrum is a physics-
based structured GP (sGP) and hypothesis learning as shown
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Figure 3. Comparison between vanilla Gaussian process (GP) (a) and structured GP (b) for active
learning of magnetization behavior in the 2D Ising model.®° Unlike vanilla GP, the structured GP with

only a crude model of system behavior is able to localize a phase boundary within a small number of
“measurements” as well as provide a reasonable reconstruction of the phase diagram. (c) Schematic of
hypothesis learning, where at each step, we sample a probabilistic model M of possible system behavior
according to a predefined policy (e.g., epsilon-greedy) and wrap it into a structured GP with kernel K.
The GP posterior predictive distribution is used to derive the next measurement point and model prob-
abilities are updated based on the difference in total values of predictive uncertainty over the unmeas-

ured parameter space between the current and the previous step.

strength-induced conforma-
tional changes. However, the
charge-transport behaviors in
such organic molecular semi-
conductor systems, based on the
long-range ordering of discrete
molecular arrangement, are
generally limited. In compari-
son, inorganic materials exhibit
a rich gamut of the electronic,
optical, and magnetic phenom-
ena highly owing to the proxim-

in Figure 3.°° In the structured GP, prior mean function of the
GP is no longer constant, but represents the possible physi-
cal behavior of the system, for example, the concentration
dependence of bandgap, extrema of stability in the vicinity of
the morphotropic boundaries, etc. The model is defined in the
probabilistic sense, with the prior knowledge about the physics
of the system summarized in associated prior distributions on
the parameters. Hence, during the active learning, the physical
model is learned jointly with the GP kernel toward the desired
outcome. This approach can be naturally extended to the sce-
narios where mutually exclusive hypotheses that combine the
physical mechanistic frameworks and weakly known nature of
corresponding parameters and mechanisms are available, the
approach referred to as hypothesis learning.”'

Similarly, BO methods can be extended toward the continu-
ous processes (e.g., optimization of annealing trajectories).
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ity in atomic arrangements over
a continuous lattice, stimulating
decades of effort to harness them in multifunctional low-cost
devices for nonvolatile electronics, environmental monitoring,
and medical sensing. However, accessing and tuning these
functionalities has remained limited, with the field effect being
the primary control knob.

Over the last decade, the field of optoelectronics was
revolutionized with the advent of HPs that combine excel-
lent photo-physical and electronic properties with low-cost
solution-based fabrication.” The key aspect of the 2D HPs is
that not only tuning the HP building block tunes the function-
ality, but also the dynamic behavior of the component in the
organic layer can impose similar effects on continuous layers.
An additional degree of control is the layer spacing that affects
quantum confinement. Thus, engineering the spacer cation is
the indispensable step to control the dimensionality and struc-
ture of the low-dimensional HP lattice, thereby realizing the
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phase-pure self-organized system with on-demand lattice ori-
entations. As an example, by judiciously deploying the molec-
ular interactions appropriately, a dimensionally confined free
space with a periodic arrangement of organic spacer cations
could be established, in which the inorganic 2D or quasi-2D
HP lattice can grow along the spacer template. This subse-
quently expands and maximizes the coherence in functionali-
ties along the entire system, making it fully utilized in device
applications.

Of course, it is challenging to find such ideal spacer
candidates which simultaneously serve appropriate spatial
periodicity in binding head position compatible with the
HP lattice unit cell and the rigid molecular arrangement that
are not decomposed readily during synthetic progress. The
high-throughput robotic platform can play a crucial role
swiftly confirming each molecular spacer whether it has
feasibility on these aspects or not among the massive gamut
of molecular candidates. Mapping the synthetic/chemical/
compositional spaces on specific organic molecules, and a
series of workflows established in this regard could be an
invaluable reference to go forward with another molecular
system. Systematic theoretical calculation based on model
structures of atomic/molecular arrangements further suggest
clues on the key design principles. This not only provides
us with the general parameters such as optimized formation
energy, chemical potential, etc., but also gives us detailed
insights into molecular/atomic geometries including prefer-
ential orientation of spacer cation, signatures for hydrogen
bonding, spacer-induced lattice strain, and spacer—spacer
interaction associated with layer stacking behaviors over the
low-dimensional HP ensembles.

From materials to devices

In over a decade since becoming mainstream, 3D HPs have
successfully demonstrated their indispensable functionality
ideal to rich gamut of optoelectronic device applications,
and now they are also showing potential compatibilities
with flexible electronics, neuromorphic devices, and sen-
sors.»%7:810:3% Notwithstanding their superiority, the notori-
ous phase stability of 3D HPs has constrained the realization,
which is the most crucial drawbacks in this system. For 2D
and quasi-2D cases, the surface covering organic molecules
protects the HP lattice from external stress, thereby bestow-
ing notably improved stability on these functional systems.
This subsequently opens an avenue to utilize multifunctional
2D and quasi-2D HPs as a universal building block toward
solution-processible device applications, including electron-
ics, sensors, and so on. The self-organized low-dimensional
HP superlattices, where the major challenges are associated
with these functional systems, can establish long-range
coherence in fundamental properties of the materials—such
as charge-transport behaviors or electronic structures—over
the entire system,?” thereby maximizing the optoelectronic
functionalities.>® The key principles on the mechanism and
optimal conditions for synthesis, which are already proposed

in the high-throughput material exploration stage, make the
discovered materials directly employed to versatile device
application, thereby manifesting its functionality by per-
formance evaluations. Such a workflow allows us intui-
tive realization of intriguing characteristics and function-
alities observed from the materials level directly to device
applications.

Outlook

Despite tremendous advances and developments in the HP
system, still only a handful of compositions have been
majorly utilized. Automated high-throughput exploration in
3D HP opens a new avenue to comprehensively investigate
this functional material platform by systematically changing
composition and its ratio with small increments. Addition-
ally, incorporation of compatible ML methods allows us
to efficiently analyze massive data sets and derive proper
solutions, a sequence of which is essentially challenging by
relying on human power. As a result, a series of these work-
flows are now accelerating discovery of 3D HPs, including
optimal conditions with desired functionality. Such a joint
approach becomes much more powerful and indispensable
for exploration of low-dimensional 2D HP systems where
the vast number of determinants is associated with materi-
als synthesis—particularly the chemical space associated
with the physicochemical properties of spacer cations.
High-throughput theoretical predictions and automated
synthesis can realize synergistic co-navigation of both
chemical and compositional spaces. Effectively, this can
give us a genuine solution for realization of the phase-pure
self-organized 2D HP system, which is one of the conun-
drums in this functional and versatile material platform.
This, in turn, opens an avenue to be employed in a wide
range of high-performance next-generation optoelectronic
applications including light and chemical sensors, neuro-
morphic devices, memristors, or other electronics that can
be employed as integrated circuits.
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