
1.  Introduction
The dynamics and electrodynamics of the Ionosphere-Thermosphere (I-T) system are closely related to the 
coupling of magnetically conjugate regions of the magnetosphere and its interaction with the solar wind (Wang 
et al., 2004; Wiltberger et al., 2004). In particular, the I-T system during geomagnetically active periods (magnetic 
storms or substorms) manifests a series of ionospheric phenomena like enhanced aurora, electric fields, and 

Abstract  We apply a multiresolution Gaussian process model (Lattice Kriging) to combine satellite 
observations, ground-based observations, and an empirical auroral model, to produce the assimilation of auroral 
energy flux and mean energy over high-latitude regions. Compared to a simple padding, the assimilation 
coherently combines various data inputs leading to continuous transitions between different datasets. The 
multiresolution modeling capability is achieved by allocating multiple layers of basis functions with different 
resolutions. Higher-resolution fitting results capture more mesoscale (10–100 s km) structures such as 
auroral arcs, than the low-resolution ones and the empirical model. To better reconcile different datasets, two 
preprocessing steps, temporal interpolation of satellite data and spatial down-sampling of low-fidelity data, 
are implemented. The inherent smoothing effect of the fitting, which causes an unrealistic spreading of the 
aurora, is mitigated by a post processing step: the K Nearest Neighbor (KNN) algorithm. KNN identifies the 
probability of a region with significant aurora and thereby eliminates those regions with low values. Thereby, 
this methodology can be used to maintain realistic and mesoscale auroral structures without boundary issues. 
We then run the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) driven by 
the high- and low-resolution auroral assimilations and compare total electron contents (TECs). TIEGCM driven 
by data assimilation produces enhanced TECs by a factor of ∼2 than the one driven by the empirical aurora, and 
high-resolution results show mesoscale structures. Our study shows the value of incorporating realistic auroral 
inputs via assimilation to drive ionosphere-thermosphere models for better understanding the consequences of 
mesoscale phenomena.

Plain Language Summary  The energy deposition from the magnetosphere determines the 
storm-time Ionosphere-Thermosphere (I-T) variations. Among different energy inputs, aurora and electric 
fields are usually prescribed as external drivers for I-T models. Historically, these drivers are given by 
empirical models, which miss mesoscale structures. This poses a long-lasting challenge to understand and 
predict mesoscale I-T variations. This paper adopts a Lattice Kriging model to generate data-driven auroral 
maps by combining space-borne and ground-based datasets. The approach maintains realistic and mesoscale 
structures while removing the boundary issues between different datasets compared to a simple padding. 
The methodology is inherently multiresolution, by laying out different levels of basis functions, to naturally 
decompose the auroral activities into different scales. The I-T model simulation driven by the assimilation 
result well captures the location of enhanced total electron contents during a moderate storm due to auroral 
precipitation. Our work demonstrates the advantage of using data assimilation to understand mesoscale 
magnetospheric deposition and its impacts. Nevertheless, this assimilation model still falls into the category of 
data diagnostics, in which the analysis largely depends on the amount and spatial distribution of the available 
data. It is not a prediction model and cannot be used to infer the temporal evolution of aurora.
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field-aligned currents (FACs) in response to the different phases of day and night-side reconnection (Nishimura 
et al., 2021). These ionospheric processes further affect the neutral atmosphere through the exchange and trans-
port of momentum, energy, and composition in the coupled magnetosphere-ionosphere-thermosphere (MIT) 
system (Thayer & Semeter, 2004). Eventually, the change of the I-T system will lead to the change of conduct-
ance, current systems, and ion outflows, which in turn poses a feedback effect to the magnetosphere (Merkin & 
Lyon, 2010; Merkin et al., 2003; Tanaka, 2007; Yau & André, 1997).

Due to the dynamic and turbulent nature of magnetospheric processes, the high-latitude forcing of the I-T 
system such as aurora, electric fields, and FACs is highly multiscale and mesoscale structures that play an 
important role in the MIT coupling (Nishimura et al., 2021). For example, empirical models usually give the 
large-scale (>1,000 km) morphology of the auroral oval, which can differ greatly from the ground-based all-sky 
imager (ASI) observations such as those from the Time History of Events and Macroscale Interactions during 
Substorms  (THEMIS) ASIs (Donovan et al., 2006). THEMIS ASIs depict rich mesoscale (10–100s km) struc-
tures, while a narrow field-of-view imaging can even resolve small-scale (<10 km) structures. During an expan-
sion phase of a substorm, the auroral structure with scales smaller than 500 km contributes to 50% of the total 
energy flux, and mesoscale auroral processes such as poleward moving auroral forms, polar cap patches, auroral 
arcs, and streamers can feedback to the large-scale dynamics and impose net effects on the global distribution of 
electron densities (Gabrielse et al., 2021). Similar to aurora, electric fields also show multiscale features. Using 
Super Dual Auroral Radar Network (SuperDARN) measurements, Cousins and Shepherd (2012) found a large 
ratio (75%) of mesoscale to large-scale electric fields in terms of magnitude under a southward interplanetary 
magnetic field (IMF) condition. The scale analyses by Cousins et al. (2015) and Shi et al. (2020) show that mesos-
cale FACs contribute to nearly 60% of the spatial variability of FACs. These magnetosphere-originated processes 
are highly correlated and mesoscale auroral structures such as auroral arcs are often associated with enhanced 
FACs and electric fields (Nishimura et al., 2021), which have profound effects on the I-T system.

For I-T models, aurora and electric fields are the two most important drivers at high latitudes, thus it is critical to 
capture these two drivers realistically. In this study, we focus on the assimilation of auroral particle precipitation, 
specifically, energy flux and mean energy. Even though the empirical auroral models derived from historical 
data can capture large scales reasonably well (Newell et  al.,  2009; Wu et  al.,  2021; Zhang & Paxton,  2008; 
Zhu et  al.,  2021), they still miss the important mesoscale features. Wu et  al.  (2020) showed that only when 
the empirical auroral model is replaced by auroral observations from Special Sensor Ultraviolet Spectrographic 
Imagers (SSUSI) (Paxton & Meng,  1999; Paxton et  al.,  2002) onboard the Defense Meteorological Satellite 
Program (DMSP) satellites to drive the I-T model, the Thermospheric Temperature Enhancement and Inversion 
Layer  (TTEIL) observed by the Fe-Boltzmann lidar at McMurdo, Antarctica, can be reproduced, and neutral 
densities in the F region match the Gravity Recovery and Climate Experiment (GRACE) observations. Similarly, 
Sheng et al. (2020) implemented THEMIS ASI auroral observations into the Global Ionosphere Thermosphere 
Model (GITM) and compared them with the simulations driven by the empirical model. The authors found that 
the magnitude of TIDs in GITM is almost doubled when driven by realistic THEMIS ASI observations and more 
consistent with observations. These previous studies indicate the necessity of developing data-driven auroral 
maps for the high-latitude drivers, especially when we focus on specific storms. Such efforts have been rarely 
made in the past, and the current work aims to address this challenge.

The existing techniques for auroral measurements include satellite and ground-based imagers, which have distinct 
spatial coverage and temporal samplings. SSUSI/DMSP measures global auroral emissions with a high spatial 
resolution and a revisit time of ∼30 min (three satellites) to the same magnetic latitude (MLAT) and magnetic 
local time (MLT). Ground-based instruments such as THEMIS ASIs provide both high temporal (3 s) and spatial 
resolution observations in North America. Empirical auroral models are built upon the statistics of a large number 
of historical observations and provide global auroral maps with highly smoothed patterns (Hardy et al., 1985; 
Roble & Ridley,  1987). They usually deviate from real-time observations, especially for mesoscale features. 
These deviations can often lead to systematic biases for the estimation of the general auroral activity level. 
Even so, the empirical model can still provide the sensible information for large-scale features such as auroral 
boundaries. These data sources provide complementary information on auroral activities but are rarely used 
synergistically. One way to combine all data sources is by simply padding different types of auroral observations, 
but this method usually leads to discontinuous boundaries among different data sources and introduces unphysi-
cal gradients, which could lead to artificial perturbations in I-T models. Another approach to synthesize various 
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data sources is the Assimilative Mapping of Ionospheric Electrodynamics (AMIE, Lu, 2017; Richmond, 1992; 
Richmond & Kamide, 1988), but its resolution is limited by the order of spherical cap harmonics (Matsuo, 2020).

In this paper, we apply a novel multiresolution spatial Gaussian process model (Lattice Kriging, Nychka 
et al., 2015) to incorporate auroral observations from satellite and ground-based data, as well as an empirical 
model where observations are unavailable. It uses a range limited basis function that better serves localized 
auroral assimilation. The mesoscale features in the satellite and ground-based observations are mostly kept in the 
assimilation results. In addition, the multiresolution modeling capability is fulfilled by locating multiple layers of 
basis functions with different resolutions. This method, therefore, provides a useful tool to study the multiscale 
processes and the corresponding impacts. Lattice Kriging has already been used in the lower atmospheric studies 
like surface temperature analysis (Heaton et al., 2019; Wiens et al., 2020). Wu and Lu (2022) have extended this 
model to vector fields and assimilated high-latitude electric fields using SuperDARN and Poker Flat Incoherent 
Scatter Radar (PFISR) data, which demonstrates its effectiveness in space weather studies. It is the first time that 
this model is applied to auroral assimilation.

The manuscript is organized as follows. Section 2 introduces the data sources. Section 3 describes the Lattice 
Kriging model including the principles and mathematical formula. Section 4 provides the detailed procedures to 
apply this model for auroral assimilation. Section 5 presents TIEGCM simulations driven by the empirical auroral 
model and the two different scales of auroral assimilation maps. Section 6 gives the conclusions and discussion.

2.  Data Sources
The data sources used for the auroral assimilation include SSUSI onboard three DMSP satellites (F16, F17, 
F18), THEMIS ASIs, and a Kp-based empirical auroral model (Zhang & Paxton, 2008). The choice of empir-
ical models is relatively flexible as long as the model provides full MLAT and MLT coverage. SSUSI is a 
remote-sensing instrument that measures ultraviolet emissions in five different wavelength bands from the Earth's 
upper atmosphere. The spatial resolution of SSUSI data product is ∼0.15°, which is sufficient to analyze the 
mesoscale structures of aurora in this study. The derived data products include the precipitating electron mean 
energy and energy flux. The three satellites sweep through the polar cap alternatively every 30 min, sampling 
through the auroral region (a swath) across the pole.

THEMIS ASIs observe the white light aurora over the North American continent from Canada to Alaska at a 
sampling rate of every 3 s, which provides high-resolution information about the rapid evolution of the aurora. The 
white light data are converted to red-green-blue colors by comparing with the nearest northern solar-terrestrial 
array (NORSTAR) meridian scanning photometers and multispectral ASIs, and then the color ratios are converted 
to energy fluxes and mean energies using the Strickland et al. (1983) formula (Mende et al., 2008). In this study, 
the electron mean energy and energy flux maps of spatial resolution 0.1° are used and the data are temporally 
down sampled to a 1 min basis.

The Zhang and Paxton (2008) model is built upon 4 years of Global Ultraviolet Imager (GUVI) data onboard 
Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite from 2002 to 2005. The 
model provides auroral predictions (mean energy and energy flux) covering all MLAT and MLT sectors over all 
Kp ranges (0–9) using Epstein function fitting. Comparing to other Kp-based models like Hardy et al. (1987), 
this model provides a more physical specification of the geo-effective energy flux and mean energy. Such infor-
mation is also useful for the assessment of the statistical mean needed in the auroral assimilation (Equation 1 in 
Section 3.1) and for the regions where observations are not available. The empirical model can be generated at an 
arbitrary resolution, that is, on the satellite grids in the present study.

Owing to the noticeable auroral activity and decent data coverage on 20 February 2014, we use the auroral 
observations on this day as an example to demonstrate the methodology. The geomagnetic indices are shown in 
Figure 1. After 03:00 Universal Time (UT), a negative turning of IMF Bz marks the start of geomagnetic distur-
bances. The Kp index reaches six and the symmetric disturbances for the magnetic H component (SYM-H) index 
reaches −100 nT, indicative of a moderate-intense storm. During this period, there are significant variations in the 
auroral electrojet (AE) indices, which reaches 1,200 nT, suggesting considerable auroral activities.

Figure 2 displays the auroral energy fluxes from the three data sources in the northern hemisphere at 11:50 UT, 
plotted in MLAT and MLT coordinates. This UT is chosen due to the clear auroral structures both in SSUSI and 
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THEMIS observations. The instantaneous SSUSI observations are limited: to assimilate the auroral maps (mean 
energy and energy flux) for a particular time, SSUSI data falling into a 20 min time window (10 min before and 
10 min after) are gathered. For example, SSUSI data from 11:40 to 12:00 UT are binned for the auroral assimila-
tion at 11:50 UT (Figure 2a, more details in Section 4.1). SSUSI observations after the binning mainly cover the 
dawn and dusk sectors and show scattered auroral arc features. THEMIS ASIs provide night-time observations 
with several auroral enhancements spreading between 60° and 70° MLAT around midnight. The empirical model 
has a locally much smaller magnitude and smoother structure than the real observations but provides reasonable 
large-scale patterns and auroral boundaries for Kp = 6 geomagnetic condition.

Figure 1.  Geomagnetic indices on 20 February 2014 (a) Kp, (b) interplanetary magnetic field (IMF) By (black) and Bz (red), 
(c) auroral electrojet (AE) indices: AL (blue), AU (red) and AE (black), and (d) symmetric disturbances for the magnetic H 
component (SYM-H).
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3.  Lattice Kriging Model
In this section, we introduce the principles of the Gaussian process model adopted for Lattice Kriging (Section 3.1), 
and the implementation of the multiresolution data assimilation (Section 3.2).

3.1.  Principles of the Gaussian Process Model

We consider a spatial field y, whose values at all locations in a spatial domain X are assumed to follow a Gaussian 
process, and hence the value at every finite location {xi,1 ≤ i ≤ n} follows a multivariate normal distribution. We 
will use the observations {y(xi),1 ≤ i ≤ n}, where n is the total number of observations to predict the values for 
a set of new locations {xi′,1 ≤ i ≤ n′} without observations, {y′(xi′),1 ≤ i ≤ n′}. Krige (1951) states that the best 
prediction, in terms of minimizing the prediction variance, for y at any unobserved location xi′ can be expressed 
as a linear superposition of the observed values, that is, ŷ(xi′) = ∑aiy (xi)+a0, and these optimal coefficients, 
{ai,0 ≤ i ≤ n} can be estimated from the observed data.

The spatial field of interest (the auroral map in this study) can be decomposed into a combination of a spatially 
varying mean μ(x), a spatially correlated field, g(x), and a spatially uncorrelated error term ϵ(x), which represents 
measurement uncertainties:

𝑦𝑦(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) + 𝑔𝑔(𝑥𝑥) + 𝜖𝜖(𝑥𝑥), 𝑥𝑥 ∈ 𝑋𝑋� (1)

In our auroral application, the spatial mean function μ(x) can be retrieved from the empirical model z(x). As 
indicated earlier, there tends to be a systematic discrepancy between the values from the empirical model and 
observation. Here, we assume a scaling factor d to account for such a multiplicative bias, that is, μ(x) = z(x)d.

The majority of the spatial predictability is achieved through the spatial random field, g(x), which characterizes 
the detailed spatial variations of aurora. In this work, we take a spatial basis function approach by decomposing 
g(x) onto a series of predefined basis functions {ϕj(x),1 ≤ j ≤ m}, that is, g(x) = ∑cjϕj(x), where cj is the coef-
ficient of j th basis function and m is the total number of basis functions (see Section 3.2 for further details about 
the basis functions). The coefficient vector c=(c1,c2,…,cm) jointly follows a multivariate normal distribution with 
mean zero and covariance matrix Q −1 (therefore, Q represents the distribution's precision matrix). As a result, 
{g(x), x ∈ X} is a zero mean Gaussian process, and the covariance function takes the following form:

cov (𝑔𝑔(𝑥𝑥), 𝑔𝑔 (𝑥𝑥′)) =
∑

1≤𝑗𝑗𝑗 𝑗𝑗′≤𝑚𝑚

𝜌𝜌𝜌𝜌𝑗𝑗(𝑥𝑥)𝐐𝐐
−1

𝑗𝑗𝑗𝑗𝑗′
𝜙𝜙𝑗𝑗′ (𝑥𝑥

′) , 𝑥𝑥𝑥 𝑥𝑥′ ∈ 𝑋𝑋� (2)

Figure 2.  Auroral energy fluxes from (a) Special Sensor Ultraviolet Spectrographic Imagers, (b) Time History of Events and Macroscale Interactions during Substorms 
all-sky imager, and (c) empirical model at 11:50 UT. All plotted in magnetic latitude and magnetic local time coordinates. Unit is mW/m 2.
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where ρ is the spatial marginal variance of the process of interest. The detailed description for Q −1 is given in 
Supporting Information S1.

In terms of parameter estimation and spatial prediction, we will use matrix notation to simplify the presentation. 
First, we write the basis functions evaluated at the observed locations into an n × m matrix ϕ such that ϕij = ϕj 
(xi), the value of the j th basis function at xi. We use a vector x to denote the observed spatial locations, that is, 
x=(x1,x2,…,xn). Then, we have g(x) = ϕc and the covariance matrix of cov (g(x), g (x′)) = ρϕQ −1ϕ T.

Second, we stack all auroral observations {y (xi),1 ≤ i ≤ n} and errors {ϵ(xi),1 ≤ i ≤ n} into vectors y and ϵ, 
respectively. Since we assume the errors are spatially uncorrelated, the covariance matrix of ϵ is σ 2W −1, where 
W −1 is a diagonal error covariance matrix and σ 2 is a scaling factor of the error term. We also stack the empirical 
model at each location {z (xi),1 ≤ i ≤ n} as vector Z. We can now write the model (Equation 1) in the following 
matrix form:

𝐲𝐲 = 𝐙𝐙𝑑𝑑 + 𝜙𝜙𝐜𝐜 + 𝜖𝜖� (3)

Here, y follows a multivariate normal (MVN) distribution with a mean of Zd and a covariance matrix 
ρϕQ −1ϕ T+σ 2W −1

� ∼ MVN
(

��, ���−1 �T + �2�−1
)

� (4)

In terms of parameter estimation, we will need to estimate the fixed scaling constant d and the spatially vary-
ing effects at the observed locations c based on observations y and their spatial locations x. The best estimates 
of d and the conditional distribution of c can be obtained via the standard results of generalized least squares 
(Cressie, 1993), which are

d̂ =
(

𝐙𝐙T 𝐌𝐌−1

𝜆𝜆
𝐙𝐙
)−1

𝐙𝐙T𝐌𝐌−1

𝜆𝜆
𝐲𝐲� (5)

[

𝐜𝐜|𝐲𝐲, 𝑑𝑑𝑑 𝑑𝑑2, 𝜌𝜌𝜌 𝐐𝐐−1
]

∼ MVN
(

𝐐𝐐−1 𝜙𝜙T 𝐌𝐌−1

𝜆𝜆
(𝐲𝐲 − 𝐙𝐙𝑑𝑑), 𝜌𝜌𝐐𝐐−1 − 𝜌𝜌𝐐𝐐−1 𝜙𝜙

T 𝐌𝐌−1

𝜆𝜆
𝜙𝜙𝐐𝐐

−1
)

� (6)

where Mλ = ϕQ −1ϕ T+λW −1 and λ = σ 2/ρ. Then, the estimate of c is set to the conditional mean

𝐜̂𝐜 = 𝐐𝐐−1𝜙𝜙T𝐌𝐌−1

𝜆𝜆
(𝐲𝐲 − 𝐙𝐙𝑑𝑑)� (7)

and the variance of ĉ is

var (𝐜̂𝐜) = 𝜌𝜌𝐐𝐐−1 − 𝜌𝜌𝐐𝐐−1𝜙𝜙T𝐌𝐌−1

𝜆𝜆
𝜙𝜙𝐐𝐐−1� (8)

Therefore, the predictions (conditional mean and variances) of ŷ′ at new locations are

𝐲̂𝐲′ = 𝐙𝐙′d̂ + 𝜙𝜙′𝐜̂𝐜� (9)

var(�̂′) = �′
(

��−1 − ��−1�T�−1
� ��−1

)

�′T� (10)

where the primes on ŷ′, Z′, and ϕ′ indicate that the prediction can be taken at different locations from the input 
data. A more detailed derivation of d̂ and ĉ can be found in Supporting Information S1.

In summary, our goal is to predict the values y′ at unobserved locations x′ (with corresponding empirical model 
output Z′ as a predictor) and to quantify the prediction uncertainty. Equation 9 gives the prediction of conditional 
mean ŷ′, and the associated prediction uncertainty is the square root of the diagonal terms in Equation 10. In real 
applications, the calculations of variances are relatively computationally expensive. Therefore, the variances at 
each spatial location are usually approximated by the sample variance of independent draws from the conditional 
distribution of ŷ′, given available observations (Monte Carlo method).

3.2.  Multiresolution Capability and Implementation

The auroral data in the magnetic latitude (ϕ) and local time (t) coordinates are mapped to the modeling coordi-
nates, which are stretched spherical surface coordinates, using the following equations:
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𝑥𝑥 =

(

𝜋𝜋

2
−

𝜋𝜋𝜋𝜋

180

)

cos
𝜋𝜋𝜋𝜋

12
� (11)

𝑦𝑦 =

(

𝜋𝜋

2
−

𝜋𝜋𝜋𝜋

180

)

sin
𝜋𝜋𝜋𝜋

12
� (12)

The setup of the basis functions is on the x–y plane. Following Nychka et al. (2015), the basis functions ϕj(x) 
are chosen as compactly supported radial basis functions (RBF) φ, which are bell-shaped curves with a common 
width θ

𝜙𝜙𝑗𝑗(𝑥𝑥) = 𝜑𝜑 (‖𝑥𝑥 − 𝑢𝑢𝑗𝑗‖∕𝜃𝜃)� (13)

where uj (1 ≤ j ≤ m) is the center of RBFs. Typically, uj is equidistant, that is, Δu = uj–uj–1 is a constant that repre-
sents the grid size (also referred to as the model resolution), and all {uj,1 ≤ j ≤ m} of the same θ form a regular 
grid map covering the whole domain, which consists of one level of RBFs. The number of RBFs at this level 
m is related to the grid size Δu approximately by the reciprocal rule mΔu 2 = domain size. Since the latitudinal 
direction is directly mapped but the longitudinal direction is scaled in this coordinate, we simply refer the reso-
lution of 1° (without differentiating between the latitudinal and longitudinal directions) to the spacing of RBFs 
by π/180. Take the auroral modeling for example, in the high-latitude region over 50° MLAT, the domain size is 
(40°×2) 2 = 6,400. In terms of 1° modeling resolution (Δu = 1°, basis functions separated by 1°), approximately 
6,400 basis functions are used (m = 6,400).

For the multiresolution fitting, RBFs of different Δu and θ can be combined into a large basis set (see Figure 3 
for a three-level setup of RBFs; Figure 3a shows a 1D case and Figure 3b shows a 2D case). In this sense, we 
relabel m with ml, Δu with Δul, and θ with θl with l representing the number of levels. These parameters can take 
different values across different levels, which lead to different resolutions. The multilevel reconstruction of the 
spatial variation field is then written as

�(�) =
∑�

�=1
∑��

�=1 c�,�� (‖� − ��‖∕��)� (14)

where cj, l is the coefficient of the j th RBF at l th level. L is the total number of levels, which is a critical parameter 
in describing the multiresolution properties of the basis functions. For typical usage, θl is set as a fixed multiple 
of Δul (greater than one) to allow for an overlapping of RBFs at every point. Both L and ml (equivalently, Δul) can 
be adjusted to obtain basis function maps of different scales. Higher-resolution RBFs have more free parameters 
(cj) to simulate the details of the input data, and they are expected to provide more small-scale structures of aurora 
than the lower resolution RBFs.

In our auroral modeling setup, the modeling domain is a 2D square over the high-latitude region. To have 
ml basis functions for the 2D map in the lth level, we distribute Nl = √ml basis functions on each side. We 
choose to double Nl every time as we go from a coarse to a fine level, so the overall number of basis functions 
(ml) approximately increases by a factor of 4. By recalling that the grid size and the number of basis func-
tions are related by the reciprocal rule, the grid size is approximately halved with increasing L and the fitting 
resolution is doubled. From Nyquist's theorem, we can simply take the smallest resolvable scale of our model 
approximately as the double of the grid size (2Δul). In this study, the number of levels (L) and the number of 
basis functions on each side at the coarsest level (Nc) are selected as the fundamental parameters to control 
the modeling resolution. In this sense, we define low-resolution modeling as L = 1, Nc = 13 (N1 = 13), which 
means the fitting resolution is 6.2° (modeling domain is 80°), and the resolvable scale is 12.3°. Similarly, 
the medium resolution is defined as L = 2, Nc = 15 (N1,2 = (15,30), 30 basis functions on each side at the 
finest level, the fitting resolution is 2.6°, the resolvable scale is 5.3°) and the high resolution is L = 3, Nc = 25 
(N1,2,3=(25, 50, 100), 100 basis functions on each side at the finest level, the fitting resolution is 0.8°, the 
resolvable scale is 1.6°).

Even though the number of RBFs roughly quadruples if we increase L, the overall computations do not grow 
exponentially with the number of levels. Since we formulate the precision matrix Q at each level to be sparse, 
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the overall precision matrix is still sparse (see in Supporting Information S1 for details). Therefore, the matrix 
calculation does not increase cubically with the total number of the matrix elements (e.g., Gaussian elimination) 
but only linearly with the nonzero elements. Thus, the increase of levels of basis functions leads to a moderate 
increase of the whole computation.

4.  Procedures and Results of Auroral Data Assimilation
Before feeding the SSUSI and THEMIS observations and empirical model into Lattice Kriging, two preprocess-
ing steps are implemented. First, even after we collect 20 min of SSUSI data to form the satellite binned map 
(Section 2), its spatial coverage is still limited. Therefore, an interpolated satellite map using the data 1 hr before 
and 1 hr after the modeling time is generated to enlarge the spatial coverage and used as the fourth data source 
(details in Section 4.1.1). Second, we assign larger weights to higher-fidelity data (i.e., SSUSI and THEMIS 
observations) and smaller ones to lower-fidelity data (the interpolated satellite data and empirical model) such 
that the former two data sources dominate the fitting results while the latter two only play roles in the regions 
where observations are missing. The weighting in Lattice Kriging is realized by attributing different sampling 
ratios to different data sources. The low-fidelity data are downsampled to decrease their sampling rates and 
equivalently the weights in the fitting (details in Section 4.1.2). After the preprocessing, we use Lattice Kriging 
to synthesize all four data sources to generate auroral maps at all locations (Section 4.2) and produce the inter-
mediate result. Due to the smoothing effect inherent in the fitting procedure, Lattice Kriging causes spreading 
and introduces nonzero values in regions with no aurora such as the polar cap and tends to smear out the auroral 
boundaries. This solicits a postprocessing weighting method (KNN: K nearest neighbors) for a mitigation (details 
in Section 4.3). Figure 4 provides a flow chart of these procedures.

4.1.  Data Preprocessing

4.1.1.  Temporal Interpolation of Satellite Data

Figure 5 illustrates an example of the satellite data by 20 min binning centered around 11:40 UT (Figure 5d), 
and the satellite map after the linear interpolation with time (Figure 5c). The data used for the interpolation are 

Figure 3.  Demonstration of the multilevel setup of basis functions. (a) 1D setup of basis functions with three levels (b) 2D setup of basis functions with three levels, 
black, blue, and red colors represent three levels from the coarsest to the finest grids.
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collected within a 2 hr window from 10:40–11:40 UT shown as the “1 hr before” data in Figure 5a and from 
11:40–12:40 UT shown as the “1 hr after” data in Figure 5b, respectively. Compared to Figure 5d, the interpo-
lated map (Figure 5c) shows similar results if the data being interpolated are within the 20 min window such as 
the region around the dawn (∼06 MLT). The similarity originates from the proximity in time for the temporal 
interpolation. For the cases that the satellite data are available within the 2 hr but not the 20 min window, the 
binning method would not show anything while the interpolation can fill up the aurora such as in a significant 
portion of the dusk region where a few auroral arcs are seen (∼18 MLT in Figure 5c). Even though the assumption 
that the aurora should change linearly during this period does not necessarily represent the truth, the interpolated 
results (such as their magnitude) are still closer to reality than the empirical model. Note that compared with 

Figure 4.  Flow chart of the auroral data assimilation model. LK: Lattice Kriging.

Figure 5.  Temporal interpolation of satellite observations (a–b) Special Sensor Ultraviolet Spectrographic Imagers energy 
flux combining 1 h period of data before and after 11:40 UT, respectively, into a snapshot, (c) temporal interpolated energy 
flux at 11:40 UT, (d) 20 min binned energy fluxes around 11:40 UT. Unit is mW/m 2.
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the relatively instantaneous observations (e.g., binned satellite and ground-based data), the interpolated data 
are downsampled (Section 4.1.2) to ensure that they do not override the 20 min binned data when they both 
exist in the same regions. A similar interpolation method is used in Wu et al. (2020), which better simulates the 
TTEIL during the storm time than using the empirical auroral drivers. In this study, the similarity and correla-
tion between the auroral activities separated by over 2 hr are thought to be weak, so the linear interpolation is 
conducted within the 2 hr window.

4.1.2.  Down-Sampling and Weight Adjustment

As discussed earlier, due to the different fidelities of the data sources (observation  >  satellite interpola-
tion  >  empirical model), we attribute different weights to them by controlling the data sampling ratios. For 
simplicity, we refer to the satellite 20 min binned data as “satellite data,” and the interpolated results as “satellite 
interpolation” or “satellite interpolated data.” Sampling ratios of 1 meaning no downsampling are assigned to 
the satellite and ground-based data (rsat = rgrd = 1). The ratios for the satellite interpolation and empirical model 
whose original spatial grids are the same as the satellite data are rint = 1/3 and remp = 1/20, respectively. Consid-
ering that the spatial resolution of ground-based data is higher than that of the satellite (Section 2), the absolute 
sampling ratios are satellite: ground-based: satellite interpolation: empirical model = 1:2:1/3:1/20. If they overlap 
in the same region, their weights follow the sequence of ground-based data > satellite data > satellite interpola-
tion > empirical model. The ratios are adjustable depending on the data quality and application purposes.

Figure 6 demonstrates an example of the downsampling procedure at 11:50 UT. Figures 6a–6d are the original 
data and Figures 6e–6h are the data after downsampling. The satellite and ground observations are fully kept in 
this case following their original resolutions, the interpolation data are down sampled to 1/3 of the original satel-
lite grids (Figures 6b and 6f). Due to the lowest fidelity of the empirical model, it has the lowest data sampling 
density (Figure 6h), therefore its information is assimilated mainly in the regions where the other three data 
sources are not available.

Figure 6.  Downsampling and weight adjustment (a–d) auroral energy fluxes from different sources with original resolutions (e–h) scattered plots after the 
downsampling showing different sampling ratios and weightings. Unit is mW/m 2.
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4.2.  Data Assimilation Using Lattice Kriging

Feeding the preprocessed data (Figures 6e–6h) as the inputs to Lattice Kriging (y in the formula of Section 3.1), 
we obtain the assimilation results in Figure 7 for 11:50 UT, which corresponds to the “Intermediate Results” in 
Figure 4 (before the KNN postprocessing method being applied). We adopt three levels (L = 3) and the numbers 
of basis functions from coarse to fine grids are N1,2,3 = 25, 50, and 100, respectively. For the dawn and dusk 
sectors, the assimilation result mainly resembles the SSUSI observations (Figure 6e); THEMIS data (Figure 6g) 
contribute to the midnight sector. For the premidnight sector (21–24 MLT) where no observations are available, 
the assimilated aurora follows the empirical model. Figure  7a shows the prediction of the conditional mean 
(Equation 9 in Section 3.1). The mesoscale structures including the auroral arcs in SSUSI data and the hot spots 
spreading in the midnight sector measured by THEMIS ASIs are largely maintained.

The uncertainty of the assimilated energy fluxes depends on the uncertainties of the data sources. Based on the 
error assessment of the historical data, the uncertainty of SSUSI data can be taken as ∼15% of the measurement, 
the uncertainty of the THEMIS observation can be taken as ∼20% of the data itself (Gabrielse et al., 2021). Since 
the interpolated SSUSI data has lower fidelity, an uncertainty of 30% is assigned to the interpolated result. The 
uncertainty of the empirical model is chosen to be 100% of its value as a proxy since no related information is 
available yet. These uncertainty terms are used as inputs to ϵ in Equation 3 (Section 3.1). The standard deviation/
fitting uncertainty is then calculated following Equation 10 and shown in Figure 7b. The uncertainties are consid-
erably smaller than the predictions of the means and smaller in the regions with observations than those without 
observations, reflecting the data constraints.

Despite the similarity between the assimilated auroral map and the input data (Figures 6 and 7a), the former 
appears blurry and small energy fluxes spread into the polar cap and subauroral regions where the observations 
show no aurora in the input data. Even though the fine structure such as auroral arcs are retained, the peak values 
in the assimilated map are also lower than the real observations. In other words, the Lattice Kriging model 
introduces a smoothing effect, which causes leakage to the regions without aurora and reduced auroral peaks. A 
possible explanation is that Gaussian process models (including Lattice Kriging) use a distance weighted mean 
strategy to attribute contributions from input data at different locations. In addition, the specific covariance 
structure used in the model predicts the variances at two nearby locations with similar magnitudes. Therefore, 
Gaussian process models rarely predict extremely high or low values, which makes the overall spatial predic-
tions smoother than the data. Also, the smooth spatial structures of the basis functions tend to create a smooth 
representation for the spatial process.

Figure 7.  Lattice Kriging fitted map of auroral energy fluxes (a) prediction of mean and (b) prediction of standard deviation. Unit is mW/m 2.
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4.3.  Data Postprocessing

To suppress such smoothing effects, a postprocessing step relying on the KNN algorithm is applied. The same 
algorithm is used in Syrjäsuo and Donovan  (2002, 2004) to automatically classify different types of aurorae 
from ASIs. We use this algorithm to identify the likelihood of having aurora for each location and eliminate the 
low-likelihood points. KNN is a common classification method widely used in machine learning. It relies on 
the  assumption that the points in the same category share similar features and lie closely in the feature space. 
Therefore, a straight-forward way to divide points into different categories is by grouping them in the feature 
space justified by distance. Given a set of labeled training data, we calculate the distance of a new point to all 
training data points and pick up the k nearest points. We identify the category of these k points in the feature 
space, and the new point belongs to the category with the most members.

Based on our data set, we define the auroral activity with energy flux higher than 2 mW/m 2 as significant and set 
it as 1 in the feature space, otherwise it is insignificant (0). The threshold of 2 mW/m 2 is chosen based on trial and 
error. It is suitable to identify substantial auroral activity, avoid contamination from low fidelity data (typically 
on the order of 0.2 mW/m 2), and effectively maintain the fine structure. The preprocessed data (Figures 6e–6h) 
with their significant/insignificant labels (1/0) are used as the training data for KNN. For each location on the 
fitted map, the k-nearest points to the training data are identified. Assuming the number of data labeled as 1 is n1, 
then a ratio of n1/k is calculated, which represents the percentage of the k-nearest points falling into the category 
of significant aurora. This ratio is used as the weighting coefficient for this location. By doing so, a coefficient 
matrix with the same dimension as the intermediate result is formed, and their multiplication leads to a weighting 
process producing the final results of the auroral assimilation (Figure 4).

In Figure 8, we display the post processing results with k = 10 at 11:50 UT. The weighting coefficients from KNN 
are shown in Figure 8a. The intermediate results from Lattice Kriging are shown in Figure 8b (same as Figure 7a), 
and the final assimilation by multiplying Figures 8a and 8b is given in Figure 8c, where we see the smearing of 
energy fluxes into the polar cap is largely suppressed. In the polar cap region where the preprocessed data clearly 
indicate that there are no auroral activities, the k-nearest points all fall into the feature space of 0, thus the spread-
ing values in the polar cap region are effectively removed by multiplying a KNN weighting coefficient of 0. This 
can also help removing the isolated points (the ambient areas show no aurora) that may be due to measurement 
noise. In the auroral region around midnight, THEMIS ASI observations indicate that there is strong auroral 
activity, and KNN labels are mostly 1 so as the weighting coefficients, therefore, the fitting results in the auroral 
region are kept. In the dawn and dusk regions, the strengths of auroral activities vary so the feature space consists 
of both 0 and 1, and the resulting weighting coefficients are between 0 and 1. The multiplication of the weighting 
coefficients and the intermediate results then helps to decrease the aurora if the ambient region does not show 
enough significant auroral activities. This process sharpens the auroral boundary and to some extent corrects 
the smoothing effect caused by Lattice Kriging. The overall auroral structures become more comparable to real 

Figure 8.  Postprocessing with K Nearest Neighbor (KNN) (a) the map of weighting coefficients from KNN, (b) the intermediate Lattice Kriging fitting results, (c) the 
final assimilation outputs by multiplying (a and b). (b) and (c) have unit mW/m 2.
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observations since the training data set in KNN relies on real observations. The usage of a larger k involves more 
points in a larger area to be weighted and introduces a smoother structure than a smaller k.

In Figure 9, we show the comparison of a simple padding of the satellite and ground-based observations with 
the final auroral assimilation at 11:50 UT. The padding results show an obvious discontinuity and sharp cut-off 
at the boundaries among the satellite data, ground-based data, and the regions without observations (Figure 9a), 
which largely disappear in Figure 9b. The data assimilation effectively removes the boundary discontinuity and 
combines different data sources more coherently than the padding. A trade-off for such coherence and continuity 
is the reduced peak magnitude of aurora, which cannot be corrected by the KNN postprocessing step. Never-
theless, the mesoscale aurora is largely retained including the auroral arcs, which significantly improves the 
reproduction of the real-time behavior of aurora compared to the empirical model. We provide a movie showing 
the time evolution of Figure 9 in the SI, which illustrates that the dynamic evolution of aurora with time is also 
captured.

4.4.  Auroral Assimilation With Different Scales

As mentioned in Section 3.2, the generated auroral maps of different scales can be obtained by tuning the number 
of fitting levels and the number of basis functions in each level (L and N). The resolution increases and the resolv-
able scale becomes smaller when we increase L and N. Figure 10 shows the assimilated auroral maps at three 
different scales at 11:50 UT. The parameters to generate these three auroral maps are L = 1, N1 = 13, k = 30 for 
large scale; L = 2, N1,2=(15,30), k = 20 for medium scale; and L = 3, N1,2,3=(25, 50, 100), k = 10 for small scale. 
Figures 10a–10c show the auroral energy fluxes while Figures 10d–10f show the mean energy maps from large 
to small scales and, equivalently, low to high resolutions. From low to high resolutions, the assimilated aurora 
becomes more fine-structured, and the peak values increase. The auroral arcs in the dusk sector are distinct in the 
high-resolution results but absent in the low-resolution ones.

5.  TIEGCM Simulations Driven by Auroral Assimilation Maps
To study how the data-assimilated drivers improve the simulation of I-T models, and how different scales of aurora 
impact the I-T system, we run TIEGCM with different auroral maps. TIEGCM is a global 3D numerical model 
that simulates the coupled thermosphere/ionosphere system from ∼97 to ∼600 km altitude. It self-consistently 
solves the fully coupled nonlinear, hydrodynamic, thermodynamic, and continuity equations of the neutral gas, 
the ion and electron energy equations, the O + continuity equation and ion chemistry, and the neutral wind dynamo 
(Qian et al., 2014; Richmond et al., 1992). In the default setup, the high-latitude drivers such as aurora and electric 
fields (or electric potentials) are specified as empirical models (e.g., Heelis et al., 1982; Roble & Ridley, 1987; 
Weimer, 2005). In our TIEGCM runs, the time-varying SuperDARN electric potential pattern, which is derived 
from a spherical harmonic fitting (SHF) of line-of-sight (LOS) ion velocities (Ruohoniemi & Baker, 1998) is 
used as a driver for electric fields. The electron precipitation pattern created in this study together with the Zhang 

Figure 9.  (a) The padding results combining satellite data and ground-based observations (b) auroral data assimilation (same 
as Figure 8c). Unit is mW/m 2.
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and Paxton (2008) model are used to specify auroral particle precipitation in TIEGCM. The spatial resolution of 
TIEGCM is 1.25°𝐴𝐴 × 1.25°𝐴𝐴 × 1/4 scale height in latitude 𝐴𝐴 × longitude 𝐴𝐴 × altitude (Dang et al., 2018, 2021). Realistic Kp 
and F10.7 are used in all simulations. The time step of the TIEGCM simulation is 10 s. Diagnostic outputs are 
saved every 5 min.

We perform three different model runs, and the only differences among them are the auroral energy flux and 
mean energy inputs. These three drivers are the empirical auroral model and the assimilated aurora at low and 
high resolutions (Figures 11a–11c). In Run 1, the Zhang and Paxton (2008) empirical model is used as the auro-
ral input to TIEGCM; In Runs 2 and 3, low- and high-resolution auroral patterns created in this study are used. 
In all runs, the high-latitude electric field input is the SuperDARN potential pattern. Since the auroral particle 
precipitation affects the ionization rate and therefore the electron density, we show TECs from these three runs 
at 11:50 UT in Figures 11d–11f and compare with the global navigation satellite system (GNSS) observations 
(Figure 11g). GNSS TEC is measured by the trans-ionospheric propagation time difference between two different 
radio frequencies from the GNSS satellite to the dual-frequency GNSS receiver. This propagation delay differ-
ence is directly proportional to the line integral of the electron density (Vierinen et al., 2016).

Compared with the TEC results driven by the empirical model (Figure 11d), the significant changes after we 
apply the auroral assimilation maps to drive the TIEGCM are the TEC enhancement (by a factor of ∼2) in the 
midnight sector where the SSUSI and THEMIS observations weight in (black rectangles in Figures 11e and 11f). 
The changes from low to high resolutions are noticeable in TEC as more mesoscale structures are seen in the 
high resolution. We also compare the storm-quiet time TEC differences in Figures 11h–11j. From an observa-
tional perspective, the differential TEC is obtained by subtracting the TEC 24 hr before the targeted storm-time 
(Figure 11j), which corresponds to 11:50 UT on 19 February 2014. From the modeling perspective, we use the 
Run 1 result, which does not involve data assimilation and only shows the large-scale pattern as a proxy for 

Figure 10.  (a–c) Data assimilation of energy fluxes (mW/m 2) from low to high resolutions. (d–f) The same for the mean energy (keV).
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the quiet-time response. Figures 11h and 11i demonstrate the differential TECs from TIEGCM simulations by 
subtracting (d) from (e and f). The regions and magnitudes of TEC enhancements from data assimilation are 
in agreement with the observations, which means that the data assimilation can be used to better simulate the 
mesoscale ionospheric responses to auroral precipitation. The model simulations with data assimilation capture 
the locations of strong TEC responses more precisely than the one driven by the empirical model. The differential 
TECs also show comparable enhancements, which indicates the robustness of our auroral assimilation method 
and the resulting improvement.

It is noted that the original data resolutions of both DMSP SSUSI and THEMIS ASI data are much higher than 
the TIEGCM. Data assimilation can match the observation to a large extent but would be still limited by the I-T 
model, which incorporates it as an input. To further simulate small-scale processes and make better use of the 
data assimilation, the resolutions of the I-T models need to be improved. Moreover, the corresponding physics 
down to small scales also needs to be considered. Nevertheless, this work highlights the substantial changes 
from using the empirical model to data-assimilated aurora as drivers to simulate the responses of the I-T system, 
which is essential to better understand and predict the impacts of realistic and localized magnetospheric energy 
deposition.

Figure 11.  (a–c) Auroral energy fluxes (mW/m 2) from Zhang and Paxton (2008) empirical model, and assimilation maps at low and high resolutions at 11:50 UT. All 
projected into magnetic latitude and magnetic local time coordinates. (d–f) Thermosphere Ionosphere Electrodynamics General Circulation Model simulations of total 
electron contents (TECs) (TECu) using (a–c) as the drivers for aurora. (g) Simultaneous global navigation satellite system (GNSS) TEC observations. (h–i) Differential 
TECs (TECu) by subtracting (d) from (e–f), respectively. (j) Differential TEC (TECu) from GNSS observations (details given in the text). Black rectangles highlight the 
regions with enhanced TECs due to the data assimilation and comparison with observations.



Space Weather

WU ET AL.

10.1029/2022SW003146

16 of 19

6.  Conclusions and Discussion
We introduce a multiresolution Gaussian process model (Lattice Kriging) to self-consistently synthesize various 
data sources (satellite data, ground-based data, and empirical model) for the auroral assimilation for the first time. 
This model assumes that the auroral activity follows a Gaussian process. It uses the available data to estimate the 
fitting coefficients of the basis functions within the Kriging theory framework, and then uses these coefficients to 
project the estimation to the whole high-latitude region. The multilevel (or multiresolution) capability is fulfilled 
by distributing different levels of basis functions with different resolutions, such that different scales of aurora can 
be assimilated, which facilitates the study of multiscale processes like aurora.

To customize the Lattice Kriging model to auroral assimilation, we introduce two preprocessing steps and one 
postprocessing step. First, we interpolate the satellite data temporally to expand the spatial coverage at a particu-
lar time. The interpolated satellite data and empirical model (low-fidelity data) are then downsampled to decrease 
their weightings and ensure that the assimilation results are dominated by the satellite and ground-based obser-
vations (high-fidelity data) where the low- and high-fidelity data overlap. These four data sources (satellite and 
ground-based observations, satellite interpolation, and empirical model) are fed into Lattice Kriging to obtain 
the intermediate results. Due to an inherent smoothing effect of the fitting procedure, which smears out auroral 
boundaries and introduces nonzero values in the regions with no aurora (such as polar cap), we generate a post-
processing weighting map using KNN trained by observations to mitigate these issues. The KNN weighting coef-
ficient indicates how likely one location has significant auroral activity. These coefficients are multiplied to the 
intermediate fitting results to eliminate the isolated points likely caused by measurement noises and unrealistic 
spreading values produced in the intermediate Lattice Kriging modeling. The reduced peak values of aurora due 
to the smoothing effect, however, are difficult to be compensated. Compared with the simple padding of satellite 
and ground-based observations, the auroral assimilation model can effectively remove the discontinuity at the 
boundaries of different datasets.

We use the 20 February 2014 case (a moderate geomagnetic condition) as an example to demonstrate the assimi-
lation procedures and generate the energy flux and mean energy maps with three different scales. The large-scale 
maps corresponding to the low-resolution fitting miss mesoscale structures such as auroral arcs, while the 
small-scale maps corresponding to the high-resolution fitting show mesoscale structures that more closely resem-
ble observations. We then apply the assimilation maps of low and high resolutions to drive TIEGCM to study the 
impacts of different scales on TEC. In general, the TEC in the auroral region (especially midnight sector) shows 
substantial enhancement that better matches observations after data assimilation due to the increased level of 
auroral particle precipitation and ionization. High-resolution auroral precipitation maps also produce mesoscale 
structures of TEC. Overall, the TIEGCM simulations highlight the importance of implementing realistic aurora 
as one of the magnetospheric drivers to model the mesoscale electrodynamics at high latitudes.

Despite the noticeable advantages in fusing real data to simulate the mesoscale auroral structures, the current 
auroral assimilation model has the following limitations, which may need further improvements. In the data 
preprocessing step, we combine SSUSI data over 20 min to form a snapshot, then we interpolate over a 2 hr 
period to expand the data coverage. One limitation from these steps is that the information of the development of 
aurora within that time interval is lost. This may lead to the distortion of the auroral oval if aurora changes very 
rapidly during the 20 min interval. For example, if a substorm onset occurred between the time when the dawn- 
and dusk-side oval were observed, the dawn-side oval would appear expanded, while the dusk side would appear 
contracted. While each side of the oval might appear as narrow features, they would be coming from completely 
different auroral ovals. Combining observations from such a situation might lead to a double edge structure, 
which is purely due to the binning of SSUSI data. It is difficult to mitigate this issue by the technique itself and 
more data are needed to fundamentally solve it.

In the spatial modeling of aurora, when specifying the covariance structure, there are also simplified assump-
tions that may not represent real observations. First, the covariance matrix used here is derived from a Gaussian 
Markov random field (which assumes two locations are correlated only if they are adjacent, Nychka et al., 2015). 
In the real world, however, even distant auroral regions can be correlated if the aurora in these regions is gener-
ated from a closely connected region in the magnetotail (Nishimura, Lessard et al., 2020). An additional term 
indicating the medium-to-large range correlation needs to be included in the covariance matrix to describe the 
realistic auroral characteristics (Cousins et al., 2013; Matsuo, 2020). Second, the auroral activity may not follow 
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the Gaussian distribution as assumed in this study. Since the different high-latitude regions connect to differ-
ent regions in the magnetosphere, the auroral distributions may not be the same and they may deviate from 
Gaussian distribution due to the pitch angle diffusion and other wave-particle interactions (Nishimura, Lyons, 
et al., 2020). Therefore, the mathematical formulation may need to be modified based on a nonGaussian process 
model. Still, Gaussian statistics has good properties for fast computation, such as the sparse matrix calculation 
as aforementioned, which satisfies as a starting point. The improvements of covariance matrix and distribution 
type solicit statistical studies of aurora, which is beyond the scope of this study. Third, the current methodology 
can efficiently combine various data sources and conduct spatial fitting in a coherent way thus the boundary issue 
disappears, however, it is not an auroral prediction model and cannot be used to predict auroral activity for next 
time steps. The prediction of aurora may be achieved by the machine learning technique training a large amount 
of historical data. For our case, real-time observational data are still the key to drive models to produce realistic 
I-T responses. It is worth pointing out that there may be discrepancies between satellite and ground observations. 
For this event, the magnitudes from these two types of observations match to a large extent despite discrepancies 
in some small-scale structures. However, in case these two data sources deviate, it is necessary to examine the 
data quality and perform downsampling to the one with lower fidelity.

It is worth mentioning that the Lattice Kriging modeling is not limited to scalar field assimilation. Wu and 
Lu (2022) have extended it to assimilate vector fields such as electric fields under the curl-free condition and 
obtained the results with much smaller errors than the global SHF using the SuperDARN data. The fundamental 
principles are the same except that for the assimilation of electric fields, we need to project the basis functions of 
electrical potential (scalar) to electric fields (vector) and then project them onto the LOS direction, along which 
the observations are actually made (SuperDARN measures LOS ion drifts). Such extended capability makes the 
Lattice Kriging modeling appealing not only for the scalar assimilation such as GNSS TEC measurements, but 
also for wind measurements such as those from the Ionospheric Connection Explorer (ICON) in the future.

Data Availability Statement
The code of Lattice Kriging for aurora is published at https://github.com/hzfywhn/auroral_model. The data used 
to produce the figures are available at https://data.mendeley.com/datasets/ksnnytmv62.
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