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ABSTRACT

Understanding how the movement of individuals affects disease dynamics is critical to accurately predicting and responding
to the spread of disease in an increasingly interconnected world. In particular, it is not yet known how movement between
patches affects local disease dynamics (e.g., whether pathogen prevalence remains steady or oscillates through time). Con-
sidering a set of small, archetypal metapopulations, we find three surprisingly simple patterns emerge in local disease dynam-
ics following the introduction of movement between patches: 1) movement between identical patches with cyclical pathogen
prevalence dampens oscillations in the destination while increasing synchrony between patches; 2) when patches differ from
one another in the absence of movement, adding movement allows dynamics to propagate between patches, alternatively
stabilizing or destabilizing dynamics in the destination based on the dynamics at the origin; and 3) it is easier for movement
to induce cyclical dynamics than to induce a steady-state. Considering these archetypal networks (and the patterns they ex-
emplify) as building blocks of larger, more realistically complex metapopulations provides an avenue for novel insights into the
role of host movement on disease dynamics. Moreover, this work demonstrates a framework for future predictive modelling of
disease spread in real populations.

Introduction1

Many populations of humans, livestock, and wildlife are comprised of densely occupied subpopulations, or “patches”, con-2

nected by the movement of individuals, i.e., a metapopulation. Most of the world’s population lives in cities1, livestock are3

clustered on farms2, and wildlife tend to cluster in space, especially when usable habitat is fragmented3,4. For humans, move-4

ment between patches was once at such a low level that emerging diseases tended to be geographically constrained to the5

patch where they originated5. For instance, the strain of Yersinia pestis that resulted in The Black Death, was constrained6

to Europe for nearly four centuries before being introduced in China6. Likewise, Smallpox remained relatively isolated in7

subpopulations around Europe until the Crusades of the 11th and 13th centuries made it endemic across the continent, and it8

took until the 16th century for the pathogen to tag along colonizing expeditions the Americas7. The world today, in contrast,9

is increasingly connected, allowing diseases like Ebola8, Influenza9,10, and COVID-1911,12 to spread more widely, and more10

quickly, than ever before.11

Human movement has consequences beyond the spread of human-specific pathogens as well, being key to both the spread12

of wildlife-associated pathogens between otherwise isolated habitats13,14 and the spread of diseases between livestock pop-13

ulations via direct transport of infected animals15 or through contaminated vehicles or equipment16. Even in the absence of14

human-mediated spread, diseases in livestock and wildlife populations can have dramatic consequences on human popula-15

tions through spillover, economic loss, and reduction of ecosystem services14. Thus, a better understanding of how population16



movement (human or otherwise) affects disease spread is critical to preventing and responding to future epidemics.17

Host movement is critical both to the spread of disease across landscapes and to the persistence of pathogens in the popu-18

lations they infect17–22. Initially introduced through the concept of island biogeography23, a network approach to modelling19

metapopulations lends itself readily to the study of empirical systems, such as human movement between cities24, livestock20

transport between farms15,25, or wildlife living in fragmented natural habitats26. Representing a metapopulation of cities, for21

example, involves mapping each city to a node in the network and connecting those nodes with edges when there is movement22

of individuals between them. A network-based metapopulation framework can facilitate characterization of the relationships23

between connected patch dynamics as well as characterize the structure of the system as a whole, providing unique insights24

across scales27,28.25

Importantly, differences in local parameter values (such as carrying capacity or transmission rate) can lead to patches26

within a metapopulation exhibiting disparate dynamical regimes, e.g., one patch might exhibit steady pathogen prevalence27

through time, while another might oscillate between high and low prevalence. These differences between patches can be28

particularly important when cycling or chaotic dynamics result in temporarily low local population or pathogen densities.29

Timely influx of individuals from asynchronous patches at such moments has the potential to rescue patches from local30

extinction, or provide the boost needed to ensure pathogen persistence26,29–33. Moreover, understanding the dynamics of a31

particular patch (and its relationship to the rest of the metapopulation) is essential to developing appropriate interventions to32

limit further disease spread. For instance, if pathogen prevalence is cycling, timing an intervention during a lull in prevalence33

can improve both efficacy and cost efficiency34.34

The study of metapopulations has a rich and expansive history in Ecology. In the field of consumer-resource dynamics,35

for instance, metapopulation models have revealed the importance of spatial heterogeneity for the stability and persistence of36

complex ecological communities, e.g., by providing prey refugia or generating an implicit density-dependence in population37

growth rates35,36. Likewise, movement between heterogeneous patches can allow for the exchange of individuals between38

asynchronously varying populations, stabilizing both consumer-resource35,36 and disease dynamics37,38. Such mechanisms39

have been considered as potential answers to the naturally destabilizing forces of stochasticity and time-lags that are intrinsic40

to empirical systems, though comprehensive analytics of such systems has been lacking39.41

In disease ecology and epidemiology, metapopulations have long been used to understand the spread of disease in com-42

plex population structures40–42. Most commonly, models have focused on connecting patches through pathogen transmission,43

rather than by the explicit movement of hosts between patches2,43, 44, but see27,28, 45, 46. While more mathematically tractable,44

this abstraction omits the effects of population shifts (i.e., changes in local demographics and population sizes resulting45

from the movement of individuals between patches) on the disease dynamics, including, importantly, the movement of im-46

mune individuals. Furthermore, much of the focus thus far has been on persistence, and the positive effects of movement47

thereupon35–38,47. In contrast, categorizing the qualitative local dynamical regimes in a two-patch metapopulation of Ricker-48

modelled populations, excellent work by Dey et al.48 notes that host movement can be either stabilizing or destabilizing based49
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on the dynamics of the origin patch. In this work, we build upon prior results, focusing on the categorical disease dynamics50

being experienced by a given patch in the presence or absence of host movement in both small and large metapopulations.51

Put simply, if a disease is exhibiting oscillatory dynamics in patch A and steady-state dynamics in patch B, does movement52

of individuals from A to B alter dynamics in B? Is the effect qualitatively different if the direction of the movement were53

reversed?54

Using a simple disease model that can intrinsically (i.e., without environmental forcing) exhibit dynamics ranging from55

pathogen extinction (i.e., a disease-free equilibrium), to constant prevalence through time, to cycling or chaotic fluctuations56

in prevalence, we characterize the effects of host movement on disease dynamics in two parts. First, we consider the effect57

of simulating a continuous, proportional flow of inter-patch host movement (sensu45), along with disease dynamics, on artifi-58

cially simplistic sub-networks constructed to exemplify key relationships between patches. These small, archetypal networks59

moreover serve as building blocks of larger, more complex metapopulations. We parameterize the patches in these networks60

to display either A) identical or B) disparate dynamics in the absence of host movement, and specifically look at how those61

dynamics might change when host movement is occurring. Finally, we consider the effect of host movement on larger, more62

complex metapopulation structures, in particular asking whether and how any patterns observed at small scales might affect63

dynamics when embedded in larger movement networks. The robustness of each result is examined by comparing multi-64

ple parameterizations of two underlying models of within-patch disease dynamics: a Susceptible-Exposed-Infectious (SEI)65

model49, and a compartmental model of multi-strain disease50. As results are qualitatively similar between model formula-66

tions, we present just one parameterization of the SEI model here and provide additional results in the Supporting Information.67

Results and Discussion68

Archetypal sub-networks69

First, we consider the case of a chain of interconnected patches which have been parameterized to display identical dynamics70

in the absence of host movement (i.e., individuals move from patch A to B to C to D, and all patches share the same disease71

parameters and initial conditions). We found that oscillations are dampened in subsequent patches relative to those in patch72

A, reducing peak pathogen prevalence (i.e., the proportion of the patch population currently infected with the pathogen;73

Fig. 1). This echoes results in ecological movement networks, where local population dynamics were dampened following the74

introduction of host movement47,51, as well as work in food-webs looking at weakly coupled predator and prey oscillators52.75

As the chain of patches is lengthened, however, the change in oscillation amplitude between subsequent patches did not76

necessarily continue to shrink with the addition of more patches. Concurrently, we saw an increase in the correlation between77

neighboring patches’ prevalences, the extent of which depends on the movement rate53 (Supporting Information Fig. S1).78

When considered in the context of larger network structures, this dampening of oscillations suggests that prevalence79

in “source” patches (i.e., patches with only emigration) will tend to have greater variability as well as greater asynchrony80

with neighboring patches. Taken together, these pose an interesting tradeoff: at the patch level, the reduction in oscillation81
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Figure 1. Connecting multiple patches with the same parameters and initial conditions results in reduced peak pathogen
prevalence and dampened oscillations in patches further down the chain. Here, patches are connected such that
A→ B→C→ D. Each panel indicates the prevalence (i.e., the proportion of the patch population currently infected with the
pathogen) over time in that particular patch. Because all patches have the same parameters and initial conditions (see
Methods), all patches would have the same dynamics (i.e., cycles, as seen in49) in the absence of movement between patches.
Thus, all differences between patch time series are due to immigration from and emigration to other patches in the chain.
Note also that completing the circle (such that A→ B→C→ D→ A) would again make all patches identical, removing any
distinction between origin and destination patches. Transient dynamics are omitted from the time series for clarity.

amplitude is generally viewed as stabilizing49, thus increasing the likelihood of pathogen endemicism. At the same time,82

the increase in synchrony between patches can be destabilizing at the metapopulation level, increasing the risk of pathogen83

extinction in low-prevalence patches when neighboring patch prevalence is also low54–56.84

Next, we consider a case in which patches are not equivalent (i.e., parameters differ between patches such that they ex-85

hibit distinct dynamical regimes in the absence of movement). When patches with disparate parameters (and thus dynamical86

regimes) are linked, the dynamics of destination patches can be overridden by the dynamics of origin patches (Fig. 2). While87

the introduction of oscillations to a steady-state patch might be expected, surprisingly, we found the opposite to also be true88

(i.e., steady-state dynamics overruling oscillations), though this requires a higher rate of movement (Supporting Informa-89

tion Fig. S4). Indeed, the cessation of oscillatory behavior, also termed “amplitude death,” has been observed even in the case90

of linking two entities experiencing cycling dynamics to one another57–60, though most of these studies consider the effect on91

the system as a whole (the entire metapopulation, in our case), rather than the effects on individual entities/patches.92

Because we saw both oscillatory and steady-state dynamics propagating through the metapopulation, it is natural to ask93

what destination dynamics look like when there are multiple, varied origin patches for a single destination patch. In such cases,94

we observed a hierarchy of dynamics in regard to their propagation through the network: when there are origin patches with95

both oscillatory and steady-state dynamics, the destination patch inherited the oscillatory dynamics, albeit dampened from96

what they would have been without movement from a steady-state patch (Fig. 3). This asymmetrical inheritance was robust to97

imbalance in the relative contributions of the origins (Supporting Information Fig. S5).98

The inheritance of dynamical regimes combined with a hierarchy that favors oscillatory dynamics suggests that these more99

volatile dynamics should be more common, especially in patches further “down the chain.” That is, except in cases where all100
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Figure 2. Destination patches tend to inherit origin patch dynamics when linking patches with different model
parameterizations. Panels correspond to network structure, with line color indicating the prevalence (i.e., the proportion of
the patch population currently infected with the pathogen) through time in particular patches. While in isolation (left
column), patch A has oscillatory dynamics and patch B has steady-state dynamics (see Methods), when the two patches are
linked by movement, the destination patch inherits the dynamics of the origin patch (center and right panels). This is true
regardless of the direction of the movement (but does depend on the rate of movement; see Supporting Information Fig. S4).
Transient dynamics are omitted from the time series for clarity.
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Figure 3. When multiple origin patches differ in their dynamics, the destination patch inherits oscillations over
steady-states. As in Fig. 1, panels correspond to individual patches, with lines indicating the prevalence (i.e., the proportion
of the patch population currently infected with the pathogen) through time. Here, we have patches A and B feeding into patch
C at the same rate; A→C← B. A andC are parametrized to produce steady-state dynamics in the absence of movement (see
Methods). B shows oscillatory dynamics, with all other parameters the same. Note that, even though the parameters ofC
would lead to a steady-state in the absence of movement, we see oscillatory dynamics being inherited from B. Transient
dynamics are omitted from the time series for clarity.
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source patches are disposed toward steady-states, in which case the stabilizing effect has the potential to overrule downstream101

local parameterizations, leading to an overall stable system. These results are consistent with, and provide a mechanism for,102

the longstanding observation that non-steady-state dynamics predominate in empirical disease systems61,62, and in population103

dynamics more generally63.104

Larger network structure105

Empirical networks are much larger and more connected than these simple examples—are there consequences of these local106

patterns on the dynamics of larger, more complex metapopulations? Rather than restricting our analysis to a small sample of107

empirical movement networks (few of which contain directionality or rates of movement), we evaluated the effect of various108

global network structures through the use of five well-studied network ensembles. Depending on the system being explored,109

a given empirical network might have elements in common with one or more classical network structure ensembles, for110

instance, many social networks are considered to be “small-world” in structure like Watts-Strogatz random networks64–66,111

while ecological networks are often noted for their formation of “modules” or clusters of more densely interacting species112

as in stochastic block random networks67–71. Likewise, the expected frequency of each of the aforementioned archetypal113

networks will vary between network ensembles, as will the ways in which these subgraphs are embedded into the wider114

network structure. This makes it a nontrivial question as to how, and indeed whether, the patterns observed for small networks115

scale up to more realistic network sizes.116

While random, modular, and small-world networks all had similar distributions of dynamics across patches, with most117

metapopulations consisting of entirely oscillatory or entirely steady-state dynamics, tree and scale-free networks instead118

tended to show a diversity of dynamics across the metapopulation (Fig. 4). Network structure also varied across network119

types in terms of the prevalence of three-node subgraphs similar to the archetypal networks considered above. In particular,120

we note the frequency of in-star triads and three-node chains present in each generated network (Fig. 5). While these metrics121

consider network structure independent from the dynamics of disease within the composite nodes, such counts can be consid-122

ered as a proxy for opportunities to observe the patterns noted in Figs. 1 to 3. Tree and scale-free networks tended to have123

more in-star triads (Fig. 5, again correlating with the differences in disease dynamics observed in Fig. 4 (though variance in124

indegree (immigration) appears to be an even better predictor of the distribution of dynamics (Supporting Information Fig.125

S6)).126

The findings for these larger networks are in line with our predictions from the archetypal subgraphs considered earlier:127

as predicted, we see that patches with no immigration tend to have higher pathogen variance than patches that have at least128

one source of incoming host movement (Mann-Whitney p < 0.001), and most metapopulations show a preponderance of129

oscillatory behavior (Fig. 4). These results also parallel findings of increased epidemic size in scale-free network structures130

due to the high-degree nodes serving as “super-spreaders” when the overall rate of spread is sufficiently slow72–75. Along131

these lines, there has been some previous research indicating that node degree is directly related to pathogen prevalence in132

that focal patch76, but see77. To our knowledge, however, no previous study has considered the distribution of qualitative local133
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Figure 4. The proportion of patches exhibiting each dynamical regime in each of 100 random networks per network
structure ensemble. Each panel shows stacked bar charts, with networks lined up along the horizontal axis, sorted according
to the proportion of patches exhibiting oscillatory dynamics. Each bar is colored according to the equilibrium dynamical
regime of each of the 25 patches per network. “Extinct” indicates a disease-free equilibrium for that patch, “Stable” indicates
a constant prevalence through time, and “Cycles or Chaos” indicates that the prevalence fluctuates through time.
“Unconverged” indicates patch dynamics that could not be classified within the timescale of the simulation. For example,
looking at the tree networks, every patch in the left-most network exhibited oscillatory dynamics, while the right most
network had 18 (≈ 75%) patches exhibiting “Stable” dynamics. Networks were generated according to one of five
algorithms (see Methods). Similar results are obtained with alternative parameter values (Supporting Information Fig. S9).
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Figure 5. Triad counts for two of the possible configurations of three-node directed subgraphs in each random
metapopulation network that correspond to the aforementioned archetypal networks. Points are grouped according to
network structure ensemble (see Methods and top row of Fig. 4). As in Fig. 4, we see that for the “in-star” triad (A→C← B),
random, modular, and small-world networks tend to have similar values, while tree and scale-free networks differ. In contrast,
we see no consistency between differences in the number of chain triads (A→ B→C) and the distribution of patch dynamics.
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dynamical regimes across a metapopulation of more than two patches48. A comprehensive investigation of the role of more134

complex network structures in disease dynamics remains a topic for further investigation.135

Future directions136

In probing the relationship between origin and destination dynamics in simple metapopulations, we demonstrated several137

patterns that expand our understanding of disease dynamics. By directly incorporating a movement network into our model138

framework, we outline an approach that lends itself to arbitrarily large and complex systems. This is noteworthy, as more and139

more natural systems are being thought of in terms of networks of interacting components (e.g., separate species in ecological140

communities78 or conspecific host individuals exchanging parasites79). By adjusting the scale of our metapopulation, we can141

ask and answer different questions about the forces influencing disease dynamics. For instance, a metapopulation in which142

nodes represent countries and edges international travel could shed light on the role of immigration policy on disease dynamics143

at the national scale9,17, 28, 80. Alternatively, a metapopulation in which the nodes are individuals and edges interpersonal144

interactions could be used to investigate the interdependence of within-host disease dynamics in relation to sociality81,82.145

Critically, our results presented here are numerical, rather than analytical. While a full analysis of the mechanisms behind146

the patterns observed here is still outstanding, a number of mechanisms have been identified for (de)stabilizing population dy-147

namics in prior literature, including spatial and temporal heterogeneity, spatial aggregation, functional response type, etc.35,36.148

Interestingly, in the results presented here, the same superficial change (host movement between patches) can be both stabi-149

lizing and destabilizing based solely on the dynamics found in the origin of the movement48. Due to the complexity of even150

moderately sized metapopulations, it is difficult to generalize results from two- or three-patch metapopulations to systems of151

the size commonly seen in nature. Nevertheless, progress in understanding the precise, mathematical mechanisms behind the152

changes in dynamics noted in the archetypal cases noted here is essential to make progress on larger, more impactful systems153

such as the spread of disease across nations, patchy habitats, or livestock production systems.154

Finally, while we consider the distribution of dynamical regimes within the network (Fig. 4), we do not explicitly consider155

the spatial arrangement of these dynamics in relation to one another. Are the oscillatory patches clustered within the network?156

Do adjacent patches share dynamics more often than would be expected? A full analysis of how dynamical regimes are157

positioned across network structure, and in relation to the dynamics of nearby patches is a clear next step from these analyses.158

Limitations159

Any theoretical study involves simplification, and several of our assumptions can be critiqued as unrealistic. One example160

is the assumption of continuous movement. While continuous movement might be appropriate for very large patches with161

frequent, relatively small movements between them, when any of these three components is not present, we would expect162

deviation from these predictions. Future work could explore the importance of discrete movement regimes on these patterns.163

We also use a deterministic model of disease spread. The lack of stochasticity (demographic and environmental) is particu-164

larly noteworthy in the context of complex cyclical and chaotic dynamics, where population or pathogen densities occasionally165
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recover from near infinitesimal levels. Such troughs in density are prone to stochastic extinction in real ecosystems49. Some166

previous work on stochastic epidemics on metapopulations has suggested strong correlations in prevalence between connected167

patches83, in line with our findings for connected, identical patches. While the consideration of a stochastic model is beyond168

the scope of this work, we highlight the need for further exploration of its impact on the patterns described here, and specifi-169

cally point to the stochastic metapopulation model proposed by83 as an avenue for consideration.170

Another key assumption is that of unidirectional movement, despite many empirical systems having bidirectional move-171

ment (i.e., concurrent movement from A→ B and movement from B→ A). This decision was primarily driven by the underly-172

ing theoretical question: how does movement of individuals from one patch to another alter the dynamics in the destination?173

With bidirectional movement, even identifying which patch is the origin and which is the destination becomes nontrivial. Yet174

there are also empirical systems in which directional movement is the rule, not the exception, such as in the case of livestock175

production84, riverine metacommunities85, or stage-structured populations35. Several previous studies have considered bidi-176

rectional movement in metapopulation contexts48,57–60, finding it to be generally stabilizing when at sufficient levels, a finding177

we were able to replicate in our system as well (Supporting Information Fig. S2).178

Finally, even our “larger” networks are much smaller than the average empirical metapopulation. Further research is179

needed to explore these patterns in the context of larger and more empirically structured networks.180

Conclusions181

We found that the dynamics of pathogen prevalence among patches connected through movement are not independent, and182

that even very small rates of movement (Supporting Information Fig. S4) can have profound effects on local disease dynam-183

ics: from reducing pathogen prevalence to changing the dynamical regime of destination patches entirely. When patches that184

would exhibit different dynamical regimes are linked, destination patches tend to adopt the dynamics of their origins. Remark-185

ably, given sufficient host movement, this effect is symmetric: oscillatory prevalence can be stabilized by movement from186

a steady-state patch and the steady-state patch can be driven into cyclical or chaotic behavior if that movement is reversed.187

Unsurprisingly, the latter is easier to obtain, being both able to persist at lower rates of host movement and dominating over188

movement from other steady-state populations when there are multiple origin patches at play. Relating the patterns observed189

in these archetypal patch relationships to differences that arise when considering the structure of larger networks is nontrivial,190

yet we observed significant differences in the distribution of local pathogen dynamics across network types that correlate with191

metapopulation structure.192

Critically, though we focus only on one underlying disease model49 in the main text, our results are fully replicated under193

a second, independent disease model50 in the Supporting Information Section S2. These consistent, replicated findings across194

parameterizations and even model frameworks suggest these patterns are inherent to pathogen spread on metapopulations,195

rather than merely an artifact of any particular methodological choice. While the structure of metapopulation networks can be196

staggeringly complex, the results presented here suggest this complexity may be undergirded with relatively simple patterns197

of how local disease dynamics become intertwined with one another through host movement.198
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Methods199

Model framework200

We replicate all simulations using two underlying models of disease spread: a Susceptible-Exposed-Infectious model49, and a201

compartmental model of multi-strain disease50. As results are qualitatively similar between model formulations, we present the202

former here and largely relegate the latter to the Supporting Information (Section S2). Importantly, we view this consistency203

between models as suggestive of robustness of our results to model formulation. We chose the two models detailed here204

and in the Supporting Information for their ability to intrinsically exhibit a wide range of dynamical regimes, including205

pathogen extinction, constant prevalence through time (i.e., a steady-state equilibrium), and fluctuating prevalence through206

time (i.e., cyclic49 or chaotic50 attractors).207

The compartmental model described by Anderson et al.49 delineates a population into classes based on their disease208

status, each class’s dynamics being governed by an ordinary differential equation. Individuals can be either “Susceptible” to209

infection (S), infected but not yet infectious (i.e., “Exposed”; E), or “Infectious” (I). Infection is assumed to be lifelong and210

new susceptible individuals are born into the system at a constant per capita rate:211

dS
dt

= rS
(
1− N

K

)
−βSI

dE
dt

= βSI− (σ +µ + r
N
K
)E

dI
dt

= σE− (ν +µ + r
N
K
)I .

(1)

Note that we have updated the equation lettering to reflect the modern SIR framework: replacing the parameter γ with212

the equivalent r/K, and parameters b and α with µ and ν , respectively. Thus, N = S+E + I is the total host density, r is213

the per capita population growth rate (i.e., the difference between the per capita population birth and death rates), K is the214

host carrying capacity (measured as a density), β is the transmission coefficient, σ is the inverse of the average latent period,215

µ is the per capita death rate, and ν is the rate of disease-induced mortality. Note that this formulation assumes that only216

susceptible hosts reproduce.217

Following45, we modify the homogenous-population disease model using a movement matrix ∆∆∆ = XXX −YYY , where XXX a218

matrix representing immigration, with Xi j indicating the rate of movement from patch i (row) to patch j (column) per unit219

time and YYY is a diagonal matrix representing emigration, where each entry Yii = ∑n
j=1Xi j where n is the number of patches.220
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The whole system can thus be depicted by a set of three equations per patch i:221

dSi
dt

= riSi

(
1− Ni

Ki

)
−βiSiIi+∑

j
∆ jiS j

dEi

dt
= βiSiIi− (σi+µi+ ri

Ni

Ki
)Ei+∑

j
∆ jiE j

dIi
dt

= σiEi− (νi+µi+ ri
Ni

Ki
)Ii+∑

j
∆ jiI j

(2)

Each parameter is now indexed according to its patch i. In principle, these parameters could vary between patches (e.g., one222

patch might grow faster than another: ri > r j), yet, for simplicity of presentation, we keep most parameters constant across the223

metapopulation, varying only those necessary to alter the dynamical regime between patches. For this, we focus on the patch224

carrying capacity Ki, which is directly associated with the dynamical regime for this system of equations49 and is biologically225

realistic to vary between metapopulation patches. The rate of host movement, i.e., the elements of ∆∆∆, might likewise differ for226

each pair of patches (and indeed for each direction therein) in empirical systems, yet we assume a constant value δ for each227

rate of movement, i.e., for each non-zero off-diagonal element of ∆∆∆. Sensitivity to this value and the effects of emigration on228

patch dynamics are explored in the Supporting Information (Figs. S3 to S5). We follow45 in assuming there are no births,229

deaths, or infections during movement between patches.230

Finally, the sensitivity of results to our particular choice of parameters was assessed through replication of all results with231

at least two parameterizations (Supporting Information Figs. S8 and S9 and Section S2).232

Simulation Procedure233

As noted above, the dynamical regime exhibited by a pathogen following Eq. (1) is directly related to the host population234

carrying capacity K when all other parameters are held constant49, so we restrict parameter differences between patches to235

differences in carrying capacity and focus on varying the matrix ∆∆∆ (i.e., the network of host movement) according to the236

number and pattern of connections for each patch. Expected dynamics for a homogenous population with no movement are237

detailed in49.238

A chain of patches, i.e., A→ B→C→ D, can be depicted with the movement network239

∆∆∆ =

A B C D


A −δ δ 0 0

B 0 −δ δ 0

C 0 0 −δ δ

D 0 0 0 0

. (3)

12/20



We set δ = 0.1 and ask how the dynamics of patches further down the chain (i.e., B, C, D) differ from those of the origin240

patch (i.e., A). Importantly, because we are not using a looping movement chain (in order to maintain an explicit origin241

and destination for each host movement), there is the possibility of edge effects (i.e., because patch A does not have any242

immigration and patch D does not have any emigration). The carrying capacities K are set to 15, corresponding to cyclical243

dynamics in the absence of host movement49, while other parameters are set to be approximately equal to the empirical244

estimates in49: r = 0.5, β = 80, σ = 13, µ = 0.5, and ν = 73, and are the same for all patches.245

For patches which differ in their parameters, we consider a system of two patches, identical in all respects other than the246

their carrying capacity K, which is set to either induce a steady-state (i.e., a constant prevalence through time; K = 5 in patch247

B) or fluctuating prevalence through time (i.e., cyclical or chaotic dynamics; K = 15 in patch A; all other parameters as noted248

above). We then display three potential patterns of connection: no movement, unidirectional movement from A to B (A→ B),249

and unidirectional movement from B to A (B→ A). Specifically, we set the movement networks to be250

∆∆∆ =

A B A 0 0

B 0 0

, ∆∆∆ =

A B A −δ δ

B 0 0

, and ∆∆∆ =

A B A 0 0

B δ −δ

, (4)

respectively.251

To address the case of multiple origin patches feeding into a single destination patch, we consider a system of three patches:252

A→C← B, or253

∆∆∆ =

A B C


A −δ 0 δ

B 0 −δ δ

C 0 0 0

, (5)

where patches A and C have K = 5 (steady-state dynamics), but patch B has K = 15 (chaotic dynamics); all other param-254

eters as above. In all cases, we assess the dynamics through consideration of the timeseries of disease prevalence, i.e., the255

proportion of each patch’s population that is currently infected with the pathogen49.256

Larger network structure257

Considering larger, more complex metapopulations, we perform 100 simulations for each of five network ensembles. For258

these simulations, we construct directed networks of an arbitrary size of 25 patches and connectance of approximately 0.15,259

but with varying network structure, according to five random-network ensembles: Erdős-Rényi-Gilbert (links randomly as-260
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signed between patches; “random”), stochastic block (two, densely connected “modules” of patches, with few inter-group261

connections; “modular”), Watts-Strogatz (small-world network structure produced by partially re-wiring a spatial grid of262

patches; “small-world”), tree-like (many chains of patches and no potential for loops, “tree”), and Barabási-Albert (scale-free263

degree distribution where few patches have very many links, and many patches have few links; “scale-free”). Note that we use264

terms like “scale-free” and “small-world” here as short-hand, bearing in mind that such structural generalizations are typically265

only defined in the limit of much larger network size. Network-generating algorithms from the tidygraph R package86 were266

used, except for tree and Watts-Strogatz configurations which required custom algorithms. Each movement rate was set to267

δ = 0.01, and each patch was assigned the same disease parameters as above except for carrying capacity and initial densities268

of susceptible, exposed, and infectious individuals, which are randomized for each patch: Ki = [5,20] and Xi(0) = [0,1], where269

X ∈ {S,E, I} and [a,b] indicates a uniformly sampled random value between a and b, inclusive.270

For each network, we sought to relate properties of the network structure to the outcomes of simulated disease spread271

across the metapopulation. For the former, we quantified both properties of each network’s degree distribution (Supporting272

Information Fig. S6) and the frequency of three-node subgraphs found in each network that form short chains (A→ B→C;273

similar to the network in Eq. (3)) or in-stars (A→ C ← B; as used in Eq. (5)). To quantify disease outcomes, we simu-274

lated 10,000 time-steps of disease spread on each network and A) summarized pathogen prevalence over time (Supporting275

Information Figs. S7 and S8), and B) categorized the dynamical regime of each patch over the final 1000 time-steps as disease-276

free (“Extinct”), stable pathogen prevalence (“Stable”), or fluctuating pathogen prevalence through time (“Cycles or Chaos”).277

Patches which could not be classified into one of these three categories within the timescale of the simulation were labeled278

“Unconverged” (Fig. 4, Supporting Information Fig. S9).279

All numerical integrations were carried out using the DifferentialEquations package87,88 in Julia version 1.7.089, with280

graphics produced using the ggplot2 package90 in R version 4.0.391. Code can be found on GitHub: https://github.281

com/mjsmith037/metapop_local_dynamics.282
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