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Abstract

Understanding the structure of materials is crucial for engineering devices and materials with enhanced performance. Four-dimensional
scanning transmission electron microscopy (4D-STEM) is capable of mapping nanometer-scale local crystallographic structure over
micron-scale field of views. However, 4D-STEM datasets can contain tens of thousands of images from a wide variety of material structures,
making it difficult to automate detection and classification of structures. Traditional automated analysis pipelines for 4D-STEM focus on
supervised approaches, which require prior knowledge of the material structure and cannot describe anomalous or deviant structures. In
this article, a pipeline for engineering 4D-STEM feature representations for unsupervised clustering using non-negative matrix factorization
(NMF) is introduced. Each feature is evaluated using NMF and results are presented for both simulated and experimental data. It is shown
that some data representations more reliably identify overlapping grains. Additionally, real space refinement is applied to identify spatially
distinct sample regions, allowing for size and shape analysis to be performed. This work lays the foundation for improved analysis of nano-
scale structural features in materials that deviate from expected crystallographic arrangement using 4D-STEM.
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Introduction

To design materials with desired physical behaviors, it is crucial to
understand how local disorder and deviations from ideal crystal-
lographic arrangements impact the functionality and properties of
a material. It can be challenging to gain reliable measurements of
local structural features at the nanometer scale, especially for low-
dimensional materials with defective or disordered structures that
can deviate significantly from a perfect crystal. While powder
X-ray diffraction (PXRD) (Negishi et al., 2014) and other X-ray
techniques (Yao et al., 2010; Duan et al., 2016) have been success-
fully applied to quantify the presence and solve the structure of
various materials, mapping the heterogeneity and spatial distribu-
tion of the nanoscale structural components that make up a mate-
rial can give more insight on the features that allow for enhanced
performance (Greer, 2006).

Transmission electron microscopy (TEM) is well positioned to
elucidate nanometer-scale material structure due to the ability to
focus the electron probe down to the sub-nanometer scale (Ponce
et al., 2021). Convergent beam electron diffraction (CBED) allows
for a diffraction pattern to be collected after a converged electron
probe interacts with a specimen. Due to recent advances in fast
and direct electron detection (Pelz et al., 2022), four-dimensional
scanning transmission electron microscopy (4D-STEM) has

become a widely popular technique to probe materials’ structure.
The method consists of collecting a series of CBED patterns at
multiple probe positions over a 2D scan space. The experimental
4D-STEM setup is shown in Figure 1a. At each probe position, a
diffraction pattern is collected (Figs. 1b, 1c), which can be pro-
cessed to create real space maps representing some component
or structurally distinct region of the dataset, termed “virtual
images” (Gammer et al., 2015). There are several data transforma-
tions that can be performed on each diffraction pattern to allow
information to be more readily extracted (Ophus, 2019; Kacher
et al., 2021). The polar elliptical transformation (Fig. 1e) is fre-
quently applied to the Cartesian data (over the x and y probe
coordinates) to visualize the data in polar coordinates as a func-
tion of the radial direction (r) and annular direction (θ). This rep-
resentation makes the application of statistical measurements with
regards to either r or θ straightforward (Kacher et al., 2021). From
here, each pattern may be represented as a line profile, or 1D vec-
tor. For example, the summed intensities in each row of the polar
elliptical transformation is known as the radial integral (Fig. 1f).
Similar statistical measurements such as the average or standard
deviation can be applied as a function of r or θ in polar space.
For a more detailed explanation of 4D-STEM and the data repre-
sentations, the reader is referred to Ophus (2019) and Kacher
et al. (2021).

In previous work, 4D-STEM has been used to determine the
spatial distribution of crystallographic orientations (Panova
et al., 2019; Allen et al., 2021; Londono-Calderon et al., 2021),
phases (Shukla et al., 2018), and relative strain (Mahr et al.,
2021) within crystalline (Mukherjee et al., 2020), polycrystalline
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(Grimley et al., 2018), and amorphous materials (Pekin et al.,
2019; Mu et al., 2021; Yang et al., 2021). The fields of image pro-
cessing, data science, and machine learning have been applied
harmoniously to discover trends within the 4D-STEM datasets
(Rauch et al., 2010; Thati et al., 2015; Izadi et al., 2017; Shukla
et al., 2018; Mehta et al., 2020; Zintler et al., 2020; Yuan et al.,
2021; Cautaerts et al., 2022; Deng et al., 2022). However, these
approaches all require prior knowledge of the crystal structure
(s) present in the sample and can only compare the dataset of
interest to crystallographic orientations of known or expected
structures. Supervised learning has been used in the microscopy
community, however, this requires generating labeled data by
either simulating data (Munshi et al., 2022) or manually annotat-
ing experimental data (Groschner et al., 2021). Simulation is a via-
ble option but may not capture structures that deviate from ideal
crystals. Manual annotation is time-consuming for 4D-STEM, as
each dataset may contain tens of thousands of diffraction patterns.
Thus, unsupervised learning is a natural approach for 4D-STEM
data analysis.

While there is some work focused on unsupervised learning to
evaluate 4D-STEM data by either performing fuzzy C-means
(Martineau et al., 2019), non-negative matrix factorization
(NMF) (Uesugi et al., 2021) or applying hierarchical models to
the raw images (Shi et al., 2021), none to our knowledge have
shown utility in the analysis of 4D-STEM datasets containing
polycrystalline or highly disordered structures at the single pat-
tern level. Approaches based on the full dataset by nature contain
a large number of features and therefore are prone to the curse of
dimensionality (Bellman, 1957), which occurs due to the expo-
nential increase in subspace volume with the addition of a dimen-
sion. The dimension of the classification subspace is determined
by the number of input features. Workflows based on the full,
high-dimensional dataset have only been successful on nearly
ideal structures with little disorder or overlap among crystalline
regions (Ma et al., 2020). Therefore, these techniques are limited
in their ability to capture information in datasets with low signal
or more structural complexity at the single pattern level.

There are only a few literature examples of 4D-STEM analysis
of ultrasmall (<10 nm) nanomaterials (Bruma et al., 2016; DaSilva
et al., 2020; Ophus et al., 2021), and none to our knowledge that
area have been established without prior knowledge of the mate-
rial structure. Since this class of materials often contain significant
levels of disorder at the single pattern level compared with their
bulk counterparts, conventional methods designed for bulk mate-
rials often fall short. A large barrier to widespread use of
4D-STEM for resolving the structure of ultrathin low-dimensional
materials is the lack of progress in data analysis methods that can
capture deviations from expected or ideal crystal structures.

Developing workflows with the ability to reduce the informa-
tion contained in 4D-STEM datasets to a smaller feature set that
still capture the key features that make the patterns distinct from
one another is crucial for analysis via unsupervised learning.
Dimensionality reduction allows for the largely complex dataset
to be distilled down to a more manageable size (Guccione et al.,
2021). Advances in feature representations for 4D-STEM pattern
classification have been primarily limited to Bragg disks (BD)
(Meng & Zuo, 2017; Pekin et al., 2017; Zeltmann et al., 2020).
Recently, principal component analysis (PCA) and NMF were
applied to cluster BD from polycrystalline gold nanoparticles
into feature sets (Allen et al., 2021). In this work, it was shown
that while both NMF and PCA have the ability to reasonably dis-
cern grains within nanoparticles, only NMF was able to output
results that were directly interpretable as specific orientations
due to the non-negativity constraint (Allen et al., 2021). This
aligns with work in image analysis fields comparing NMF and
PCA, where the sparse solution provided by NMF is more readily
interpretable than the holistic output that PCA typically provides
due to the presence of both additive and subtractive combinations
(Lee and Seung, 1999; Guillamet et al., 2002).

While the BD representation has been successful in many
applications in addition to those mentioned (Panova et al.,
2016, 2019; Han et al., 2018), there are several shortcomings of
this method. The first is that this method requires a highly accu-
rate detection of BD, which is not always possible in low signal or

Fig. 1. 4D-STEM workflow and data representations. (a) Visual depiction of 4D-STEM experiment on twisted nanowires dataset. (b) High-angle annular dark-field
(HAADF) image of the twisted nanowire and (c) patterns from select regions. (d) Cartesian, (e) polar-elliptical, and (f) radial Integral representations for the max-
imum CBED pattern from the 4D-STEM dataset. The radial direction (r) label holds true for (e) and (f), while the magnitude of the radial integral in (f) is the sum of
the intensity along the annular direction (θ) from (e).
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highly disordered datasets (Cooper et al., 2016; Pekin et al., 2017).
Second, even with advancements in crystallographic orientation
mapping, accurate mapping of structures that are off-zone axis
is a challenge. Finally, this representation does not provide an ave-
nue for differentiation between highly disordered regions from
amorphous materials, as BD may not be robustly detected in
either of these sample types. Thus, advances in inclusive featuri-
zation of CBED patterns could expand the utility of this method
to a wider variety of materials. While other featurization
approaches have been demonstrated (Ophus, 2019; Rauch &
Veron, 2019; Mehta et al., 2020; Mu et al., 2021; Thornsen
et al., 2021), methods to evaluate the information carried in
these representations has not been reported.

This work addresses this knowledge gap by evaluating three
engineered feature representations for CBED patterns within
4D-STEM datasets using the NMF approach described in prior
work (Allen et al., 2021). The BD representation was analyzed
due to the widespread interest and development of methods to
precisely extract this feature from 4D-STEM data (Pekin et al.,
2017; Han et al., 2018; Mukherjee et al., 2020; Zeltmann et al.,
2020; Allen et al., 2021; Kacher et al., 2021; Yang et al., 2021).
However, recovering information that is lost during the BD detec-
tion can provide an avenue for improved classification, especially
for regions of a sample that may not have strong Bragg scattering.
Virtual imaging, when applied directly to the raw patterns, has the
ability to recover information that may have been lost during disk
detection. Here, the angular average (AA) is introduced as a set of
features based on mean virtual imaging of the raw data that does
not assume that the pattern can be described purely from the
detected BD. A statistical approach based on the variance,
which is referred to as the radial variance (RV) throughout the
article, is also analyzed to develop an understanding of how fea-
ture vectors based not on spatial but on statistical variations
throughout the dataset capture information within the patterns.

An analysis of the information transferred in the BD, AA, and
RV features extracted from three simulated 4D-STEM datasets of
polycrystalline Ag films is performed, which provide insights on
the application and limitations of each representation. The
insights gained from the simulated data are then applied to an
experimental dataset of a double helical polycrystalline nanowire
containing Palladium, Gold, and Silver (Pd@AuAg NWs). The
pipeline (Fig. 2) begins with the collection and calibration of a

4D-STEM dataset, then leads to the extraction of feature represen-
tations, and uses NMF to evaluate the data. Each engineered fea-
ture leads to interpretable results that relate to the structure of the
underlying material, and specific use cases in which the AA and
RV representations capture specific material structures better than
the BD representation for specific sample types are discussed.
This work sets the foundation for improved understanding of
materials structure by expanding upon semi-automated data anal-
ysis methods in the microscopy community.

Materials and Methods

Ag Film 4D-STEM Simulation

The Ag films were created using a custom MATLAB code by ran-
domly distributing 100 grain centers with random crystalline face-
centered cubic (FCC) orientations in a 1,000 Å × 1,000 Å × 300 Å
cell. Each grain consisted of an approximately spherical Wulff
shape consisting of [001], [011], and [111] facets. Atoms which
in any grain which were closer to another grain’s origin were
removed to prevent overlapping grain regions, with an additional
2 Å separation between grains. The structures were not energeti-
cally relaxed. The diameters of the grains in Ag1, Ag2, and Ag3
were restricted to three different sizes (35 Å × 41 Å × 40 Å in
Ag1, 52 Å × 62 Å × 60 Å in Ag2, 70 Å × 82 Å × 80 Å in Ag3).
The 4D-STEM simulations were performed over the first quarter
of the cell (250 Å × 250 Å × 300 Å) using custom MATLAB
scripts that implement the multislice algorithm (Cowley &
Moodie, 1957) and methods defined by Kirkland (2020) and
the plane wave reciprocal space interpolated scattering matrix
(PRISM) algorithm (Ophus, 2017). The patterns were generated
using an acceleration potential of 300 keV, a probe semiconver-
gence angle of 1.05 mrad, a 5 Å pixel size in real space, and a
0.01 Å−1 pixel size in reciprocal space. After the 4D-STEM simu-
lation was performed, a Gaussian kernel was applied over the real
space probe scanning dimensions with a standard deviation of 2
pixels to replicate to account for a non-zero source size and coher-
ence limitations, which is expected to be the dominant aberration
(Dwyer et al., 2010). There were 31, 36, and 42 distinct grains in
the field of view for the Ag1, Ag2, and Ag3 datasets, respectively.

Nanowire Synthesis

Polyvinylpyrollidone (PVP, 40,000 MW), dimethylformamide
(DMF), silver nitrate (AgNO3), and Gold(III) chloride trihydrate
(HAuCl4 · 3H2O, 49.0% Au Basis) were purchased from
Sigma-Aldrich. When specified, solutions were prepared in deion-
ized (DI) water (resistivity >18MΩ/cm).

Samples were prepared as described in a previous study with
slight variations (Wang et al., 2011). Solutions of PVP (5.55 mg,
500 mM) in DMF (100 mL), HAuCl4 (0.394 mg, 50 mM) in
DMF (20 μL), AgNO3 (0.170 mg, 50 mM) in DI water (20 μL),
and L-ascorbic acid (7.045 mg, 400 mM) in DI water (100 μL)
were prepared ahead of time. The reaction solution was created
in a 4 mL vial (washed 3 × with water and acetone) by mixing
DMF (800 μL), PVP solution (100 μL), HAuCl4 solution (20
μL), and AgNO3 (20 μL) solution. The reaction mixture was
then vortexed for 2 s. The L-ascorbic acid solution (100 μL) was
added drop-wise to the mixture while gently swirling. At this
point, the reaction solution changed color from pale yellow to
clear. The solution was left at room temperature for 7 days and
appeared light brown/purple after incubation.Fig. 2. Diagram of unsupervised learning workflow.
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To create the Pd shell layer on the underlying ultrathin AuAg
NWs, solutions of L-ascorbic acid (0.211 mg, 1.875 mM) and
H2PdCl2 (0.03 mg, 2 mM) were prepared in DI water ahead of
time. In a 4 mL vial (3 × washed with DI Water/acetone), an
unpurified aliquot of the AuAg reacted solution (50 μL) was
added to the L-ascorbic acid solution (640 μL). Finally, the
H2PdCl4 (60 μL) was added and allowed to incubate for at least
30 min. The reaction solution was then purified by centrifuging
the product at 7,500 rpm for 4 min. The supernatant was
decanted, the reaction was rinsed with DI water, and the centrifu-
gation procedure was repeated three times. The final purified
product was re-dispersed in DI water. The samples were prepared
for imaging by depositing 10 μL of purified NW solution on 400
mesh formvar/ultrathin carbon grids.

Data Collection

The dataset was collected from a double aberration-corrected mod-
ified FEI Titan 80-300 microscope (TEAM I at the National Center
for Electron Microscopy within the Molecular Foundry at Lawrence
Berkeley National Laboratory) equipped with a Gatan K3 detector
set to collect with a pixel time of 0.05 s, 4 × bin, and full range.
The accelerating voltage was set to 300 kV with a spot size of
6. A 10 μm aperture was used (semiconvergence angle of 2mrad)
with a camera length of 1.05m. A step size of 5 Å was used, with
a total real space sampling of 231 positions in x and 58 images
in y, leading to a dataset with 13,398 CBED patterns. The beamstop
was used because it was found that the scattering signal to be sig-
nificantly stronger for this sample with the beamstop in.

Data Calibration

The 4D-STEM dataset was imported and preprocessed using the
publicly available methods in py4DSTEM (Savitzky et al., 2021).
First, the experiemental CBED patterns were binned by 2, leading
to the dimension of 432 × 432 in diffraction space. The dataset was
then cropped to 220 × 50 in real space (11,000 diffraction images)
to reduce the amount of images containing only the carbon film,
leading to an analysis dataset of dimensions 220 × 50 × 432 × 432.
In the experimental dataset, hot pixels were filtered in diffraction
space by detecting any pixels that were 0.55 larger than the local
sorted intensity values and replacing these with their 3 × 3 local
median.

The diffraction patterns were aligned and any detected ellipti-
cal distortions were corrected for by fitting an ellipse to the Bragg
Vector Map, which was made after detecting the disks in the pat-
terns and distributing them into an image. Both the image align-
ments and the elliptical distortion corrections were applied to all
feature representations.

Feature Extraction

Bragg Disks
There are a number of workflows that can be used to detect BD
(Pekin et al., 2017; Han et al., 2018). Here, the correlative disk
detection method available in py4DSTEM is followed (Savitzky
et al., 2021). Briefly, this method consists of detecting the local max-
ima of the cross-correlation between the diffraction image and the
probe kernel. False positive disks surrounding the beam stop in the
experimental data were removed using a mask surrounding the
beam stop. Elliptical distortions were detected and corrected in
both the simulated and experimental data. The aligned and

elliptically corrected BD were rasterized as described by Allen
et al. (2021) based on their detected locations using a bin size of
3 × 3, further reducing the diffraction space dimensions to 84 × 84
(7,056 pixels) in the simulated dataset and 144 × 144 (20,736 pixels)
in the experimental dataset. Figures 3a, 3b show an example of the
mean virtual image (VI) and the maximum diffraction pattern of a
simulated dataset. Figure 3c reveals the 2D Bragg disk position his-
togram, known as the “Bragg Vector Map,” across the entire simu-
lated dataset. Figures 3d, 3e demonstrate the process of
transforming an individual pattern, while Figure 3f shows what
an individual pattern looks like after the complete transformation
using the BD described in a prior study (Allen et al., 2021).
While other methods of representing BD have been established,
such as adaptive binning based on the Voronoi diagram (Savitzky
et al., 2021), this Cartesian gridding representation was chosen
because it can be streamlined to analyze multiple datasets in
which different Bragg reflections appear.

Angular Averaging
By taking the average intensity every 5° over each radial ring
within the pattern, information related to the spatial distribution

Fig. 3. Feature representations on simulated Ag polycrystalline film. (a) Virtual image
created by averaging the intensity of each diffraction pattern. (b) Maximum diffrac-
tion pattern created by taking the maximum intensity in diffraction space. (c)
Bragg vector map, which indicates the positions and intensities of the detected
BD. Color scale for (a) and (c) range from low (black) to high (yellow) intensity. (d–
f) Workflow for preparing detected disks into features for unsupervised learning.
(g) Visualization of the AA featurization over the first detected radial ring in the max-
imum diffraction pattern. (h) Representation of the RV profile overlaid on the maxi-
mum diffraction pattern. Each colored box in (e) and (g) represents a region in which
a single input feature is generated, while the red line in (h) represents one input fea-
ture per row in the polar elliptically transformed image.
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of intensities can be recovered. This approach effectively applies a
series of mean virtual images as inputs, as shown in Figure 3g.
Each colored box in Figure 3 represents a region in which the pix-
els were averaged to create a single input feature. While virtual
imaging has been commonly utilized to understand 4D-STEM
datasets (Shukla et al., 2018; Mehta et al., 2020; Thornsen et al.,
2021), virtual apertures are traditionally applied by identifying
reflections of interest within the maximum diffraction pattern.
Instead, this representation is expanded by creating virtual aper-
tures that cover the entirety of the detected radial rings, reducing
information loss from biased placement of virtual apertures. The
AA was extracted by determining the positions of the radial rings
by finding the local minima in the radial integral of the maximum
diffraction pattern, then averaging every five columns for each
pattern within this range. The output of this step was a 2D
array of dimensions 10,000 × 288 for the simulated dataset,
which had four rings present, and 11,000 × 142 for the experi-
mental dataset, which had two rings present. Two features were
removed per ring from the experimental dataset due to the pres-
ence of the beamstop in the region.

Radial Variance
In addition to spatial features, statistical metrics that can numer-
ically capture the degree of disorder or variation present in a par-
ticular radial ring may also allow for more robust separation of
crystalline from noncrystalline regions within a dataset. The RV
is a statistical metric based on variance (equation (1)) that mea-
sures the numerical deviation of the individual values at each θ
from the average value in each radial index:

var(x[i]) =
∑u=n

u=1 (xu[i]− �x[i])
n

, (1)

Here x0[i] is the set of intensities at the radial index i, θ is the
angular distribution, which spans from 1 to n. In this case, the
span of θ is from 1° to 360°. The RV value will be larger in
more crystalline patterns where there are large intensity fluctua-
tions in a radial ring, and effectively zero in perfectly amorphous
materials. Methods based off of intensity variances within diffrac-
tion patterns have been frequently applied to discern trends in
medium range order in amorphous materials using a technique
called fluctuation electron microscopy (FEM) (Treacy & Gibson,
1996). Although the RV presented in this article is not the
same as those used in FEM, this featurization consolidates the
entire 2D pattern into a single line profile, drastically decreasing
the dimensionality.

To extract the RV feature, the polar elliptical transformation
was first applied to the cartesian diffraction patterns. The variance
was then calculated over each row of pixels, which corresponds to
a radial distance from the incident beam. For the experimental
dataset, the beamstop was masked and these pixels were not
included in the variance calculation. The variance profile was
cropped to remove effects from the center beam and detector
edges. The output of this approach was a 2D array of dimension
10,000 × 80 for the simulated dataset and 11,000 × 100 for the
experimental dataset. This feature set is unable to capture distinct
high or low intensity regions across the θ direction and is rather
only sensitive to the intensity variation along θ over all r values.
The RV line profile of the maximum diffraction pattern has
been overlaid along the polar elliptically transformed maximum
diffraction pattern in Figure 3h.

Feature Preprocessing

All of the feature vectors were scaled in a range from 0 to 1 using
the MinMaxScaler in scikit-learn (Pedregosa et al., 2011) which
follows the equation (2):

Xscaled = X − Xmin

Xmax − Xmin
∗(max−min )+min, (2)

where Xscaled is the scaled feature vector, X is the value at each
position, Xmin and Xmax are the minimum and maximum value
of the feature vector, respectively, and max, min are the range
in which the features are scaled (from 0 to 1 in this work).

Dimensionality Reduction on Single Features

NMF solves the matrix factorization problem equation (3) with a
non-negativity constraint:

‖V −WH‖F , subject to W ≥ 0, H ≥ 0. (3)

NMF effectively reduces the input matrix, V, into a series of
weighted linear combinations of the columns in V. If V is an
n ×m matrix, W will become n × c, while H will become c ×m,
where c is the number of chosen components. By convention,
the columns of the W matrix become the basis feature sets,
while the H matrix contains the weights, or contributions, of
each basis set to the individual patterns (Lee & Seung, 1999).

Iterative NMF was performed to cluster the individual features
into regions of similarity. This was performed as described in a
previous report (Allen et al., 2021), where PCA was first per-
formed to determine the optimal number of clusters (determined
from the Scree plot). The NMF clustering cycle to reduce the
dataset into at least five times the number of optimal clusters
determined by PCA. Each cycle, features with correlations above
a predefined threshold (typically between 0.15 and 0.5) were
merged and a new cycle began. The selected merge threshold
was highly dependent on the input feature type, with RV (0.3–
0.5) and AA (0.4–0.5) representations typically having a higher
threshold than the BD (0.18–0.25) representations. It was found
that lower merge threshold values for AA and RV only led to
one feature representation, which is why larger values were
selected. NMF was performed until no features with correlations
above this threshold were found. This was repeated 25 times with
different random seeds, and the model with the smallest weighted
reconstruction error was selected. The parameters (including ini-
tial cluster number and merge threshold) and runtimes of each
model are presented in Supplementary Table S1.

Spatial and Size Refinement and Measurements

Since each pattern within a 4D-STEM dataset is located in a real
space position, a spatial and grain size refinement was performed
to separate spatially distinct grains and remove grains below a
specified size after clustering (Supplementary Fig. S1). This
allowed for additional analysis of the size, diameter, and shape
of detected grains. Spatial and size separation was performed by
first transforming each column of the NMF output components
into 2D arrays of the size of the real space scans (200 × 200 in
the simulated dataset, 220 × 50 in the experimental dataset).
The yen threshold function from scikit-image (van der Walt
et al., 2014) was applied to each image produced from the
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NMF output, which allowed for the identification of spatially
independent clusters within the cluster image. All values below
the threshold in each image were set to 0. These spatially indepen-
dent components were filtered out by size (labeled regions less
than 25 or 10 pixels were removed for the simulated and experi-
mental data, respectively). The clusters were separated based on
the detected labeled region. The area and diameters of regions
labeled were measured using the regionprops function in scikit-
image (van der Walt et al., 2014). The area was calculated by
summing the number of pixels in each cluster. The max diameter
was determined using the Feret method (Walton, 1948). While
the spatial separation step allows for a workflow to analyze cluster
shape and size, this step prevents spatially separated clusters of
similar orientation from having the same cluster label.

Scoring Metrics

The labels were generated for the simulated datasets based on the
Ag structures at each probe position. For each independent grain,
a single binary image was created.

The area-based precision metric (precisionA) was calculated by
first determining where in the field of view grains were located
from the binary label images. The labels for precisionA were gen-
erated by setting the pixels that contained a grain of any identity
to 1, and pixels with no grain to zero. Thus, the precisionA true
label set only contains on image. The cluster maps were similarly
binarized based on whether or not a grain of any identity was
detected. The precisionA can simply be thought of as the precision
at which the model can detect a crystalline region over a vacuum
region. The precisionA score was calculated from each binary clus-
ter image based on the formula for precision, shown in equation
(4):

Precision = True Positives
True Positives+ False Positives

. (4)

Other area-based metrics, such as the True Positive Rate
(TPRA), True Negative Rate (TNRA), False Positive Rate (FPRA),
and False Negative Rate (FNRA) were similarly calculated based
on the steps described for precisionA.

The second metric discussed is the true positive rate (TPRG)
for each cluster that was detected in the AA and BD featuriza-
tions. This is calculated by finding the best match grain in the
cluster labels and calculating the TPR for each match, which is
shown in equation (5):

TPR = True Positives
True Positives+ False Negatives

. (5)

To determine the best match grain, the sum of the weights
were determined over the area in which each label was 1. After
the best match was found, the TPR, True Negative Rate (TNR),
Type I Error (False Positives), and Type II Error (False
Negatives) were calculated for each pair.

For the experimental data, there were no labels produced.
Instead, the cluster dissimilarity score was determined for each
cluster by first calculating the weighted average cluster diffraction
pattern of each cluster after spatial separation of the NMF results.
The cluster pattern was scaled to 0–1 using the using the
MinMaxScaler in scikit-learn (Pedregosa et al., 2011) (equation
(2)) and the sum of differences between the weighted cluster

pattern and scaled contributing cluster patterns was calculated.
This is written mathematically in equation (6):

dissimilarity(cluster[i]) =
∑ j=n

j=1 (wj[i]∗DP j[i]− DP[i])
∑ j=n

j=1 wj[i]
, (6)

where (DPj[i]) and (DP[i]) are the contributing and weighted
average patterns for each cluster, respectively. The weights per
pattern ( j) within a cluster (i) are represented by wj[i]. The dis-
similarity score is more useful in discerning relative performance
of different features on the same dataset, as the score is highly
dependent on the noise within the dataset. Thus, dissimilarity
score for simulated data will be significantly lower than for exper-
imental data, although the trend may still provide insight on per-
formance. Since multiple clusters were present in each dataset, the
distribution of dissimilarities were visualized in a box plot for the
experimental data.

Results and Discussion

Silver Film Simulations

NMF was applied independently to RV, AA, and BD feature sets
extracted from three simulated polycrystalline Ag film datasets
with different sized grains, and thus varying extent of overlap
between adjacent grains. Figure 4a shows the cluster labels for
the three simulated datasets, with the first row having almost
no overlap between neighboring grains and the last row having
significant overlap. We will refer to the dataset in the top row
of Figure 4a as Ag1, the middle row as Ag2, and the bottom
row as Ag3. The results of applying NMF to the RV, AA, and
BD features for the three datasets are shown in the panels of
Figures 4b, 4c, and 4d, respectively. The colors of the clusters
are indicative of the order in which the clusters are stored, but
not necessarily the cluster match across the images.

As the overall area of Ag grains increase in the dataset, the
precisionA (shown in Figure 4e for the three featurizations and
datasets) is expected to increase because there are less patterns
that do not contain a Ag grain, thus lowering the possibility of
false positives. The precisionA is the only metric discussed for
the RV feature, since it lacks the sensitivity to 2D spatial features
within the patterns thus does not allow for accurate orientation or
phase mapping. It is most useful to consider the RV feature as
being sensitive to extent of crystallinity rather than specific orien-
tations. The RV feature set consistently underestimates the total
area containing grains in all three simulations, leading to a high
FNRA (70% for Ag1 and Ag2, 72% for Ag3). However,
Figure 4e reveals that the RV is more precise at detecting crystal-
line regions in Ag1 than the other two featurizations for this data-
set. Thus, when the model based on RV feature predicts a Ag
region in a dataset with more sparsely distributed crystalline
regions, it is most likely to contain a Ag grain. The AA had the
lowest area-based precision for Ag1 (75.3%). The clusters deter-
mined from the AA show expansion relative to the cluster labels,
indicating that while the precisionA is lowest, the FPRA is lower
than in the RV representation. This could be a result of the AA
feature representation responding to the Gaussian blurring per-
formed on the simulated data. A full list of area-based metrics
are presented in Supplementary Table S2.

For applications in which the crystalline regions in the dataset
are expected to be sparse and it is crucial to avoid false positive
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detection, RV may outperform other representations. One exam-
ple of an application in which the RV may be useful is detecting
small crystalline precipitates in an amorphous matrix, such as
confirming the presence of crystalline regions in precipitation
hardened amorphous alloys similar to those reported in Roy
et al. (2009). This is underpinned by the fact that the speed of
this model is faster than the model based on the BD, which has
the next highest precision. However, the application of the RV
feature is somewhat limited to specific cases in which high vari-
ance is expected in the crystalline regions. Models based on the
RV feature will not be suitable for orientation mapping since var-
iance across patterns is not consistent among all crystalline
regions and it is not sensitive to specific grains. Additionally, as
the extent of grain overlap increases, the variance along a radial
ring is expected to decrease due to the increased number of reflec-
tions in the ring, thus it is not well suited for situations in which
overlapping grains are expected to be prevalent. As the overall
area covered by the Ag grains increases, the precisionA of the
AA and BD features improves, which also reduces the use cases
for the RV feature.

Figure 4f shows the TPRG distribution for the AA feature. The
TPRG was relatively high for all of the detected clusters using the
AA feature in Ag1, with an average value of 86.4%. Furthermore,
this representation retains the highest TPRG as the extent of grain
overlap increases, holding an average value of 89.3% for Ag2 and
73.6% for Ag3. As the overall area containing crystalline regions
increases, the precisionA for the AA feature also increases
(92.7% for Ag2 and 99.5% for Ag3), further supporting the use

of this representation over the BD representation for datasets
expected to contain overlapping grains.

The BD representation outperforms the AA representation for
mapping regions of distinct grains when the clusters have little
overlap as both the precisionA (83.9%) and the average TPRG

(89.5%) are higher for the BD representation in Ag1. However,
it is observable from the cluster maps (Fig. 4d) that this perfor-
mance is not retained as extent of grain overlap increases. The
cluster maps indicate that the BD representation is prone to over-
fitting to the regions with overlapping grains (see white dotted
box in the bottom row of Fig. 4). These regions are consistently
detected as independent from the parent grains instead of being
allocated into multiple clusters. This lowers the average TPRG

for the model based on the BD features (Fig. 4g), which decreased
to 70.2% for Ag2, and to 48.8% for Ag3. Thus, for datasets in
which grains are expected to overlap, the AA feature is expected
to outperform the BD representation in detecting distinct grains.
This can be more readily observed in maps of the number of
detected clusters per pattern (Supplementary Fig. S3). For appli-
cations in which it is desired to map the size and shape of over-
lapping grains, the AA is likely to be more reliable than the BD
representation. Since the BD feature tends to overfit regions of
overlapping grains, clusters detected from the BD feature may
relate to an interface or boundary between neighboring grains
or orientations within a dataset. Thus, in applications where it
is desirable to analyze overlapping regions or boundaries indepen-
dently from the parent regions, such as in some strain mapping
applications, the BD feature may be applied, even if there is

Fig. 4. Results of NMF applied to simulated Ag Films with varying grain sizes and extents of overlap. Colors indicate distinct labeled or detected clusters. (a) Cluster
labels for the Ag1 (row 1), Ag2 (row 2), and Ag3 (row 3) simulated datasets. (b) Cluster maps created from applying NMF to the (b) RV, (c) AA, and (d) BD features.
The colors of the clusters are indicative of the order in which the clusters are stored, but not necessarily the cluster match across the images in (a), (b), (c), and (d).
(e) PrecisionA of the nine predictions. (f) TPRG distribution of the grain matches for the clusters determined by AA, which retain the highest TPRG as extent of
overlap increases. (g) TPRG distribution of the grain matches for the clusters determined by the BD, which has a deteriorating TPRG as extent of overlap increases.
The white dotted box in the bottom row (Ag3) highlights a region in which the BD feature overfits to overlapping grains, while the AA feature performs well.
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significant grain overlap. It should be noted that the average TNR
from the grain matches TPRG is at least 98% for all of the applied
featurizations (Supplementary Table S3), indicating that the
model is sensitive to specific regions. A full list of the overall
grain-based average rates across all datasets are reported in
Supplementary Table S4. The overall average TPRG across all
three datasets was 83.2% for AA and 67.4% for the BD represen-
tation, indicating that if no prior knowledge about the extent of
grain overlap or disorder is known about the sample beforehand,
the AA representation may give more reliable results. The dissim-
ilarity score (reported in Supplementary Table S3) was also calcu-
lated for all featurizations and it was found that the average score
was typically higher for the RV feature (17.0 for Ag1, 30.6 for Ag2,
and 58.1 for Ag3) than for the AA (12.2 for Ag1, 19.0 for Ag2,
and 34.4 for Ag3) and BD (12.6 for Ag1, 21.7 for Ag2, and
32.0 for Ag3) in each dataset. The AA and BD dissimilarity scores
were similar, however it is likely that the dissimilarity score for the
AA in Ag3 surpasses the BD value due to the inclusion of over-
lapping regions within a grain. Since may of the overlapping
regions in Ag3 from the BD feature are detected in their own clus-
ters, the dissimilarity score will be lower since these will be self
similar. Although the AA had high TPRG for the grains that
were detected, there were still grains that were not detected
using the AA and BD feature representations. It can be observed
from the cluster maps that both the AA and BD feature are miss-
ing some clusters on the bottom region of the field of view and in
between neighboring grains in datasets Ag2 and Ag3. The detec-
tion of grains overall may be limited by grain orientation or

number of observations in which these grains are the only grain
present.

Pd@AuAg Twisted Nanowires

The featurization and machine learning workflow was also
applied to an experimental dataset of a colloidally synthesized
Pd@AuAg double helical NW. The final twisted NWs typically
have a diameter of 5–10 nm and contain large amounts of struc-
tural disorder, making them an ideal candidate for testing novel
featurization protocols. Additionally, it is proposed that these
structures may contain icosahedral packing (Velazquez-Salazar
et al., 2011; Wang et al., 2011), which is challenging to discern
using conventional 4D-STEM analysis methods due to the grains
overlapping in specific orientations. The feature representations
for this dataset are shown in Supplementary Figure S4.

The results of applying iterative NMF to the dataset are
revealed in Figure 5. Figure 5a shows the HAADF image of the
analyzed region, while Figures 5b, 5c, and 5d show the results
of applying iterative NMF to the RV, AA, and BD representations,
respectively. Analysis reveals that the model based on the RV fea-
ture recovers the least information, while the model based on the
AA feature recovers information that is missed by both the RV
and BD representations. The AA feature was able to best recover
information from patterns that are in the bottom left-hand corner
of the NW.

As was revealed in the simulated data, the RV provides an
incomplete understanding of the sample. There are only five

Fig. 5. Experimental dataset and results of unsupervised learning performed on individual feature representations. (a) Simultaneous high-angle annular dark-field
(HAADF) image of scan region. Clusters from the models based on the (b) RV, (c) AA, and (d) BD. Colors indicate distinct detected clusters. Box plots of the (e)
cluster areas (averages 87.9, 45.3, and 95.0 nm2 for RV, AA, and BD), (f) cluster max diameters (averages 4.6, 17.1, and 16.8 nm for RV, AA, and BD), and (d) weighted
dissimilarity score. (Averages 955.5, 676.2, and 605.9 for RV, AA, and BD).
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clusters initially detected using the RV feature, and many of the
regions within each cluster are distributed broadly throughout
the structure. With spatial and size refinement, the number of
clusters increased to 20, which is approximately one fifth of the
number detected in the AA (109) representation and approxi-
mately one half of the number detected by the BD (51) represen-
tation after spatial and size refinement. This result substantiates
the earlier claim that RV is not an appropriate representation
for datasets in which multiple crystalline clusters must be detected
and distinguished from each other.

After spatial and size refinement, analysis on the cluster areas
and diameters was performed. The average cluster areas (Fig. 5e)
and max cluster diameters (Fig. 5f) detected were 87.9, 45.3, and
95.0 nm2 and 4.6, 17.1, and 16.8 nm for the RV, AA, and BD rep-
resentations, respectively. Based on these values, it is likely that
the clusters detected are based on signal from the NW shell rather
than the core, as the core is expected to have grain sizes with
diameters on the order of 2 nm (Wang et al., 2011). This is
expected as the shell is much thicker and likely more ordered
than the core structure (Wang et al., 2011).

The RV detects clusters with a similar area distribution as the
BD representation, but much narrower distribution of max diam-
eters. The model based on the AA detects clusters with smaller
areas, but a wider distribution of max diameters. It is observed
that the clusters detected from the AA feature set are elongated
relative to the other two feature sets. The elongated shape dis-
cerned by the AA feature may be a result of an oriented attach-
ment growth mechanism, where the AA feature classifies the
similar orientations within the same cluster while the BD feature
clusters these regions distinctly. Nanowire growth via oriented
attachment has been reported in these material systems at similar
length scales (Wang et al., 2014, 2016).

The dissimilarity score distribution was also measured for each
cluster (Fig. 5g). This is a relative, unitless metric. A larger mag-
nitude dissimilarity score can be interpreted as patterns in a clus-
ter deviating more highly from the average, while a smaller score
can be interpreted as the patterns in the cluster being more self-
similar. For datasets without labels, only the self-similarity within
a cluster can be used to determine the relative accuracy of that
cluster. The average dissimilarity scores were 955.5, 676.2, and
605.9 for the RV, AA, and BD representations, respectively. The
weighted dissimilarity for the RV is larger than both the AA
and BD values providing further indication that this featurization
workflow does not have the ability to discern individual grains but
rather crystalline areas. These trends are similar to what was cal-
culated from the simulated results. The AA and BD have a similar
distribution of weighted dissimilarity scores, indicating that either
of these representations may be reasonable for this dataset. Since
previous work has described multiple overlapping grains within
these NWs (Ophus et al., 2021; Wang et al., 2011), the AA feature
may provide better overall measurements of the cluster areas and
diameters.

As was observed in the simulated dataset, the AA feature is
able to capture more overall regions of overlapping grains than
the BD (Supplementary Fig. S5). Thus, it is likely that the average
weighted cluster dissimilarity score for the AA is larger than the
BD because the AA clusters are more likely to contain overlapping
regions. While this leads to more reliable measurement of grain
shape and size in the AA clusters, the extent of overlap between
grains may make it difficult to discern the parent grain structure
from the weighted cluster pattern itself. In order to directly inter-
pret the structure within these grains, it may be beneficial to use

only the patterns that are detected in a single cluster to represent
and interpret the full region. Categorization of the detected clus-
ters into crystallographic orientations or phases can be completed
by combining the NMF clustering workflow reported in this work
with the ACOM workflow presented by Ophus et al. (2021), for
example, by consolidating the BD detected throughout the dataset
into sets based on the detected clusters. The performance on
experimental data may be validated by comparing the clusters
detected through these methods and the results of performing
the full ACOM method.

Conclusion

In this work, a pipeline for engineering and analyzing features for
4D-STEM data was presented. The features analyzed are represen-
tative of different types of information present in electron diffrac-
tion images and the application of these features is underpinned
by analysis of both simulated and experimental data. It was
revealed that the RV feature has the highest precision in detecting
crystalline regions in a Ag simulation with sparsely distributed
grains, but is not able to detect regions of specific orientations.
The AA feature is most robust at detecting independent grains
when there is significant grain overlap, yet the BD representation
still outperforms the AA when there is no grain overlap. These
featurization protocols were applied to an experimental dataset
of a Pd@AuAg NW and it was demonstrated that the AA featu-
rization allowed for more grains within the NW to be detected.
However, the BD representation still provided valuable insight
on distinct regions within the experimental dataset.

This work opens the door to more complete classification of
disordered and defect-rich structures, and we have shown the util-
ity of our workflow for ultrathin double helical NWs with large
amounts of structural diversity. There is an opportunity to further
develop this method by exploring new feature representations or
applying supervised methods to the cluster patterns in order to
identify the crystallographic structure within the region.

Supplementary Material. To view supplementary material for this article,
please visit https://doi.org/10.1017/10.1017/S1431927622012259.
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