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Abstract

We developed and evaluated an automatically extracted measure of cognition (seman-
tic relevance) using automated and manual transcripts of audio recordings from
healthy and cognitively impaired participants describing the Cookie Theft picture from
the Boston Diagnostic Aphasia Examination. We describe the rationale and metric vali-
dation. We developed the measure on one dataset and evaluated it on a large database
(>2000 samples) by comparing accuracy against a manually calculated metric and
evaluating its clinical relevance. The fully automated measure was accurate (r = .84),
had moderate to good reliability (intra-class correlation = .73), correlated with Mini-
Mental State Examination and improved the fit in the context of other automatic lan-
guage features (r = .65), and longitudinally declined with age and level of cognitive
impairment. This study demonstrates the use of a rigorous analytical and clinical frame-
work for validating automatic measures of speech, and applied it to a measure that is
accurate and clinically relevant.
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rich data sources because they require a broad range of cognitive and
linguistic competencies to successfully complete.* For example, the

The power of language analysis to reveal early and subtle changes in
cognitive-linguistic function has been long recognized%3 but chal-
lenging to implement clinically or at scale because of the time and
human resources required to obtain robust language metrics. This is
particularly true of picture description tasks, which are regarded as

Boston Diagnostic Aphasia Examination (BDAE) includes an elicitation
of the Cookie Theft picture description® and this task is widely used
clinically and in research across a swath of clinical conditions, includ-
ing cognitive decline and dementia.®’ The information extracted from
transcripts of the picture descriptions provides insight to the likely
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sources of deficit and differential diagnosis. Yet, the burden of the anal-
yses on human resources is prohibitively high for routine clinical use
and impedes rapid dissemination of research findings. In this study, we
demonstrate the feasibility of using an automated algorithm to mea-
sure aninterpretable and clinically relevant language feature extracted
from picture descriptions while dramatically reducing the human bur-
den of manually assigning codes to features of interest.

A commonly extracted, high-yield metric for the characterization
of cognitive-linguistic function in the context of dementia involves
assessment of the relationship of the words in the transcribed pic-
ture description to the word targets in the picture. This measure has
been described with varying terminology, including “correct informa-

”8 “content information units,”” and “semantic unit idea den-

tion units,
sity.” 110 All these terms encapsulate essentially the same concept: the
ratio of a pre-identified set of relevant content words to the total words
spoken. For example, in the Cookie Theft picture description, people

» o«

are expected to use the words “cookie,” “boy,” “stealing,” etc., corre-
sponding to the salient aspects of the picture. We developed an auto-
mated algorithm to measure this relationship, called the Semantic Rel-
evance (SemR) of participant speech. We chose to use this new term,
“semantic relevance,” to better frame the concept of the measure.
SemR measures the proportion of the spoken words that are directly
related to the content of the picture, calculated as a ratio of related
words to total words spoken. Like its manual predecessor, “semantic
unit idea density,”! the automated SemR metric provides an objec-
tive measure of the efficiency, accuracy, and completeness of a picture
description relative to the target picture.

The goal of this study is two-fold. First, we completely automated
the process for measuring SemR by transcribing recordings of picture
descriptions using automatic speech recognition (ASR) and algorithmi-
cally computing SemR; done manually, this is a burdensome task and
prohibitive at a large scale. Second, we use this study to illustrate a rig-
orous analytical and clinical validation? framework in which we evalu-
ated SemR on a new, large (>2000 observations) database.

We first show that the SemR scores remain accurate at each step
that the measure is automated. Next, we discuss our use of a large
evaluation sample to show the accuracy achieved after automating the
computation of SemR. We first show the accuracy achieved when the
content units for calculating SemR are identified algorithmically rather
than through manual coding. Second, we show the accuracy achieved
when the transcripts are obtained through ASR instead of manually
transcribing them. We then evaluated what happens when the data col-
lection is done remotely and without clinical supervision. To do this,
we compared the SemR scores between participants who provided pic-
ture descriptions in clinic supervised by a clinician and at home in an
unsupervised setting. In the second part of the study, we demonstrate
the relationship between SemR and cognitive function. We used the
fully automated version of SemR and evaluated it for its clinical rele-
vance computing its test-retest reliability, its association with cogni-
tive function, its contribution to cognitive function above and beyond
other automatically obtained measures of language production, and its
longitudinal change for participants with different levels of cognitive

impairment.

RESEARCH IN CONTEXT

1. Systematic Review: The authors conducted a literature
review to identify studies that make use of content infor-
mation units (CIU) extracted from picture description
tasks as a predictor of cognitive impairment. Several arti-
cles and abstracts discussed changes in ClUs and other
language parameters that reflect individuals’ cognitive
functioning.

2. Interpretation: Our study shows how a targeted lan-
guage feature was developed based on previous stud-
ies and fully automated such that it can be algorithmi-
cally extracted from the Cookie Theft picture description
recorded speech. We evaluated it on a large database
(>2000 samples) and showed that it is clinically relevant,
repeatable, and tracks changes in cognition.

3. Future Directions: The article illustrates a framework for
rigorous validation of digitally extracted language fea-
tures. This framework can be used in future work to val-
idate other speech-based measures of cognition.

2 | METHODS
2.1 | Development dataset

We used a small dataset (25 participants, 584 descriptions of pic-
tures) for developing the SemR algorithm. These participants had amy-
otrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) of
varying degrees of severity. The inclusion of participants with unim-
paired speech along with speech impacted by dysarthria and cogni-
tive impairment for developing the algorithm provided us with a rich
dataset with samples that varied in the picture descriptions’ length and
content. Details are found in the supporting information. This dataset
was used for the development of the algorithm, but not the clinical val-
idation, and therefore this study does not claim that the clinical valida-

tion results generalize to ALS or FTD.

2.2 | Evaluation dataset

The sources of the evaluation data included the Wisconsin Registry
for Alzheimer’s Prevention (WRAP) study, DementiaBank,? and Ama-
zon's Mechanical Turk. WRAP and DementiaBank conducted the data
collection in clinic with supervision from a clinician, and were evaluated
for their degree of cognitive impairment. The data collection through
Mechanical Turk was conducted remotely; participants self-selected to
participate in an online “speech task” study from their computers and
were guided through the study via a computer application.

At each data collection, recorded descriptions of the Cookie

Theft picture were obtained. The sample consisted of various
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TABLE 1 Description of the evaluation sample

Disease Monitoring

Evaluation data

Demographic Ccu
Age mean (SD) 58.5(10.5)
Sex (% female) 58%F
Race (%White) 93% W
Education (% less than high school, % 1% < HS,
completed high school, % more than high 16% HS,
school) 83% > HS
Number of observations 2,610
Number of participants 1258

CU-D MCI Dementia
63.6(6.0) 66.7 (6.4) 71.2(8.6)
61%F 73%F 65% F
84% W 78% W 97% W
2% < HS, 12% < HS, 33% < HS,
10% HS, 15% HS, 31% HS,
88% > HS 73% > HS 38% > HS
327 64 311

180 26 195

Abbreviations: CU, cognitively unimpaired; CU-D, cognitive unimpaired showing atypical decline; HS, high school; MCI, mild cognitive impairment; SD, stan-

dard deviation.

TABLE 2 Number of observations for each sample characteristic

Number of

Sample characteristics observations
Speech was manually transcribed 2716

Manual transcription was manually annotated to 2163
manually calculate SemR

Speech was transcribed using ASR 2921

Speech was collected in clinic 2716

Speech was collected remotely 595

Speech sample was collected with paired MMSE 2564

Speech was collected in close temporal proximity 319
(separated by ~1 week)

Abbreviations: ASR, automatic speech recognition; MMSE, Mini-Mental
State Examination; SemR, semantic relevance.

characteristics, including participants who provided repeated mea-
surements over the course of years, participants who completed a
paired Mini-Mental State Examination (MMSE),13 participants who
provided the picture descriptions in clinic supervised by a clinician,
and participants who provided the picture descriptions from home.
Additionally, the sample included transcripts that were manually
transcribed, transcripts transcribed by ASR, and transcripts that were
manually annotated by trained annotators to compute SemR. The
WRAP participants were diagnosed according to a consensus confer-
ence review process as being cognitively unimpaired and stable over
time (CU), cognitively unimpaired but showing atypical decline over
time (CU-D), clinical mild cognitive impairment (MCI), and dementia
(D). The DementiaBank!? participants were described as healthy con-
trols (coded here as CU) and as participants with dementia. Mechanical
Turk participants self-reported no cognitive impairment (CU), absent
clinical confirmation. Table 1 shows descriptive statistics of the sample
for each diagnostic group. Table 2 shows the number of samples
available for each type of data, for a total of 552 (DementiaBank), 2186
(WRAP), and 595 (Mechanical Turk).

In the following sections, unless otherwise specified, each analysis
used all the data that was available given the required characteris-
tics (e.g., when estimating the accuracy of the automatically computed

SemR with the manually annotated SemR, all observations for which
both sets of SemR scores were available were used for the analysis).

2.3 | Development of semantic relevance

We focused efforts on automation of the SemR measure because of
the demonstrated clinical utility of picture description analysis, as well
as its ability to provide insight into the nature of different deficit pat-
terns and differential diagnosis.!® The goal of the SemR measure is to
gauge retrieval abilities, ability to follow directions, and ability to stay
on task in a goal-directed spontaneous speech task. We used the com-
plex picture description task from the BDAE,” in which participants
were shown a picture of a complex scene and were asked to describe
it. SemR is higher when the picture description captures the content
of the picture and is lower when the picture description shows signs
of word finding difficulty, repetitive content, and overall lack of speech
efficiency. In other words, SemR measures the proportion of the pic-
ture description that directly relates to the picture’s content.

The algorithm operates as follows: First, the speech is transcribed.
Then, each word is categorized according to whether it is an element
from the picture or not. For this, the algorithm requires a set of inputs
that indicate what elements from the picture need to be identified. For
the Cookie Theft picture, we chose the 23 elements indicated in Ahmed
et al.’? (e.g., boy, kitchen, cookie) and allowed the algorithm to accept
synonyms (e.g., “young man” instead of “boy”). Finally, the total num-
ber of unique elements from the picture that a participant identifies is
annotated and divided by the total number of words that the partici-
pant produced. Importantly, these keywords were fixed after develop-
ment and were not modified during evaluation.

The supporting information contains an illustration of how SemR

provides a window into speech production in cognitive impairment.

2.4 | ASR transcription

Google Cloud’s' Speech-to-Text software transcribed the speech sam-

ples. The ASR algorithm was customized for the task by boosting the
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standard algorithm such that the words that are expected in the tran-
script have increased probability that they would be correctly recog-
nized and transcribed. This was implemented in Python using Google’s
Python application programming interface.

2.5 | Data analysis

The data analysis is split into three sections to evaluate: (1) accuracy
of the automatic algorithm, (2) sensitivity of SemR to the adminis-
tration method, and (3) clinical utility of SemR by measuring differ-
encesin SemR scores across levels of cognitive impairment, and within-

participant longitudinal change.

2.5.1 | Evaluation of semantic relevance: removing
the human from the SemR computation

In the manual implementation of SemR there are two steps that
involve human intervention, including manually transcribing the par-
ticipant’s recorded picture description then manually annotating the
content units mentioned. To establish the analytical validity of the
automated SemR, we tested replacement of human intervention in
two ways. First, we used manual transcriptions to compare perfor-
mance of the manually annotated SemR to the algorithmically com-
puted SemR. Second, we used ASR-generated transcripts to compare
the automatically computed SemR scores with the manually tran-
scribed and annotated SemR and manually transcribed and automati-
cally computed SemR scores. The goal of this series of analyses was to
show that the automated accuracy was maintained relative to ground
truth (human intervention) at each step of transcription and calculation
of SemR.

To measure the accuracy achieved at each step, we computed the
correlation between each pair (using a mixed-effects model'® given the
repeated measurements per participant) and the mean absolute error
(MAE) of the two.

2.5.2 | Evaluation of semantic relevance: removing
the human from the data collection

Next, we evaluated the feasibility of automating the data collection
to be done remotely, without supervision, instead of in clinic and
supervised. We selected a sample of 150 participants matched on age
and sex, half of whom provided data in clinic (WRAP, DementiaBank)
and half at home (Mechanical Turk). We selected only in-clinic par-
ticipants who were deemed CU by a clinician, and at-home partici-
pants who denied cognitive impairment. The final sample for this anal-
ysis consisted of 75 participants in clinic and 75 participants at home
with average age 62 (standard deviation = 8.0) years old and with
42 women and 33 men in each group. A Welch'’s test (unequal vari-
ances) was conducted comparing the mean SemR scores of the two

samples.

TABLE 3 Correlations and differences between the manually
annotated, manually transcribed algorithmically computed, and
ASR-transcribed algorithmically computed SemR values

Analysis Correlation MAE
Human-transcript-and-SemR versus
Human-transcript-automatic-SemR 0.87 0.04
Human-transcript-automatic-SemR versus
ASR-transcript-automatic-SemR 0.95 0.01
Human-transcript-and-SemR versus
ASR-transcript-automatic-SemR 0.84 0.03

Abbreviations: ASR, automatic speech recognition; MAE, mean absolute
error; SemR, semantic relevance.

2.5.3 | Evaluation of the clinical relevance of SemR

After establishing the accuracy and feasibility of fully automating the
data collection and computation of SemR, we generated an ASR tran-
script and automatically computed SemR for each participant. We eval-
uated its clinical relevance by: (1) estimating the test-retest reliabil-
ity using intra-class correlation (ICC), standard error of measurement
(SEM), and coefficient of variation (CV); (2) estimating its association
with cognitive function and its contribution to cognitive function above
and beyond other automatically obtained measures of language pro-
duction by fitting a model predicting MMSE and by classifying between
disease groups (CU vs. the three disease groups); and (3) estimating the
longitudinal within-person change of SemR for participants at different
levels of cognitive impairment using a growth curve model (GCM). The
supporting information provides a detailed description of the statisti-

cal analyses performed.

3 | RESULTS

3.1 | Evaluation of semantic relevance: removing
the human from the semR computation

For the analytical validation of SemR, we compared the automatic
SemR on manual transcripts, SemR calculated based on manual anno-
tations on the manual transcripts, and automatic SemR on ASR tran-
scripts. Figure 1 shows the plot for each comparison and Table 3
shows the correlations and MAE. All three versions of SemR cor-
related strongly’® and had a small MAE, indicating that the auto-
matic computation of SemR did not result in a substantial loss of
accuracy.

3.2 | Evaluation of semantic relevance: removing
the human from the data collection

Next, we evaluated the impact of the data collection method by
comparing SemR scores of supervised (in-clinic) and unsupervised
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FIGURE 1 Scatterplots showing: (A) the manually annotated SemR values versus manually transcribed algorithmically computed SemR values,
(B) manually transcribed algorithmically computed SemR values versus ASR-transcribed algorithmically computed SemR values, and (C) manually
annotated SemR values versus ASR-transcribed algorithmically computed SemR values. SemR, semantic relevance

(at-home) participants. A Welch’s test indicated that the mean SemR
scores were significantly different between the two groups (at
home = .21, inclinic=.18,t=2.55,P = .01, Cohen’s d = .43). However,
Cohen’s d = .43 indicated that the difference between the two groups
was small. Figure 2 shows the boxplots with the SemR scores for the

at-home and in-clinic samples.

33 |

331 |

Evaluation of the clinical relevance of SemR

Test-retest reliability

To evaluate the clinical validity of SemR, we first estimated the test-
retest reliability. We found that ICC = .73, SEM = .04, CV = 19%.
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FIGURE 3 Test-retest reliability plot for SemR. SemR, semantic
relevance

This was moderate!” to good!® reliability, which was considerably
higher than most off-the-shelf language features extracted from text.1?
Figure 3 shows the test-retest plot.

3.3.2 | Cross-sectional relationship between SemR
and cognitive impairment

We fit a series of models to evaluate how SemR was related to cogni-

tive impairment. The final results showed that when using SemR alone,
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FIGURE 4 Scatterplot showing the predicted and observed
Mini-Mental State Examination (MMSE) values

the correlation between SemR and MMSE was r =.38. When using the
set of automatically computed language metrics (not including SemR),
the correlation between the predicted and observed MMSE (using 10-
fold cross-validation) was r = .38 with MAE = 4.4. Finally, when using
SemR in addition to the set of metrics to predict MMSE, the corre-
lation between the observed and predicted MMSE was r = .65 and
MAE = 3.5. Finally, we evaluated SemR'’s ability to classify disease (CUs
vs. the three clinical groups) above and beyond the MMSE alone, and
found that the area under the curve (AUC) increased from AUC = .78
(MMSE alone) to AUC = .81 (MMSE and SemR). This indicated that
SemR offered insight into one’s cognition both as a stand-alone mea-
sure and above and beyond what was possible through other measures.
Figure 4 shows the observed and predicted MMSE scores for the final

model.

3.3.3 | Longitudinal trajectory of SemR

The longitudinal analyses showed that all groups had declining SemR
scores. However, the CUs had slower-declining SemR scores than the
impaired groups. Among the impaired groups, the results showed an
apparent non-linear decline, in which the scores started at the highest
point among the CU-D participants, followed by the MCI participants
with intermediate scores and the steepest decline, finally followed by
the dementia participants, who had the lowest SemR scores and whose
trajectory flattened again. Table 4 shows GCM parameters for the four
groups. Figures 5A and B show the expected longitudinal trajectories
according to the GCM parameters for the healthy (A) and cognitively
impaired (B) groups. Although all data were used for the analyses, for

easier visualization of the results in the cognitively impaired groups we
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TABLE 4 Parameter estimates for the GCMs for each cognitive group

Parameter

Fixed effects

Intercept (centered at age 65)

Slope

Random effects
Participant intercepts SD
Residuals SD

Abbreviations: CU, cognitively unimpaired; CU-D, cognitive unimpaired showing atypical decline; GCM, growth curve model; MCI, mild cognitive impairment;

Dementia estimate
CU estimate (S.E.) CU-D estimate (S.E.) MClI estimate (S.E.) (S.E.)
0.158(.002) 0.167 (.004) .163(.01) .132(.005)
—.0004 (.0002) —.0014 (.0006) —.0026 (.0015) —.0005 (.0004)
0.03 0.05 0.03 0.03
0.04 0.04 0.04 0.05

SD, standard deviation; S.E., standard error.
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restricted the plots to the age range with the greatest density of partic-
ipants in each group (approximately between Q1 and Q3 for each cog-
nition group).

4 | DISCUSSION

The present study builds on the work of Mueller et al.,! which eval-
uated the contribution of connected language, including the Cookie
Theft picture descriptions, to provide early evidence of mild cognitive-
linguistic decline in a large cohort of participants. They used latent fac-
tor analysis to discover that longitudinal changes in the “semantic cate-
gory” of measures were most associated with cognitive decline. Seman-
tic relevance in this highly structured picture description task cap-
tures the ability to speak coherently by maintaining focus on the topic
at hand. Some studies have shown that older adults tend to produce
less global coherence (and more irrelevant information) in discourse
than younger adults.2° Furthermore, more marked discourse coher-
ence deficits have been reported across a variety of dementia types
including Alzheimer’s disease (AD) dementia?! and the behavioral vari-
ant of FTD.22 The neural correlates of coherence measures are diffi-
cult to capture, because multiple cognitive processes contribute to suc-
cessful, coherent language. However, the SemR measure is an ideal tar-
get for the cognitive processes known to be affected across stages of
dementia. For example, in the case of AD dementia, lower semantic rel-
evance could be the result of a semantic storage deficit,2® search and
retrieval of target words,2* or inhibitory control deficits,2> all of which
can map onto brain regions associated with patterns of early AD neu-
ropathology.

The development of the automated SemR metric in the present
report was intended to mitigate the labor-intensive task of coding con-
tent units manually, in an effort to validate a tool that can expedite
research and enhance clinical assessment in the context of pre-clinical
detection of cognitive decline. The clinical validation of SemR yielded
results that were consistent with previous research (e.g., declining
scores for older and more cognitively impaired participants).

In addition to developing and thoroughly evaluating the automat-
ically extracted language measure SemR, this article illustrates the
use of a rigorous framework for analytical and clinical validation!* for
language features. There has been a great deal of recent interest in
automated analysis of patient speech for assessment of neurological
disorders.2627.28 |n general, machine learning (ML) is often used to find
“information” in this high-velocity data stream by transforming the raw
speech samples into high-dimensional feature vectors that range from
hundreds to thousands in number. The assumption is that these fea-
tures contain the complex information relevant for answering the clin-
ical question of interest. However, this approach carries several risks2?
and most measures of this type fail to undergo rigorous validation, both
because large datasets containing speech from clinical groups are dif-
ficult to obtain, and because there is no way to measure the accuracy
of an uninterpretable feature, for which there is no ground truth. The
consequence is measures that vary widely in their ability to capture

clinically relevant changes.!? In contrast, we followed best practices

for “fit for purpose” algorithm development, as put forth by the Digi-
tal Medicine Society.!? First, the algorithm was developed on one set
of data from participants with ALS and FTD, and then tested on a sep-
arate, large, out-of-sample dataset from a different clinical population
(CU, MCl, and D), thus fully separating the development, freezing of the
algorithm, and testing. During the testing of the algorithm, we showed
how we evaluated for accuracy at each step of the automation. Finally,
we validated SemR as a clinical tool, evaluating its reliability, associa-

tion with cognitive function, and change over time.

5 | LIMITATIONS AND FUTURE DIRECTIONS

A surprising finding in the GCM (longitudinal) analyses was that CU-
D participants had slightly higher mean SemR than CU participants (a
mean SemR difference of < .01 between the two groups), and the dif-
ference remained even after controlling for age, sex, education, read-
ing scores, and the number of sessions per participant. Because there
are many factors that could be responsible for small differences in
point-wise estimates in GCM models, between-group differences at
any given point should be interpreted with caution. Rather, the GCM
analysis should be used to visualize approximate longitudinal trends
across groups. Evaluating point-wise trends at different points in time
requires an age-matched sample and an analysis that controls for other
variables that may impact language that are not accounted for in this
study.

There are also several other ways in which SemR can be further val-
idated. First, SemR was evaluated for its association with cognition by
comparing it to MMSE scores. However, the MMSE is only a single mea-
sure of cognitive functioning with established ceiling effects. There-
fore, further measures of cognitive function, including language mea-
sures or brain imaging biomarkers, should be tested to further extend
the SemR validation.

Second, the effect of demographic characteristics on SemR was not
evaluated. Although this study showed that SemR declined with cogni-
tive impairment and age, cross-sectional effects may be confounded by
education, intelligence, culture, generational differences, etc.

Third, in this study we compared the in-clinic and at-home scores
in CU participants only. This comparison needs to be extended using
the clinical populations of interest to determine whether cognitively
impaired participants can perform the same tasks unsupervised.

Finally, SemR does not by itself completely characterize cognition.
Ongoing work is needed for continuing the development and out-of-
sample validation of complementary features that can assess other
cognitive domains as accurately and reliably as the semantic relevance

measure presented here.
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