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Abstract

In this study, we present and provide validation data for a tool that predicts forced vital capacity (FVC) from speech
acoustics collected remotely via a mobile app without the need for any additional equipment (e.g. a spirometer). We
trained a machine learning model on a sample of healthy participants and participants with amyotrophic lateral sclerosis
(ALS) to learn a mapping from speech acoustics to FVC and used this model to predict FVC values in a new sample
from a different study of participants with ALS. We further evaluated the cross-sectional accuracy of the model and its
sensitivity to within-subject change in FVC. We found that the predicted and observed FVC values in the test sample
had a correlation coefficient of .80 and mean absolute error between .54 L and .58 L (18.5% to 19.5%). In addition, we
found that the model was able to detect longitudinal decline in FVC in the test sample, although to a lesser extent than
the observed FVC values measured using a spirometer, and was highly repeatable (ICC = 0.92-0.94), although to a
lesser extent than the actual FVC (ICC = .97). These results suggest that sustained phonation may be a useful surrogate
for VC in both research and clinical environments.
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Introduction function requires the use of specialized hardware,
namely spirometers. This prevents widespread use
and has resulted in a recognized need that innova-

tive solutions are required for low-cost, low-

Optimal management of patients with amyotrophic
lateral sclerosis (ALS) and other neuromuscular
diseases requires the ability to accurately assess

respiratory function. Timely assessment of pul-
monary function is important in gauging prognosis
and instituting care such as noninvasive ventilatory
support. Approximately half of ALS patients in the
United States receive care in multidisciplinary clin-
ics where vital capacity and other pulmonary func-
tion studies are routinely performed. Telemedicine
is quickly emerging as an appealing alternative to
in-clinic visits as it reduces patient burden and
allows for more frequent evaluations. While exist-
ing telemedicine solutions allow for efficient real-
time communication between patients and doctors,
remote objective assessment of patients’ pulmonary

burden, remote assessment of pulmonary function,
particularly for vulnerable populations (1).

There are several studies that have collected
vital capacity information remotely (2); however,
they all require measurement using an at-home
spirometer. As an alternative, there is growing evi-
dence in the literature that speech-based tasks
such as single breath count and maximum sus-
tained phonation provide moderate correlations
with vital capacity in healthy participants (3,4) and
those with asthma or COPD (5). This is an
appealing alternative to spirometry-based assess-
ment as speech can be elicited and measured using
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a mobile app without the need for specialized
equipment. In this paper we present a new tool for
predicting FVC and systematically investigate its
performance on participants with ALS. Here we
report findings derived from two separate observa-
tional, longitudinal studies where participants with
ALS had longitudinal measurements of both FVC
(measured via spirometer, either by the patient at
home or by a trained evaluator in clinic) and sus-
tained phonations obtained at home using an app
installed on the patient’s mobile device.

Methods
Data collection

Data was collected from two separate studies. The
first study was used to train a model which could
predict FVC, and a separate study was used to test
the accuracy of the prediction model. The two
samples are described below. For both studies,
approval was granted by the Institutional Review
Board of St. Joseph’s Hospital and Medical
Center, and all subjects signed an informed con-
sent document.

Training sample. The training sample was from
ALS at Home (6,7), an observational, longitudinal
study that was conducted entirely remotely. This
study included healthy participants and partici-
pants with amyotrophic lateral sclerosis (ALS).
Participants were recruited and assessed from
home. For the first three months, participants
were requested to provide daily speech samples
and spirometry measures, as well as measures of
grip strength, general activity, electrical impedance
myography, and a weekly self-assessment of func-
tion using the ALS Functional Rating Scale -
Revised (ALSFRS-R). Subsequently, participants
were requested to perform the same battery twice
per week for an additional six months. Participants
were allowed to receive assistance from their care-
givers if needed. The FVC and sustained phon-
ation tasks were performed from home. The
original training sample consisted of 110 partici-
pants. 55 participants did not provide FVC data
(the outcome of interest) and 46 participants did
not provide height data (a necessary predictor).
After removing all participants with no overlapping
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FVC and phonation data or no height provided,
the final training sample consisted of 39 partici-
pants, each one measured repeatedly throughout
the study such that there were 1,971 observations
with complete data.

Test sample. The test sample was obtained from
an ongoing observational longitudinal study of
ALS patients that is currently in progress, whose
purpose is to assess speech and language changes
in ALS patients with and without symptoms of
cognitive dysfunction. Every three months, partici-
pants attended a clinic where FVC was measured
and a speech sample obtained (including max-
imum-effort sustained phonation) with clinician
supervision. Participants also provided weekly
speech samples that included a maximum-effort
sustained phonation from home. There was a total
of 25 participants with 47 FVC measurements and
578 sustained phonation measurements. Table 1
shows the descriptive statistics for the final training
and test samples. To minimize participant burden
in both studies participants were only asked to
provide one attempt at MPT, as multiple other
measures were being assessed at each session.

Speech collection and analysis

For both studies, participants downloaded a
mobile app onto a device (smartphone or tablet)
which was used for recording an ambient noise
sample and a maximum-effort sustained phonation
task. Prior to vocal tasks being performed, a sam-
ple of ambient noise was recorded, and this was
used to filter out signals during the task that were
not participant derived. Participants were
instructed to take a deep breath and say “ahh” for
as long as possible until they ran out of breath.
The recorded speech sample was saved as a .wav
file and sent to a secure, HIPAA-compliant cloud-
based repository for storage. A speech analysis
algorithm used the ambient noise sample and the
sustained phonation to automatically assess the
maximum phonation time (MPT)—the length of
the sustained phonation. This was done by calcu-
lating the time from phonation onset to phonation
offset, as determined by a speech activity detector.
The automatic MPT algorithm is accurate to
within a mean absolute error of 0.01 seconds, as

Table 1. Descriptive demographic statistics for training and test samples.

Description

Training Sample

Test Sample

Number of Participants

Total Observations

Gender

Age (mean, SD)

FVC (L) (mean, SD)

ALSFRS-R total (in ALS participants)
Height (cm)

15F;24 M

172.0 (8.6)

33 ALS; 6 HC
1,971 (overlapping FVC and sus. phon.)

58.1 (SD = 9.4)
3.51 (SD = 1.15)
37.1 (SD = 7.3)

25 ALS

47 FVC 0bs.578 sus. phon.
8F, 17M

65.4 (SD = 11.8)

3.38 (SD = 1.31)

36.9 (SD = 6.0)

173.8 (SD = 11.5)
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determined by a comparison of automatically cal-
culated MPT values to ground truth MPT values
computed from 100 randomly selected speech
files, where speech onset and offset were manually
labeled by trained annotators. Trials were excluded
if no perceptible patient phonation could be
detected.

FVC collection

In the training sample, FVC measurements were
performed from home. Participants were provided
an AirSmart Spirometer (Nuvoair AB, Stockholm,
Sweden). For each session, participants were asked
to perform three FVC maneuvers, with the highest
of the three uploaded to Air Smart’s health cloud,
and transferred to REDCap database (6).

In the test set, patients submitted speech and
language samples via the app weekly from home
and at their routine clinic visits. Patients were seen
every three months as part of their clinical care; as
part of standard of care, FVC was obtained by a
licensed respiratory therapist or an evaluator
trained and certified by the NEALS consortium,
with 3-5 attempts recorded at each visit.

FVC prediction model

A machine learning (ML) model was trained to
predict FVC based on the at-home data. Several
acoustic features and demographic characteristics
were considered, including MPT, measures of
pitch, loudness, and vocal quality extracted from
the sustained phonation, and age, height, gender,
and weight. A mixed-effects framework was used
to account for the repeated measurements per par-
ticipant. To separate the between-person effects
and within-person effects, each feature extracted
from the phonation was disaggregated such that
each participant would have a mean for each pre-
dictor and a deviation from the mean for each
observation, following the within-person -effects
disaggregation method described in (8).

Both linear and nonlinear models consisting of
different sets of variables were tested. The per-
formance of each model was evaluated using leave-
one-participant-out cross-validation on the training
data, in a manner similar to that used in (9). The
model was estimated on a training sample consist-
ing of all participants minus one, and the outcome
was predicted on the participant that was left out
of the training sample using the estimated model.
This process was repeated leaving out one partici-
pant at a time. The performance of each model
was evaluated using the mean absolute error
(MAE, described below) between the predicted
and observed FVC values using the out-of-sample
predictions (the estimates obtained in each partici-
pant that was left out while training set for the

model) (9). The final model was a linear model
which included age, height, and MPT as features.

Evaluation of cross-sectional prediction accuracy

Once the final training model was obtained, we
tested its accuracy on the test sample described
above.

Using the features and parameters estimated
from the final training model, a predicted FVC
measure was obtained for each observation in the
test set. Prediction accuracy was evaluated using
the mean absolute error (MAE) between the
observed FVC measures and the FVC measures
predicted according to the model:

MAE = Z Xl: IFVC;; — FVC,|

i=1 j=1

where 7 is the ¢-th participant, j is the j-th observa-
tion for the i-th participant, FVC is the observed
FVC value, and FIC is the predicted FVC value.
The MAE is interpreted in the same units as the
original outcome, which in this case is FVC L.
Lower MAE scores indicated better prediction
accuracy.

Evaluation of longitudinal change

After evaluating the prediction accuracy of the
model, we evaluated how the observed FVC and
the predicted FVC tracked with longitudinal
change. To evaluate the longitudinal change, we
used a growth curve model (GCM) (10). A GCM
is a mixed-effects model where the dependent vari-
able is the outcome of interest and the primary
predictor is the time variable. The following GCM
was used:

FVC,']‘ = bo; + by; - Lj + e

where FVCj; is the FVC value for individual 7 at
time j; bo; is the intercept (e.g. the expected FVC
measure when t; = 0) for participant ¢, which fol-
lows a normal distribution with mean intercept f3,
(fixed effect) and a standard deviation; by; is the
mean slope (i.e. rate of change) for all individuals;
t;j is the value of the time variable (e.g. number of
days since enrollment) for individual ¢ at time j;
and ¢; is the residual term for individual 7 at time
j. Although we attempted to allow for a unique
slope for all individuals by allowing b,; to have a
random term (i.e. standard deviation), participants
had very few observed FVC measures and the
model did not converge. Therefore, the final
model (which did converge) allowed for random
intercepts but no random slopes.

We fit two separate GCMs: one for the
observed FVC measures and one for the FVC
measures predicted by the model. The time vari-
able was the number of days since enrollment in
the study. Prediction accuracy of the final model
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on the training sample was evaluated using leave- the repeatability of the MPT prediction using the
one-participant-out cross-validation. All correla- intra-class correlation (ICC), the within-person
tions reported were adjusted for the repeated standard error of measurement (SEM), and the
measurements per participant (11). We estimated within-person coefficient of variation (CV) (12).
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Figure 1. Examples of declining (a) and stable (b) FVC and MPT trajectories. The gray points show the observed participants’ FVC
and MPT values. The blue solid line shows the mean trajectory (obtained from the regression equation) for the FVC for each
participant. The solid red line shows the mean trajectory for the MPT for each participant. The gray shading around the lines shows
the confidence band for the mean trajectory.
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Results
Evaluation of cross-sectional prediction accuracy

Figure 1 displays individual trajectories of partici-
pants from the training set for FVC (blue) and
MPT. We found that the MAE was .47 LL (relative
MAE = 14%) and the correlation coefficient r was
.72. We then used the trained model to obtain
FVC predictions on the test sample and evaluated
the performance on that sample. In the test sam-
ple, the MAE was .58 L. (relative MAE = 19.5%)
and the correlation coefficient » was .80, meaning
that on average, the predicted FVC deviated .58 L
from the observed FVC in the test sample. Finally,
we evaluated the prediction accuracy using the
average of 3 and 5 MPT measurements for predic-
tion (i.e. the average of the observation overlap-
ping with FVC, the one or two before, and the
one or two after), and found that prediction

Table 2. Model fit for both training sets, expressed as Mean
Absolute Error (MAE) and correlation coefficient (r).

accuracy increased when more MPT measure-
ments were used. The model fit results are shown
in Table 2, including the MAE, relative MAE, and
r. Figure 2 shows predicted and observed FVC in
a scatterplot using the best model, consisting of
the 5 closest MPT measurements.

Evaluarion of longitudinal change

We fit a GCM to the observed and predicted
FVC values in the training sample (via cross-val-
idation) and test sample, and we evaluated the
longitudinal slopes (mean rate of change) for both
sample sets. Table 3 shows the GCM parameters
for the observed and predicted FVC models using
both the cross-validated training data and the test
data. The fixed-effects intercepts indicate the
expected intercept (expected FVC at the start of
the study), the fixed-effects slopes indicate the
expected rates of change (expected decline FVC
in L per month), the intercepts standard deviation
indicates how much participants varied in their
unique intercepts (how different participants were
at the start of the study), and the residual stand-

Relative ard deviation is how much each observation devi-

Model MAE 1) MAE r ated from each participant’s unique trajectory.

Training set: .47 14% 72 The slopes had fixed effects but not random

leave-one-participant-out effects. The final models reported in this paper all

cross-validation converged appropriately. Both GCMs yielded sig-
Test set: predict FVC 58 19.5% .80 . . .- .

o . nificantly negative slopes, indicating that both
using single observation . o
Test set: predict FVC using .56 18.9% .80 observed and predicted FVC were declining

the three nearest observations throughout the study.
Test set: predict FVC using 54 185% .80 Figure 3 shows the observed data for the FVC
the five nearest observations and predicted FVC side-by-side. For clearer visu-
alization of the trajectories, only those participants
50001 7,
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Figure 2. Observed and predicted FVC on the test data. Each point shows each FVC observed and predicted value. The diagonal line
shows where the region where the observed and predicted values are identical. The closer the points are to the diagonal line, the lower

the prediction error is.
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Table 3. Parameters for the Growth Curve Models (GCMs) for both training sample and test sample.

Test Data Model:
Observed FVC

Parameter Mean (standard error)

Test Data Model:
Predicted FVC
Mean (standard error)

Training Data Model:
Observed FVC
Mean (standard error)

Training Data Model:
Predicted FVC
Mean (standard error)

Fixed effects

Intercept (in Liters) 3.28 (.24) 3.27 (.23) 3.64 (.18) 3.61 (.15)
Slope (in L/month) —.037 (.01) —.017 (.004) —.027 (.005) —.024 (.006)
Random effects

Intercepts standard deviation 1.15 1.13 1.14 .94
Residual standard deviation .17 .33 .19 .24
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Figure 3. Observed and predicted FVC longitudinal trajectories. The gray points show the observed FVC data (left) and the predicted
FVC data according to the model (right). Each participant’s data are connected by the gray lines. The solid blue line and the blue
shade show the expected longitudinal trajectory and confidence band according to the growth curve model.

with at least 15 phonation measurements were
included in the plots. However, the full sample
was used for the analyses. The dark blue lines
show the predicted trajectory according to the
GCM and the blue shades show the 95% confi-
dence band, which was estimated using the pre-
dicted population interval method (13). As shown
in the plots, both predicted and observed FVC val-
ues had very similar intercepts and declining tra-
jectories; however, the predicted FVC values
declined at a slower rate than the observed FVC
values.

Repeatability of the predicted FVC measurement

The test-retest repeatability scores were computed
for observed FVC and predicted FVC values on
the training and test data. The ICC ranges from 0
to 1, where higher scores indicate higher repeat-
ability. SEM is the within-person standard devi-
ation, and it is expressed in the observed units of
FVC (L), such that lower values indicate lower
variability (and therefore higher repeatability). The
CV is the within-person variability (standard devi-
ation) divided by the mean of the data, and it is
expressed as a percentage, such that lower values

Table 4. Reproducibility of model using Interclass Correlations
(ICCS), Standard Error of the Mean, (SEM) and Coefficient
of Variation (CV).

Model ICC SEM CV
Observed FVC in Training Data 0.97 0.19 6%
Predicted FVC in Training Data 0.94 0.24 9%
Observed FVC in Test Data 0.97 0.22 6%
Predicted FVC in Test Data 0.92 0.34 15%

indicate lower variability (and therefore higher
repeatability). Table 4 shows the repeatability
scores for the observed and predicted FVC in the
training and test sets. We found that the repeat-
ability in the predicted FVC was overall lower
than the repeatability in the observed FVC, but
still appropriate for clinical applications (14,15).

Discussion

A mixed-effects machine learning model was con-
structed to predict FVC from height, age, and
MPT. Cross-sectionally, this model had a max-
imum out-of-sample accuracy of .54L MAE
(18.5% relative MAE) with a correlation between
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the predicted and observed FVC values of r = .80.
To predict longitudinal change, a growth curve
model was fit to observed and predicted FVC.
The slope of the predicted FVC was slightly less
steep than the slope of the observed FVC for the
test sample. There are two possible explanations
for this. First, the model was trained using at-
home spirometry measures whereas the test sample
used in-clinic spirometry measures. Second, partic-
ipants performed at-home spirometry without the
guidance of a clinician, whereas the in-clinic spir-
ometry was administered by a respiratory therapist
according to standard protocol.

The repeatability of the FVC prediction was
quite good, though slightly lower than the repeat-
ability of the observed FVCs. This was a result of
the lower reliability of the MPT measurements,
also observed in other studies (16). Several studies
have analyzed how to elicit maximum-performance
sustained phonation in other contexts and have
suggested that modeling and repeat performance
of the sustained phonation task increases MPT
(17) and improves reliability (18). Future studies
that aim to assess FVC via MPT would benefit
from modeling the sustained phonation via training
videos and then repeating performance of the task
for each session and taking the maximum among
the tasks.

Unlike a standard FVC test, the sustained
phonation is modulated by both the vital capacity
and the valving of the column of exhaled air by the
vocal folds. Thus, maximum phonation time is
impacted both by phonatory function and respira-
tory function. This is an important consideration
in the present study, as vocal quality may change
over time in ALS, especially in the case of bulbar-
onset (19). To explore the relative contributions of
phonatory and respiratory function to MPT, we fit
two models using FVC as a proxy for respiration
and cepstral peak prominence (CPP) as a proxy
for phonation quality (20), and for each model, we
estimated the amount of variation explained by the
predictor using the R? for mixed-effects models as
described in (11). In the first model, we predicted
MPT based on FVC and found that R? = .24.
Then we fit a model where we predicted MPT
based on CPP alone and found that R?> = .01.
Therefore, the variability in MPT was moderately
influenced by respiration, but only mildly influ-
enced by the vocal quality of the phonatory func-
tion. The strong association between FVC and
predicted FVC in our results also support MPT as
a measure for respiratory function, with only min-
imal impact from the quality of the phonation for
these participants. It would be interesting to deter-
mine whether specific clinical characteristics such
as bulbar disease burden contributed to reliability
and/or predictive accuracy, but patient numbers
were not sufficient to assess this.

MPT is only one of a number of tasks that
might be predictive of VC; it will be up to future
studies to determine whether MPT can function in
a useful manner and if other tasks may provide
equivalent or improved predictive capacity. The
extent to which MPT might serve as a useful out-
come measure in clinical trials is an important
question. The natural history cohorts that form the
basis of this study were not selected with clinical
trial inclusion criteria in mind; future studies in
cohorts more representative of the clinical trial
population will help to determine how this meas-
ure functions in that environment. Further experi-
ence in the clinical setting will also help determine
the extent to which MPT can serve as a clinically
useful surrogate in clinical situations where VC
cannot be obtained, either because a visit is being
conducted remotely or if the procedure is deemed
a risk for any reason.

Conclusion

In this study, we showed that it was possible to
assess respiratory function using a maximum-per-
formance phonation task. This could be done
remotely and by using a phone, without the need
for specialized equipment. We found that pre-
dicted FVC values mapped onto observed FVC
measurements on a new sample that was not used
for training the model. The GCMs showed that
the predicted FVC tracked longitudinally, although
to a lesser extent than the actual FVC measure-
ments. We also found that the test-retest reliability
was lower than the actual FVC, but the reliability
was still commensurate with other commonly used
outcome measures in ALS (14,15).
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