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a b s t r a c t

In this paper, we study the effect of impermeable boundaries on the symmetry properties of a random
passive scalar field advected by random flows. We focus on a broad class of nonlinear shear flows
multiplied by a stationary, Ornstein–Uhlenbeck (OU) time varying process, including some of their
limiting cases, such as Gaussian white noise or plug flows. For the former case with linear shear,
recent studies (Camassa et al., 2019) numerically demonstrated that the decaying passive scalar’s
long time limiting probability distribution function (PDF) could be negatively skewed in the presence
of impermeable channel boundaries, in contrast to rigorous results in free space which established
the limiting PDF is positively skewed (McLaughlin and Majda, 1996). Here, the role of boundaries
in setting the long time limiting skewness of the PDF is established rigorously for the above class
using the long time asymptotic expansion of the N-point correlator of the random field obtained from
the ground state eigenvalue perturbation approach proposed in Bronski and McLaughlin (1997). Our
analytical result verifies the conclusion for the linear shear flow obtained from numerical simulations
in Camassa et al. (2019). Moreover, we demonstrate that the limiting distribution is negatively skewed
for any shear flow at sufficiently low Péclet number. We demonstrate the convergence of the Ornstein–
Uhlenbeck case to the white noise case in the limit γ → ∞ of the OU damping parameter, which
generalizes the results for free space in Resnick (1996) to the channel domain problem. We show that
the long time limit of the first three moments depends explicitly on the value of γ , which is in contrast
to the conclusion in Vanden Eijnden (2001) for the limiting PDF in free space. To find a benchmark for
theoretical analysis, we derive the exact formula of the N-point correlator for a flow with no spatial
dependence and Gaussian temporal fluctuation, generalizing the results of Bronski et al. (2007). The
long time analysis of this formula is consistent with our theory for a general shear flow. All results
are verified by Monte-Carlo simulations.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Partial differential equations (PDEs) with random coefficients
ave been the focus of many studies as they occur in a variety of
athematical models of physical systems. Some examples from

his class of PDEs include passive scalar (e.g., fluid temperature
r solute concentration) advection by random fluid flows [1–4],
inear and nonlinear Schrödinger equations with random po-
entials [5,6], light propagating through random media [7] and
andom water waves impinging on a step [8,9].

Motivated by the Chicago convection experiments [10], ran-
om passive scalars have been intensely studied as a simplified
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odel for intermittency in fluid turbulence that, while enjoy-
ng a linear evolution, retain many statistical closure features
eminiscent of problems in fluid turbulence [4,11–15]. In partic-
lar, the case of diffusing passive scalar advected by a rapidly
luctuating Gaussian random fluid flow has been the focus of
uch analysis as the moment closure problem is bypassed in

he white noise limit [1,2,4,16,16–20]. Notably, the availability of
losed evolution equations for the statistical correlators led to the
iscovery that a diffusing passive scalar could inherit a heavy-
ailed, non-Gaussian PDF from a Gaussian random fluid flow
1,17,19,21]. Additional studies have explored the role played by
inite or infinite correlation times in a random shear flow [22,23].
his generic non-Gaussian behavior in a passive scalar has been
ermed ‘scalar intermittency’. Subsequently, similar findings have
een observed in field experimental data, such as atmospheric
ind measurements [24] as well as observations of stratospheric
nert tracers [25].
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Further investigations have provided more in depth under-
standing of how the non-Gaussian measure is dynamically at-
tained [26], and further explored the case of a passive scalar
advected by a shear-free temporally fluctuating wind, where the
entire probability measure can be determined at any time [27].
This further exhibited how the diffusivity adjusts the location
of singularities in the probability measure. Additional studies
contrasted the scalar PDF inherited by an unbounded linear shear
with that of a bounded, periodic shear flow [18]. This established
that for integrable random initial data the PDF would ‘Gaus-
sianize’ at long times, whereas random wave initial data whose
Fourier transform is zero in a neighborhood of the origin would
produce divergent flatness factors in the same long time limit.

While theoretically interesting, unbounded domains are of
course unattainable in actual experiments, and the effects of
boundaries need to be included for realistic models. Recently, the
role of impermeable boundaries has been explored in a channel
geometry with deterministic initial conditions [28]. This work
established the surprising role that the boundary conditions play
in setting the skewness of the PDF. McLaughlin and Majda [1]
established that in free-space, with deterministic initial data,
the long time PDF skewness would be strictly positive, whereas
Monte-Carlo simulations in [28] have demonstrated that with
no-flux boundary conditions in a channel geometry, the long
time PDF skewness can be negative. Further, it has been shown
in [28] that such flows could be physically realized by a ran-
domly moving wall. More recently, the enhanced diffusion [29]
and third spatial Aris moment [30] induced by a periodically
moving wall was studied experimentally and theoretically [31],
where it is noteworthy that the flows’ temporal dependence is
non-multiplicative.

Inspired from the ground state energy expansion strategy
to handle more realistic flows (e.g. periodic flows in [18]) and
the recent numerical findings provided in [28], here we rig-
orously establish that impermeable boundary conditions in a
channel geometry can yield a scalar PDF with negative long-time
skewness. We do so for a range of molecular diffusivities and
for arbitrary nonlinear shear layers multiplied by a stationary
Ornstein–Uhlenbeck process, through an explicit calculation of
the long time scalar skewness asymptotics. Further, we gain
insight into the role of the correlation time in the underlying
stochastic process in the dynamic evolution of the scalar skew-
ness, and in particular establish that longer correlation times
yield increased transient dynamics.

The paper is organized as follows: In Section 2, we formulate
the problem of the evolution of the passive scalar field advected
by a nonlinear shear layer multiplied by an Ornstein–Uhlenbeck
random process with an impermeable boundary and introduce
some important conclusions of this scalar intermittency model.
In Section 3, we derive a long time asymptotic expansion of the
N-point correlation function of the scalar field by the perturbation
theory and the differential operator spectral theory. Based on
the N-point correlation function, we study the PDF of the scalar
and show how the flow controls the asymmetry of PDF, which
rigorizes and generalizes the conclusions in the article [28]. We
perform numerical simulations for the linear shear flow multi-
plied by an OU process with different parameters by using the
backward Monte-Carlo method described in Appendix A.1. The
numerical results quantitatively demonstrate the validity of the
formulae we derive in this section. In Section 4, we study the
model with a spatially uniform, temporally Gaussian fluctuated
shear flow. Being a special case of shear flow, the spatially uni-
form structure allows access to the exact formulae of the Green’s
function and the N-point correlation function. These are consis-
tent with the long time asymptotic expansion in Section 2 and

are verified by Direct Monte-Carlo (DMC) simulation proposed

2

in [28]. In Section 5, we summarize the conclusions from the
findings in the paper and briefly discuss future studies.

2. Setup and background of the problem for scalar intermit-
tency

Wewill study intermittency in the following random advection
diffusion equation with deterministic initial condition T0 (x, y)
and impermeable channel boundary conditions,

∂T
∂t

+ ξ (t)u(y)
∂T
∂x

= κ∆T , T (x, y, 0) = T0(x, y),
∂T
∂y

⏐⏐⏐⏐
y=0,L

= 0, (1)

where the domain is {(x, y)|x ∈ R, y ∈ [0, L]}, L is the gap thick-
ness of the channel, κ is the diffusivity, ξ (t) is a zero-mean,
Gaussian random process with the correlation function given by
⟨ξ (t)ξ (s)⟩ = R(t, s). The time dependent random shear flow
can originate from either a time varying pressure field, or by
randomly moving portions of the boundary. Such a shear flow
can be obtained by solving the Navier–Stokes equations with
boundary conditions matching the wall velocity ξ (t), see sec-
tion 2 of [28] for more details. Our recent study [31] regarding
tracer dispersion induced by a periodically moving wall led to
the development of a realizable experimental framework, where
the computer-controlled robotic arm we developed can move
the wall randomly and generate the desired random shear flow
with suitable parameters of the fluid and the channel. In this
experimental configuration, T (x, y, t) is the concentration of the
tracer which can be measured by optical methods. Hence, it
is natural to consider the initial condition with the constraints
T0(x, y) ≥ 0 and

∫
∞

−∞
dx
∫ L
0 dyT0(x, y) <∞.

We note that in this study we only consider shear flows whose
spatial averages are non-zero, such as would arise in an experi-
ment in which only one channel wall is moved, with statistics
measured in the laboratory frame. We note that the symmetric
case involving two oppositely moving walls requires higher order
asymptotics to compute leading order long time skewness limits
and will be explored in future work.

In this paper, two additional simplifying assumptions about
flows are made. 1) ξ (t) is a Gaussian white noise in time so that
R(t, s) = g2δ(t − s), or 2) ξ (t) is a stationary Ornstein–Uhlenbeck
process with the damping parameter γ and dispersion parameter
, which is the solution of stochastic differential equation (SDE)
ξ (t) = −γ ξ (t)dt + σdB(t) with the initial condition ξ (0) ∼

(0, σ 2/2γ ). Here B(t) is the standard Brownian motion and
(a, b) is the normal distribution with mean a and variance b.

The correlation function of ξ (t) is R(t, s) = σ2

2γ e
−γ |t−s|. γ−1 is often

referred to as the correlation time of the OU process. It is easy to
check that the stationary OU process converges to the Gaussian
white noise process as the correlation time vanishes with fixed
σ/γ . The underlying Brownian motion, B(t), in the SDE introduces
a canonical probability space (ΩB, PB) equipped with the filtration
FB that is induced by the Brownian motion itself [32].

Notice that γ ∼ Time−1, σ ∼ Time−
3
2 . With the change of

variables,

Lx′ = x, Ly′ = y,
L2

κ
t ′ = t, g = σ/γ ,

g
√
κ

L
ξ ′(t ′) = ξ (t),

κ

L2
γ ′

= γ , U = Lg2, Uu′(y′)ξ ′(t ′) = u(y)ξ (t),

T ′(x′, y′, t ′)L−2
∫

∞

−∞

dx
∫ L

0
dyT0(x, y) = T (x, y, t),

T ′

0(x
′, y′)L−2

∫
∞

dx
∫ L

dyT0(x, y) = T0(x, y),

(2)
−∞ 0
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e can drop the primes without confusion and obtain the nondi-
ensionalized version of (1):

∂T
∂t

+ Pe ξ (t)u(y)
∂T
∂x

= ∆T , T (x, y, 0) = T0(x, y),
∂T
∂y

⏐⏐⏐⏐
y=0,1

= 0, (3)

where the domain is {(x, y)|x ∈ R, y ∈ [0, 1]}, and we have in-
troduced the Péclet number Pe = UL/κ = L2g2/κ . When
(t) is the white noise process, the correlation function of ξ (t)

is R(t, s) = δ(t − s). Conversely, when ξ (t) is the station-
ry Ornstein–Uhlenbeck process, the underlying SDE becomes
ξ (t) = −γ ξ (t)dt + dB(t) with the initial condition ξ (0) ∼

(0, γ2 ), and the correlation function of ξ (t) is R(t, s) = γ

2 e
−γ |t−s|.

Define the N-point correlation function ΨN of the scalar field
(x, y, t): R2N

× R+
→ R by ΨN (x, y, t) =

⟨∏N
j=1 T (xj, yj, t)

⟩
ξ (t)

,
where the bold letters denote the N-tuple of the coordinates,
x = (x1, x2, . . . , xN), y = (y1, y2, . . . , yN ). Here, the bracket ⟨·⟩ξ (t)
denotes the ensemble averaging with respect to the stochastic
process ξ (t) on the probability space (ΩB,FB, PB) that we intro-
duced before. The ΨN associated with the free space version of (1)
is known for some special flows. When ξ (t) is the Gaussian white
noise process, Majda [16] showed that ΨN satisfies the following
evolution equation,

∂ΨN

∂t
= ∆2NΨN +

Pe2

2

⎛⎝ N∑
j=1

u
(
yj
) ∂

∂xj

⎞⎠2

ΨN , ΨN (x, y, 0) =
N∏
j=1

T0(xj, yj),

(4)

here ∆2N is the Laplacian operator in 2N dimensions ∆2N =
N
j=1

∂2

∂x2j
+

∂2

∂y2j
. When u(y) = y, Majda [16] derived the ex-

ct expression of ΨN . A rotation of coordinates reduces the N-
dimensional problem to a one-dimensional problem. Then the
solution of (4) is available via Mehler’s formula. Based on this
exact N-point correlation function, the distribution of the scalar
field advected by a linear shear flow has been studied for deter-
ministic and random initial data. The non-Gaussian behaviors of
PDF have been reported in [1,19,21].

When ξ (t) is the stationary Ornstein–Uhlenbeck process, by
introducing an extra variable z to represent the initial value of
the stationary OU process, Resnick [22] showed that ΨN (x, y, t) =
1

√
π

∫
+∞

−∞
dzψN (x, y, z, t)e−z2 , where ψN (x, y, z, t) satisfies the fol-

lowing partial differential equation

∂ψN

∂t
+ Pe

√
γ z

N∑
j=1

u(yj)
∂ψN

∂xj
+ γ z

∂ψN

∂z
= ∆2NψN +

γ

2
∂2ψN

∂z2
,

ψN (x, y, z, 0) =
N∏
j=1

T0(xj, yj).

(5)

When u(y) = y, Resnick derived the exact expression for ΨN
via the same strategy Majda used for solving (4) and showed it
converges to the solution of (4) in the limit γ → ∞ of the OU
damping parameter.

These results are all derived in free-space. The N-point cor-
relation function ΨN for the boundary value problem (3) is un-
nown even for simple-geometry domains. For periodic boundary
onditions, Bronski and McLaughlin [18] carried out a second
rder perturbation expansion for the ground state of periodic
chrödinger equations to analyze the inherited probability mea-
ure for a passive scalar field advected by periodic shear flows
ith a multiplicative white noise. In [28], (3) was studied with the

low u(y) = yξ (t) where ξ (t) is the white noise process. A dramat-

cally different long time state resulting from the existence of the

3

mpermeable boundaries was found. In particular, the PDF of the
calar in the channel case has negative skewness, in stark contrast
o free space, where the limiting skewness is positive. Inspired by
he observation reported in [28], we further explore here the PDF
f the advected scalar in the presence of impermeable boundaries
y the perturbation method introduced in [18]. Briefly, the long
ime behavior of the Fourier transform of N-point correlation
unction Ψ̂N of the scalar field is dominated by the neighborhood
f the zero wavenumber k = 0. This observation reduces the
eries expansion of Ψ̂N to a single multi-dimensional Laplace
ype integral. Then, the standard asymptotic analysis and inverse
ourier transform yield the long time asymptotic expansion of ΨN .

. Long-time asymptotics: ground state energy expansion in
hannel geometry

For bounded domains, the N-point correlation function ΨN
nherits the impermeable boundary condition from the scalar
ield. Since the velocity field in (4) and (5) is a shear layer,
he Fourier transform f̂ (k) = (2π)−

N
2
∫
RN dxe−i(x·k)f (x) yields a

parabolic Schrödinger equation

∂Ψ̂N

∂t
= ∆yΨ̂N −

⎛⎜⎝Pe2

2

⎛⎝ N∑
j=1

u
(
yj
)
kj

⎞⎠2

+ |k|2

⎞⎟⎠ Ψ̂N ,

Ψ̂N (k, y, 0) =
N∏
j=1

T̂0(kj, yj),
∂Ψ̂N

∂yj

⏐⏐⏐⏐⏐
yj=0,1

= 0, ∀ 1 ≤ j ≤ N,

(6)

for (4), and yields

∂ψ̂N

∂t
− iPe

√
γ z

N∑
j=1

kju(yj)ψ̂N + γ z
∂ψ̂N

∂z
= ∆yψ̂N − |k|2ψ̂N +

γ

2
∂2ψ̂N

∂z2
,

ψ̂N (k, y, z, 0) =
N∏
j=1

T̂0(kj, yj),
∂ψ̂N

∂yj

⏐⏐⏐⏐⏐
yj=0,1

= 0, ∀ 1 ≤ j ≤ N,

(7)

for (5), where ∆y =
∑N

j=1
∂2

∂y2j
. According to spectral theory of

parabolic differential operators, the solution of (6) and (7) has an
eigenfunction expansion

Ψ̂N (k, y, t) =
∑

∞

l=0 βN,l(k)φN,l(k, y)e−λN,l(k)t . (8)

When the statistics of velocity field is white in time, λN,l, φN,l are
the eigenvalues and eigenfunctions of the eigenvalue problem

−λN,lφN,l = ∆yφN,l −

⎛⎜⎝Pe2

2

⎛⎝ N∑
j=1

u
(
yj
)
kj

⎞⎠2

+ |k|2

⎞⎟⎠φN,l,

∂φN,l

∂yj

⏐⏐⏐⏐
yj=0,1

= 0, ∀ 1 ≤ j ≤ N.

(9)

For simplicity, we scale φN,l so that
{
φN,l

}∞
l=0 form an orthonormal

asis with respect to the inner product ⟨f (y), g(y)⟩ =
∫
[0,1]N dy

f (y)g(y) for all k. βN,l are determined by the initial condition and
the eigenfunction via βN,l(k) =

⟨∏N
j=1 T̂0(kj, yj), φN,l(k, y)

⟩
. When

ξ (t) is the stationary Ornstein–Uhlenbeck process, φN,l(k, y) =
1

√

∫
+∞ dzϕ (k, y, z)e−z2 , where λ , ϕ are the eigenvalues
π −∞ N,l N,l N,l
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nd eigenfunctions of the eigenvalue problem

− λN,lϕN,l = iPe
√
γ z

N∑
j=1

kiu(yi)ϕN,l − γ z
∂ϕN,l

∂z
+∆yϕN,l

− |k|2ϕN,l +
γ

2
∂2ϕN,l

∂z2
,

∂ϕN,l

∂yj

⏐⏐⏐⏐
yj=0,1

= 0, ∀1 ≤ j ≤ N.

(10)

We also choose ϕN,l such that
{
ϕN,l

}∞
l=0 form an orthonormal basis

with respect to the inner product ⟨f (y, z), g(y, z)⟩ = 1
√
π

∫
+∞

−∞
dz∫

[0,1]N dyf (y, z)g∗(y, z)e−z2 respectively, where g∗ is the complex
conjugate of g . βN,l have the same definition as the Gaussian
white noise case.

Bronski and McLaughlin [18] proved that λN,l(k) strictly in-
creases with respect to the subscript l for all k and have a global
minimum value at k = 0, in particular, λN,0(0) = 0, λN,1(0) = π2.
As a consequence, the series given in (8) is dominated at long
times by the ground state j = 0, since the other terms are
O(e−π

2t ). This observation yields the following asymptotic for-
mula valid at long times for arbitrary N-point correlation function
of the scalar field

ΨN (x, y, t) =(2π )−
N
2

∫
RN

dkei(x·k)βN,0(k)φN,0(k, y)e−λN,0(k)t

+ O(e−π
2t ), t → ∞.

(11)

his is an N-dimensional Laplace type integral with respect to
the wavenumber k. By formula (1) given in [33], the asymptotic
expansion of ΨN (x, y, t) for large t is

ΨN (x, y, t) = (2π t)−
N
2 det(ΛN )−1 exp

(
−

1
2
xΛ−1

N xT
)

+ O(t−
N+2
2 ), t → ∞,

(12)

here (ΛN)i,j =
∂2

∂ki∂kj
λN,0(k)|k=0 is the Hessian matrix of the

igenvalue λN,0(k) at k = 0. An interesting observation from
12) is that ΨN satisfies a diffusion equation with the effective
diffusion tensor ΛN at long times,
∂ΨN

∂t
=∇x · (ΛN∇xΨN) . (13)

f we interpret (4) or (5) as a Fokker–Planck equation for an
-particle system, (13) implies that the particles move like a
on-standard N dimensional Brownian motion at long times.
The Hessian matrix ΛN can be obtained by the perturbation

ethod introduced in the appendix of [18]. We can utilize two
roperties of the eigenvalue problems described in (9) and (10)
o simplify the calculation of ΛN . First, the eigenvalue prob-
ems are invariant under the permutation of wavenumbers k,
hich implies ∂2

∂ki1 ∂kj1
λN,0(k)|k=0=

∂2

∂ki2 ∂kj2
λN,0(k)|k=0 for all i1 ̸=

1, i2 ̸= j2 and ∂2

∂k2i
λN,0(k)|k=0=

∂2

∂k2j
λN,0(k)|k=0 for all 1 ≤

i, j ≤ N . Second, in the N-dimensional eigenvalue problem, the
eigenfunction associated with λN,0 is independent of yN when
N = 0. In other words, the N dimensional eigenvalue problem
an be reduced to N − 1 dimensional eigenvalue problem by
etting kN = 0. Based on these two properties, ΛN only de-
ends on the derivative of eigenvalues in the one-dimensional
igenvalue problem λ(2) = ∂2

∂k21
λ1,0(k1)|k1=0 and the derivative of

igenvalues in the two-dimensional eigenvalue problem λ(1,1) =
∂2

∂k1∂k2
λ2,0(k1, k2)|k1=0,k2=0.

Here, we are primarily concerned with single-point statistics,
amely the moment of the random scalar field at point (x, y),⟨
TN (x, y, t)

⟩
= Ψ (x, y, t), where all components of x, y are
ξ(t) N v

4

x, y, namely x = x1 = x2 = · · · = xN , y = y1 = y2 = · · · = yN .
ence, as t → ∞, the first three moments are

⟨T (x, y, t)⟩ξ(t) =
1

(2π t)
1
2
√
λ(2)

+O(t−
3
2 ),

⟨
T 2(x, y, t)

⟩
ξ(t) =

1

2π t
√
(λ(2))2 − (λ(1,1))2

+O(t−2),⟨
T 3(x, y, t)

⟩
ξ(t) =

1

(2π t)
3
2
√
(λ(2) − λ(1,1))2(λ(2) + 2λ(1,1))

+O(t−
5
2 ).

(14)

ere, we emphasize that the denominator in (14) is the determi-
ant of the diffusion tensor ΛN . When ξ (t) is a Gaussian white
oise process, the derivatives of eigenvalues in (14) are

λ(2) = 2+ Pe2
∫ 1 dy u2(y), λ(1,1) = Pe2

(∫ 1
0 dy u(y)

)2
= Pe2ū2.

(15)

Additionally, when ξ (t) is the stationary Ornstein–Uhlenbeck pro-
cess, the derivatives of eigenvalues in (14) are

λ(2) = 2+ Pe2
√
γ

∫ 1

0
dy u(y)

{
cosh

(√
γ y
)

sinh
(√
γ
) ∫ 1

0
ds u(s) cosh

(√
γ (1− s)

)
−

∫ y

0
ds u(s) sinh

(√
γ (y− s)

)}
, (16)

(1,1)
= Pe2ū2.

he white noise can be regraded as a limiting case of vanishing
orrelation time γ−1 in the stationary Ornstein–Uhlenbeck pro-
cess. It is natural to ask whether the scalar field statistics with
ξ (t) an Ornstein–Uhlenbeck process asymptotically satisfies, as

→ ∞, the corresponding model with white noise process. In
he free-space problem, Resnick [22] proves this for linear shear
low u(y) = y via the exact formula of ΨN . In channel domain
roblem, the asymptotic analysis shows that (16) converges to
15) as γ → +∞, which supports this compatibility for large
alues of the parameter γ . In the free space problem, Vanden-
ijnden [23] proved that both of the two flows we considered
n this paper share the same limiting distribution of the scalar
ield at long times for any γ . However, in channel domains, the
ifferences between (15) and (16) lead to different corresponding
imiting distributions. Thus, impermeable boundaries can affect
he limiting distribution of the random scalar fields.

The right hand side of (12) is independent of x, y, which means
ll points in the domain have the same statistics behavior at long
imes. Without loss of generality, we focus on the single point
(0, 0, t) of the random scalar field. In [28], the authors derived
he PDF of T (0, 0, t) at long times for the free space version of
3) and u(y) = y, Pe = 1 using the method of characteristics
nd the Green’s function. The study of the explicit formula of PDF
or the free space problem shows that the skewness of the PDF
or T (0, 0, t) is positive at long times while the numerical studies
how the skewness becomes negative in presence of imperme-
ble channel boundaries, demonstrating how the impermeable
oundary has a crucial impact on the PDF of random scalar flied.
ith the long time asymptotic expansion of moments provided

n (14), we can theoretically study the skewness of T (0, 0, t) for
arious parameters and more general shear flows.
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Fig. 1. The skewness limit of T (0, 0, t) at long times for various Péclet numbers and ū. In both panels, the flow takes the form Pe u(y)ξ (t), where u(y) = (y+ A)
and ū = A−

1
2 . In panel (a1), ξ (t) is the Gaussian white noise process. In panel (a2), ξ (t) is the stationary Ornstein–Uhlenbeck process with γ = 1.
Fig. 2. The skewness limit of T (0, 0, t) at long times for various Péclet numbers and ū. In both panels, the flow takes the form Peu(y)ξ (t), where u(y) = θ (a− y)
with θ denoting the Heaviside step function) and ū = a. In panel (a1), ξ (t) is the Gaussian white noise process. In panel (a2), ξ (t) is the stationary Ornstein–Uhlenbeck
rocess with γ = 1.
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Based on (14), as t → ∞, the variance of T (x, y, t) is given by

Var(T ) =
⟨
(T − ⟨T ⟩)2

⟩
=

(
1√

(λ(2))2 − (λ(1,1))2
−

1
λ(2)

)
1

2π t
+O(t−2).

(17)

Notice that coefficient of t−1 in (17) is strictly positive if λ(1,1) ̸=
, which requires ū ̸= 0. As t → ∞, the skewness of T (x, y, t)
as the following asymptotic expansion

S(T )

=

⟨
(T − ⟨T ⟩)3

⟩
(Var(T ))

3
2

=

1√
(λ(2) − λ(1,1))2(λ(2) + 2λ(1,1))

−
3√

λ(2)
(
(λ(2))2 − (λ(1,1))2

) + 2

(λ(2))
3
2(

1√
(λ(2))2 − (λ(1,1))2

−
1
λ(2)

) 3
2

+O(t−1).

(18)

The first term on the right hand side of (18) shows the exis-
ence of the long time limit of skewness, which means the PDF of
(0, 0, t) has a persisting asymmetry. There are five factors that
ffect the limit value: the Péclet number Pe, the mean of spatial
omponent of flow ū, the shape of u(y), the temporal fluctuation
(t) and the OU damping parameter γ .
5

Fig. 1 and Fig. 2 show the long time limit of skewness of
(0, 0, t) for the flow with u(y) = y+A and u(y) = θ (a−y) (with θ
enoting the Heaviside step function) for various Péclet numbers
nd ū, respectively. Panel (a1) in Fig. 1 shows that the skewness
imit is negative when ū = 1/2, Pe = 1, which is consistent with
onte-Carlo simulation results reported in [28]. Both of those

igures have a similar pattern. The skewness is negative when Pe
r ū is small and positive when they are large. In an attempt to
igorously demonstrate our conclusion for any u(y) at long times,
e derive the leading order asymptotic expansion at low Péclet
umber from (18), thereby, we obtain

S(T ) =− 2
√
2+

9Pe2ū2

√
2

+ O(Pe4), Pe → 0, t → ∞.

(19)

ubsequently, we observe from (19) that the long time limit of
skewness is negative at low Péclet numbers (equivalently, for
sufficiently small spatial mean of the flow denoted by ū). In
particular, in the zero Péclet number limit, the skewness becomes
−2

√
2. Alternatively, with the step function shear flow, the differ-

ences are larger as can be seen by comparing panel (a1) or panel
(a2) in Fig. 1 with the corresponding panels in Fig. 2. One can
see that the change of u(y) dramatically changes the long time
asymptotics of the skewness in its Pe− ū dependence. Of course,
while the Ornstein–Uhlenbeck process yields different numerical
values compared with the white noise process, for the parameter
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Fig. 3. The skewness limit of T (0, 0, t) at long times for various damping
arameters γ . The flow is Pe(y+ 1.2)ξ (t), where ξ (t) is a stationary Ornstein–
hlenbeck process with the damping parameter γ . The cases of Pe = 1.5
nd Pe = 1.6 are shown by the blue and orange curves, respectively. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

egion (Pe, ū) ∈ [0, 4] × [0, 4] shown in the figures the relative
ifference between them is less than 0.1. Hence it is hard to
bserve a difference when comparing the left and right panels
f Fig. 1 and Fig. 2 respectively.
In Fig. 3, we show the dependence of the skewness long time

imit on the damping parameter γ . Note that depending on Pe
nd u(y), the sign of skewness can be made to change by varying
.
We also implement the backward Monte-Carlo method de-

cribed in Appendix A.1 to verify the long-time asymptotic anal-
ysis results by numerical simulations. We simulate T (0, 0, t) with
the initial condition T0(x, y) = e−x2/

√
π for different flows, and

esults are shown in Fig. 4. The blue curves are the numerical
esults of skewness evolution and the green horizontal lines are
he skewness limits computed by (18). The consistency between
hem validates (18). In panels (a1) and (a2), ξ (t) is white noise
process, u(y) are y and y+ 1/2 respectively. One can see that the
larger spatial mean of the flow leads to longer transient dynamics
before reaching the long time asymptotic state. In panels (b1)
and (b2), ξ (t) is the stationary Ornstein–Uhlenbeck process and
u(y) = y, the damping parameters γ are 5 and 50, respectively.
omparison between panels (b1) and (b2) shows the longer cor-
elation time in the panel (b1) yields a more dramatic transient
ynamics in the skewness evolution. Comparing the panels (a1)
nd (b2), when the correlation time γ−1 is small, we observe the
onvergence of the Ornstein–Uhlenbeck case to the white noise
ase.

. An explicit example for scalar intermittency

In this section we study a special case of (1), which yields
n exact formula valid at all times. Therefore, this is a solid
enchmark for the long time asymptotic analysis derived in the
revious section. In [27], the authors call the advection–diffusion
quation formulated in (1) with u(y) = 1 the ‘‘wind model’’. They

study the one dimensional problem when ξ (t) is the Gaussian
white noise process. Here, we present the exact formula of N-
point correlation function ΨN for the channel domain problem
with any general Gaussian process ξ (t).

The associated Green’s function G(x, y, x0, y0, t), that is, the
solution of (1) with the initial condition T (x, y, 0) = δ(x−x0)δ(y−
y ), can be obtained by the separation of variables and the method
0

6

of characteristics (for basics of these methods see [34]),

G(x, y, x0, y0, t) = K (y, y0, t)
1

√
4π t

exp

(
−

(x− x0 − Pe
∫ t
0 ds ξ (s))2

4t

)
,

(20)

here K (y, y0, t) = 1 + 2
∑

∞

n=1 cos(nπy) cos(nπy0) exp(−n2π2t)
s the heat kernel on the interval [0, 1]. The solution with general
nitial condition T0(x, y) can be constructed by the Green function
ia convolution,

T (x, y, t) =
∫
+∞

−∞
dx0

∫ 1
0 dy0T0(x0, y0)G(x, y, x0, y0, t). (21)

y the definition of ΨN and Fourier transform, we have

ΨN (x, y, t) =∫
RN dx0

∫
[0,1]N dy0 1

(2π )N
∫
RN dkexp

⎛⎝ N∑
j=1

ikj(xj − x0j)− tk2j

⎞⎠
×

⟨
exp(−iPe

N∑
j=1

kj

∫ t

0
dsξ (s))

⟩
×

N∏
j=1

K (yj, y0j, t)T0(x0j, y0j),

(22)

where x0 = (x01, x02, . . . , x0N), y0 = (y01, y02, . . . , y0N ). Since ξ (t)
is a Gaussian process,

∫ t
0 dsξ (s) is a normal random variable at

any time instant. By utilizing the characteristic function of normal
random variable, we obtain:

ΨN (x, y, t) =∫
RN dx0

∫
[0,1]N dy0 1

(2π )N
∫
RN dk exp

⎛⎝ N∑
j=1

ikj(xj − x0j)− tk2j

⎞⎠
exp

⎛⎜⎝−
1
2σ (t)

⎛⎝Pe
N∑
j=1

kj

⎞⎠2
⎞⎟⎠×

N∏
j=1

K (yj, y0j, t)T0(x0j, y0j),

(23)

here σ (t) is the variance of stochastic process
∫ t
0 dsξ (s). σ (t) = t

hen ξ (t) is the Gaussian white noise process, σ (t) = t + e−γ t−1
γ

hen ξ (t) is the OU process. Comparing this integral with the
ultivariate normal distribution, we have

ΨN (x, y, t) =
∫
RN dx0

∫
[0,1]N dy0

exp
(
−

1
2 (x−x0)Λ−1(x−x0)T

)
(2π )

N
2
√
det(Λ)

×

N∏
j=1

K (yj, y0j, t)T0(x0j, y0j),
(24)

here Λ = 2tI+σ (t)Pe2eTe, I is the identity matrix of size N×N
nd e is a 1×N vector with 1 in all coordinate. By the Sherman–

Morrison formula [35], Λ−1
= (2t)−1

(
I − σ (t)Pe2eTe

2t+Nσ (t)Pe2

)
, and by

he matrix determinant lemma, det(Λ) = (2t)N
(
1+ Nσ (t)Pe2

2t

)
. To

compare with the Nth moment
⟨
TN (x, y, t)

⟩
, we choose the initial

condition as T0(x, y) = δ(x). Hence, the solution is independent of
y,

T (x, t) =
1

√
4π t

exp

⎛⎜⎝−

(
x− Pe

∫ t
0 dsξ (s)

)2
4t

⎞⎟⎠ , (25)

nd the Nth moment is

⟨
TN (x, t)

⟩
=

(4π t)−
N
2√

Nσ (t)Pe2
exp

(
−

Nx2
4t

(
1− NPe2σ (t)

NPe2σ (t)+2t

))
.

1+ 2t
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Fig. 4. Skewness evolution for random shear flows fluctuating with Gaussian white noise and Ornstein–Uhlenbeck process statistics. Here, we provide the
kewness evolution for random shear flows with different spatial means and different fluctuation statistics obtained from Monte Carlo simulations along with the long
ime asymptotics theoretical predictions of skewness (18). In panels (a1)–(a2) we provide the skewness evolution and corresponding long time asymptotics for flows
ith Gaussian white noise fluctuations. Next, in panels (b1)–(b2), we provide the skewness evolution and its long time asymptotics for random shear flow u(y) = y

with fluctuations that has Ornstein–Uhlenbeck process statistics. Furthermore, in panels (b1) and (b2), the correlation strength parameter of Ornstein–Uhlenbeck
processes is γ = 5 and γ = 50, respectively. In all panels, Monte Carlo simulation results are shown in blue curves where the theoretical predictions of the long
time limits of skewness are shown in green horizontal lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
(26)

The long time asymptotic expansion of (26) is consistent with
(14). We compute the skewness evolution of the scalar field at
the point (0, 0) for various Péclet numbers by (26) and present
the results in Fig. 5. Panel (a1) shows that, with the line source
initial data and Gaussian white noise process ξ (t), the skewness is
a constant for all time. In contrast, panel (a2) shows that the finite
correlation in OU process ξ (t) introduces a noticeable transient
before reaching the long time asymptotic state. This phenomenon
weakens as the Péclet number increases.

With the exact formula of N-point correlation function, we can
study the multi-point statistics of the random scalar field. Let us
consider the average of the scalar field over x ∈ [−a, a],

M(a, t) =
1
2a

∫ a
−a T (x, t)dx

=
1
2a

(
erf

(
a+Pe

∫ t
0 dsξ (s)

2
√
t

)
+ erf

(
a−Pe

∫ t
0 dsξ (s)

2
√
t

))
,

(27)

here erf(z) = 2
√
π

∫ z
0 dte−t2 is the error function. When a → 0,

(a, t) will converge to T (0, t).
By switching the order of integration and ensemble average,

he Nth moment of M(a, t) is⟨
M(a, t)N

⟩
ξ(t) = (2a)−N

∫
[−a,a]N dx

⟨
N∏
j=1

T (xj, t)

⟩
ξ(t)

. (28)

Fig. 6 shows the skewness evolution of M(1/10, t) computed
by (28) for various Péclet numbers and temporal fluctuations
7

obeying different statistics, in particular, Gaussian-white noise
and Ornstein–Uhlenbeck processes statistics. The overall behavior
of the skewness ofM(1/10, t) is strikingly similar to the skewness
of T (0, 0, t) presented in Fig. 5. However, there is a very subtle
difference between them at the earlier stage which cannot be
seen in Fig. 6. To show this subtle difference, we plot the skew-
ness of M(1/10, t) in panel (a2) of Fig. 7 when Pe = 1 and ξ (t) is
the white noise process. Unlike the skewness of T (0, 0, t) which
is a constant for all time, we see the skewness of M(1/10, t) starts
from a lower value due to the spatial correlation of the random
scalar field T (x, y, t). As a result of the diffusion, all T (x, y, t) over
the region (x, y) ∈ [−1/10, 1/10] × [0, 1] converges to the same
value at long times. As shown in panel (a2) of Fig. 7, the skewness
of M(1/10, t) converges to the skewness of T (0, t) at diffusion
time scale.

To verify our theoretical analysis, we compute the skewness
by the Direct Monte-Carlo (DMC) method proposed in [28] and
plot the results as green circles in panel (a2) of Fig. 7. The con-
sistency of the two approaches demonstrates the validity of the
theoretical analysis in this section. Panel (a1) in Fig. 7 depicts the
PDF of M(1/10, 1) obtained by DMC method for different Péclet
numbers. It shows that with increasing Péclet number the PDF
changes from negatively-skewed to positively-skewed, which is
consistent with the observation we made from Figs. 5 and 6.

5. Conclusion

We have demonstrated analytically and numerically that the
single point statistics, in particular skewness, of a passive scalar
advected by a random shear flow with deterministic initial data
have opposite symmetric behaviors at long times depending on
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Fig. 5. Evolution of the random variable T (0, 0, t) for various Péclet numbers and time. In both panels, the flow takes the form Peu(y)ξ (t), where u(y) = 1 and
¯ = 1. In panel (a1), ξ (t) is the Gaussian white noise process. In panel (a2), ξ (t) is the stationary Ornstein–Uhlenbeck process with γ = 1.
Fig. 6. Evolution of the spatially averaged random variable M( 1
10 , t) defined in (27) for various Péclet numbers and time. In both panels, the flow takes the

form Peu(y)ξ (t), where u(y) = 1 and ū = 1. In panel (a1), ξ (t) is the Gaussian white noise process. In panel (a2), ξ (t) is the stationary Ornstein–Uhlenbeck process
ith γ = 1. .
the presence or the absence of impermeable boundaries . We have
investigated two types of flow temporal fluctuations, respec-
tively modeled by Gaussian white noise and stationary Ornstein–
Uhlenbeck processes. We have shown the convergence of the
Ornstein–Uhlenbeck case to its white noise counterpart in the
limit γ → ∞ of the OU damping parameter, which generalizes
the conclusion in the article [22] for free space to the confined
channel domain problem. Importantly, we observe that the OU
damping parameter γ plays a more significant role in channel do-
mains than in the free space problem. The first three moments of
the scalar distribution at infinite time depend on the correlation
time γ−1 in the channel domain, which is in strong contrast to
he result of Vanden-Eijnden [23] in free space where the PDF at
ong time is independent of γ . We have presented the detailed
discussions of three different shear flows. All of them show the
transient of skewness from negative to positive when increasing
either the Péclet number or ū, which rigorizes and generalizes
the observation from the simulation result in [28]. To find a
benchmark for theoretical analysis, we have generalized the wind
model studied in [27] and derived the exact formula of the N-
point correlation function for the flow with no spatial dependence
and Gaussian temporal fluctuation. The long time asymptotic
expansion of this formula is consistent with our theory for general
shear flows.

We have presented numerical studies that verify the validity of
our theoretical results. For the wind model, we performed Direct
8

Monte-Carlo simulation and observed that the Péclet number can
adjust the time at which the skewness of the distribution changes
sign. Due to the lack of an exact solution for general shear flows,
we implemented backward Monte-Carlo simulations to verify
the long time asymptotic results we derived. We confirmed that
as the damping parameter γ increases the stationary Ornstein–
Uhlenbeck case converges to the white noise case and found that
transient for the skewness of the passive scalar’s PDF to reach its
long time asymptotic state lasts longer as the damping parameter
decreases.

Future work will include considering an experimental cam-
paign with the associated theoretical analysis. Our recent study
[31] regarding the enhanced diffusion [29] and third spatial Aris
moment [30] induced by a periodically moving wall led to the
development of an experimental framework of the model ex-
plored in this paper. The computer controlled robotic arm we
developed for the periodic study can be applied to the case
of a randomly moving wall, such as the OU process ξ (t), with
suitable parameters. At large viscosity, the induced flow in the
channel can be modeled by yξ (t). Hence, the concentration of
tracers in the fluid satisfies the advection–diffusion equation
provided in (1). The symmetry properties of the tracer’s PDF can
be predicted by the theory we developed here. Perhaps even
more interesting will be considering cases in which the physical
shear flow is not decomposed into a product of a function of
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Fig. 7. Evolution of the spatially averaged random variable defined in (27)
with the Gaussian white noise process ξ (t) for various Péclet numbers and
time. In panel (a1), we superposed 3 probability distributions of M(1/10, 1)
with Pe = 1 (blue), Pe = 2 (dark green) and Pe = 3 (green). Next, in panel (a2),
we show the skewness of M(1/10, t) calculated through the Direct Monte Carlo
simulations (blue line) and the numerically integrating the formula (28) (green
circle). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

space and a function of time, such as happens with the gen-
eral nonlinear Stokes layer solutions at finite viscosities. Another
interesting experimental configuration is the random tangential
motion of a non-flat wall which generates random non-sheared
motions in the fluid. Mercer and Roberts [36] derived the long
time asymptotic approximations to the equation governing the
longitudinal dispersion of a passive contaminant advected by a
pressure driven flow in a channel with non-flat walls via the
central manifold theory. Recently, [37–39] developed rigorous
justifications of the application of central manifold approach on
Taylor dispersion via spectral decomposition and hypocoercivity
method. We expect those techniques used in the study of Taylor
dispersion may well be extendable to the case of random flows
in such geometries.

Although the leading order terms of N-point correlation func-
tion provide us rich information about the limiting distribution of
the scalar field, there are still many interesting questions which
need the knowledge of the higher order corrections of the N-point
correlation function to answer. First, we use the assumption that
initial data has the nonzero spatial mean

∫
∞

−∞
dx
∫ 1
0 dyT0(x, y) ̸= 0

in the nondimensionalization procedure. Once the spatial mean
vanishes, the leading order terms in (14) vanish. In this case, we
need the derivative of ∂

∂k T̂0(k, t)
⏐⏐⏐
k=0

and the higher order deriva-
tives of the eigenvalues and eigenfunctions to derive nontrivial
asymptotic expansions of N-point correlation function. Second,
the numerical simulation in Fig. 4 shows the dependence of the
transient time scale on the correlation time of the OU process.
We expect the higher order corrections can yield a rigorous
prediction of the transient time scale. The last question concerns
for the flow with a vanishing spatial mean. Such a case could
9

be experimentally observed by having two walls executing equal
but opposite parallel motions, or by putting the observer in an
appropriate frame of reference. The asymptotic analysis strategy
we presented does not technically fail if the spatial average of the
flow in the physical domain vanishes, namely ū =

∫ 1
0 dyu(y) = 0,

as the distribution is expected to be symmetric at long time in this
case, consistent with our asymptotics which show that the third
moment vanishes at long time with a zero spatial mean. However,
the case with ū = 0 requires considerable additional analysis
to investigate how the long time PDF relaxes to a symmetric
state. To see that, it is easy to check that the coefficient of t−1

in (17) becomes zero as well as the coefficient of t−
3
2 and t−

5
2 in

centered third moment expansion. That means the higher-order
terms in (14) are needed for the analysis of skewness for the case
¯ = 0. Kilic’s thesis work [40] reports preliminary results that the
oint statistics induced by some flows with ū = 0 have distinct
ehaviors from the case ū ̸= 0. More detailed analysis in this
irection has been completed and it will be reported separately.
Additional interesting directions worth exploring include con-

idering how sourcing the passive scalar or studying a scalar with
mean gradient can modify our findings [41–43], as well as

onsidering how flow possessing an energy cascade can lead to
ifferent scalings [44,45], or inherited scalar spectra [41]. Also,
t is interesting to consider if there are more general initial
onfigurations, e.g. [46] or different flow configurations as in [47]
hich can lead to different long time asymptotics than studied
ere.
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ppendix

.1. Numerical simulations

To verify the long-time asymptotic analysis results, we need
o simulate samples of random scalar field T (x, y, t) at a single
oint (x, y). The Feynman–Kac formula based backward Monte-
arlo method is efficient in this case, since it can access the
ingle point value of the scalar field without solving the global
olution of (1). For each realization of the stochastic process ξ (t),
he random field has the path integral representation T (x, y, t) =
T (X (t), Y (t))⟩ by the Feynman–Kac formula, where
0 t t B1(t),B2(t)



R. Camassa, L. Ding, Z. Kilic et al. Physica D 425 (2021) 132930

T
L

(

w
p
n
e
p
r
T

w

able 1
ists of abbreviations.
Full form Abbreviation

Direct Monte-Carlo DMC
Independent and identically distributed i.i.d.
Ornstein–Uhlenbeck OU
Partial differential equation PDE
Probability distribution function PDF
Stochastic differential equation SDE

Xt (s), Yt (s) are the solutions of the stochastic differential equation
SDE)

dXt (s) = −Peξ (t − s)u(Yt (s))ds+
√
2dB1(s), dYt (s) =

√
2dB2(s),

Xt (0) = x, Yt (0) = y,

(29)

here Bi(s) are independent Brownian motions. To evaluate the
ath integral representation at a different time instant ti, one
eeds to solve the SDE again with that new parameter ti, which is
xpensive in practice. Notice that both the Gaussian white noise
rocess and the stationary OU process is stationary and tempo-
ally homogeneous, so ξ (t− s) = ξ (s) in the sense of distribution.
his property allows us to solve a simpler but equivalent SDE,

dX(s) = −Peξ (s)u(Y (s))ds+
√
2dB1(s), dY (s) =

√
2dB2(s),

X(0) = x, Y (0) = y.
(30)

Since the solution is independent of the parameter t , we only
need to solve this SDE once with the given realization of Brown-
ian motions, which saves a lot of computation cost. We solve the
SDE by the Euler scheme with a time increment ∆s = 0.01 and
uniform time nodes si+1 = si +∆s,

Xi+1 = Xi − Peξiu(Yi)∆s+
√
2∆sn1,i, Yi+1 = Yi +

√
2∆sn2,i,

X0 = x, Y0 = y,
(31)

where Xi = X(si), Yi = Y (si), ξi = ξ (si) are the appromation of
stochastic processes at s = si. n1,i, n2,i are standard independent
and identically distributed (i.i.d.) normal random variables which
are produced by the Mersenne Twister uniform random number
generator and Marsaglia polar method [48]. We implement the
impermeable boundary conditions by imposing billiard-like re-
flection rules on the boundary y = 0, 1. We typically generate
106 realization of ξ (s). The realization of the Gaussian white noise
process are produced by ξi =

n3,i
√
∆s

where n3,i+1 is the standard
i.i.d. normal random variable. The Ornstein–Uhlenbeck process is
simulated by the scheme proposed in [49],

ξi+1 =ξie−γ∆s
+ σ

√
(1− e−2γ∆s)

2γ
n3,i+1, (32)

here γ , σ are the damping parameter and the dispersion param-
eter of the OU process, respectively. For each realization of ξ (s),
we use 106 independent SDE solutions (Xt (s), Yt (s)) to compute
the path integral representation of T (x, y, t). For the cases pre-
sented in Fig. 4, we need 300 time steps for reaching the long
time asymptotic state. The simulations are performed on UNC’s
Longleaf computing cluster with 400 parallel computing jobs, and
each job takes approximately 3 days on the cluster.

A.2. Lists of abbreviations

See Table 1.
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