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Abstract

We develop a theory of enhanced diffusivity and skewness of the longitudinal
distribution of a diffusing tracer advected by a periodic time-varying shear flow in a
straight channel. Although applicable to any type of solute and fluid flow, we restrict
the examples of our theory to the tracer advected by flows which are induced by a
periodically oscillating wall in a Newtonian fluid between two infinite parallel plates as
well as flow in an infinitely long duct. These wall motions produce the well-known
Stokes layer shear solutions which are exact solutions of the Navier–Stokes equations.
With these, we first calculate the second Aris moment for all time and its long-time
limiting effective diffusivity as a function of the geometrical parameters, frequency,
viscosity, and diffusivity. Using a new formalism based upon the Helmholtz operator,
we establish a new single series formula for the variance valid for all time. We show that
the viscous dominated limit results in a linear shear layer for which the effective
diffusivity is bounded with upper bound κ (1 + A2/(2L2)), where κ is the tracer
diffusivity, A is the amplitude of oscillation, and L is the gap thickness. Alternatively, for
finite viscosities, we show that the enhanced diffusion is unbounded, diverging in the
high-frequency limit. Non-dimensionalization and physical arguments are given to
explain these striking differences. Asymptotics for the high-frequency behavior as well
as the low viscosity limit are computed. We present a study of the effective diffusivity
surface as a function of the non-dimensional parameters which shows how a maximum
can exists for various parameter sweeps. Physical experiments are performed in water
using particle tracking velocimetry to quantitatively measure the fluid flow. Using
fluorescein dye as the passive tracer, we document that the theory is quantitatively
accurate. Specifically, image analysis suggests that the distribution variance be
measured using the full width at half maximum statistic which is robust to noise.
Further, we show that the scalar skewness is zero for linear shear flows at all times,
whereas for the nonlinear Stokes layer, exact analysis shows that the skewness sign can
be controlled through the phase of the oscillating wall. Further, for single-frequency
wall modes, we establish that the long-time skewness decays at the faster rate of t−3/2

as compared with steady shear scalar skewness which decays at rate t−1/2. These
results are confirmed using Monte-Carlo simulations.
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1 Introduction
An extremely important class of problems concerns how fluid motion can increase solute
mixing. Since Taylor [49] first introduced the calculation showing that a pressure-driven
flow in a pipe leads to a greatly enhanced effective diffusivity, the literature on this topic has
exploded inmany directions spanningmany disciplines. Themathematics of this problem
is particularly important and just one of the many areas of Modern Applied Mathematics
which Andy Majda pioneered, starting with work on developing a rigorous formulation
characterizing how a scale separated flow with general streamline topology can give rise
to an effective diffusivity [7,39] extending to non-scale separated flows showing anoma-
lous results [8–10], and eventually yielding models of scalar intermittency [38,41] which
produced explicit models for the full probability density function (PDF) of a passive scalar
advected by a random, white in time linear shear layer [20,21,23,24,53,53]
Shortly following Taylor, Aris [57] dispersion presented an alternative approach for

shear layers yielding a hierarchy for the spatial moments of the scalar field. More recent
results about the steady shear flow have explored how geometry can be used to control
these moments to seek different effective diffusivities [1,48], and even how geometry can
be used to control how solute in pressure-driven flow can be delivered with either a sharp
front or with a gradual build-up through a detailed study of the scalar skewness [2–4].
In many practical applications, flows are unsteady and therefore typically generate dif-

ferent properties than their steady counterparts. The first investigation of the Taylor
dispersion in time-dependent flow dates back to Aris [6], who presented the study of a
solute in pulsating flow through a circular tube. After that, a number of studies reported on
cases involving a non-transient, single-frequency pulsating flow [17,25,32,44,56].Most of
those studies focused on pressure-driven flow; fewer studies have addressed wall-driven
flows. Numerical studies of the enhanced mixing induced by a single-frequency Couette–
Poiseuille flow are reported in [11,46], and recently a multiscale analysis for a single-
frequency Couette-flow yielded formulae for the enhanced diffusivity [12,13].
Recently, Vedel and Bruus [54,55] explored the case of a time-dependent, multifre-

quency flow and developed formulas of effective diffusivity. Our study develops the gen-
eral theory for the enhanced diffusion and skewness for the case of an arbitrary, periodic
time-varying shear flow and then focuses upon the physically realizable flow induced by
the oscillatory motion of a wall adjacent to a Newtonian fluid theoretically, computa-
tionally, and experimentally. First, we non-dimensionalize the problem and identify the
non-dimensional parameters. Next, we derive the solutions to the Navier–Stokes equa-
tions resulting fromsuch awallmotion, knownas Stokes’ secondproblem [27].We see that
in the high viscosity limit, this flow results in a time-varying linear shear layer. In turn, we
compute the effective diffusivity produced by this flow, implementing a new formulation
based on the Helmholtz operator which yields a new single series formula for the scalar
variance in contrast to the double series formula in the literature, e.g., [54]. We establish
an upper bound for the case of a time-varying linear shear, showing themaximumpossible
diffusion is set by the amplitude of wall motion and the gap thickness of the parallel-plate
channel and is independent of the frequency of motion. Alternatively, we demonstrate
that, for finite viscosities, the effective diffusivity is unbounded in increasing frequency
of the wall motion. These results are validated with experiments performed using a wall
driven by a programmable linear motor. Particle tracking velocimetry shows that the
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experimental fluid motion is accurately predicted by the Stokes layer solutions. Image
analysis with different camera exposure times suggests that dye distribution variances can
be accurately measured using the full width at half maximum statistic. Experiments with
fluorescein dye are carried out and compare favorably with the effective diffusion theory.
We additionally study how the more nonlinear Stokes layer solutions can yield greater

effective diffusivities than the linear counterpart.Moreover, we document that the nonlin-
ear case (with finite but nonzero viscosity) generates a much larger vertical concentration
gradient, which leads to enhanced vertical tracer concentration on transient timescales.
Next, we prove that for the case of the time-varying linear shear layer, the scalar spatial
skewness is zero for all time, while Monte-Carlo simulations for wall-driven flows show
that at finite viscosities the skewness can be nonzero. Short-time asymptotics akin to prior
work [3] are computed for the skewness and compared directly to the Monte-Carlo sim-
ulations. Finally, we present a complete mathematical analysis of the skewness showing
how its sign can be completely controlled by the phase of the wall motion and further
demonstrates that for single-frequency wall motions, the skewness decays to zero as t−3/2

for large time, faster than the familiar steady flow counterpart, which decays as t−1/2.

2 Theoretical calculations
2.1 Governing equation and non-dimensionalization

2.1.1 Stokes layer

We consider a layer of incompressible viscous fluid between two infinite parallel walls
with gap thickness L. As sketched in Fig. 1, the front wall is stationary, while the back wall
is moving periodically parallel to itself with the velocity ξ (t) and the base frequency ω.
The flow u(y, t) induced by the back moving wall satisfies the Navier–Stokes equations:

∂u
∂t

= ν
∂2u
∂y2

, u(y, 0) = 0, u(0, t) = 0, u(L, t) = ξ (t), (1)

where ν is the fluid kinematic viscosity and the parallel-plate channel domain is R × �

and x ∈ R, � = {
y|y ∈ [0, L]

}
. When ξ (t) = Aω cosωt, the long-time solution of Eq.

(1) is available in the chapter 4 of the book [27] or equation 17 in the article [43]. This
model was extended by Ferry and others to visco-elastic fluids [29,43]. We derive the
exact solution (with the transient term) and its high-viscosity asymptotic expansion in
Appendix 7.2.1 for completeness. In three-dimensional space, we are interested in the
duct R × �, � = {

(y, z) |y ∈ [0, L], z ∈ [0, H ]
}
. For the closed duct, the solid boundary

imposes the no-slip boundary condition u|z=0,H = 0. For the open duct, we have the no-
stress boundary condition at the free surface ∂u

∂z
∣∣
z=H = 0. In both of these domains, for the

parameters we used in our experiments, the analysis in Appendix 7.2.2 shows the Stokes
layer solution in a parallel-plate channel is a good approximation for the region away from
the boundary in the z-direction. Hence, we neglect the boundary in the z-direction in the
following calculation.

2.1.2 Advection–diffusion equation

The passive scalar is governed by the advection–diffusion equation with a general time-
varying shear flow u(y, z, t) and no-flux boundary conditions which takes the form

∂T
∂t

+ u(y, z, t)
∂T
∂x

= κ�T, T (x, y, z, 0) = TI (x, y, z),
∂T
∂n

∣∣∣∣
R×∂�

= 0, (2)
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Fig. 1 Schematic showing the setup for the experiment and theory

where κ is the diffusivity, TI (x, y, z) is the initial data and n is the outward normal vector
of the boundary R × ∂�.

2.1.3 Non-dimensionalization

With the change of variables

Lx′ = x, Ly′ = y, Lz′ = z
L2

κ
t ′ = t,

κ

L2
ω0 = ω, U = Aω,

Uu′(y′, z′, t ′) = u(y, z, t), Uξ ′(t ′) = ξ (t), L�′ = �,

T ′
I (x

′, y′, z′)L−3
∫

R×�

TI (x, y, z)dx d� = TI (x, y, z),

T ′(x′, y′, z′, t ′)L−3
∫

R×�

TI (x, y, z)dx d� = T (x, y, z, t),

(3)

after dropping the primes, we obtain the non-dimensionalized flow equation

∂u
∂t

= Sc
∂2u
∂y2

, u(y, 0) = 0, u(0, t) = 0, u(1, t) = ξ (t), (4)

where Sc = ν/κ is the Schmidt number. The dimensionless frequency ω0 also can be
written as ω0 = Wo2Sc, where Wo = L

√
ω/ν is the Womersley number. When ξ (t) =

cosω0t, the long-time solution of Eq. (4) is

u(y, t) =
∑

k=±1

exp (itkω0) sinh
(
ei

π
4
√
kWoy

)

2 sinh
(
ei

π
4
√
kWo

) . (5)

At a fixed time, the Womersley number uniquely determines the spatial shape of the
Stokes layer solution. The advection–diffusion equation becomes

∂T
∂t

+ Peu(y, z, t)
∂T
∂x

= �T, T (x, y, z, 0) = TI (x, y, z),
∂T
∂n

∣∣∣∣
R×∂�

= 0, (6)

where Pe = UL/κ = AωL/κ is the Péclet number, the domain is R × �, x ∈ R,
� = {

y|y ∈ [0, 1]
}

for the two-dimensional problem, R × �, and x ∈ R, � =
{
(y, z)|y ∈ [0, 1], z ∈ R

}
for the three-dimensional problem.
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2.2 Aris moment hierarchy

ThenthArismoment is definedbyTn(y, z, t) = ∫∞
−∞ xnT (x, y, z, t)dx.With the assumption

T (±∞, y, z, t) = 0, the Aris moments satisfy the recursive relationship called the Aris
equation,

(∂t − �)Tn = n(n − 1)Tn−2 + nPeu(y, z, t)Tn−1,

Tn(y, z, 0) =
∞∫

−∞
xnTI (x, y, z)dx,

∂T
∂n

∣∣∣∣
R×∂�

= 0,
(7)

where Tn = 0 if n ≤ −1. The full moments of T are then obtained though
the cross-sectional average of the moments T̄n = 1

|�|
∫
�
Tndy dz, where � =

{
(y, z)|y ∈ [0, 1], z ∈ R

}
is the cross section and |�| is the area of �. In this following

context, we use the overline to denote the cross-sectional average. Applying the diver-
gence theorem and boundary conditions gives

dT̄n
dt

= n(n − 1)T̄n−2 + nPeu(y, z, t)Tn−1,

T̄n(0) = 1
|�|

∫

�

∞∫

−∞
xnTI (x, y, z)dx dy dz.

(8)

The multiscale analysis in Appendix 7.1 suggests that, assuming a scale separation in the
initial data, the solution of Eq. (2) can be approximated by a diffusion equation with an
effective diffusion coefficient. Inspired by this observation, we study the longitudinal effec-
tive diffusivity through the cross-sectional average T̄ . The effective longitudinal diffusivity
is defined as

κeff = lim
t→∞

Var(T̄ )
2t

, (9)

where Var(T̄ ) = T̄2− T̄ 2
1 is the variance of the cross-sectional average T̄ . In this paper, we

use κeff to denote the dimensional effective diffusivity computed by the dimensional Aris
moment and use the κ̃eff = κeff/κ to denote the non-dimensional effective diffusivity.
We are also interested in the symmetry properties of T̄ . Skewness is the lowest order

integral measure of the asymmetry of a real-valued probability distribution, which is
defined as

S(T̄ ) = T̄3 − 3T̄2T̄1 + 2T̄ 3
1

(
T̄2 − T̄ 2

1
) 3
2

. (10)

For a unimodal distribution, negative skewness commonly indicates that the distribution
has thepropertymedian>mean,while positive skewness indicates that themedian<mean,
see [4,37] for sufficient conditions which guarantee this correlation. The information of
shape provided by the skewness could improve the design of microfluidic flow injection
analysis [4,52] and chromatographic separation [16].

2.3 Enhanced diffusivity and skewness induced by a general periodic time-varying flow

In this section, we derive the formulae for the enhanced diffusivity and skewness induced
by a general periodic time-varying flow u(y, t) which has the Fourier series representation

u(y, t) =
∞∑

k=−∞
ukeikω0t , (11)



   34 Page 6 of 29 L. Ding et al. Res Math Sci           (2021) 8:34 

where uk = ω0
2π
∫ 2π/ω0
0 u(y, t)e−ikω0tdt. Several observations and assumptions can simplify

our calculation. Firstly, we take T (x, y, z, 0) = δ(x) as the initial data. Hence T0(y, z, 0) = 1
and Tn(y, z, 0) = 0 for n ≥ 1 by the definition (7). Since the initial function and flow
studied here are independent of z, the three-dimensional advection–diffusion equation
(6) reduces to an equation in two spatial dimensions. Secondly, to shorten the expression,
we denote φ0 = 1, λ0 = 0 and φn = √

2 cos nπy, λn = n2π2, n ≥ 1 as the eigenfunctions
and eigenvalues of the Laplace operator in the cross section of the parallel-plate channel.
Those eigenfunctions form an orthogonal basis on the cross section � with respect to the
inner product

〈
f, g
〉 = ∫ 10 fgdy. Thirdly, the centered cross-sectional average, e.g., variance

and skewness, is invariant under the Galilean transformation x̃ = x − ∫ t0
∫ 1
0 u(y, s)dyds.

We consider the problem in a frame of reference moving with the spatial mean speed
ū. Then the advection–diffusion equation (6) has the same form but a new shear flow
ũ = u − ū with ũk = uk − ūk . Hence, T̄1 = 0 for all time which simplifies the calculation
of variance and skewness of T̄ .
To compute the effective longitudinal diffusivity, we need to compute the Arismoments

T0, T1, T̄2 in turn. When n = 0, Eq. (7) becomes
∂T0
∂t

− ∂2T0
∂y2

= 0, T0(y, 0) = 1,
∂T0
∂y

∣∣∣∣
y=0,1

= 0. (12)

The solution is T0 = 1. When n = 1, Eq. (7) is
∂T1
∂t

− ∂2T1
∂y2

= Peũ(y, t)T0, T1(y, 0) = 0,
∂T1
∂y

∣∣∣∣
y=0,1

= 0. (13)

Then, T1 has the series representation which takes the form

T1 = Pe
∞∑

k1=−∞

∞∑

n=1

〈
uk1 ,φn

〉
φn

eik1ω0t − e−tλn

λn + ik1ω0

= Pe
∞∑

k1=−∞

(

Q(1)
k1 e

ik1ω0t −
∞∑

n=1

〈
uk1 ,φn

〉
φne−tλn

λn + ik1ω0

)

,
(14)

where Q(1)
k1 = (−� + ik1ω0)−1 (uk − ūk ) and the inverse Helmholtz operator, b(y) =

(−� + λ)−1 a(y), solves

− ∂2b(y)
∂y2

+ λb(y) = a(y),
∂b
∂y

∣∣∣∣
y=0,1

= 0. (15)

We note that b(y) has the integral representation

b(y) = 1√
λ

⎛

⎝
cosh

(√
λy
) ∫ 1

0 a(s) cosh
(√

λ(1 − s)
)
ds

sinh
(√

λ
)

−
∫ y

0
a(s) sinh

(√
λ(y − s)

)
ds
)
, λ 
= −λn.

(16)

When λ = −λn = −n2π2, a(y) should satisfy the solvability condition 〈a,φn〉 = 0. In this
case, the boundary value problem has infinite solutions.We choose the particular solution
which satisfies

〈
b, γn

〉 = 0,

b(y) = (−� − λn)−1 a = lim
λ→−λn

(−� + λ)−1 a − 〈(−� + λ)−1 a,φn
〉
. (17)

When the cross section � has more general geometry, b = (−� + λ)−1a becomes the
solution of theHelmholtz equation (−�+λ)b = aon�withno-fluxboundary conditions.
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When n = 2, Eq. (8) is:

dT̄2
dt

= 2T̄0 + 2Peũ(y, t)T1, T̄2(0) = 0. (18)

By solving this equation, we have

T̄2 = 2t + 2Pe2
∑

k1 ,k2∈Z

∞∑

n=1

〈
uk1 ,φn

〉 〈
uk2 ,φn

〉
{

−1 + ei(k1+k2)ω0t

(k1 + k2)ω0 (iλn − k1ω0)

− 1 − e−λnt+ik2ω0t

(λn + ik1ω0) (λn − ik2ω0)

}

,

(19)

where the summand is understood as an entire function whose value is determined by
its power series. For example, f (z) = ez−1

z = 1 + z
2 + O(z2), so f (0) = 1. The effective

longitudinal diffusivity defined in (9) is then

κ̃eff = 1 + Pe2
∞∑

k=−∞

∞∑

n=1

〈uk ,φn〉
〈
u−k ,φn

〉

λn + ikω0
= 1 + Pe2

∞∑

k=−∞

〈
Q(1)
k , u−k

〉
. (20)

The double-series representation for effective diffusivity is identical to equation (3.24)
in [54], while the single-series representation presented here is new. For the steady flow
ũ(y, t) = ũ0(y), the last expression in Eq. (20) becomes equation (1.30) in [50]. Moreover,
by the divergence theorem, we have

κ̃eff = 1 + Pe2
〈−ũ�−1ũ

〉

= 1 + Pe2
〈(∇�−1ũ

) · (∇�−1ũ
)〉 = 1 + Pe2‖ũ‖H−1 ,

(21)

where ‖u‖H−1 = 〈(∇�−1u
) · (∇�−1u

)〉
is the H−1 norm of u. Interestingly, the H−1

norm is widely used for measuring mixing efficiency in the field of chaotic advection
[5,35,36,51]. It also appears in the effective diffusivity here which is a measurement of
mixing efficiency in this shear dispersion problem.
To compute the skewness of the cross-sectional average T̄ , we need to compute the Aris

moments T2, T̄3 in turn. When n = 2, Eq. (7) is

∂T2
∂t

− ∂2T2
∂y2

= 2T0 + 2 Pe ũ(y, t)T1, T2(y, 0) = 0,
∂T2
∂y

∣∣∣∣
y=0,1

= 0. (22)

Here ũ(y, t)T1 has the series representation

ũ(y, t)T1 = Pe
∑

k1 ,k2∈Z

∞∑

n1=1,n2=0

〈
uk1 ,φn1

〉 〈
uk2φn1 ,φn2

〉
φn2

× ei(k1+k2)ω0t − eik2ω0t−λn1 t

λn1 + ik1ω0
.

(23)

Hence, T2 has the series representation

T2 = 2t + 2 Pe2
∑

k1 ,k2∈Z

∞∑

n1=1,n2=0

〈
uk1 ,φn1

〉 〈
uk2φn1 ,φn2

〉
φn2

λn1 + ik1ω0

×
(

−e−λn2 t + ei(k1+k2)ω0t

λn2 + i (k1 + k2)ω0
− e−λn2 t − e−λn1 t+ik2ω0t

−ik2ω0 + λn1 − λn2

)

.

(24)

When n = 3, Eq. (8) is:

dT̄3
dt

= 6T̄1 + 3 Pe ũ(y, t)T2, T̄3(0) = 0. (25)
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T̄1 = 0 follows from the choice of the frame of reference. Hence, we obtain

T̄3 = 6 Pe3
∑

k1 ,k2 ,k3∈Z

∞∑

n1 ,n2=1

〈
uk1 ,φn1

〉 〈
uk2φn1 ,φn2

〉 〈
uk3 ,φn2

〉

λn1 + ik1ω0

×
{

1
−ik2ω0+λn1−λn2

(
1−e−t(λn1−i(k2+k3)ω0)

λn1−i(k2+k3)ω0
− 1−e−tλn2+ik3tω0

λn2−ik3ω0

)

− 1
λn2+i(k1+k2)ω0

(
1−e−tλn2+ik3tω0

λn2−ik3ω0
− −1+ei(k1+k2+k3)tω0

i(k1+k2+k3)ω0

)}
.

(26)

With the definition of skewness (10) and T̄1 = 0, we have

S(T̄ ) = 3 Pe3√
2κ̃3eff t

∑

k1 ,k2∈Z

∞∑

n1 ,n2=1

〈
uk1 ,φn1

〉〈
uk2φn1 ,φn2

〉〈
u−k1−k2 ,φn2

〉

(λn1+ik1ω0)(λn2+i(k1+k2)ω0) + O
(
t−

3
2
)

=
3 Pe3

∑

k1 ,k2∈Z

〈
Q(2,1)
k1 ,k2

,u−k1−k2

〉

√
2t
(

1+Pe2
∞∑

k=−∞

(
Q(1)
k ,u−k

〉)
3
2

+ O
(
t−

3
2
)
.

(27)

whereQ(2,1)
k1 ,k2 = (i(k1+k2)ω0−�)−1

(
Q(1)
k1 ũk2 − Q(1)

k1 ũk2
)
. For steady flow, Eq. (27) reduces

to equation (24) in the supplementary materials of article [2]. For a single-frequency flow,
ki ∈ {−1, 1} and δk1+k2 ,−k3 = 0 for all combinations of k1, k2, k3. Hence, the leading order
in Eq. (27) vanishes, which leads to the long-time asymptotic expansion of skewness

S(T̄ ) = 3 Pe3√
2κ̃3eff t3

∑

k1 ,k2 ,k3∈Z

∞∑

n1 ,n2=1

〈
uk1 ,φn1

〉 〈
uk2φn1 ,φn2

〉 〈
uk3 ,φn2

〉

λn1 + ik1ω0

×
{

1
−ik2ω0+λn1−λn2

(
1

λn1−i(k2+k3)ω0
− 1

λn2−ik3ω0

)

− 1
λn2+i(k1+k2)ω0

(
1

λn2−ik3ω0
− −1+ei(k1+k2+k3)tω0

i(k1+k2+k3)ω0

)}
+ O(e−λ1t ).

(28)

This expression implies that single-frequency flows or multiple frequency flows with
suitable frequency separation could relax more quickly to a symmetric T̄ than other
flows, e.g., steady Poiseuille flow.

2.4 Enhanced diffusivity induced by an oscillating wall

With the formula we derived in the previous section, we present a detailed analysis of
the enhanced diffusivity induced by the Stokes layer solution and its dependence on the
parameters. With the formulae for the Stokes layer solution (5) and second Aris moment
(19), we have

T̄2 = 2t + 2Pe2
∑

k1 ,k2=±1

∞∑

n=1

( −1+ei(k1+k2)ω0t
(k1+k2)ω0(iλn−k1ω0) − 1−e−λnt+ik2ω0t

(λn+ik1ω0)(λn−ik2ω0)

)

×
2∏

j=1

ei
π
4
√

kjWo
(
(−1)n cosh

(
ei

π
4
√

kjWo
)
−1
)

√
2sinh

(
ei

π
4
√

kjWo
)
(π2n2+ikjWo2)

.

(29)
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With Eq. (20), the effective longitudinal diffusivity induced by the Stokes layer solution
is then

κ̃eff = 1 + Pe2Wo2

2
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)

{

− sin(
√
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0
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) (
cos
(√

2ω0
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(√
2ω0
))

×
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4
√
2e

π
4 i cos

(
Wo√
2

)
cosh

(
Wo√
2

)(
sin
(
e

π
4 i

√
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− sinh
(
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4 i

√
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−(cos(
√
2Wo) + cosh(

√
2Wo) + 2)

(
sin
(√

2ω0
)

− sinh
(√

2ω0
)))}

.

(30)

The three non-dimensional parameters ω0,Wo, Sc are connected by the relation ω0 =
Wo2Sc. To study limiting cases, we need to assume two of them are independent and
eliminate the remaining parameter from Eq. (30). We first study the low and high limit of
Womersley numberwith a givenω0, i.e., Sc becomes a function ofWo. The expansion (66)
shows that the Stokes layer solution converges to the linear shear flow u(y, t) = y cos (ω0t)
as Wo → 0. In the lowWomersley number limit, the effective diffusivity (30) becomes

κ̃eff = 1 + Pe2

2ω2
0

⎛

⎝1 −
√
2√
ω0

sin
(√

ω0√
2

)
+ sinh

(√
ω0√
2

)

cos
(√

ω0√
2

)
+ cosh

(√
ω0√
2

)

⎞

⎠+ O(Wo4). (31)

We also can compute the asymptotics in the high Womersley number limit Wo → ∞
which yields

κ̃eff = 1 + Pe2Wo2

2
√
2

{
sinh

(√
2ω0
)− sin

(√
2ω0
)

√
ω0
(
ω2
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) (
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(√
2ω0
))

− 1
Wo5 − Woω2

0

}

+ O
(
e−

√
2
2 Wo

)
.

(32)

Either low viscosity or large gap thickness yields a large Womersley number. In the low
viscosity limit, since no fluid motion is generated for a parallel wall moving in an ideal
fluid, the boosted diffusivity vanishes. The numerical simulation results in Fig. 12 show
that the mixing is confined in a thinner boundary layer for a smaller viscosity.
Next, we study the limiting cases involving the non-dimensional frequencyω0 with fixed

Womersley number. In other words, we change ω0 while keeping the spatial shape of the
Stokes layer unchanged. As ω0 → 0, we have

κ̃eff = 1 + Pe2

2Wo2
(
cosh

(√
2Wo

)
− cos

(√
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))

⎛

⎝−
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⎠+ O(ω2
0).

(33)

We have the following asymptotic expansion as ω0 → ∞:

κ̃eff = 1 + Pe2Wo2

2
√
2
(
cosh(

√
2Wo) − cos(

√
2Wo)

)

{
sin(

√
2Wo) + sinh(

√
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(
cos(

√
2Wo) + cosh(

√
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)
ω

−5/2
0 + O

(
ω

−7/2
0

)}
.

(34)

One may be interested in κ̃eff as ω0 → ∞ or ω0 → 0 for a given Schmidt number Sc.
In this case, the Stokes shear wave becomes a steady flow u(t, y) = y + O(ω0) as ω0 → 0.
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Fig. 2 Enhanced diffusivity κ̃eff − 1 for Péclet number Pe = 1, (left panel) varying the dimensionless
frequency ω0 and the Womersley number Wo or (right panel) varying the dimensionless frequency ω0 and
the Schmidt number Sc. The black curves indicate the location of the enhanced diffusivity maximum in the
non-dimensional parameter space(s) for a given non-dimensional frequency. The red dashed curves are the
asymptotic approximation of these functions for large or small ω0

Equation (30) becomes the classical result of Taylor dispersion for a steady moving wall

κ̃eff = 1 + Pe2
(

1
240

+ ω2
0
(
7 − 155Sc2

)

3628800Sc2

)

+ O
(
ω
5/2
0

)
. (35)

When ω0 → ∞, we have

κ̃eff = 1 + Pe2Sc

2
√
2
(√

Sc + 1
)
(Sc + 1)ω3/2

0

+ O
(
e−min

(
1, 1√

Sc

)√
2ω0
)
. (36)

These asymptotic expansions imply the potential existence of a maximum effective
diffusivity as Schmidt number or Womersley number is varied when ω0 is given. We
denote the Schmidt number and Womersley number for reaching the maximum of κ̃eff
as fSc(ω0) and fWo(ω0), respectively. When ω0 is large, Eq. (36) leads to

fSc(ω0) ∼1
3

(
3
√
53 + 6

√
78 + 3

√
53 − 6

√
78 + 2

)
≈ 2.3146, ω0 → ∞. (37)

When ω0 is small, we numerically calculate the maximum using Eq. (33) and find

fWo(ω0) ∼2.49426, ω0 → 0. (38)

The results of other cases can be obtained by the relation ω0 = Wo2Sc. Figure 2 shows
how the enhanced diffusivity varies for different dimensionless parameters. The black
curves represent the functions fWo(ω0), fSc(ω0), and the red dashed curve represents their
asymptotic results. To further explore maximal properties we plot in Fig. 3 the normal-
ized enhanced diffusivity as a function of the fluid kinematic viscosity with experimental
parameters. As the viscosity increases, the effective diffusivity first reaches its maximum
value then decreases to a plateau. The difference between the peak and the plateau is
smaller for smaller frequencies. Due to this phenomenon, it is hard to distinguish the
maximum and plateau value of κ̃eff at small frequencies in Fig. 2.
All of these results are obtained with a fixed Pe, which occurs as the amplitude A → 0

as ω → ∞. Hence, in those cases, the effective diffusivity vanishes for large frequency.
Things are different in dimensional variables. Figure 3 suggests that higher dimensional
frequency may yield higher effective diffusivity for a fixed amplitude A. Based on this
observation, we are next interested in studying the effective diffusivity at large frequencies
whileholding all otherphysical parameters constant. For linear shearflow, thedimensional
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Fig. 3 The dimensionless enhanced diffusivity κeff − 1 versus the viscosity with parameters L = 0.2 cm,
A = 1 cm, κ = 3.3 × 10−6 cm2/s, ω = 2π/100 rad/s (red solid curve, Pe = 3808), ω = 2π/10 s−1 (blue
dashed curve, Pe = 38080)
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Fig. 4 Comparison of dimensionless enhanced diffusivity κeff − 1 computed by the full expression of κeff in
Eq. (30) (solid red) with the one computed by the high-frequency asymptotic expansion of κeff given in Eq.
(40) (dashed blue), for the Stokes layer solution with parameters L = 0.2 cm, A = 1 cm, κ = 3.3 × 10−6

cm2/s, ν = 0.01 St (Sc = 3030.3)

effective diffusivity κeff is bounded by a constant set solely by the gap thickness L and the
amplitude of wall motion A,

κeff ≤ κ

(

1 + Pe2

2ω2
0

)

= κ

(
1 + A2

2L2

)
, (39)

which follows from Eq. (31). Alternatively, at finite viscosities, the Stokes layer solution
induces an effective diffusivity which is unbounded in the high frequency limit ω → ∞
and has the following asymptotic expansion:

κeff = κ

(

1 + A2ν
√

ω

2
√
2L
(√

κ + √
ν
)
(κ + ν)

)

+ O
(
e−min

(
1√
κ
, 1√

ν

)
L
√
2ω
)
. (40)

The log–log plot (4) shows the exponential convergence of κeff to its high frequency
asymptotic expansion (40). Onemay be interested in whether such growth of the variance
as a function of high frequency is visible at large but finite times. This is a question which
involves commuting limits and joint asymptotic expansion. Careful examination of the
formula in Eq. (29) shows the high-frequency expansion at fixed time produces a linearly
growing term in timewhose slope exactlymatches that in Eq. (30) as well as the correction
which is bounded in both frequency and time. Hence, the time and high-frequency limits
will commute in this case. There could be cases of incommensurate limits amongst the
non-dimensional parameters.4
The fluid viscosity and tracer diffusivity are both functions of temperature. For instance,

they may satisfy the Stokes–Einstein relationship (page 320 of the book [26]) κ(θ ) =
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Fig. 5 a Schmidt number of fluorescein-water system varies with the temperature θ ∈ [273, 373]K . b κ̃eff (θ )
(left y axis, red color), κeff (θ ) (right y axis, blue color) with parameters A = 1 cm, L = 1/5 cm, ω = 2π/10 rad/s

kθ
6πη(θ )r , where k = 1.3807 × 10−23J · K−1 is the Boltzmann constant, r is the hydrody-
namic radius of the tracer, η is the dynamic viscosity, and θ is the absolute temperature
with the unit Kelvin K . Of course, this relationship is correct for a small spherical particle
experiencing Brownian motion: the solute is a molecule, and not a sphere. Still, measur-
ing the diffusivity at one temperature can be nonetheless used to calculate an effective
hydrodynamic radius. Hence, Eqs. (37) and (38) could provide good guidance for finding
the temperature for the maximum of κ̃eff (θ ). Since κeff (θ ) = κ̃eff (θ )κ(θ ), we should also
notice that the temperature for reaching the maximum of κeff (θ ) and κ̃eff (θ ) could be
different. We consider the case of the fluorescein diffusion in water. As a function of the
temperature, the diffusivity of fluorescein takes the form κ(θ ) = 1.2717∗10−8θ

e
578.919

θ−137.546−3.7188
cm2/s [47],

the dynamic viscosity of water is η(θ ) = 2.4152× 10−4 × 4.7428
365.33

−139.86+θ Poise (Table 2 in
[30]), and the density of water [33,34] is

ρ(θ ) = 10−3

0.0168979(θ − 273) + 1
(999.84 + 16.9452(θ − 273)

− 0.00798704(θ − 273)2 − 0.0000461705(θ − 273)3

+1.0556302 × 10−7(θ − 273)4 − 2.8054253 × 10−10(θ − 273)5
)
g/cm3.

(41)

With these formulas, we plot the Schmidt number as a function of temperature for
θ ∈ [273, 373] K in the panel (a) of Fig. 5. To observe an interior maximum in the effec-
tive diffusivity, the Schmidt number must be smaller than 2.3146. For fluorescein–water
mixtures, theminimum Schmidt number over this range of temperatures is 172.2862, and
thus, no interior maximum is observed. In fact, over this range of temperatures, κ̃eff (θ )
increasesmonotonically as seen in panel (b) of Fig. 5. A tracer-fluid systemwith a Schmidt
number smaller than 2.3146 could exhibit an interior effective diffusivity maximum as a
function of temperature.

2.5 Skewness

In this section, we utilize the formulae derived in Sect. 2.3 to study the skewness of T̄ for
left-right symmetric initial data.
At infinite viscosity, the Stokes layer solution (5) becomes a periodic time-varying linear

shear flow yξ (t). It is fairly straightforward to show that the passive scalar skewness is
generally zero for initial data δ(x) by the analysis of parity. Observe that the linear shear
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Fig. 6 The coefficient of t−3/2 in the long-time asymptotic expansion of the skewness of T̄ (i.e., Eq. 28) with
the parameters Pe = 2,Wo = 1,ω0 = 2π and the velocity of the wall cos(ω0t + s). The red solid curve, blue
dash curve and black dash-dot curve correspond to the phase shift s = 0, s = π/2, s = −π/2, respectively

admits an odd cosine expansion in y and produces an odd T1 cosine expansion in y. In
turn, we see that T2 is even from inspection, since the driver in the equation for T2 is
the product of two functions u and T1 which are odd about the centerline of the channel
y = 1/2. Lastly, the driver for the T3 equation contains T1 (odd) and the product of ũ
(odd) andT2 (even).When computing the net thirdmoment by cross-sectional averaging,
T̄1 = 0 as well as ũT2 = 0. Hence, the skewness is zero for a linear shear. Alternatively,
it is easy to check that

〈
(y − 1

2 )φn1 ,φn2
〉 〈
(y − 1

2 ),φn2
〉 = 0 for any pair of (n1, n2). Then, we

also see the skewness is zero for all time from Eq. (26).
At finite viscosities, the skewness of T̄ has more interesting behavior. With the formula

for the Stokes layer solution (5), we have
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(42)

Therefore, the formula of S(T̄ ) is available by applying formula (26) and (10). Figure 6
shows the coefficient of t− 3

2 in the long-time asymptotic expansion of S(T̄ ) with the
wall velocity cos(2π t + s). As predicted by Eq. (28), the sign of the skewness changes
periodically. The skewness sign stays positive longer than negative when the phase shift
s of the wall motion is zero. However, it stays strictly positive when s = π/2 and strictly
negative when s = −π/2. This observation suggests that we can control the symmetry
properties of T̄ by simply shifting the phase. In addition, Fig. 6 shows that the skewness
is not zero at the end of each period when the wall goes back to the initial position.
The numerical simulation results in Fig. 12 also show that the distribution of tracer is
asymmetric about the centerline of the initial data x = 0. This phenomenon implies that,
even with periodic flow in time, the symmetry of the tracer’s distribution may break in
the presence of diffusion. Also note that, upon close inspection of the linear shear case
documented in Figs. 10 and 11, one can see broken symmetry near the top and bottom of
the graphs, though when cross-sectionally averaged, this effect cancels.
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We also are interested in the short-time behavior of the skewness. Article [3] presented
a method for computing the short-time asymptotics of the Aris moment in an arbitrary
cross-sectional domain. They found there is a plateau of skewness of T̄ at short time
which only depends on the geometry of the cross section. They denoted this quantity as the
geometric skewness. The geometric skewness is independent of the Péclet number.Hence,
it can be computed by neglecting themolecular diffusion. For given initial dataTI (x, y), the
solution can be obtained bymethod of characteristics as T (x, y, t) = TI (x−∫ t0 u(y, s)ds, y),
then T̄n = ∫∞

−∞ xn
∫ 1
0 TI (x − ∫ t0 u(y, s)ds, y)dydx. For general initial data, this leads to a

lengthy analytical formula for the geometric skewness, which is too long to list here. We
will study its behavior in Sect. 5 and compare with computational simulations, which will
also show that the skewness depends significantly on the phase shift at short times.

3 Computational approaches
In this section, we describe two computational approaches for solving the advection–
diffusionequation: theMonte-Carlomethodand theFourier spectralmethod.TheMonte-
Carlo method is advantageous to problems involving complex geometry and is ideally
suited to parallel computing. Moreover, its convergence rate only depends on the number
of samples which makes it particularly useful for higher-dimensional integrals. Based
on those features, the Monte-Carlo methods are more suitable for computing the Aris
moments on larger time scales. However, it is expensive to store the positions of millions
of particles at every observation time instant. The spectral method is more efficient and
flexible to compute the distribution of the tracer for different parameters on a shorter
time scale, which can remedy the weakness of Monte-Carlo method.
First, we introduce the setup of theMonte-Carlomethod. TheMonte-Carlo simulations

are used to compare with the laboratory experiments described in the following section.
To get a global approximation of the solution of the advection–diffusion equation, we
adopt the forward Monte-Carlo method which is based on the Fokker–Planck equation.
We determine the initial position of 107 particles according to the intensity distribution of
the experimental photographs on a uniform grid. We assume that the tracer is uniformly
distributed on the cross section of the channel. Each particle’s trajectory satisfies the
stochastic differential equation (SDE),

dXt = u(Yt , t) dt + √
2κdW1,

dYt = √
2κ dW2,

dZt = √
2κ dW3.

(43)

where u(y, t) is a shear flow, κ is the molecular diffusivity, and dWi are independent white
noises. We solve the SDE by the Euler scheme with a time increment �t = 0.05 s which
resolves the frequencies studied experimentally,

Xti+1 = Xti + u(Yti , ti)�t + √
2κ�tni,1,

Yti+1 = Yti + √
2κ�tni,2,

Zti+1 = Zti + √
2κ�tni,3.

(44)

Here, ni,j are independent and identically distributed standard normal random variables
which are produced by the Mersenne Twister uniform random number generator and
Marsaglia polar method [40].We impose the billiard-like reflection rules on the boundary
plane z = 0 cm, z = 16 cm, y = 0 cm, y = L. We note that the tank height is chosen to be
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16 cm to match the experimental height. At a given time t, the histogram of the N = 107

particle positions is an approximation of the solution T (x, y, z, t). The cross-sectional
average of nth Aris moment can be approximated by the formula

T̄n(ti) = 1
N

N∑

j=1
Xn
ti,j , (45)

where Xti,j is the x-coordinate of jth particle at time ti. The simulations are performed on
UNC’s Longleaf computing cluster by using 200 cores. The computation takes approxi-
mately 8 h to perform 3×105 time steps needed to resolve the flow and reach the diffusion
timescale L2/κ .
Additionally, we utilize the Fourier spectral method to solve the two-dimensional

advection–diffusion equation (2) with Stokes layer solution (5). All computations of solu-
tion and Aris moments are performed on the domain [−H,H ] × [0, L]. When H is large
enough, we can assume there is a periodic boundary condition in the x-direction. Since
there are non-penetration conditions in the y-direction, we perform the even extension
in the y-direction to obtain the periodic condition on the extended domain. Thus, we
solve the advection–diffusion equation with periodic boundary conditions on the rectan-
gular domain [−H,H ]× [0, 2L]. It can be solved by the standard Fourier spectral method
with the explicit fourth-order Runge–Kutta method as the time-marching scheme. In the
dealiasing process at each time step, we apply the all-or-nothing filter with the two-thirds
rule to the spectrum; that is, we set the upper one-third of the resolved spectrum to
zero (see chapter 11 of the book [18] for details). We solve equation with the parameters
H = 16cm, L = 0.2 cm, and time increment �t = 0.005 s over 2000 time steps. The grid
resolution is 2048 × 257 before the even extension and 2048 × 512 after the extension.

4 Experimental methods
4.1 Experimental setup

Experiments were performed in a 50×25×30 cm glass tank. To reduce effects of thermal
convection, the fluid was density stratified using the two bucket method [28,45] with
sodium chloride as the stratifying agent. The density of the background fluid linearly
decreases with height, with total variation approximately 0.1 g/cc over 20 cm. One wall,
made of 0.75 in thick glass, is fixed to both sides of the tank, while a second 0.25 in thick
aluminum wall is connected from above to a linear stage driven by an Oriental motor
model ARM66MC with driver model ARD-A, which translates the wall in the horizontal
direction parallel to the fixed wall. The motor is controlled by custom software written
in MATLAB for the ATMEL ATMEGA2560 microcontroller and implemented using an
Arduino MEGA 2560. To prepare the tracer, fluorescein powder is mixed with saline
solution of density 1.05 g/cc to a concentration of 0.9 g/L. About 50 µL of fluorescein
solution is injected between the walls near the center of the interrogation region and
allowed to freely diffuse for several hours to make the dye uniformly in the cross section.
The tankandmotor framearedraped inblack fabric toblock ambient light, andablacklight
is placed on top of the tank to illuminate the tracer. The illuminated fluorescein dye is
photographed from the side using aNikonD750which is synchronizedwith the oscillating
wall period using the Arduino. A first-surface mirror tilted back 45 degrees from vertical
is placed below the tank to allow for easily viewing the dye from below.
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Fig. 7 Study of the image noise For a fixed experimental observation of dye concentration with no flow, we
take photographs at different shutter speeds and process the resulting T̄ , which effectively adjusts the
signal-to-noise ratio while keeping the signal fixed. aWe apply a 2-D Gaussian filter by the MATLAB built-in
function imgaussfiltwith parameter sigma==25. Here each curve is rescaled to have maximum one. b.
We apply the 2-D Gaussian filter with the same parameter and subtract the background noise from the
images (subset of exposure times and associated curve colors indicated in top legend). Here each curve is
normalized to be a PDF

To capture particle tracking velocimetry (PTV) images, saline solution of density 1.05
g/cc is mixed with 50-micron-diameter hollow glass microspheres and injected into the
interrogation region. A laser sheet with normal in the vertical direction illuminates the
fluid which is viewed from below using 30 fps video captured on a Nikon D750 equipped
with a Nikon AF-Smicro Nikkor 105mm lens. PTV processing is performed inMATLAB
using PTVlab [19]. Figure 1 shows a schematic of the experimental setup from three
different views.

4.2 Image analysis

To process the dye images, a Gaussian filter is applied, and then the intensity is integrated
along the vertical direction. Then, the full width at half maximum (FWHM) is measured
as a function of time, first for the case of no wall movement tomeasure the bare diffusivity
of sodium fluorescein in the saline solution, then after turning on the wall to measure the
effective diffusivity.
In a distribution, the FWHM statistic is the difference between the two values of the

independent variable atwhich thedependent variable is equal tohalf of itsmaximumvalue.
The motivation for using the FWHM statistic in lieu of moment-based measurements is
summarized in Fig. 7 and Table 1. Photographs with different exposure times of the same
dye distribution are taken after the dye has been diffusing for several hours. This provides
a sequence of images with different signal to noise ratios of the same dye concentration
field. Small noise in the far field gives a large contribution to the moments as we see a
large variation of the variance computed by the moment integral method in the second
row of Table 1. To obtain a measurement of variance that is more robust to noise, we can
take advantage of the explicit formula of the tracer’s distribution. The multiscale analysis
in Appendix 7.1 shows that T̄ can be approximated as a normal distribution at long times,

T̄ = T̄0√
4π tκeff

exp
(

− (x − T̄1)2

4tκeff

)
. (46)

Hence, the relationship between FWHM and the effective diffusivity κeff is

FWHM = 2
√
2 ln 2

√
T̄02tκeff ≈ 2.355

√
T̄02tκeff . (47)
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Table 1 The variance computed by various methods for the data presented in Fig. 7

Exposure time (s) Second moment Second moment BNS FWHM FWHM BNS

2.500 27.562 14.665 7.774 6.273

2.000 27.099 14.123 7.362 5.989

1.600 26.607 13.913 6.999 5.770

1.300 26.536 13.378 6.780 5.563

1.000 26.362 12.722 6.582 5.384

0.769 26.691 13.503 6.466 5.287

0.625 26.138 13.485 6.247 5.200

0.500 26.204 13.915 6.264 5.207

0.400 26.336 13.544 6.264 5.144

0.333 25.574 13.178 6.091 5.050

0.250 25.148 13.037 6.117 5.136

0.200 26.116 12.039 6.169 4.995

0.167 25.888 11.458 6.023 4.910

0.125 26.615 10.457 5.946 4.788

0.100 27.626 9.711 5.845 4.599

0.077 29.199 8.527 5.745 4.306

0.067 31.456 6.959 5.887 4.078

0.050 35.155 6.397 6.528 3.877

0.040 36.377 5.834 6.626 3.754

0.033 39.178 6.063 7.832 3.561

Here, the label ‘BNS’ indicates the background noise was subtracted. The label ‘FWHM’ indicates the variance was calculated
by the full width at half maximummethod which is given in Eq. (47), and ‘second moment’ indicates the variance was
calculated by the second Aris full moment which is given in Eq. (9)

The first row of Table 1 shows the FWHM is more robust to noise, particularly when
the signal-noise ratio is small. For these reasons, we adopt the FWHM for measuring the
effective diffusivity.

5 Experimental and theoretical results
Here, we present a comparison of experimental results with the theory developed above as
well as Monte-Carlo and pseudo-spectral simulations for the evolving passive scalar field.
First, in Fig. 8 we show an experimental and theoretical comparison of the Stokes layer
(63) for two different cases corresponding to two different amplitude wall motions. The
left panels show the shear velocity time series at 8 different locations uniformly distributed
across the channel for a case with A = 1 cm, ω = 2π × 0.01 rad/s, ν = 0.0113 St, and
L = 0.16 cm, while the right panels change the amplitude to A = 2 cm.
Next, in Fig. 9 we show the experimental and Monte-Carlo simulations for the dye

distribution viewed from the side at times t = 0 s, t = 7200 s, and t = 14,400 s, with
parameters listed in the figure caption.We also plot the averaged concentrations, T̄ for the
experiment and the simulation in the left columns of each panel. The parameters for this
figure correspond to trial 3 (panel (a)) and 7 (panel (b)) from Table 2. A few comments
regarding our experimental data. First, since the width of the initial blobs is larger in
panel (b), the observed spreading is less than that in panel (a) even though the effective
diffusivities are similar. Second, in the absence of a flow, the cloud would have spread at
a much slower rate than those observed in this figure.
Table 2 shows the detailed comparison between the experimental campaign and the-

oretical prediction of the effective diffusivity. First, we remark that the bare molecular
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Fig. 8 Comparison of particle tracking velocimetry (PTV) data (black curves) with the Stokes layer analytical
solution (color curves) given in Eq. (5). Each curve which is plotted by black curves corresponds with a time
series of the shear velocity over a duration of one period taken at different distances between the fixed wall
and the moving wall (located at L = 0.16 cm). Left panel has wall oscillation amplitude A = 1 cm, right panel
has A = 2 cm, other parameters: ω = 2π/100 rad/s, ν = 0.0113 St, and L = 0.16 cm

Table 2 Comparison of the experimental and theoretical effective diffusivity

Trial A ω L ρ κ κeff ,e κeff ,t Error

1 1 2π/200 0.3 1.05 8.81E−06 4.26E−05 5.39E−05 0.209

2 2 2π/400 0.3 1.05 8.81E−06 1.36E−04 1.80E−05 0.245

3 1 2π/200 0.5 1.05 8.70E−06 2.71E−05 2.54E−05 − 0.067

4 1 2π/200 0.3 1.05 8.26E−06 3.63E−05 5.06E−05 0.282

5 1 2π/200 0.3 1.03 6.59E−06 2.97E−05 4.07E−05 0.270

6 1/5 2π/400 0.35 1.03 6.75E−06 7.23E−06 7.76E−06 − 0.068

7 1 2π/400 0.35 1.03 5.985E−06 2.75E−05 2.84E−05 0.028

The last column is the relative error between experimental and theoretical effective diffusivity, κeff ,t−κeff ,e
κeff ,t

A(cm) is the amplitude of the wall motion, ω (rad · s−1) is the frequency of the wall motion, L (cm) is the gap thickness, ρ
(g/cc) is the local density, κ (cm2/s) is the molecular diffusivity measured from the pure diffusion stage in the experiment,
κeff ,e (cm2/s) is the effective diffusivity computed by the FWHM approach from the experimental data, the viscosity is
ν = 0.0113 St, and κeff ,t (cm2/s) is the theoretical value based on the experimental parameters

diffusivity shows some variation. This is primarily due to the unexpected dependence of
fluorescein’s diffusivity upon the concentration of NaCl which has been observed in other
work by Gupta et al. [31]. In future work, we will explore this subtle effect. Consequently,
for the present case, we always measure the diffusivity first in our experiments.
We can gain some insight into the transient effects giving rise to the long-time limiting

effective diffusion by studying the short time behavior using the spectral method with
different diffusivities. Shown in Fig. 10 are images of the scalar distributions, each case
output at 5 different times taken on quarter cycles of the wall oscillation. The top cases
correspond to a pure time-varying linear shear with a single-frequency sine wall motion,
while thebottompanels correspond to caseswith anonlinear Stokes layer,withparameters
ν = 0.001 St, ω = 0.2π rad/s, L = 0.2 cm, A = 1 cm. The left panels have zero diffusivity,
while the right panels have κ = 10−5 cm2/s. Observe in the case of the Stokes layer, the
scalar is stretched into an extremely thin filament in the upper part of the channel which
diffuses rapidly in the nonzero diffusivity case. Compared to the linear shear, this case
diffuses faster locally in the upper channel. The case with linear shear is more uniformly
mixed across the channel. In the nonlinear Stokes layer case, the upper channel mixes
very quickly. This in turn increases the vertical concentration gradient, which gives rise
to increased transient vertical diffusive tracer mixing. To demonstrate this, we plot the
integral of the absolute value of the vertical concentration gradient in the right panel of
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Fig. 9 Experimental andMonte-Carlo simulation comparison First column of panels shows the longitudinal
distribution of the tracer T̄ , where the red solid line and blue dash line represent the experiment data and
Monte-Carlo simulation, respectively. The second column of panels shows the experimental photographs of
the tracer distributions viewed from the side at times t = 0, 2, 4 h. The third column of the panels shows the
corresponding Monte-Carlo simulations of the second column, where we also apply a 2-D Gaussian filter by
the MATLAB built-in function imgaussfilt with parameter sigma=1. The parameters are A = 1 cm,
ν = 0.0113 St, a L = 0.5 cm, ω = 2π/200 rad/s, κ = 8.7 × 10−6 cm2/s, and b L = 0.35 cm, ω = 2π/400
rad/s, κ = 6.0 × 10−6 cm2/s

Fig. 11, for the cases examined in the left panel of zero, finite, and infinite viscosity showing
that the finite viscosity Stokes layer has a significantly larger concentration gradient. This
effect is perhaps more pronounced than in the more familiar steady pressure-driven flow
as a full cycle returns the Lagrangian map to its initial configuration.
The left panel of Fig. 11 shows the mixing result at the end of one period of wall motion

for different flows. Flows create more dispersion in the longitudinal direction than the
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Fig. 10 Spectral method comparison between mixing by linear shear versus nonlinear Stokes layer with a
single-frequency sinusoidal wall motion. Upper panels correspond to linear shear, while the lower panels
correspond to the nonlinear Stokes layer, with parameters ν = 0.001 St, ω = 0.2π rad/s, L = 0.2 cm,
A = 1 cm. The left panels are computed with κ = 0 cm2/s, while the right panels utilize κ = 10−5 cm2/s.
Output times are taken at quarter periods, i.e., t = 0 s, 2.5 s, 5 s, 7.5 s, 10 s

(a) Top view of tracer (b)
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Fig. 11 Spectral method comparison between mixing by different flows after one-period of motion t = 10
s. a The top panel has no flow, the middle has a linear shear, and the bottom panel has a nonlinear Stokes
layer, with parameters ν = 0.001 St, ω = 0.2π rad/s, L = 0.2 cm, A = 1 cm and κ = 10−5 cm2/s. b Integral of

the absolute value of the concentration gradient
∫∞
−∞
∣∣∣ ∂T∂y (x, y, 10)

∣∣∣ dx , the red solid curve, blue dash curve,

black dash dot curve correspond to no flow, linear shear flow, Stokes layer flow, respectively

bare molecular diffusion. However, the physical mechanisms between a linear shear flow
and a nonlinear Stokes layer flow give rise to very different enhanced diffusivities: for the
linear shear case, κeff = 0.00013 cm2/s, 13.14 times the bare molecular diffusivity. This
value is nearly the upper bound (39) for a linear shear described above, which in this case
is 13.5 times the molecular diffusivity. On the other hand, in the nonlinear Stokes layer
case, κeff = 0.00041 cm2/s, which is 40.96 times the bare molecular diffusivity.
To further explore the effects of the diffusivity and viscosity upon the mixing using the

spectral method, we present Fig. 12. This figure shows a sweep of viscosities (decreasing
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Fig. 12 Spectral method comparison between mixing by Stokes layer flows after one-period of motion
t = 10 s for ω = 0.2π rad/s, L = 0.2 cm, A = 1 cm, different diffusivities and viscosities. The viscosity
decreases from left to right (ν =0.01 St, 0.001 St, 0.0001 St) and the diffusivity decreases from the top to
bottom (κ = 5 × 10−5 cm2/s, 10−5 cm2/s, 2 × 10−6 cm2/s). Note that the mixing is confined in a thinner
boundary layer for a smaller viscosity
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Fig. 13 Skewness arising from wall velocities Aω cos(ωt + s) started at different phase s, a s = 0, b s = π/4,
c s = π/2, d s = 3π/4, for the nonlinear Stokes layer with parameters ν = 0.01 St, ω = 0.2π rad/s,
L = 0.2 cm, A = 1 cm, and κ = 5 × 10−6 cm2/s

from left to right) and diffusivities (decreasing from top to bottom) which depicts the
nature of the boundary layer for the passive scalar. All of the mixing as the diffusivity and
viscosity are decreased occurs in a small boundary layer adjacent to the moving wall.
We next examine the skewness behavior for a nonlinear Stokes layer with parameters

ν = 0.01 St, ω = 0.2π rad/s, L = 0.2 cm, A = 1 cm, and κ = 5 × 10−6 cm2/s and
document how its sign can be controlled the initial phase of sinusoidal wall motion. The
initial function is a symmetric function TI (x, y) =

(√
2πσ

)−1
exp

(
− x2

2σ 2

)
and σ = 1/40.

Shown in Fig. 13 is the evolution of the total skewness, computed using Monte-Carlo
simulations, as the phase of the wall motion is changed. Clearly, the skewness shows rapid
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Fig. 14 Comparison of short-time skewness (solid red) with analytically predicted short-time asymptotic
Geometric skewness (dashed blue) arising from wall motion with the velocity Aω cos(ωt + s) started at phase
s = π/2, for the Stokes layer solution with parameters ν = 0.01 St, ω = 0.2π rad/s, L = 0.2 cm, A = 1 cm,
and κ = 5 × 10−6 cm2/s

oscillation on these timescales, and the phase clearly can be used to adjust the sign of the
skewness. Lastly, in Fig. 14 we show the short-time comparison of the geometric skewness
derived in the absence of diffusion with that computed with diffusion via Monte-Carlo
simulations.

6 Conclusions
In this paper, we develop a theory of enhanced diffusivity and skewness of the longitudinal
distribution of a diffusing tracer advected by a periodic, time-varying shear flow in a
straight channel. Based upon this, we present a detailed study of the tracer advected by
the flowswhich are induced by a periodically oscillating wall in aNewtonian fluid between
two infinite parallel plates as well as in an infinitely long duct. Using a new formalism built
upon the Helmholtz operator, we derive new single series formulae for the variance,
effectively re-summing the double sum formulas presented in literature, e.g., Vedel et al.
[54].
In the study of the effective diffusion, we find the optimal Schmidt number fSc(ω0) or

Womersley number fWo(ω0) for mixing when the dimensionless frequency ω0 is given.
The asymptotic analysis of the effective diffusivity shows that fSc(ω0) ≈ 2.3146 for a
large ω0 and fSc(ω0) ≈ ω0/6.2213 for a small ω0. Via the relation ω0 = Wo2Sc, we
have fWo(ω0) ≈ √

ω0/2.3146 for a large ω0 and fWo(ω0) ≈ 2.49426 for a small ω0. For
fluorescein–water mixtures, we document that no interior maximum of effective diffu-
sivity is observed because this mixture’s Schmidt numbers are too large (in this case the
Schmidt depends monotonically upon the temperature. Other solute–fluid mixtures may
possess enhanced diffusivities with internal maxima as a function of temperature. Fur-
ther, a newmixing mechanism is identified distinguishing linear shear from the nonlinear
Stokes layer. A bound for the enhanced diffusion for the linear case is derived and shown
to solely depend on the aspect ratio and molecular diffusivity, whereas for the nonlinear
Stokes layer occurring at finite viscosity, the enhanced diffusion is unbounded in increas-
ing frequency.
In the study of the skewness, we show that the single-frequency flow can create a

more symmetric distribution of the tracer than the steady flow, with skewness decay
rate t−3/2 compared to t−1/2 for the steady case. As an extreme example, we prove the
periodic time-varying linear shear flow case has zero skewness for all time. Besides that,
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we document how the phase of the wall motion can be used to control the sign of the
skewness. Experiments compare favorably with the theory and numerical simulations.
PTV flowmeasurements show that the experiments are well predicted by the Stokes layer
solutions. Image analysis of photographs taken at exposure times suggests that the full
width at half maximum statistic is a good measure of the scalar variance and is robust to
noise. Advection–diffusion experiments with a robotically controlled moving wall show
that the theory for effective diffusivity predicts the observed experimental spreading on
diffusion timescales.
Future directionswe intend to explore include utilizing the lubrication theory and center

manifold theory [14,15,42] to assess the role of non-planar wall motions and their ability
to further increase the effective diffusivity, along with pushing the wall motion into the
stochastic regime to further understand how random wall motion creates intermittency
in a passive scalar [22].
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7 Appendix
7.1 Multiscale analysis

Following the prior work [24], assuming a scale separation in the initial data, we utilize
multiscale analysis below to derive the effective diffusion equation induced by the periodic
time-varying shear flow. We consider the following advection–diffusion equation in the
parallel-plate channel with impermeable boundaries

∂T
∂t

+ u(y, t)
∂T
∂x

= κ�T, T (x, y, 0) = TI
(x
a

)
,

∂T
∂y

∣∣∣∣
y=0,L

= 0. (48)

We assume
〈
u(y, t)

〉
y,τ = 0, where the angle bracket denotes the average of u(y, t) over the

region y× τ ∈ [0, L]×R
+. In this case, we need two different characteristic lengths in the

x and y direction. Hence, we introduce the following change of variables,

ax′ = x, Ly′ = y, ε = L
a
,

L2

κε2
t ′ = t,

κ

L2
ω′ = ω,

U = Aω Pe = LU
κ

, Uu′
(
y′, t

′

ε2

)
= u(y, t).

(49)

We can drop the primes without confusion and obtain the non-dimensionalized equation,
∂T
∂t

+ Pe
ε
u
(
y,

t
ε2

)
∂T
∂x

= ∂2T
∂x2

+ 1
ε2

∂2T
∂y2

, T (x, y, 0) = TI (x),
∂T
∂y

∣∣∣∣
y=0,1

= 0. (50)

We seek the asymptotic approximation to T (x, y, t) in the limit ε → 0 that has the
following multiscale expansion,

T (x, y, t) = T0(x, ξ , y, t, τ ) + εT1(x, ξ , y, t, τ ) + ε2T2(x, ξ , y, t, τ ) + O(ε3), (51)

with two different scales in the x direction: x (slow), ξ = x/ε (fast), and in the t direction:
t (slow), τ = t/ε2 (fast). Notice that, in this section, Tn is the coefficient of εn, not the nth
Aris moment. Consequently, the differential operators along the x and t directions will be
replaced

∂

∂x
→ ∂

∂x
+ 1

ε

∂

∂ξ
,

∂2

∂x2
→ ∂2

∂x2
+ 2

ε

∂2

∂x∂ξ
+ 1

ε2
∂2

∂ξ2
,

∂

∂t
→ ∂

∂t
+ 1

ε2
∂

∂τ
.

(52)
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We would have a hierarchy of equations, as one would see in a classical homogenization
problem, such that the following equation holds for arbitrarily small ε. For O(ε−2), we
have

LT0 = 0, T0(x, ξ , y, t, τ )|t=0,τ=0 = TI (x), (53)

where LT =
(

∂
∂τ

+ Peu(y, τ ) ∂
∂ξ

− ∂2

∂ξ2
− ∂2

∂y2

)
T . Since the initial condition is a function

of the variable x only, we have T0(x, ξ , y, t, τ ) = T0(x, t).
ForO(ε−1), we have

LT1 = −Peu(y, τ )
∂T0
∂x

+ 2
∂2T0
∂x∂ξ

, T1(x, ξ , y, 0, 0) = 0. (54)

The last term on the right hand side is zero. The solvability condition is guaranteed by〈
−Peu(y, τ ) ∂T0

∂x

〉

y,τ
= −Pe ∂T0

∂x
〈
u(y, τ )

〉
y,τ = 0. Due to the linearity of the equation, the

general form of the solution is T1 = ∂T0
∂x (x, t)θ (ξ , y, τ ) + C(x, t). Therefore, we have

Lθ = −Peu, θ (ξ , y, 0) = 0,
∂θ

∂y

∣∣∣∣
y=0,1

= 0. (55)

Since the initial condition and the driver are independent of ξ , we have θ (ξ , y, τ ) = θ (y, τ ).
ForO(ε0), we have

LT2 = −∂T0
∂t

− Peu(y, τ )
∂T1
∂x

+ ∂2T0
∂x2

+ 2
∂2T1
∂x∂ξ

, T2(x, ξ , y, 0, 0) = 0. (56)

Since θ is independent of ξ , the last term on the right hand side is zero. The solvability
condition yields the effective diffusion equation

− ∂T0
∂t

+ κeff
∂2T0
∂x2

= 0, κeff = 1 − Pe2
〈
u(y, τ )θ

〉
y,τ . (57)

Comparing Eqs. (55) and (22), we can see that the solution θ of the cell problem is the first
Arismoment. The formula of effective diffusivity (57) is equivalent to equation (9). Hence,
we conclude that the Aris moment approach and the multiscale analysis approach yield
the same effective diffusivity for the time-varying shear flow. Of course, we note that the
limiting procedure here, with ε → 0, may be different than the Aris moment approach
where the limit is t → ∞.
Let’s use the periodic time-varying linear shear flow u(y, t) = y sinω0t as an example.

In this case, the cell problem (55) becomes
∂θ

∂τ
− ∂2θ

∂y2
= −Pe y sinω0τ , θ (y, 0) = 0,

∂θ

∂y

∣∣∣∣
y=0,1

= 0. (58)

The solution θ (y, τ ) has the series representation

θ = Pe (cos(τω0) − 1)
2ω0

+ 4Pe
π2

∑

n∈odd

ω0e−π2n2τ + π2n2 sin(τω0) − ω0 cos(τω0)
n2
(
π4n4 + ω2

0
) cos nπy.

(59)

By the formula (57), the effective diffusivity κeff is

κeff = 1 + 4Pe2

π2

∑

n∈odd

1
n2
(
π4n4 + ω2

0
)

= 1 + Pe2

ω2
0

⎛

⎝1
2

−
sin
(√

ω0√
2

)
+ sinh

(√
ω0√
2

)

√
2ω0

(
cos
(√

ω0√
2

)
+ cosh

(√
ω0√
2

))

⎞

⎠ ,
(60)

which is the same as formula (31) obtained by the Aris moment approach.
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7.2 Flow equation

7.2.1 The Stokes wave in parallel-plate channel

In this section, we derive the exact solution (with the transient term) of Eq. (1) and its
high viscosity asymptotic expansion for completeness. The solution obtained by Laplace
transform takes the form

u(y, t) = 1
2π i

C+i∞∫

C−i∞
est ξ̂ (s)

sinh
(√

s
ν
y
)

sinh
(√

s
ν
L
)ds, (61)

where ξ̂ (s) is the Laplace transform of the wall velocity ξ (t). Considering a harmonic wall
motion ξ (t) = Aω cosωt, the integrand in Eq. (61) becomes

est û(y, s) = est
Asω

s2 + ω2

sinh
(√

s
ν
y
)

sinh
(√

s
ν
L
) . (62)

The poles of û(y, s) are s = ±iω, s = −π2νn2
L2 for n ∈ Z

+. By the residue theorem, we have

u(y, t) = Res(est û, iω) + Res(est û,−iω) +
∞∑

n=1
Res

(
est û,−π2νn2

L2

)

= �
⎛

⎝
Aωeiωt sinh

(
ei

π
4 Woy

L

)

sinh
(
ei

π
4 Wo

)

⎞

⎠− 2πAWo2
∞∑

n=1

(−1)−nne− π2νn2t
L2 sin

(πny
L
)

Wo4 + π4n4
.

(63)

whereWo = L
√

ω/ν. Since the exponential decay termwill not affect the leading order of
the Aris moment at long times, we neglect them in the calculation of enhanced diffusivity.
Next, we consider the asymptotic expansion of the solution in the high viscosity limit.

As ν → ∞, we have the following expansion:

sinh
(√

s
ν
y
)

sinh
(√

s
ν
L
) = y

L
+ L2s

6ν

(
y3

L3
− y

L

)
+ L4s2

360ν2

(
3y5

L5
− 10y3

L3
+ 7y

L

)
+ O

(
L6s3

ν3

)
. (64)

Then, the inverse Laplace transformation yields

u(y, t) = ξ (t)y
L

+ ξ ′(t)L2

6ν

(
y3

L3
− y

L

)
+ ξ ′′(t)L4

360ν2

(
3y5

L5
− 10y3

L3
+ 7y

L

)
+ O

(
L6

ν3

)
. (65)

Particularly, for a periodic function ξ (ωt), as Wo → 0, we have

u(y, t) = ξ (ωt)y
L

+ ξ ′(ωt)Wo
6

(
y3

L3
− y

L

)

+ ξ ′′(ωt)Wo2

360

(
3y5

L5
− 10y3

L3
+ 7y

L

)
+ O (Wo3

)
.

(66)

For the PTV experiment presented in Fig. 8, the Womersley number is Wo =
0.16

√
2π/100
0.0113 ≈ 0.3773. The low Womersley number expansion in Eq. (66) would be a

good approximation for the flow in this experiment.

7.2.2 The Stokes wave in infinite duct

In the experiment, the fluid domain is a three-dimensional space. It is natural to ask, can
the Stokes layer solution derived in the parallel-plate channel approximate the Stokes
layer derived in a closed duct or open duct well? We will answer this question in this
section.
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In an infinitely long rectangular closed duct y × z ∈ [0, L] × [0, H ], the flow induced by
one moving wall satisfies the equation

∂u
∂t

= ν

(
∂2u
∂y2

+ ∂2u
∂z2

)
, u(y, z, 0) = 0,

u(0, z, t) = 0, u(L, z, t) = ξ (t), u(y, 0, t) = u(y, H, t) = 0.
(67)

Applying the Laplace transform yields

sû = ν

(
∂2û
∂y2

+ ∂2û
∂z2

)
, û(0, z, s) = 0, û(L, z, s) = ξ̂ (s). (68)

For the harmonic wall motion ξ (t) = Aω cosωt, we have ξ̂ (s) = Aωs
s2+ω2 . According to the

no-slip boundary condition at z = 0, H , the solution takes the form

û(y, z, s) =
∞∑

n=1
sin
(nzπ

H

)
fn(y, s). (69)

Substituting (69) into (68) leads to the equation for fn(y, s)
(

ν
(nπ

L

)2 + s
)
fn(y, s) = ν

∂2

∂y2
fn(y, s). (70)

The boundary condition fn(0, s) = 0 leads to the solution

fn(y, s) = cnsinh
(
y
√
H2s + π2νn2

H
√

ν

)

. (71)

The coefficients cn can be determined by the boundary condition û(L, z, s) = Aωs
s2+ω2 and

the orthogonality of sin
(nzπ

H
)
,

cn = 4Asω

πn
(
s2 + ω2) sinh

(
L
√
H2s+π2νn2
H

√
ν

) , n ∈ odd. (72)

Hence, û(y, z, s) is

û =
∞∑

n∈odd

4Asωsinh
(
y
√
H2s+π2νn2
H

√
ν

)

πn
(
s2 + ω2) sinh

(
L
√
H2s+π2νn2
H

√
ν

) sin
(nzπ

H

)
. (73)

The poles of û(y, z, s) are s = ±iω and s = −π2νn2(H2+L2)
H2L2 , n ≥ 1. By the inverse Laplace

transform and residue theorem, we have the solution of Eq. (67)

u = 4Aω

π

∑

n∈odd
�
⎛

⎜
⎝
eitω sin

(
πnz
H
)
sinh

(
y
√

π2νn2+iH2ω
H

√
ν

)

nsinh
(
L
√

π2νn2+iH2ω
H

√
ν

)

⎞

⎟
⎠+ O

(

e− π2ν(H2+L2)
H2L2

)

. (74)

For the open duct, the no-stress boundary condition at the free surface leads to the flow
equation

∂u
∂t

= ν

(
∂2u
∂y2

+ ∂2u
∂z2

)
, u(y, z, 0) = 0, u(0, z, t) = 0,

u(L, z, t) = ξ (t), u(y, 0, t) = 0,
∂u(y, z, t)

∂z

∣∣∣∣
z=H

= 0.
(75)
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Fig. 15 Comparison of flows with different boundary conditions. a The difference between the solution (63) in
parallel-plate channel and 105 terms of the solution (74) in the closed duct. b The difference between the
solution in parallel-plate channel (63) and 105 terms of the solution (76) in the open duct. The parameters are
ν = 0.01St, ω = 2π/100s−1, L = 0.2 cm, A = 1 cm, t = 1 s, y × z ∈ [0 cm, 1/5 cm] × [0 cm, 16 cm]

With the basis sin
(

π
(
n+ 1

2

)
z

H

)

, n ≥ 0, the similar calculation yields

u = 4Aω

π

∞∑

n=0
�

⎛

⎜⎜⎜⎜
⎝

eitω sin
(

π
(
n+ 1

2

)
z

H

)

sinh
(

y
√

νπ2(2n+1)2−4iH2ω
2H

√
ν

)

(2n + 1) sinh
(

L
√

νπ2(2n+1)2−4iH2ω
2H

√
ν

)

⎞

⎟⎟⎟⎟
⎠

+ O
(
exp

(
− π2ν

4H2

))
.

(76)

Figure 15 shows Eq. (63), (76) and (74) are only significantly different at the boundary
z = 0, H and are indistinguishable at interior of the domain. When the tracer is concen-
trated at the middle of the domain, for the experimental parameters, Eq. (63) is a good
approximation of (76) and (74).

7.3 List of abbreviations

See Table 3.

Table 3 List of abbreviations

Full form Abbreviation

Background noise subtraction BNS

Full width at half maximum FWHM

Partial differential equation PDE

Probability distribution function PDF

Stochastic differential equation SDE
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