
Computer Physics Communications 263 (2021) 107849

W
L
a

b

c

d

e

f

g

h

✩

c

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

PArallel, Robust, Interface Simulator (PARIS)✩,✩✩

. Aniszewski a, T. Arrufat a, M. Crialesi-Esposito b, S. Dabiri c, D. Fuster a, Y. Ling a,d, J. Lu f,
. Malan a,e, S. Pal a, R. Scardovelli g, G. Tryggvason f, P. Yecko h, S. Zaleski a,∗
Sorbonne Université & CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris, France
CMT-Motores Térmicos, Universitat Politécnica de Valéncia, Camino de Vera, s/n, Edificio 6D, Valencia, Spain
Mechanical Engineering, Purdue University, West Lafayette, IN, USA
Mechanical Engineering, Baylor University, Waco, TX 76706, USA
Mechanical Engineering, University of Cape Town, South Africa
Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
DIN - Lab. di Montecuccolino, Università di Bologna, I-40136 Bologna, Italy
Cooper Union, New York City, USA

a r t i c l e i n f o

Article history:
Received 28 April 2019
Received in revised form 23 December 2020
Accepted 5 January 2021
Available online 28 January 2021

Keywords:
Multiphase flows
Multifluid flows
Free-surface flows
Navier–Stokes equations
Front Tracking
Volume of Fluid
Surface tension

a b s t r a c t

Paris (PArallel, Robust, Interface Simulator) is a finite volume code for simulations of immiscible
multifluid or multiphase flows. It is based on the ‘‘one-fluid’’ formulation of the Navier–Stokes
equations where different fluids are treated as one material with variable properties, and surface
tension is added as a singular interface force. The fluid equations are solved on a regular structured
staggered grid using an explicit projection method with a first-order or second-order time integration
scheme. The interface separating the different fluids is tracked by a Front-Tracking (FT) method, where
the interface is represented by connected marker points, or by a Volume-of-Fluid (VOF) method, where
the marker function is advected directly on the fixed grid. Paris is written in Fortran95/2002 and
parallelized using MPI and domain decomposition. It is based on several earlier FT or VOF codes such
as Ftc3D, Surfer or Gerris. These codes and similar ones, as well as Paris, have been used to simulate
a wide range of multifluid and multiphase flows.
Program summary
Program Title: PArallel Robust Interface Simulator — Paris
CPC Library link to program files: https://doi.org/10.17632/5cb2yrfx7r.1
Licensing provisions: GPLv3.
Programming language: Fortran95/2002. Parallelized using MPI and domain decomposition.
Nature of problem: Paris is a free code, or software, for computational fluid dynamics (CFD) of
multiphase flows (or computational multiphase fluid dynamics (CMFD)), specialized in the numerical
simulation of interfacial fluid flows, involving droplets, bubbles and waves, as described in the book by
Tryggvason, Scardovelli and Zaleski [1]. It solves the Euler or Navier–Stokes equations in the one-fluid
formulation of two-phase flow, including a surface tension force. It computes complex flows such
as fast atomizing jets or droplets, expanding cavitation bubble clusters and multiphase flow through
porous media.
Solution method: The code mostly implements the methods described in the book by Tryggvason,
Scardovelli and Zaleski [1]. Time stepping is performed using a first-order or a second-order in time
predictor–corrector method with an explicit projection step for the pressure. Spatial discretization is
by finite volumes on a regular cuboid grid. Interface tracking is performed with the Front-Tracking (FT)
method or the Volume-of-Fluid (VOF) method. In the VOF version Paris uses either the Lagrangian-
Explicit (LE) advection method or the exactly mass-conserving method of Weymouth and Yue [2].
The normal computation is performed using the Mixed-Youngs-Centered (MYC) scheme. A mass–
momentum advection method has been also implemented that is consistent with the VOF advection
[3]. Curvature is computed with the Height Function (HF) method. This is combined with the balanced
Continuous Surface Force (CSF) method to compute surface tension forces.

✩ The review of this paper was arranged by Prof. N.S. Scott.
✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
om/science/journal/00104655).
∗ Corresponding author.

E-mail address: zaleski@dalembert.upmc.fr (S. Zaleski).
ttps://doi.org/10.1016/j.cpc.2021.107849
010-4655/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.cpc.2021.107849
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.107849&domain=pdf
https://doi.org/10.17632/5cb2yrfx7r.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:zaleski@dalembert.upmc.fr
https://doi.org/10.1016/j.cpc.2021.107849

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

w
f
d
H
i
h
u
o
a

o
[
o
w
(
c
t
c
e
m
o
b
p

p
b
m

c
a
t
e
t
c
f

2

2

i

If the dynamics of a phase can be neglected, Paris can also run as a free-surface code by specifying
a homogeneous pressure, at most varying with time, in the neglected phase. In the case of atomizing
jets, an algorithm has been implemented in Paris that can detect isolated droplets, advects them as
Lagrangian point-particles and possibly merge them again with the main stream
Additional comments: Paris is extended from or inspired by the following codes:

• Ftc3D: Front Tracking code for 3D simulations by Gretar Tryggvason and Sadegh Dabiri.
• Surfer: VOF code for 3D simulations by Stephane Zaleski, Jie Li, Ruben Scardovelli and others.
• Gerris: multiphase flow solver with Adaptive Mesh Refinement (AMR) by Stephane Popinet.

References
[1] G. Tryggvason, R. Scardovelli, and S. Zaleski. Direct Numerical Simulations of Gas–Liquid Multiphase
Flows. Cambridge University Press, 2011.
[2] G. D. Weymouth and Dick K. P. Yue. Conservative Volume-of-Fluid method for free-surface
simulations on Cartesian-grids. Journal of Computational Physics, 229(8):2853–2865, April 2010.
[3] T. Arrufat, M. Crialesi-Esposito, D. Fuster, Y. Ling, L. Malan, S. Pal, R. Scardovelli, G. Tryggvason, S. Za-
leski, A mass–momentum consistent, Volume-of-Fluid method for incompressible flow on staggered
grids, Computers & Fluids, 215, 104785, 2021.

© 2021 Published by Elsevier B.V.
µ

I
t

V

m

1. Introduction

Computations of the unsteady motion of multifluid flows,
here two or more immiscible fluids or thermodynamic phases

low while separated by sharp interfaces, date back to the earliest
ays of computational fluid dynamics (see [1,2] for reviews).
owever, early simulations were restricted to relatively small and
dealized problems. As computer power has continued to grow, it
as been increasingly possible to conduct Direct Numerical Sim-
lations (DNS), defined as fully resolved and verified simulations
f a validated system of equations that include non-trivial length
nd time scales.
A few authors of Paris [3] have been involved in the devel-

pment of free codes for DNS of two-phase flows, such as Surfer
4], Gerris [5], dating back a couple of decades, and more recent
nes such as Basilisk [6]. The new project Paris is a joint effort
ith the aim to illustrate most of the methods described in [2]
the latter book will be denoted ‘‘TSZ’’ in what follows to simplify
itations and we will often refer to ‘‘TSZ’’ for developments about
he numerical methods) and it relies heavily on the previous
odes Ftc3D and Surfer. The software can run independently
ither with the Front-Tracking method or the VOF method. The
ass–momentum consistent advection method, the free-surface
ption and the Lagrangian point-particles (LPP) algorithm have
een specifically designed for Paris and were not present in the
revious codes.
Furthermore, a software platform such as Paris can make it

ossible to explore in the near future the development of com-
ined models based on both Front-Tracking and Volume-of-Fluid
ethods.
While DNS of multiphase flows are becoming increasingly

ommon, most research groups need to devote a considerable
mount of time to code development. For new groups, the need
o develop a suitable simulation tool can be a significant barrier to
ntry. Paris is a free code that is intended to be relatively simple
o use and modify even by beginner users, yet it has sufficient
apabilities to allow state-of-the-art studies of typical multiphase
low problems.

. Navier–Stokes equations with interfaces

.1. Basic equations

In the three-dimensional space, the locus of the interface
s a smooth surface S which separates the two fluid phases.
2

Accordingly, we assume that the interface is an object of zero
thickness. This latter assumption constitutes the ‘‘sharp interface’’
approximation. In this approximation, the phases are implicitly
located by a Heaviside function χ (x, t) defined such that fluid 1
corresponds to χ = 1 and fluid 2 to χ = 0. Viscosity and density
µ and ρ are space and time dependent and given by

= µ1χ + µ2(1− χ) , ρ = ρ1χ + ρ2(1− χ) . (1)

n the case with no phase change, mass conservation implies that
he interface advances at the speed of the flow, that is

S = u(x, t) · n (2)

where u(x, t) is the local fluid velocity and n a unit normal vector
perpendicular to the interface. Equivalently, this condition on the
interface motion can be expressed, in weak form, as

∂tχ + u · ∇χ = 0 , (3)

which expresses the fact that the singularity of χ , located on S,
oves at velocity VS = u · n. We refer the reader to the litera-

ture, in particular TSZ, for additional developments on interface
geometry.

For incompressible flows, which we will consider in what
follows, we have

∇ · u = 0 . (4)

The Navier–Stokes equations for incompressible, Newtonian flow
with surface tension may conveniently be written in a conser-
vative form, expressing the momentum balance, or in a non
conservative, Lagrangian form. The first form, using operators for
notational simplicity, is

∂t (ρu) = L1(ρ,u)−∇p (5)

where L1 = Lcons+Ldiff+Lcap+Lext so that the operator L1 is the
sum of a conservative momentum transport term and diffusive,
capillary and external force terms. The first two terms are

Lcons = −∇ · (ρuu) , Ldiff = ∇ · D , (6)

where D is the stress tensor whose expression for incompressible
flow is

D = 2µ S , S = 1
2

(
∇u+ (∇u)T

)
, (7)

and µ is computed from χ using (1). The capillary term is

L = σ κ δ n+∇ σ δ , κ = 1/R + 1/R , (8)
cap S S S 1 2

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

w
e

r
L

∂

t
c

I
i
v
a
c
∆

∇

w
f

v

here σ is the surface tension coefficient, ∇Sσ its surface gradi-
nt, n the unit normal perpendicular to the interface, κ the sum of

principal curvatures and δS a Dirac distribution concentrated on
the interface. Other equations are required to specify the depen-
dence of σ from other physical quantities, such as temperature,
the presence of surfactants or electro-magnetic fields, therefore
in the tests section we will assume a constant σ . Finally Lext
epresents external forces. When the external force is gravity
ext = ρ g.
The second, non conservative form, is

tu = L2(ρ,u)−
1
ρ
∇p (9)

where L2 = Ladv + (Ldiff + Lcap + Lext)/ρ. The first term is

Ladv(u) = −∇ · (uu) = −(u · ∇)u, (10)

and the other terms have been defined above.
The conservation of momentum, on an elementary control

volume moving with the interface S, leads to the following jump
conditions across the interface

− [−p+ 2µn · S · n]S = σκ (11)

and

−
[
2µ t(k) · S · n

]
S = t(k) · ∇Sσ (12)

where t(k), k = 1, 2, are two independent tangent vectors and the
notation [...]S denotes the jump of a physical quantity across the
interface S. The Continuous Surface Force (CSF) [7] formulation
smoothens the surface tension force a few cells across the inter-
face and does not require the jump conditions (11), (12), that are
instead implemented in the Ghost Fluid Method (GFM) [8].

2.2. Boundary conditions

A major difficulty with numerical simulations of fluid flow is
the correct implementation of the boundary conditions. In prin-
ciple the conditions at boundaries are well defined. For viscous,
incompressible fluids we require that the fluid sticks to the wall
so that the fluid velocity there is equal to the wall velocity

u = Uwall.

In a numerical setup, we can also impose periodic boundary
conditions, as well as inflow or outflow conditions (see TSZ).

2.3. Free-surface flow

Free-surface flow is a limiting case of flow with interfaces,
in which the treatment of one of the phases is simplified. For
instance, for some cases of air–water flow, we may consider the
pressure p in the air to depend only on time and not on space
(through, say, some function pair(t)) and the viscous stresses in
the air to be negligible. The jump conditions (11), (12) become
boundary conditions on the border of the liquid domain

(−p+ 2µn · S · n)|S = −pair + σκ (13)

and

2µ t(k) · S · n
⏐⏐
S = t(k) · ∇Sσ . (14)

3. Numerical methods implemented in the code

3.1. Spatial discretization

We assume a regular cuboid grid, that can be defined as a
cubic grid stretched independently in the x, y and z directions,

so that the centers of the cells Ωi,j,k are given by the intersection s

3

Fig. 1. Representation of the staggered spatial discretization. The pressure p is
assumed to be known at the center of the control volume outlined by a thick
solid line. The horizontal velocity component u1 = u is stored in the middle
of the left and right edges of this control volume and the vertical velocity
component u2 = v in the middle of the top and bottom edges.

set of planes x = xi, y = yj, z = zk and the cell boundaries are
contained in the set of planes x = xi+1/2, y = yj+1/2, z = zk+1/2.
However, in Paris the Front Tracking method can indeed use
stretched coordinates, while the routines implementing the VOF
method are still limited to cubic grids.

We use a finite volume discretization of the momentum equa-
tion and consider staggered velocity and pressure grids. The stag-
gered grid and control volumes for the pressure p are represented
in Fig. 1. The corresponding control volumes of the velocity com-
ponent um in direction m, m = 1, 2, 3, are shifted with respect
o the control volume Ωi,j,k surrounding the pressure p. The
ontrol volumes for the velocity components u1 and u2 in two
dimensions, or for the corresponding momentum components,
are shown on Fig. 2. The use of staggered control volumes has
the advantage of suppressing neutral modes often observed in
collocated methods but leads to more complex discretizations
(see TSZ for a more detailed discussion.) This type of staggered
representation is easily generalized to three dimensions.

Using the staggered grid leads to a compact expression for the
continuity equation (4)

u1;i+1/2,j,k − u1;i−1/2,j,k

∆x
+

u2;i,j+1/2,k − u2;i,j−1/2,k

∆y
+

u3;i,j,k+1/2 − u3;i,j,k−1/2

∆z
= 0. (15)

n what follows, we shall use the notation f = m±, with the
nteger index m = 1, 2, 3, to denote the face of any control
olume located in the positive or negative Cartesian direction m,
nd nf for the normal vector to face f pointing outwards of the
ontrol volume. On a cubic grid the spatial step is ∆x = ∆y =
z = h and Eq. (15) becomes

h
· u =

3∑
m=1

(um+ + um−)/h = 0 , (16)

here uf = um± = u · nf is the velocity component normal to
ace f .

It is worth noting that in the staggered grid setup, the control
olume for p is also the control volume for other scalar quantities,
uch as ρ, µ and C .

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

a
(
T
c

3

o
t
s
F

x

w
l

T
s
e

∇

w

∇

T
p

(

s
v

f

v
o

φ

Fig. 2. The control volumes for the u1 = u and the u2 = v velocity components
re displaced half a grid cell to the right (horizontal velocities) and to the top
vertical velocities). Here the indexes show the location of the stored quantities.
hus, half indexes indicate those variables stored at the edges of the pressure
ontrol volumes.

.2. Time marching

Time marching can be performed in a first-order or second-
rder manner using a small, possibly variable time step τ so that
n+1 = tn+τ . We start with the description of the first-order time
tepping. The interface is first advanced in time as follows. In the
ront-Tracking method, the front points xk are moved as
n+1
k = xnk + τ ui(xnk, tn) (17)

here ui(x, tn) is an interpolation of the velocity field at the
ocation x (see Section 3.3 for the definition of the front points). A
marker function I must then be constructed to compute the ma-
terial properties in the grid points, as described in Section 3.3.2.

In the VOF method the volume fraction field is updated as

Cn+1
= LVOF(Cn,unτ/h) , (18)

where LVOF represents the operator that updates the C data given
the velocity field un and is described in detail in Section 3.5. Once
the volume fraction C (or the marker function I) is updated, the
material properties are computed from (1), while the interface ge-
ometry, including its unit normal n and curvature κ , is estimated
with the different methods described in the next sections. The
velocity field is then updated with a predictor–corrector method.
In the predictor step a provisional velocity field u∗ is computed.
4

Two different versions are used. One is the ‘‘non-consistent’’, non
conservative version of Eqs. (9), (10)

u∗ = un
+ τLh

adv(u
n)

+
τ

ρn+1

(
Lh

diff(µ
n+1,un)+ Lh

cap(C
n+1)+ Lh

ext(C
n+1)

)
, (19)

the other is a ‘‘mass–momentum consistent’’, conservative ver-
sion of Eqs. (5), (6)

ρn+1u∗ = ρnun
+ τLh

cons(ρ
n,un)

+ τ
(
Lh

diff(µ
n+1,un)+ Lh

cap(C
n+1)+ Lh

ext(C
n+1)

)
. (20)

Clearly the above operators depend on the discretization steps
τ and h as well as the fluid properties. The ‘‘mass–momentum
consistent’’ advection operator Lh

cons is described in detail in [9].
In the second step the pressure gradient corrects the velocity

un+1
= u∗ −

τ

ρn+1∇
hp . (21)

his step constitutes the so-called projection method. The pres-
ure is determined by the requirement that the velocity at the
nd of the time step must have zero divergence
h
· un+1

= 0 , (22)

hich leads to an elliptic equation for the pressure

h
·

τ

ρn+1∇
hp = ∇h

· u∗ . (23)

he whole set of operations above constitutes a first-order ap-
roximation in time, which can be written

fn+1,un+1) = L(fn,un) (24)

where fn is the interface data (either the front points x or the
VOF fraction C) and the operator L consists in the steps described
above and is applied to the data at time tn. A second-order time
cheme can be obtained by first computing a set of temporary
ariables f∗∗ and u∗∗

(f∗∗,u∗∗) = L(fn,un) (25)

followed by the update of the variables at time tn+1 by the
trapezoidal rule

(fn+1,un+1) =
1
2

(
L(f∗∗,u∗∗)+ L(fn,un)

)
(26)

where the operator L on the right hand side effectively is applied
to data at the intermediate time tn+1/2. The Paris code imple-
ments both the first-order and the second-order time schemes,
controlled by the parameter ITIME_SCHEME.

3.2.1. Non-conservative momentum advection
The non-conservative momentum advection in Eqs. (9), (10)

amounts to integrate over one time step the PDE

∂tum = Ladv,m(u) (27)

where

Ladv,m = −uj∂jum (28)

or each value of the index m. Because of incompressibility (4) it
is equivalent to solve for a scalar field φ = um in the manner

∂tφ +∇ · (φu) = 0 (29)

Integrating the advection equation (29) in space, over a control
olume centered on a node of the scalar φ, and in time one
btains
n+1
i,j,k − φn

i,j,k = −
∑

F (φ)
f . (30)
faces f

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

W
f
u
e
u

y
t

v
p
p
i
f

e use F (φ)
f = φf uf ·nf τ/h as an approximation of the flux on face

. Let uf = uf ·nf . At first order the advecting velocity component
f is obtained by simple averaging or centered interpolation. For
xample, we can consider the first component of velocity φ =

1 = u, whose control volume is centered at i + 1/2, j, k (see
Fig. 2). For the flux along the horizontal x direction, the right face
is located at index i + 1, j, k. For the normal component of the
velocity on this face, the interpolated value is uf = u1;i+1,j,k =
1
2 (u1;i+1/2,j,k+u1;i+3/2,j,k). On the other hand for the flux along the
direction, the top face is located at index i+ 1/2, j+ 1/2, k and
he advecting velocity component is now uf = u2;i+1/2,j+1/2,k =
1
2 (u2;i,j+1/2,k + u2;i+1,j+1/2,k).

Contrary to the estimates of uf above, the estimation of the ad-
vected quantity φf may involve more complex and higher-order
schemes. Indeed one-dimensional interpolation schemes incor-
porating flux limiters are typically used. Most of these schemes
are described in TSZ together with their usage in computing the
face fluxes in the bulk. We describe their general properties here
shortly. Since the schemes are one-dimensional we can consider a
variable φ defined on a regular one-dimensional grid. Specializing
further the example, we assume that the variable φ, akin to the
elocity component u1, takes values φi+1/2 at half-integer grid
oint indexes. We need to estimate the flux at integer index
oints xi, thus we need to predict φi = φf . To this aim, an
nterpolation function is defined that computes this value as a
unction of the value of φ at the four nearest points, and in an
upwind manner based on the sign of ui = uf , that is given by
the previously-defined centered interpolation. The face value φi
is then approximately given by

φi = f (φi−3/2, φi−1/2, φi+1/2, φi+3/2, ui) (31)

where the function f is both of sufficiently high order and such
as to limit the flux. To express the function f , Paris offers a
choice of the ENO, QUICK, Superbee, WENO, first-order upwind,
Verstappen, or BCG schemes.

When momentum is advected with the non conservative for-
mulation (19), φ in Eq. (30) is taken equal to one of the velocity
components um. This method is available whether one uses the
VOF method or the Front-Tracking method. With the VOF method
we have extensively used a combination of QUICK, away from the
interface, and a first-order upwind near the interface, and a com-
bination of Superbee slope limiter, away from the interface, and
its modified version near the interface. These combinations have
been found numerically more robust than others, and several
simulation results are presented in [9].

With the Front Tracking method we use typically ENO or
QUICK, as they offer a good combination of accuracy and stability.

3.2.2. Mass–momentum consistent momentum advection
When using VOF, another momentum advection method is

available that is consistent with VOF advection and which imple-
ments a conservative scheme of the form (20). This means that
the same advection method is used near the interface for both
the VOF volume fraction C and the velocity u. In other words,
when there is a density jump on the interface, the discontinuity
of the momentum density ρu is advected exactly at the same
velocity as the discontinuity of the mass density ρ. This can be
expressed by saying that the momentum advection and the VOF
advection are consistent. An explicitly formulated criterion for
consistency is the following: if the velocity u is uniform, then
ρu remains exactly proportional to ρ. This should happen even
when ρ is obtained from the VOF-advection of C using Eqs. (1)
and (18) and ρu is obtained from the operator Lh

cons. Such a
‘‘VOF-consistent’’ method is used since it has been empirically
found by several authors that the non-consistent advection of the
5

previous section was often unstable at large density ratios, while
consistent methods are more stable [10–19].

The Paris code implements a modification of the classical
momentum-preserving scheme proposed by [20] for the case of
a staggered grid and Volume of Fluid (VOF) method. The scheme
needs to be modified from the one in the previous section only
near the interface. In particular, away from the interface, the
density is constant and the scheme in (30) is already conservative.
Near the interface, with φ = ρum, the momentum advection can
be written, see [9] for details, as(
ρum

)n+1
i,j,k −

(
ρum

)n
i,j,k = −

∑
faces f

um,f F
(ρ)
f +

3∑
l=1

ũm C (ρ)
l , (32)

where um,f is the one-dimensional interpolation of the velocity
component um on face f and F (ρ)

f is the mass flux through the
same face. The last sum represents the compressional term and
it is related to the fact that each term in Eq. (16) can be different
from zero even if the flow has zero divergence. In particular this
sum is equal to zero for the mass-conserving VOF method of [21].

The one-dimensional interpolation schemes are different if
they are applied away from or near the interface. The com-
binations that are used with the mass–momentum consistent
advection have been already discussed in the previous section.

3.2.3. Implicitation of the viscous terms
The operator Lh

diff(µ
n+1,un) may be treated in part implicitly.

From (6), (7) we have

Ldiff,j(µ,u) = (∇µ) ·
(
∇u+ (∇u)T

)
+ µ∇2u. (33)

The first term on the RHS is left explicit, but the second term can
be made implicit by solving the linear problem

u∗ = un
+ τ µn+1

∇
2u∗ . (34)

Then the discrete operator is defined as

Lh
diff,j(µ

n+1,un) = (∇µn+1) ·
(
∇un
+ (∇un)T

)
+
(
u∗ − un)/τ (35)

where u∗ is the solution of the linear problem (34). The implic-
itation of the viscous terms is optional and controlled by a code
parameter.

3.3. Interface advection: Front-tracking method

The interface advection in the ‘‘one-fluid’’ formulation is re-
quired to update the material properties, see Eq. (1), and the
interface geometry in order to compute the surface tension forces.
In the Paris code the interface can be moved either by Front
Tracking (FT) or by the VOF method. We describe the former
in this section. The FT method, in the context of simulations of
two or more immiscible fluids, refers to tracking the interface
separating the different fluids using moving connected marker
points that represent the interface. In our implementation the
marker points are connected by triangular elements, where the
points are ordered in the same way for all elements, allowing
us to define an ‘‘inside’’ and an ‘‘outside’’ for each element. The
coordinates of the points are stored in arrays, in arbitrary order,
with separate integer arrays providing pointers to the previous
and next points. Thus, the points form a linked list where the
location in the array provides each point with a unique ID. The
elements are stored in the same way, with arrays containing
pointers to the corner or node points. The coordinates of the
marker points are the main quantities stored for the points, but
the points also have arrays for various temporary quantities,
such as velocities and the surface force. The marker points and
the elements connecting the points together form the ‘‘front’’.
In addition to pointers to their corner points, the elements also

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

s
q
t
o
r
s
s
a

3

w
m
o
b
s
g
g
l
p
c
d
c
l
f

w

w
a

Fig. 3. An interface separating two immiscible fluids represented by marker
points connected by triangular elements.

have pointers to the elements that share edges with them. These
are mostly used for modifications, or reconstruction, of the front.
Notice that generally only one front is needed, irrespectively of
the number of distinct interfaces, and that distinct interfaces, as
present in a simulation containing several bubbles and drops, can
have different material properties, for example surface tension.
Fig. 3 shows the layout of a triangulated front separating two
different fluids.

As the front is deformed, stretched and compressed by the
flow, the size of the elements changes as points move away from,
or closer to, each other. We keep the length of the edges of
each element within about a quarter to a half of the spacings
of the fixed fluid grid, and to maintain that resolution, points
and elements are dynamically added and deleted. While many
strategies are possible, we add points by splitting the longest edge
of an element by adding one point and two elements, and delete
points by collapsing the shortest edge of an element, removing
one point and two elements. The grid quality can sometimes also
be improved by changing the connectivity of the elements but we
generally find that doing so is not necessary. The addition and
deletion of front points and elements is shown in Fig. 4.

Topology changes in front tracking can be done in several
lightly different ways, but in all cases additional code is re-
uired to: (a) detect points where coalescence/breakup should
ake place, and (b) restructure the front to account for the topol-
gy change. For a short description of a topology change algo-
ithm and a few examples see [22] and for applications of a
lightly modified version of the algorithm to more complex flows
ee [23] and [24]. A detailed description of a topology change
lgorithm is beyond the scope of the current manuscript.

.3.1. Connecting the front and the fluid grid
Since the Navier–Stokes equations are solved on a fixed grid,

e have two grids: the front/interface grid and the fixed grid. The
otion of the interface depends on the flow and the flow depends
n where the interface is, therefore information must be passed
ack and forth between the front and the fixed fluid grid. To do
o we need to identify what front point is close to which fixed
rid point and vice versa. For a regular structured grid, where the
rid lines are straight and evenly spaced, it is straightforward to
ocate a point on the fixed grid that is closest to a given front
oint (using an INT or a MOD function), but finding the front point
losest to a given grid point generally requires us to examine the
istance to all the front points. Thus, it is more efficient to do all
ommunications between the front and the fixed volume grid by
ooping over the front points. For periodic domains we allow the
ront to move out of the domain resolved by the fixed fluid grid,
6

Fig. 4. Restructuring of a triangulated grid by adding and deleting points and
elements.

and use a MOD function to find the fixed grid point that would
be closest to a given front point if we moved the front back into
the original domain.

To transfer information between the fixed fluid grid and the
moving front, we need on one side to interpolate data from the
grid to the front and on the other side to spread, or ‘‘smooth’’,
data from the front to the fixed grid. The first type of data
transfer is required to move the front, where the velocity at
the front points is interpolated from the velocity on the fixed
grid. On a staggered grid each velocity component is interpolated
separately. In general, we have

φl
f =

∑
ijk

wl
i,j,k φi,j,k . (36)

Here, φl
f is a quantity, such as the velocity, on the front at point l,

φi,j,k is the same quantity on the fluid grid, wl
i,j,k is the weight of

each grid point with respect to front point l and the sum is over
grid points ‘‘close’’ to the front points. Generally the same time
integration method is used for the advection of the points as is
used for updating the fluid velocities.

The second type of data transfer is usually referred to as
smoothing, since it replaces a quantity defined at a front point on
the sharp interface, such as surface tension, with a distribution
on the fixed grid, where each fixed grid point receives a value
according to how close it is to the front point. Unlike the inter-
polation of a quantity, such as the velocity from the fixed grid to
a front point, smoothing usually involves quantities like a force,
that are given in terms of force per unit interface area on the front
but must be converted to force per unit volume on the fixed grid,
so that the total force is conserved. Thus, the quantity smoothed
must be scaled by the ratio of the area associated with each front
point divided by the volume of a fixed grid cell

φi,j,k =
∑

l

φl
f wl

i,j,k
∆Al

∆x∆y∆z
, (37)

here ∆A is a surface area of a front element and ∆x, ∆y and ∆z
are the grid spacings.

Several interpolation/smoothing functions can be used, but
in the PARIS code we use a smoother interpolation function
originally introduced in [25] which involves four grid points in
each coordinate direction, or 64 points total. The weights are
given by

wl
i,j,k = d(rx) d(ry) d(rz), (38)

here rx is the scaled distance (by the grid spacing) between xlf
nd the grid line located at xi; ry and rz are defined in the same

way. In our case, the weighting function d(r) is given by

d(r) =
{
(1/4)(1+ cos(πr/2)), |r| < 2, (39)
0, |r| ≥ 2.

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

U
l
f
h
s

3

c
p
w
t
b
f
f
o
s
d
t
c

w
t
m
o
f

I

T
a
l
d
l

∇

w

H
i

s

sing fewer points gives a sharper transition zone but sometimes
eads to wiggles, particularly for stiff problems. The interpolation
unction is bounded with weights that sum to one in addition to
aving various desirable symmetry properties. For a discussion
ee the reference above.

.3.2. Constructing the marker function I
Once the front has been moved, a marker function must be

onstructed on the fixed grid to assign the different material
roperties to each grid point. This can be done in many different
ays, but one of the consideration is that fronts that are so close
o each other that the flow between them is not resolved, must
e handled in a plausible way. Usually this means that the marker
unction must retain its correct value on both sides of the double
ront. In the PARIS code we do this by working with the gradient
f the marker function I, which in the limit of a sharp interface
hould be a delta function defined only on the interface. The
elta function is then treated in the same way as the surface
ension and smoothed onto the fixed grid. The grid value of the
omponents of the gradient is given by Eq. (37) of the previous
section(
∇I
)
i,j,k =

∑
l

(
∆I n

)
l w

l
i,j,k

∆Al

∆x∆y∆z
, (40)

here ∆I is the jump in the value of the marker function across
he interface (usually a given constant value) and n the unit nor-
al to the element. Once the gradient field has been smoothed
nto the fixed grid, we can integrate it to recover the marker
unction I. For example, on a staggered grid

i,j,k = Ii−1,j,k +
(∂ I

∂x

)
i−1/2,j,k

∆x . (41)

o maintain symmetry, the marker at a given point is constructed
s the average of the integration from all the neighboring points,
eading to a linear system that is solved iteratively. Using stan-
ard second-order centered finite-difference approximations, the
inear system is an approximation to
2I = ∇ · (∇I)f , (42)

here the subscript on the gradient of I on the right hand side
means that it comes from the front. Since the right hand side is
known, as it is deduced from the position of the front through
(41), this equation amounts to the Poisson equation

∇
2I = ∇ · Gf (43)

which must be solved to find I for a given Gf =
(
∇I
)
f . In the

current version this equation is solved for the entire grid to keep
the implementation simple, but this can easily be changed to
involve only grid points next to the interface, where the value
of the marker function changes as the front moves. Integrating
the gradient of the marker function on the fixed grid is, of course,
only one way to construct it. We have, however, found that doing
so generally leads to a smooth but compact transition from one
fluid to the other. In addition, since the gradients of two interfaces
bounding a very thin film cancel each other when transferred to
the fixed grid, the marker there will ‘‘disappear’’. This seems like
the proper way to treat films too thin to be resolved on the fixed
grid.

3.4. Surface tension: Front-Tracking method

In simulations of flows with sharp interfaces the front serves
two main functions. The first is the advection of the marker
function I, as described above, and the second is the computation
of the surface tension described below. As with most of the other
7

Fig. 5. Computation of the surface force on a triangulated grid by integrating
over the edges of an element.

operations for the front, finding the surface force can be done in
several different ways. In the PARIS code we compute the force on
the front and transfer it to the fixed fluid grid, where it is added
to the discrete Navier–Stokes equations.

To ensure that the force is conserved as we transfer it from the
front and onto the fixed volume grid, we work with the total force
on a small area. The total force on a small region surrounding a
front point is computed by dividing each front element into three
equal parts, each connected to one nodal point, and computing
the pull on their side as described below. The force from each part
is then added to the appropriate nodal point. When the surface
force on all the elements has been computed, it is transferred to
the fixed grid and converted into a force per unit volume by (37).
Working with the total force on a surface element, rather than
the force per area, makes it easier to ensure the total force is
conserved when it is transferred between the front and the fixed
volume grid.

To find the surface force we use the fact that the total force
on a surface element can be found by integrating the ‘‘pull’’ on
its edges

fσ =
∫

∆A
σ κ ne dA =

∮
C
σ p dl . (44)

ere the Stokes theorem has been used to convert the area
ntegral over ∆A into a line integral along its boundary C . The unit
vector p = t × ne is tangent to the interface and perpendicular
to the boundary of the interface element (see Fig. 5). By keeping
the surface tension coefficient σ under the integral sign we allow
for variable surface tension. The benefit of using this expression
is that we only need to approximate tangents on the surface, not
the curvature, and that the pull on the side of one surface element
is equal and opposite to the pull on the adjacent element. Thus,
the surface force is conserved in the sense that an integral over a
surface patch consisting of several surface elements is guaranteed
to give the same result as an integral over the boundaries of the
whole patch. For constant surface tension coefficient, the integral
over a closed surface is, in particular, guaranteed to be zero.

Fig. 5 shows schematically how the integration is done. We
assume that the elements are flat and that surface tension, given
at the front points, can be non constant. It therefore has to be
interpolated when approximating the integral. The force at point
x0 is computed as the ‘‘pull’’ on the edges of the gray patch,
urrounding it. The contribution from the element connecting

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

p
c
o
a
i

∆

H
u
n
∆

t
t
e

∆

w
e

σ

a
e

c
f
t
i
n
∇

3

oints x0, x1 and x2 is found by first splitting it in three parts by
onnecting the centroid xc = (1/3)(x0+x1+x2) to the midpoints
f the edges x01 = (1/2)(x0 + x1) and x02 = (1/2)(x0 + x2)
nd then finding the force on those edges by approximating the
ntegral using a midpoint rule

fσ ≈ σ1∆s1p1 + σ2∆s2p2 . (45)

ere, the pull on each element is the cross product of the outward
nit normal, ne, and the tangent vector to the edge, i.e. ∆s1p1 =

e × (x01 − xc) and ∆s2p2 = ne × (xc − x02), where ∆s1 and
s2 are the lengths of the edges, and σ1 and σ2 are the surface

ensions at the midpoint of the edges. The normal ne is found by
he normalized cross product of two of the tangent vectors to the
dges of the element. After straightforward algebra, we have

fσ ≈
ne

3
×

(
σ1
(
x2 −

1
2
(x1 + x0)

)
− σ2

(
x1 −

1
2
(x2 + x0)

))
(46)

here the interpolated surface tension at the midpoint of the
dges is

1 =
1
2

(1
2

(
σ (x0)+ σ (x1)

)
+

1
3

(
σ (x0)+ σ (x1)+ σ (x2)

))
=

1
12

(
5σ (x0)+ 5σ (x1)+ 2σ (x2)

)
(47)

nd σ2 is given by a similar expression. The forces from the other
lements connected to point x0 are found in the same way and

added to give the total force on the nodal point, that is then
‘‘smoothed’’ onto the fixed grid.

3.5. Interface advection: VOF method

When the interface location is captured by the VOF method,
a variable Ci,j,k is initialized. It is equal to the fraction of the cell
Ωi,j,k that is filled with the reference fluid 1. The implementation
of the VOF method is limited for the time being to cubic cells of
edge length h. Moreover, we use a rescaling of space and time
variables so that the cell size and the time step are both 1. All
velocities are then rescaled to u′ = uτ/h. Because of this space
rescaling and in these new units, Ci,j,k is also the measure of the
volume of reference fluid in cell i, j, k.

3.5.1. Normal vector determination
The VOF method proceeds by a sequence of interface recon-

structions and advections of C . In the reconstruction step, one
attempts to recover the interface geometry from the VOF data
Ci,j,k. In the Paris code we use already-published methods (see for
example TSZ) that have been experienced to work satisfactorily.
One first determines the interface normal vector n, then solves
the problem of finding a plane perpendicular to n which cuts the
ube with exactly the volume Ci,j,k. In Paris two methods exist
or normal vector determination. The most frequently used is
he Mixed-Youngs-Centered Scheme (MYCS) [26], described also
n TSZ. However, when a quick determination of the normal is
eeded but not very accurate, the finite difference method n =
hC (the Youngs scheme [27]) can also be used.

.5.2. Plane constant determination
Once the interface normal vector n is determined, a new,

collinear normal vector noted m and having unit ‘‘box’’ norm
is deduced from n, that is ∥m∥1 = |mx| + |my| + |mz | = 1.
Considering the volume V = Ci,j,k in cell i, j, k the plane constant
α is defined so that the plane

m · x = α (48)

cuts exactly a volume V of the cube. The origin of the coordinate

system is taken at the corner of cubic cell i, j, k with the smallest

8

coordinate values. The reader is reminded that we are using
rescaled units of space, so that 0 ≤ V ≤ 1 and 0 ≤ α ≤ 1.
Then α is determined by the resolution of a cubic equation [28].
This resolution, and similar ones often used in the VOF method
and derived in [28], are implemented in a kind of small library
contained in the single file vof_functions.f90.

3.5.3. Volume initialization
Before any VOF interface tracking is performed, the field of

Ci,j,k values must be initialized. The Paris code avoids inaccurate
initializations that for example initialize a sphere as a set of Ci,j,k
values which are either 0 or 1, a so called ‘‘staircase’’ or ‘‘lego’’
initialization. There are two ways in which initialization can be
improved over the lego one. In the ‘‘subgrid’’ initialization, the
mesh cells are subdivided into n3

I subcells (where nI is a tunable
parameter, called REFINEMENT in the code). Then a ‘‘lego’’ ini-
tialization is performed trivially in the subcells. For example, if
the initial interface is defined implicitly by the equation φ(x) =
0 where φ is a smooth implicit function (akin to a level-set
function) then the trivial ‘‘lego’’ initialization in each subcell is
cI = χ

(
φ(xc)

)
, where χ is the Heaviside function and xc the

subcell center. The cell value Ci,j,k is then given by the sum of
the cI values divided by the subcells number n3

I . In tests it was
found that nI = 8 was sufficient. However nI ≥ 8 leads to a
very large number of evaluations of the function φ and a slow
initialization. In order to avoid this, the Paris code may be linked
to the Vofi library described in [29] and [30]. Then the initializa-
tion is performed using highly-accurate numerical integration to
compute the fluid volumes in each grid cell, implicitly defined by
the equation φ(x) < 0. The code is linked to the Vofi library with
the shell variable HAVE_VOFI set before compilation.

3.5.4. General split-direction advection
The reconstruction at time tn provides the approximate po-

sition of the interface, which is used to compute the reference
phase fluxes across the cell boundary in order to update the
volume fractions Ci,j,k at time tn+1. The Paris code contains two
methods for split-direction advection, which can be selected by
the user: Lagrangian Explicit (LE) advection, with the keyword
VOF_ADVECT = LE, and Weymouth and Yue (WY) advection, with
the keyword VOF_ADVECT = WY. The LE advection is also called
‘‘Calcul d’Interface Affine par Morceaux’’ (CIAM) which is French
for ‘‘Piecewise Linear Interface Calculation’’ (PLIC), however PLIC
refers to generic VOF methods with a piecewise linear recon-
struction step, while CIAM refers to a specific type of advection
method first described in the archival literature in [31] and clas-
sified as the ‘‘LE’’ method in [32]. The main advantage of both LE
and WY is that they avoid overshoots (Ci,j,k > 1) and undershoots
(Ci,j,k < 0). Moreover WY conserves mass to machine accuracy.
These methods are described in detail in TSZ for LE/CIAM and
in [21] for WY. The reader may also refer to [9] for a condensed
description of both methods.

An important operation in some simulations is the ‘‘clipping’’
procedure, and a small parameter ϵc is defined to this purpose.
After advection, all cells that have Ci,j,k < ϵc are set to 0 and all
cells that have Ci,j,k > 1− ϵc are set to 1. This removes some, but
not all, of the wisps, floatsam and jetsam that are generated. In
the current version of the code the default value is ϵc = 10−8.
This is a rather high value used mainly with WY in simulations
at very high density contrast. The code has been observed to run
well also with the smaller threshold value ϵc = 10−12 when the
ratio of physical parameters is less extreme, or with no threshold
at all with the LE advection. Other VOF schemes, and in particular

unsplit schemes, are not reported to require clipping.

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

e
f
w
t
c
o

3

3

I
i

−

w
χ

‘

m
f

3

t
i
p
g
r
t
i
V
h
i
w
W
o
s
t
H

H

a
c
t
a

w
u

κ

w

c
D
s
c
a
t
b
i
d
b
d

3

3

a
s
i

A
A

Fig. 6. (a) A small floatsam F in a cell away from the interface is negligible
when height functions are used to determine the location of the interface. On
the other hand requiring the interface to pass near each centroid Ci has a large
ffect. A small inconsistency such as near point I is also ignored by the height
unction. (b) Two cases where the height function expression (50) is appropriate
ith four cells (nc = 3, see text). For more vertical lines or larger curvatures
he line exits the 4 × 1 stencil through the top and bottom and the HF method
annot be used. (c) To check the validity of the HF calculation one needs to have
ne full cell (C = 1) below and one empty cell (C = 0) above, or the converse.

.6. Surface tension: VOF method

.6.1. CSF method
For simplicity, we consider only the case where σ is constant.

n the Continuous Surface Force (CSF) method [7] the force σκnδS
n the capillary term (8) is written as

σκ∇χ = −σκh
∇

hC . (49)

here we have used the properties of the Heaviside function
. One of the advantages of this formulation is that it is a

‘well-balanced’’ method (see TSZ, Chapter 7 or Ref. [33]).
An approximation for κ needs to be found to use the CSF

ethod. A good estimate is obtained using so-called height
unctions.

.6.2. Height functions
We give some details about height functions since it is a rela-

ively novel aspect of the code. Height functions were introduced
n [34] and further discussed, tested and improved in several
apers [35,36]. A height function is a function on the discrete
rid that gives the elevation of the interface with respect to a
eference plane. The use of height functions greatly improves
he accuracy of VOF methods since it allows us to neglect small
nconsistencies in the VOF representation. On one hand a small
OF floatsam in a cell has only a very small influence on the
eight-function calculation. On the other hand if taken as an
ndication of the presence of the interface in the given cell it
ould create a large error on the interface location (see Fig. 6a).
ith high resolution, height functions can also yield the position
f the interface to fourth-order accuracy [35]. We consider for
implicity the case of an approximately horizontal interface, then
he reference plane is aligned with the x, y plane. A local height
, rescaled by the grid size h, may be defined as

=

p=k0+nc∑
p=k0

Ci,j,p. (50)

nd is illustrated on Fig. 6b. The expression (50) defines a ‘‘verti-
al’’ height with the reference plane passing through point O and
he base of the bottom cell on Fig. 6b. More general cases, with

rbitrary orientation of the interface, are considered in Appendix.

9

Fig. 7. Maximum L∞ error norm in two dimensions for the curvature estimated
for a cylinder using the height function method in Paris simulator and Basilisk.
The mixed-height option is set in both codes.

The computation of the curvature may then be performed by
reconstructing a polynomial approximation to the height func-
tion. To illustrate this, we take again the case of an approxi-
mately horizontal interface. Then we fit the local heights by the
function

H(x, y) =
a1
2
x2 +

a2
2
y2 + a3xy+ a4x+ a5y+ a6 (51)

here the coefficients ai are computed from the heights data
sing finite differences (see Eq. (A.3)). The curvature is then

= ϵ
a1(1+ a25)+ a2(1+ a24)− 2a3a4a5

(1+ a24 + a25)3/2
(52)

here ϵ = 1 if the interface is in the ‘‘canonical’’ position (normal
pointing upwards). The above method is possible only if all nine
vertical heights are available in the x, y plane. If they are not,
fallback methods are used, details of which are given in Appendix.

The performance of our method for the computation of cur-
vature is shown in Figs. 7 and 8. The error was computed for a
ollection of diameter-to-cell-size ratios D/h. For each value of
/h the error computation was repeated for an ensemble of N
phere centers located randomly. The L∞ norm for a given sphere
enter is the maximum difference between the sphere curvature
nd the numerically obtained curvature. The error reported on
hese two figures is the maximum L∞ error for the whole ensem-
le of N spheres. We checked that the error varies little when N
s increased above 16, and the standard test case for curvature
istributed with the code uses this value of N . The differences
etween the error norms obtained for Basilisk and Paris are
iscussed in Appendix.

.7. Pressure solver

.7.1. In-code Gauss–Seidel solver
The default Poisson solver used to invert the elliptic operators

ppearing in Eqs. (23) and (34) is a red–black Gauss–Seidel (GS)
olver with overrelaxation [37]. Both equations can be discretized
n the form

1,i,j,k pi−1,j,k + A2,i,j,k pi+1,j,k + A3,i,j,k pi,j−1,k +

4,i,j,k pi,j+1,k + A5,i,j,k pi,j,k−1 + A6,i,j,k pi,j,k+1 −
A7,i,j,k pi,j,k = A8,i,j,k , (53)

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

f
m

w

A

A

A

A

a

Fig. 8. Maximum L∞ error norm in three dimensions for the curvature estimated
or a sphere using the height function method in Paris and Basilisk. The
ixed-height option is set in both codes.

here the coefficients verify the relations

7,i,j,k =

6∑
p=1

Ap,i,j,k (54)

2,i,j,k = A1,i+1,j,k (55)

4,i,j,k = A3,i,j+1,k (56)

6,i,j,k = A5,i,j,k+1 (57)

nd are constructed by interpolations of 1/ρ, for Eq. (23), or µ,
for the implicit part (34) of the viscous term in the momentum
equation. The GS solver iterates the assignment

pi,j,k ← (1− β) pi,j,k +
β

A7,i,j,k

(
A1,i,j,k pi−1,j,k

+ A2,i,j,k pi+1,j,k + A3,i,j,k pi,j−1,k + A4,i,j,k pi,j+1,k

+ A5,i,j,k pi,j,k+1 + A6,i,j,k pi,j,k−1 − A8,i,j,k

)
(58)

where β is an overrelaxation parameter that can be set by the
user. A value of β = 1.3 is typically used.

3.7.2. Library multigrid solver
The Hypre library, developed at the Lawrence Livermore Na-

tional Laboratory (LLNL), is also an option to solve the elliptic
equations with multigrid iterative methods. Since a structured
grid is used in Paris, a few solvers of the Hypre library can be
used. The SMG and PFMG multigrid solvers have been imple-
mented in the code and used for large-scale simulations using up
to 64,536 cores. Both SMG and PFMG are parallel semicoarsening
multigrid solvers. The difference lies in that the SMG solver
uses plane smoothing while the PFMG solver uses pointwise
smoothing. The plane-smoothing feature makes the SMG solver
more robust but less efficient. In fact, the scaling performance of
the PFMG solver is much better than the SMG solver, since the
smoothing operations only involve a local stencil.

In order to take advantage of the higher efficiency of PFMG and
the robustness of SMG, a solution strategy has been implemented
in the code. The PFMG solver is used by default, however if
the iteration diverges or fails to converge within the maximum

iteration number, the code will switch to the SMG solver and redo

10
the iteration. If the iteration converges, then the code will switch
back to PFMG for the next time step. For a large-scale simulation
that runs for a long time, this strategy has been shown to achieve
a good performance, balancing robustness and efficiency.

The Hypre library, at least in the versions we use, appears to
control the tolerance on the residual using the L1 norm. The code
then recomputes the residual norms and controls the accuracy
using a norm of the residual chosen by the user among L1, L2 and
L∞.

3.7.3. In-code multigrid solver
The code has also a native implementation of a multigrid

solver for structured grids with 2n number of points per co-
ordinate direction. In particular the V-Cycle scheme is imple-
mented and fully parallelized [37]. Relaxation operations are
applied starting first from the finest to the coarsest grid, and
then from the coarsest to the finest one, the number of relaxation
operations being a user-adjustable parameter. One advantage of
having a native multigrid solver is that it allows for an effi-
cient solution of the Poisson equation without the necessity of
having external libraries installed in the system, such as Hypre.
Especially when running heavy three-dimensional simulations in
parallel the use of this native solver has been shown advanta-
geous in some systems with respect to Hypre in terms of memory
manipulation.

3.7.4. GPU-accelerated solver
A GPU-based solver is also available for solving the Poisson

equation when a significant number of iterations is required
to achieve convergence. The pressure is solved using a Jacobi
method for Eq. (58). The need for the Jacobi method instead
of a Gauss–Seidel arises because of the intrinsic nature of GPU
devices. The usual domain decomposition parallelization allows
the implementation of the iterative step by using a simple for
loop over the indexes i, j, k. The sequentiality of the indexes
cannot be achieved on GPU devices, as in this case each index
combination is ideally computed simultaneously. In this sense,
the larger number of iterations required by the Jacobi method is
mitigated by the speed-up provided by GPUs.

The memory handling is a critical aspect in GPUs applica-
tions and it is even more critical in DNS. Although a Jacobi
method intrinsically requires doubling the memory usage for
the pressure matrix p, it also enables the leanest data transfer
between CPUs and GPUs, which is a critical aspect of normal
CUDA applications. A Gauss–Seidel red–black solver is in principle
possible and could be beneficial for certain applications. In fact,
let us assume that the size of the matrix p is Np = nxnynz ,
the normal implementation of a red–black Gauss–Seidel solver
would be

for all Ωi,j,k cells of "red" type do
compute pi,j,k using (58)

end for
for all Ωi,j,k cells of "black" type do

compute pi,j,k using (58)
end for
check convergence

which inherently reduces the memory usage required. On the
other hand, the first for loop is not parallelizable in an efficient
way in CUDA. Therefore, such an algorithm would be beneficial
from a memory standpoint, but would improve the computa-
tional time only if Np is at least 4 times greater than the number
of GPU process available. As this is usually not the case, the
beneficial effects of a red–black algorithm are limited, although
it will be object of future studies.

The implementation of the algorithm is achieved by means of
the open-source CUDA library for C developed by NVIDIA, while

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

t
u

t
s
t
a
g
c
m
s
c

c
t
b
a
p
F

∇

o
t
a
a
a
c
r
r

E
n
g
v
r
w

i
t
a
b

u

w
t

he intercommunication between processors is still achieved by
sing MPI. For this reason, an interface between Fortran90 and C

is created in module_CUDA.f90. By passing through the interface,
each process transfers the coefficients matrix A and the pressure
matrix p to the C/CUDA environment (in PoissonCUDA.cu) where
the iteration step is performed. The boundary conditions, as well
as the MPI communication, are enforced in the environment that
originally created the MPI communication, hence these functions
are programmed in cudaFun.f90.

3.7.5. Free-surface flow solver
A free-surface flow solver is implemented in Paris, which

is designed to apply a free-surface condition as described in
Section 2.3. The implementation of the boundary conditions (13),
(14) is here limited to inviscid flows, hence only the jump con-
dition (13) along the normal direction is considered. The free-
surface solver uses the VOF method implemented in Paris to track
the interface. The flow is then solved only in the phase with χ =
0, using the same numerical methods described previously. For
the purpose of description the solved phase will be called liquid
and the unsolved phase will be gas. In the region occupied by
the gas phase the conservation equations are not solved, instead
a homogeneous pressure field is assumed, that can vary only
in time. The time variation of the pressure is determined by a
polytropic gas law

pc = p0

(
V0

Vc

)γ

, (59)

where Vc is the total volume of the gas pocket at pressure pc , p0
and V0 are respectively the reference pressure and volume of the
gas phase, and finally γ is the heat capacity ratio. The gas phase
pressure along with the pressure jump due to surface tension is
then applied as a Dirichlet boundary condition for the pressure in
the liquid flow, as given in Eq. (13).

The method used to apply this pressure boundary condition is
inspired by the idea of Fedkiw and Kang [8,38], often referred to
as the Ghost Fluid Method (GFM). Let the time-varying pressure
in the unsolved phase be pc . Special care is required in the
discretization of the elliptic equation (23) for liquid cells near
he interface. Cells that contain mostly gas are excluded from the
olution, so that only cells where C < 0.5 are solved (we recall
hat the convention is to have C = 0 in the liquid). Fig. 9 shows
representation of a 2D grid with a section of an interface. The
ray area represents a gas-filled volume. Cells that contain a filled
ircle are included in the pressure solution, while cells without a
arker in the center are excluded. Since only the liquid phase is
olved, only the liquid density is applied. Furthermore, for cubic
ells ∆x = ∆y = ∆z = h, where h is the constant grid spacing.
The stencil for the pressure gradient components has to be

hanged near the interface when a neighboring cell falls inside
he gas phase. The pressure in this cell must be substituted
y a surface pressure ps. We apply a finite-difference gradient
pproach as Chan [39]. As an example, the approximation for the
ressure gradient components for the cell with indexes i and j in
ig. 10 is written

h
x pi+1/2,j =

ps,i+1,j − pi,j
δi+1/2,j

; ∇
h
y pi,j−1/2 =

pi,j − ps,i,j−1
δi,j−1/2

, (60)

where δ is the distance between the pressure node under con-
sideration and the intersection with the interface. The surface
pressure ps on the liquid side of the interface is found by adding
to the gas pressure pc the Laplace pressure jump. The pressure
pc inside each cavity is known from the polytropic law (59). The
interface pressure ps in the first expression of (60) will then be

ps,i+1,j = pc,i+1,j + σ
κi,j + κi+1,j

. (61)

2

11
Fig. 9. A 2D section of the numerical grid, showing part of a gas bubble in gray.
Circles represent computational cell nodes where pressure is calculated. Trian-
gles indicate scalar velocity components on the computational cell faces. Filled
triangles indicate values which are found by solving the governing equations,
while unfilled triangles represent boundary values found by extrapolation.

Fig. 10. Discretization of the pressure equation near the interface.

From Eqs. (60) and (61) it is clear that an accurate computation
f the interface curvature as well as an accurate prediction of
he interface location are important parameters to ensure the
ccuracy of the pressure solution. Since the height function is the
pproximate interface distance from some reference cell bound-
ry in a given direction, it is used for δ. When the interface
onfiguration is such that a height cannot be obtained in the
equired direction, the distance is approximated by using a plane
econstruction of the interface in the staggered volume.

xtrapolation of the velocity field. The resolved velocity compo-
ents right next to the interface will require neighbors in the
as phase to discretize the momentum advection term. These
alues in the gas phase can be seen as boundary values to the
esolved velocities. In order to find neighbors in the gas phase,
e extrapolate the resolved velocities similarly to Popinet [40].
After calculating the liquid velocities using standard methods

n Paris, the boundary velocities in the gas phase are updated for
he next time step from the closest two velocity neighbors using
linear least-square fit. Let us assume that the velocity field can
e described as a linear combination

(x) = A · (x− x0)+ u0 (62)

here the components of the tensor A and of the vector u0 are
he unknowns. In two dimensions we take a 5 × 5 stencil around

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

(
u

t
v

i
t
n
t
i
c

E
e
i

l
c
t
o

∇

w
v
c
O
t
p
f
t
e
t

u

t
o

i

Fig. 11. 2D example of the problem to correct the extrapolated velocities
unfilled triangles). A Poisson’s problem is solved in the cells marked with an
nfilled circle.

he unknown gas velocity at location x0 and find the extrapolated
elocity u0 by minimizing the functional

L =
N∑

k=1

⏐⏐A · (x− x0)+ u0 − uk
⏐⏐2 (63)

This is done first for all locations closest to the resolved veloc-
ties uk (‘‘first neighbors’’), whereafter the process is repeated for
he ‘‘second neighbors’’. Note that only resolved velocity compo-
ents are included in the cost function, therefore the number of
he known velocities N can vary depending on the shape of the
nterface. Furthermore, because of the staggered grid, only one
omponent of the velocity u0 is computed at any location x0.

nsuring volume conservation. An additional step is required to
nsure that the extrapolated velocities are divergence-free. This
s required to ensure that the advection of C is conservative.

A similar approach to Sussman [41] is used. Only the first two
ayers of cells inside the gas phase are considered and all other
ells are disregarded. A 2D example is presented in Fig. 11. Similar
o the projection step explained earlier, a ‘‘phantom’’ pressure is
btained in these cells by solving a Poisson’s equation

h
·

(
∇

hP̂
)
= ∇

h
·ũ , (64)

here P̂ is the ‘‘phantom’’ pressure and ũ is the extrapolated
elocity on the faces of the first two gas neighbors. P̂ is only
alculated in the cells represented by unfilled circles in Fig. 11.
n the liquid side of these cells, the solved velocities (filled
riangles) are used as a velocity boundary condition with the
ressure gradient on this face set to zero. On the gas side, a
ixed pressure is prescribed in the cells (red filled circles) outside
he region where the ‘‘phantom’’ pressure is computed. Only the
xtrapolated velocities (unfilled triangles) are then corrected by
he solved pressure gradient ∇P̂

˜
n+1
= ũ−∇hP̂ (65)

o ensure a divergence-free velocity field in the first two layers
f cells just inside the gas.
For more details on the numerical method and its application

n idealized microspalling, see [42] and [43]. This process is found
in metals that under shock loading melt and where, with the re-
flection of the shock wave from the material free surface, cavities

can nucleate, grow and merge.

12
3.8. Solid boundaries

Solids are defined in a ‘‘block’’ or ‘‘Lego’’ manner. A domain-
wide binary flag si,j,k is defined that is equal to 0 inside the
solid and 1 outside. A set of link-based flags sx, sy and sz is also
defined (a link-based array is data located on the velocity com-
ponent collocation points, such as i + 1/2, j, k for the horizontal
velocity component u). The following pseudo code is executed at
initialization relatively to the x direction, with i = 1, 2, . . . , nx

for all j, k do
sx1/2,j,k ← s1,j,k

end for
for all i, j, k do

sxi+1/2,j,k ← si,j,k
end for

and similarly for the y and z directions. The indexes sx, sy and sz
are then used to ‘‘block’’ the velocity and the pressure correction
on the solid region and its boundary. This is done each time the
velocity is updated

for all i, j, k do
ui+1/2,j,k ← sxi+1/2,j,k ui+1/2,j,k

end for
and similarly for the velocity components v and w. The pressure
correction should not change the velocity on the solid boundaries,
so on the links a Neuman boundary condition for the pres-
sure is established, which is equivalent to setting to zero some
coefficients

for all i, j, k do
A1,i,j,k ← sxi−1/2,j,k A1,i,j,k
A2,i,j,k ← sxi+1/2,j,k A2,i,j,k
(similarly for A3, A4 and sy, and for A5, A6 and sz)
A7,i,j,k ←

∑6
p=1 Ap,i,j,k

end for
The solid domain can be initialized by implicit functions or by
loading a file containing the si,j,k data. In both cases it is important
that the presence of the solid does not make the linear system
(23) ill-posed. This will happen for example if the boundary
conditions are Dirichlet for the velocity at the entry of a channel
and the solid completely blocks the channel. To avoid this type of
problem, there is a small utility program ‘‘rockread.c’’, distributed
with the code, that checks that the fluid ‘‘percolates’’.

3.9. Lagrangian point-particle model

A Lagrangian point-particle (LPP) model has been implemented
in PARIS, that is fully coupled to the VOF method to provide
a multi-scale modeling strategy to simulate liquid atomization:
the large-scale interfaces on the bulk liquid are resolved by
VOF, while the small droplets are represented by the LPP model.
The details of the model can be found in [44] and only a brief
summary is given here.

3.9.1. Overview
The combined VOF-LPP algorithm is shown in Fig. 12. The

Navier–Stokes equations and the advection equation for the vol-
ume fraction C are solved for the resolved flow. Then the C
field is tagged to identify different liquid structures. The tagging
approach of [45] is used, and cells that are attached to each other,
with respect to the liquid phase, will have the same tag number.
The size, aspect ratio, and distance from the bulk flow of each liq-
uid structure are computed in the tagging process. Small resolved
droplets (RD) that satisfy the LPP criteria will be submitted to
the RD-to-LPP conversion routine. The motion equation is then

solved for each LPP droplet to update its velocity and position.

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

A
s

T
t
f
f

3

w

ρ

w
o
m
f
t
c
c
e

w
f

I
t
l

o
f
m

f

w
t
c

G

w
b
i

F

3

c

L
(
v
s
F
d
t
w
d
e

{

w
a

R
f
d
v
r
d
b
c
c
v
s
p
e
t

Fig. 12. Flow chart of the combined VOF-LPP algorithm.

fterwards, the droplet is examined to decide whether or not it
hould be converted back to a resolved droplet.
LPP droplets and the resolved flow (RF) are two-way coupled.

he RF properties, such as fluid velocity, are needed to calculate
he forces acting on each LPP droplet. On the other hand, these
orces need to be subtracted from the momentum equation of the
low, thus appearing as an additional source term.

.9.2. Two-way coupling between LPP and RF
The non-conservative momentum equation (9), (10) is now

ritten as(
∂tu + u · ∇u

)
= −∇p+∇ · D+ σ κ δS n− fp (66)

here fp is the closure term that accounts for the backward effect
f the LPP droplets on the resolved flow. The LPP model approxi-
ates each small droplet as a point mass, hence the droplet-scale

low is not resolved. To accurately track the LPP droplets in
he Lagrangian framework, the force exerted on each droplet is
alculated in terms of the undisturbed flow field properties. The
losure is typically given by the force model or the so-called
quation of motion (EOM) [46]

dxp
dt
= up , (67)

dup

dt
=

u− up

τp
φ +

ρ

ρp

Du
Dt
+

Cmρ

ρp

(
Du
Dt
−

dup

dt

)
+ g , (68)

here ρ and u are the density and velocity of the undisturbed
low, and xp, up, τp = ρp d2p/(18µ), ρp, and Cm the position,
velocity, response time, density, and added-mass coefficient of
the LPP droplet. A tri-linear interpolation is used to interpolate
the fluid velocity from the grid to the position of the LPP droplets.
The modified gravity acceleration is denoted by g = (1−ρ/ρp)g′,
where g′ is the gravity acceleration. For the time integration of
Eqs. (67) and (68) a second-order predictor–corrector method
is used, which is consistent with the algorithms used for the
resolved flow.

The force terms on the right hand side of Eq. (68) represent the
quasi-steady force, the pressure-gradient force, the added-mass
force, and the gravity force, respectively. The Basset-history force
has been ignored for simplicity, while the Faxén and lift forces
have been neglected because the LPP model is here applied to
small droplets, and the effect of inhomogeneous ambient flows
on the droplet force is expected to be small. The quasi-steady
force is expressed as the Stokes drag multiplied by a correction
13
term φ, which is a function of the Reynolds number Rep =
ρ dp |u− up|/µ [47],

φ(Rep) = 1+ 0.15 Re0.687p + 0.0175 Rep

(
1+

42500
Re1.16p

)−1
. (69)

n atomization, the inter-droplet interaction can be ignored, as
he small droplets are quickly dispersed away from the bulk
iquid and the related volume fraction is relatively small.

As a consequence of Newton’s third law, the force fp exerted
n the LPP droplets needs to be subtracted from the resolved
low and is referred to as backward coupling. This force in the
omentum equation (66) is calculated as

p =

Np∑
i=1

Ffp,i G(x− xp,i) , (70)

here Np is the total number of LPP droplets. The Gaussian func-
ion G(x − xp,i) is a numerical representation of the LPP droplet
oupling force [48]

(x) = (2πL2)−3/2 exp(−|x|2/2L2) , (71)

here L controls the size of the region where the force should
e distributed. Note that only the force due to fluid-LPP-droplet
nteraction needs to be subtracted from the momentum equation

fp,i = mp,i

(
dup,i

dt
− g

)
. (72)

.9.3. Two-way conversion between LPP and resolved droplets
The droplets that are generated in the atomization process are

onverted to LPP droplets when they satisfy the following criteria.

PP criteria. The criteria to determine whether a resolved droplet
RD) should be represented as a LPP droplet are based on its
olume Vp, aspect ratio γp, and position xp. Vp is required to be
maller than a critical value Vcrit ≃ (4 h)3, and γp close to one.
urthermore, since the current LPP model does not include either
roplet formation or droplet-interface interaction, only droplets
hat are at a given distance away from the liquid jet interface
ill be converted. The distance is typically chosen to be the
roplet diameter dp. The overall conversion criteria can then be
xpressed as

LPP Qualified} = {Vp < Vcrit} && {|γp − 1| < ϵγ } && {xp ∈ Rai} ,

(73)

here ϵγ is the tolerance for the aspect ratio, andRai is the region
way from the interface.

D-to-LPP conversion. If a RD satisfies the LPP criteria, the volume
raction C in the corresponding cells is set to zero. A new LPP
roplet is created and added to the LPP array, together with its
olume and velocity. Furthermore, the flow field in the same
egion will be replaced by the undisturbed flow, so that the LPP
roplet sees the proper undisturbed velocity field. This is done
y interpolating each component of the fluid velocity along the
orresponding coordinate from the surface into the interior of a
ubic region centered at the droplet location. The reconstructed
elocity field is globally divergence-free if the velocity on the
urface of the interpolation region is divergence-free. Unless the
article Reynolds number is very small, a cubic region with an
dge size twice the droplet diameter is sufficient to reconstruct
he undisturbed flow field in a satisfactory way.

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

L
L
l
F
v
s
c
v
o
i

u

w
t
r
t
m
c
h
e
e
d
a
u

T
P
v
i

PP-to-RD conversion. When a LPP droplet does not satisfy the
PP criteria anymore, for example when it is too close to the
iquid-jet interface, it will be converted back to a resolved droplet.
irst, a spherical droplet is rebuilt around xp, by specifying the
olume fraction C in the cells that will be occupied by the re-
olved droplet. The velocity field needs to be updated in the same
ells. To account for the momentum of both the droplet and the
irtual fluid moving with the droplet, the velocity in the cells
ccupied by the resolved droplet should be changed to u′p, which
s calculated as
′

p − u =
(
1+ α

ρ

ρp

)
(up − u) , (74)

here α is the ratio between the volumes of the virtual fluid and
he droplet. For the added-mass effect, it is considered that the
atio between the volumes of the virtual fluid to be accelerated
hrough the inviscid mechanism and the particle is the added-
ass coefficient CM , which is equal to 0.5 for a sphere in in-
ompressible flows. Due to finite viscous diffusion time scale, the
istory force usually needs to be expressed in integral form. Nev-
rtheless, it has been shown in [49] that, if the particle and ambi-
nt fluid acceleration time scales are much larger than the viscous
iffusion time scale, the history force can also be expressed as
non-integral form like the added-mass force, and a viscous-
nsteady coefficient Cvu similar to the added-mass coefficient CM

can be derived as

Cvu ≈ 8.51
(
0.75+ 0.105Rep

Rep

)
. (75)

The viscous-unsteady coefficient Cvu, can be considered as the
ratio between the volumes of the virtual fluid to be accelerated
through the viscous mechanism and the particle. The excess
momentum added through u′p is to mimic the effects of the
added-mass and history forces on accelerating the surrounding
fluid around the droplet. Therefore, α can be estimated as the sum
of CM and Cvu and thus depends on the droplet Reynolds number
as well.

4. Testing

The testing of the code is performed automatically. The short
version of testing is done by typing make test, the long version
by typing make longtest. The short version takes approximately
5 min on a laptop with an i7 processor and the long version
takes approximately 25 min. All the resulting tests give a report
of ‘‘PASS’’ or ‘‘FAIL’’. Each test is contained in a subdirectory of
the Test directory. The subdirectory corresponding to a test has a
self-explanatory name, e.g. PresPoiseuille for the pressure-driven
Poiseuille flow.

The tests can be divided into two categories: elementary tests
which are basically sanity checks verifying that the code is not
corrupted and finds elementary flows easily, and more complex
test that are in some cases a verification of the code, comparing
it to analytical solutions. However, the verification has not been
pushed very far, since the code is an assembly of methods that
have been tested extensively elsewhere, see for example TSZ for
a review of these tests. The more recent methods such as the
‘‘mass–momentum consistent’’ option for velocity advection, has
been tested extensively in [9] although several test cases of the
method are included in the test suite and will be described below.
In order to avoid the introduction of more equations we assume
a constant surface tension coefficient σ in all the testing section.

In many of the tests the solution computed during the test run
is compared to a reference solution. In some cases the reference
solution was computed by the authors at a different resolution

and is included with the code distribution. In other cases the

14
Fig. 13. Poiseuille flow test case.

‘‘reference’’ is a near-identical numerical solution performed by
the authors and included in the code distribution. In that case the
reference should be identical to the solution except in some cases
where tiny changes in the code or the implementation create
moderately large differences. This is the case for the Raindrop test
below.

4.1. Elementary tests

4.1.1. Poiseuille flow
An elementary Poiseuille flow [50] is tested. The simulation

is set up in a 8 × 8 × 2 grid in which the system reduces to
a 2D planar flow in the box (0, 1) × (0, 1). The parameters are
∥∇p∥ = µ = ρ = 1. The boundary conditions set pressure on the
left and right. The simulation is continued until the flow becomes
stationary, which happens with 10−3 accuracy around time 1.
This time is reached in 1000 time steps. The explicit version of
viscous diffusion is used.

This test passes if the numerical segments are tangent to
the theoretical profile as seen in Fig. 13. Because the Poiseuille
flow profile is quadratic, second-order finite differences offer
exact values for the second derivative of velocity, which ensures
that the profile found is exactly a parabola. The accuracy of the
parabola amplitude is set by the quality of the approximation of
the u = 0 boundary condition (solid wall). Since this condition is
set at first order, there is a small O(h2) difference with the exact
parabola.

The bottom wall tangential velocity boundary condition is u =
0 on y = 0. Since the wall is at yi,1/2, the boundary condition
is written using a ghost velocity at yi,−1/2 that satisfies ughost

i,−1/2 +

ui,1/2 = 2uwall. The boundary condition is thus implemented by
writing in a ‘‘ghost layer’’ of the grid

ughost
i,−1/2 ← 2uwall

− ui,1/2. (76)

he result is shown on Fig. 13. It is also possible to run the
oiseuille flow test in other manners, for example with set inflow
elocity, or to run it with the implicit version of viscous diffusion,
n which case the flow converges in a few time steps.

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

4

o
s

v
s
s
p

Fig. 14. Stokes flow around a disk test case.

.1.2. Stokes flow around a disk
A pressure driven flow around a disk of diameter 1/2, with the

ther parameters as before, is set and left to evolve until steady
tate. The advection operator Ladv is turned off which ensures that
the steady state is a Stokes flow. The explicit version of the vis-
cous terms is used. The test resides in the test directory PresDisk.
If the implicit version is used, convergence to the steady state can
be faster but an error of order τ affects the solution. The result
is shown on Fig. 14. There are two other similar tests beyond
this first one. In the second one, located in the directory Disk,
the flow is driven by a body force akin to gravity instead of being
driven by pressure. This second test is still with periodic boundary
conditions. The third test has inflow and outflow conditions and
is located in the test directory Inflowdisk.

4.1.3. Droplet advection
This is an elementary test to check whether the VOF method is

operating normally. The final state of the volume fraction field C
is compared to a precomputed value. The test has to be visualized
‘‘by hand’’ by the user, with the help of graphics software such as
Visit or Paraview. One should see an undeformed droplet moving
across the domain.

4.1.4. Cylinder advection
This is a more sophisticated test that probes the ‘‘mass-

momentum consistent’’ option. The test is described in detail
in [9]. If the velocity field stays uniform and constant and as a
result the droplet is advected undeformed, it means that mo-
mentum ρu and density ρ are advected in lock-step, so that the
operation ρu/ρ, at each time step, gives the constant u.

4.1.5. Speed
This is not so much a test as a report on the code speed. On a

2015 MacBook, a single processor run delivered a speed of 1.6 106

cells per second. On an AMD EPYC 7351, a single processor run
delivered a speed of 1.9 106 cells per second and a parallel eight-
processor run delivers a speed of 1.65 106 cells per second and
per processor (The parallel test is optional and can be run by
the user by typing sh run-speed-test.sh N where np = N3 is
the number of processors desired). A significant drop of the code

speed from this value would be a serious issue.

15
Fig. 15. Comparison of the temporal evolution of the normalized amplitude
of the capillary wave obtained numerically and of the analytical initial-value
solution by [51].

Table 1
Relative L2 error of the numerical solution for capillary waves for various codes
and numbers of grid points N per wavelength. The errors estimated by the codes
have been rounded to the nearest digit. Results for Gerris are from the website
http://gfs.sf.net, not from the paper [34]. Results for Basilisk, have been obtained
by the authors from the code published on the website http://basilisk.fr.
N = λ/h 8 16 32 64 128

Gerris 0.159 0.032 0.0077 0.0022 5.5 10−4

Basilisk 0.139 0.024 0.0069 0.0024 4.8 10−4

Paris 0.050 0.023 0.0054 0.0015 4.1 10−4

4.2. Capillary wave

In this section we present results of the oscillation of planar
capillary waves between two viscous fluids with equal density
and viscosity in the presence of surface tension. The interface
between the two fluids is slightly perturbed with a sinusoidal
function of small amplitude a0 and the initial velocity is set to
zero. The solution of this problem is governed by the Laplace
number which is La = σρλ/µ2

= 3000, where λ is the
wavelength of the sinusoidal function. Simulation are performed
in a box of dimensions Lx = λ and Ly. The results are compared
to the analytical initial-value solution (AIVS) obtained in [51,52]
for small-amplitude capillary waves in viscous fluids. In the AIVS
the aspect ratio Ly/Lx should be sufficiently large (at least a
alue of 2) and the initial capillary wave amplitude a0 sufficiently
mall. Moreover the time step τ and the tolerance of the solvers
hould be at convergence. We have checked that all these four
arameters were at convergence for fixed h. We then look at the

dependence of the remaining error on h. Fig. 15 compares the
temporal evolution of the amplitude of the interface perturbation
with the AIVS.

The relative L2 error norm of the difference between the
numerical solution of a few numerical codes and the AIVS has
also been computed. The results, depicted in Table 1 and Fig. 16,
show second-order convergence for coarse grids. For very refined
grids, when the error is below 1%, the accuracy on the solution
is controlled by the initial amplitude of the wave. In the case of
the resolution λ/h = 128, instead of a 0.01 amplitude as in [34],
a 0.005 amplitude had to be used to match the AIVS.

http://gfs.sf.net
http://basilisk.fr

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

T
P

e
s

Fig. 16. Relative L2 error of the numerical solution as a function of the number
of grid points per wavelength N = λ/h for the capillary wave test.

able 2
hysical parameters (defined in the text) for the oscillating droplet.
D µl µg ρl ρg σ

(m) (kgm−1 s−1) (kgm−1 s−1) (kgm−3) (kgm−3) (kg s−2)

3 10−3 10−3 1.7 10−5 103 1.2 0.0728

Table 3
Dimensionless parameters for the oscillating droplet, La is the Laplace number.
r m La
ρl/ρg µl/µg σρld/µ2

l

833.3 58.82 218400

4.3. Oscillating droplets and bubbles

A droplet with a large density ratio is initialized with a small
llipsoidal deformation. The droplet has air–water properties de-
cribed in Tables 2 and 3. The initial shape, when tracked with the
Front, is shown in Fig. 17. This test is not designed to assess the
accuracy of the code, since the implemented numerical methods
have already been used and tested elsewhere (see for example
[53] for an oscillating droplet test with the VOF method and
[54,55] for similar tests with Front Tracking. However, it should
be noted that in these references the tests are 2D, hence easier).
We thus expect the accuracy to be similar to that of already
published and tested codes using similar curvature and surface
tension methods. The purpose of the test is rather to ensure that
the code is working as expected, and to assess whether air–water
properties, which are often creating stability problems, are in fact
in the stable regime of the code.

Fig. 18 shows the amplitude oscillations as a function of time
for a droplet of D/h = 19.2 grid points per diameter and an initial
excentricity of 0.75. The test is run without the mass–momentum
consistent option, which is here seen to be unnecessary for
the stability, and with the mixed-height option discussed in
Appendix A.3. The reference solution, plotted alongside the test
simulation result, is obtained from the same VOF simulation at
the larger resolution D/h = 38.4. Satisfying agreement is found.

Note that when this test is run automatically in the test suite,
the reference solution stored in the Test/Droplet directory has
been obtained by our code running in the same conditions, a
device frequently used in several test cases in the code test suite.
16
Fig. 17. Initial ellipsoidal shape of the droplet or bubble with the Front.

Fig. 18. Amplitude of capillary oscillations of the Droplet test case.

That way, one tests that the behavior of the code has not changed
drastically, but not that the code (original version and current
version) is correct.

We test the Front-Tracking part of the code by simulating the
same droplet test. Results are shown on Fig. 19. The reference
solution is once again the VOF simulation at larger resolution
(D/h = 38.4). Satisfying agreement is found in this test as well.

We repeat these tests by just inverting the phases, thus initial-
izing an air bubble inside water. The physical and the numerical
parameters (such as the scheme options) are the same as before.

Fig. 20 shows for the Bubble test case the kinetic energy
oscillations as a function of time for a bubble of D/h = 19.2 grid
points per diameter and an initial excentricity of 0.75. The kinetic
energy is used this time instead of the deformation amplitude.
The reference solution is again obtained from the VOF simulation
at larger resolution, with D/h = 38.4 grid points. There is again
good agreement.

We test again the Front-Tracking part of the code by simu-
lating the same bubble test. Results are shown on Fig. 21. The

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

3
r
l
d
e
s
w

T
d
a
t
s
e
i
i
d

5

5

Fig. 19. Amplitude of capillary oscillations of the FrontDroplet test case.

Fig. 20. Kinetic energy of capillary oscillations of the Bubble test case.

reference solution is again that of the previous case (VOF simu-
lation with resolution D/h = 38.4). The agreement is satisfying,
but a small drift of the kinetic energy is observed.

4.4. Falling raindrop

This is an important test case, since it is very demanding for
several codes. A spherical raindrop is setup with a diameter d =
mm and allowed to fall in air under gravity. The droplet should
emain approximately spherical, with at most a pancake or bun-
ike shape, but for many numerical codes this case is rather
ifficult and spurious atomization of the droplet is seen. For an
xample with the Basilisk code see [56]. For details about the
etup of the test we refer the reader to [9]. The test is performed
ith the parameters of Table 4. Notice that these parameters

differ slightly from those of [9] as we input here the values of the
physical parameters for air and water at temperature T = 20 ◦C.
 p

17
Fig. 21. Kinetic energy of capillary oscillations of the FrontBubble test case.

Fig. 22. Kinetic energy of a 3mm falling raindrop at low resolution D/∆x = 8.

he grid resolution is low D/∆x = 8, since the test is more
emanding (i.e., it leads to a blowup of the code more easily)
t low resolutions. Fig. 22 provides the result of the Raindrop
est in the code distribution. It is seen that the solution deviates
omewhat from the reference, however this is not worrisome, as
xplained in the introduction to this Section 4, since the flow
s in a regime that is very sensitive to physical parameters and
nitial conditions and any small change in the code will create a
eviation of that sort. The shape of the droplet is shown in Fig. 23.

. Installation and usage

.1. External libraries

When solving elliptic equations, we may apply the Hypre
ackage SMG [57], a semi-coarsening multigrid solver with 3D

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

T
P
T

p
S

c
c

H

i
d
b

H

w
H
b
p
v

f
e
o
o
r
t
o
c
t

A
i
r
d
b

a
b
m
t

M
d
d
M
C

n
h
v
P
c
h
w
m
s
u
e
t
P
e
u

D

c
t

A

able 4
hysical parameters for the raindrop test. Only the parameters that differ from
able 2 are given.
µl µg ρl ρg
(kgm−1 s−1) (kgm−1 s−1) (kgm−3) (kgm−3)

1.0016 10−3 1.835 10−5 998.2 1.19

Fig. 23. Simulated shape of a 3mm falling raindrop at low resolution D/∆x = 8.

lane smoothing on structured, cuboid meshes, as mentioned in
ection 3.7.2.
Installation of the static library versions (*.a files) of Hypre is

ontrolled via the Makefile. For example, for a Linux system, this
an be realized via the line

YPRE_DIR = $(HOME)/some_path/hypre-2.10.0b/src/lib

n the Makefile. Note that the file libHYPRE.a is placed in the
irectory HYPRE_DIR. Consequently, the actual linking is ensured
y another Makefile line

YPRE_LIBS = -L$(HYPRE_DIR) -lHYPRE

hich is specified in the default Paris distribution. Note that the
ypre version used for the majority of Paris development has
een 2.10.1; it has been tested for stability in serial and massively
arallel runs [42]. In case of Hypre-related problems, fallback to
ersion 2.10 is recommended for debugging.
The Vofi library [29,30] may be used to initialize the volume

raction field C in 2D and in 3D (see Section 3.5.3). It is an inter-
sting option in cases where initial conditions depend strongly
n a very precise interface geometry, e.g. free-surface solutions
f bubble dynamics [42,43], and more rarely when initialization
equires a considerable amount of computational time compared
o Paris simulation time (as in the curvature test case). Linking
f this library is performed in the exact same fashion as in the
ase of Hypre. The static library file is named libvofi.a, and
he respective linker switch is -lvofi.

Since Hypre and Vofi are indeed optional, compilation without
them is made easy. The user may set or unset the variables
HAVE_VOFI and HAVE_HYPRE in his shell prior to compiling. If
these variables are set the Makefile will attempt to locate the
corresponding libraries, if they are not set the compilation pro-
ceeds without the libraries. The fallback for Hypre is the built-in
Gauss–Seidel solver followed by the in-code multigrid solver, and
the fallback for Vofi are the built-in VOF initialization procedures.

5.2. Output files

Various output formats are available in the code: VTK, SILO,
and MPI I/O. While the VTK option generates ASCII files, the
latter two produce binary files. The output in SILO format is done
based on the SILO library developed at LLNL. For both the VTK
and SILO output options, the independent parallel approach is
 D

18
used, namely every MPI process generates a separate file. This
will become an issue for large-scale simulations using many MPI
processes, since creating a large number of small files simultane-
ously may crash the indexing server. An output option based on
the MPI I/O library is implemented in PARIS for large-scale sim-
ulations, which adopts, instead, a cooperative parallel approach
and creates a single file for each variable for each output. A
post-processing code was developed in PARIS to convert the MPI
I/O outputs and SILO files offline for visualization. This code is
available in the distribution as the file util/post_utility.f90.

5.3. Input files

Paris requires a set of input files (in text format) to initialize
and start the simulation. These files are

• input — global and front-solver parameters.
• inputFS — free-surface solver parameters (optional, free-

surface simulations only).
• inputlpp — Lagrangian point-particle module parameters

(optional, implicitly requires two-phase flow, see [44]).
• inputvof (optional, VOF parameters, as above).
• inputsolids (optional, solid objects parameters).

ll input files contain over 220 parameters, thus listing all of them
s not practical in this paper; instead we will only point to general
ules governing the use of these files. The reader may find the
efault values of these parameter in the source code, usually just
elow the namelist instruction.
All the input lines contain the parameter specifications written

s ‘‘variable = value’’, with values being reals, integers, string or
oolean (T/F). In most cases (in the code versions distributed in
ain darcs tree) the variables are commented Fortran-style, i.e. in

he same line, following an exclamation mark, for example

axDt = 5.e-5 ! maximum size of time step
tFlag = 2 ! 1: fixed dt; 2: fixed CFL
t = 1.0e-4 ! dt in case of dtFlag=1
AXERROR= 1.0d-6 ! Residual for Poisson solver
FL = 0.042

It must be noted that the Paris source code uses the Fortran
amelist input type, consequences of that being that all input files
ave ‘‘free format’’, i.e. lines can change order or be deleted. All
ariables are initialized to default values in the source code. Thus,
aris will initialize with an empty input file, however in such a
ase the simulation will be short. Indeed by default Nx=0 (the grid
as zero points in x direction) in order to prevent simulations
ith some of the absurd input files that could be selected by
istake. Thus a minimum input file should contain at least a
pecification of Nx. For more demanding simulations, beginner
sers are encouraged to familiarize themselves with input file
xamples, such as templates found in the Tests sub-directory in
he distribution which can be copied and modified to create new
aris cases. Note that in the Test suite, input files are often gen-
rated from template files such as inputfilename.template
sing shell scripts.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We thank Dr. V. Le Chenadec, Mr. C. Pairetti, Dr. S. Popinet and
r. S. Vincent for useful conversations on the topics of this paper.

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

c

H

w
r
e

W
t

a

a

p
c
p
i
o
c
a

Portions of this work were supported by National Science
Foundation, USA Grants CBET-1335913 and NSF DMS-1620158,
by the ANR MODEMI project, France (ANR-11-MONU-0011) pro-
gram and by grant SU-17-R-PER-26-MULTIBRANCH from Sor-
bonne Université, France. This work was granted access to the
HPC resources of TGCC-CURIE, TGCC-IRENE and CINES-Occigen
under the allocations t20152b7325, t20162b7760, 2017tgcc0080
and A0032B07760, made by GENCI and TGCC. The authors would
also like to acknowledge the MESU computing facilities of Sor-
bonne Université. Finally, the simulation data are visualized by
the software VisIt developed at the Lawrence Livermore National
Laboratory.

Appendix. Details of curvature computation from height func-
tions (HF)

A.1. Height computation

The height computation is performed as described in
Section 3.6.2. A more general definition than (50) is to consider
for each cell Ωi,j,k the possible existence of one of six height
functions defined with reference to a direction ea, 1 ≤ a ≤ 3,
where ea is one of the Cartesian base vectors aligned with the
grid, and an orientation ϵ = −sign(ea · ∇C) (the minus sign
ensures that the canonical situation where the ‘‘liquid’’ C = 1
is below the ‘‘air’’ C = 0 has ϵ = 1. It also corresponds to
the sign convention for the interface normal nδS = −∇χ). This
ell-and-orientation-dependent HF is defined as
(a,+)
i,j,k =

∑
stencil S

Cl,m,n − Li,j,k (A.1)

here the sum is over all the cells in a one-dimensional symmet-
ic ‘‘stencil’’ or ‘‘stack’’ S centered on xi,j,k and oriented parallel to
a and for the ‘‘positive’’ orientation ϵ. Li,j,k = ϵ(xi,j,k − xO) · ea

is the distance from the base of the stack to the cell center xi,j,k.
When the orientation is ϵ = −1

H (a,−)
i,j,k =

∑
stencil S

(
1− Cl,m,n

)
− Li,j,k (A.2)

and the distance Li,j,k is now with reference to an origin in
direction −ea from the cell. An example of stack is shown on
Fig. 6(c). This height function can be computed whenever both
the bottom cell and the top cell of the stack do not contain the
interface, and the interface crosses only once the intermediate
cells. This can be tested by requiring that there are cells with
C = 0 and C = 1 at the top and bottom of the stack (see again
Fig. 6(c)).

For a straight line interface the height function is exact. It is
interesting to see how many cells are needed in the stack S to
find the height for a straight line in 2D. The most ‘‘difficult’’ case
is the 45◦ case. Thus, considering a cell crossed by the interface,
one should explore one cell above and one cell below that cell.
With the addition of the full and empty cells this requires the
exploration of two cells above and below the starting cell. The
total number of cells for a symmetric stencil about the starting
cell would thus be five, but the total number of cells in a stencil
maybe as low as three. However, even with a vanishing amount
of curvature five cells in a symmetric stencil are not sufficient and
seven cells are needed. Thus one would need to explore Nd = 3
cells above and below. In three dimensions the most ‘‘dangerous’’
cases now have the plane normal n = (1, 1, 1). A similar reason-
ing also leads to a height of seven cells for the symmetric stencil
in 3D. Note that the stencil does not have to be symmetric, rather
this is an accidental feature or our implementation of the method.
19
For each cell, it is determined whether there is a full or empty
cell at a maximum distance Nd (the parameter NDEPTH in the
code) above or below the cell. The value NDEPTH=3 is hard-coded.
In order to function in parallel, and since only two layers of cells
are exchanged between MPI processes, the sum in (50) is broken
in two parts, one in each processor. Then the processes exchange
two pieces of information, the ‘‘partial sums’’ just computed and
the lengths Li,j,k in expression (A.1), allowing them to reconstruct
the full sum.

A.2. First pass, first attempt: fully-aligned heights

In the first pass, a loop is performed over all cells Ωi,j,k cut
by the interface, hence having 0 < Ci,j,k < 1. In the first
pass two attempts are made. Let the current cell be Ω0 with
grid coordinates i0, j0, k0. In the first attempt, the normal n is
estimated by MYCS [26]. Then the grid direction ea closest to
the normal is determined (maximum of |n · ea|). Without loss of
generality we consider the case a = 3 and the horizontal plane
perpendicular to e3, that is the grid plane most closely aligned
with the interface. A 3 × 3 planar block of cells Σ0, aligned
with this plane, is selected containing the nine cells Ωi,j,k0 , with
i0 − 1 ≤ i ≤ i0 + 1 and j0 − 1 ≤ j ≤ j0 + 1. For all these cells,
either a height Hi,j is readily available, or is searched in the above
and below cells over two layers, that is for k0 ± 1 and k0 ± 2.

hen all nine heights are available, the following coefficients of
he polynomial (51) can be found using finite differences

1 = ∂2
xxH ≃ H1,0 − 2H0,0 + H−1,0 ,

2 = ∂2
yyH ≃ H0,1 − 2H0,0 + H0,−1 ,

a3 = ∂2
xyH ≃ (H1,1 − H−1,1 − H1,−1 + H−1,−1)/4 ,

a4 = ∂xH ≃ (H1,0 − H−1,0)/2 ,

a5 = ∂yH ≃ (H0,1 − H0,−1)/2 . (A.3)

A.3. First pass, second attempt: mixed heights

If the first attempt fails then a ‘‘mixed heights’’ approach is
used, but only if the parameter MIXED_HEIGHTS is set to ‘T’.
For every height H (a,ϵ)

i,j,k that has been calculated, a point xai,j,k =
H (a,ϵ)

i,j,k ea + xbeb + xcec is defined, where xb and xc are the cell-
central coordinates in the two directions other than ea. Since
there are six height directions, up to 54 points could be computed.
However, a general orientation is computed using the MYCS nor-
mal and only the orientations compatible with that orientation
are retained, which yields 27 possible points. With certain point
configurations there is a risk of a degenerate case where the
least-square linear operator is not invertible. This happens for
example in the set of six points obtained with combinations of
x = 0, 1, y = −1, 0, 1, z = 0. All paraboloids of the form
z = x(1 − x) pass through these points. Other degeneracies
are possible: points all on a circle will be fitted by infinitely
many revolution paraboloids z ′ = κ(x2 + y2)/2. To avoid these
degeneracies, and after trial and error, the minimum number of
points requested is hard-coded as Ns =NFOUND_MIN +1= 7. In
addition to these ‘‘mixed heights’’ points, the centroid of the VOF
face in the current cell Ωi,j,k0 is added to the set of points to be
fitted. In some cases, different directions ea could yield two close
oints, say xai,j,k and xbl,m,n, in the same cell or in a neighboring
ell. In this case, if ∥xai,j,k − xbl,m,n∥ < h/2 then one of the two
oints is rejected. Which point is rejected depends on the order
n which points are added to the stack, which in turn depends
n the order in which mixed heights are investigated, typically
losest to the general orientation. Before the fitting is performed,
n approximate normal is computed using the MYCS approach

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849

i
t
s

A

Fig. A.24. Maximum L∞ error norm in two dimensions for the curvature
estimated for a cylinder using the height function method in Paris and Basilisk.
Two Paris results are shown, one with the mixed curvature option and one
without. Averaging is used in both cases. Using the mixed-cell option yields
less accurate results than not using it.

and the coordinate system is rotated so that the z axis is now
aligned with the approximate normal. The rotation is optional and
is controlled by the parameter DO_ROTATION. We have found
that performing rotation has a certain positive influence on the
accuracy of the results, although it is not clear why.

By default the parameter MIXED_HEIGHTS is set to ‘T’ (true).
This gives less accurate results in L1 norm for curvature, but a
smoother computation and as a result simulations appear to be
more stable for large density ratios when the mass–momentum
consistent scheme is not used. The results in Fig. 7 are with
MIXED_HEIGHTS=‘F’ . With MIXED_HEIGHTS=‘T’ one obtains the
results of Fig. A.24. The results without mixed heights and those
from Basilisk are added for comparison. There is a difference
remaining with the Basilisk computations than we have not yet
been able to explain.

A.4. Averaging scheme

A new loop over all cells cut by the interface is started. If
both schemes above have failed in the current cell, an average
is performed over neighboring cells that have been successful by
either method in the first pass. For each cell Ωi,j,k, the cubic set
of neighbors

Bi,j,k = {Ωl,m,n|i−1 ≤ l ≤ i+1, j−1 ≤ m ≤ j+1, k−1 ≤ n ≤ k+1}

s defined. If at least one of the cells in Bi,j,k has been successful,
he resulting curvature in Ωi,j,k is the average curvature of these
uccessful cells.

.5. Second pass: centroid fit

A final loop on cells Ωi,j,k is performed. If all previous ap-
proaches have failed or are not set to be used, then one falls
back to a fitting of centroids. In each cell of the cubic set Bi,j,k
containing an interface, the cell centroid is computed using the
vof_functions microlibrary included in the code (implementing
the method in [28]). Except for very small fragments, the interface
must find at least five neighboring cells in addition to the current
20
Fig. A.25. Maximum L∞ error norm in three dimensions for the curvature
estimated for a sphere using the height function method in Paris and Basilisk.
Two Paris results are shown, one with the mixed curvature option and one
without. Averaging is used in both cases. Using the mixed-cell option yields
less accurate results than not using it.

cell. This gives six points with which to fit the parameters in
expression (51).

In some cases, the fit fails because the least-square linear
operator is not invertible. The code then continues operating,
increments a counter for statistical purposes and flags the cell as
having an uncomputable curvature. A zero surface tension force
is then added to the momentum.

A.6. Comparison with other implementations of height-function cur-
vature

The accuracy contrast when modifying the mixed-heights op-
tion is even more dramatic in 3D, see Fig. A.25. There is a striking
drop in the L1 error near 13 grid points per diameter. This drop
is due to the averaging step in Appendix A.4. Suppressing the
averaging reverts the results to accuracies comparable to those
of Basilisk or slightly better.

References

[1] R. Scardovelli, S. Zaleski, Annu. Rev. Fluid Mech. 31 (1999) 567–603.
[2] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of

Gas-liquid Multiphase Flows, Cambridge University Press, 2011.
[3] S. Dabiri, D. Fuster, Y.S. Ling, L. Malan, R. Scardovelli, G. Tryggvason,

P. Yecko, S. Zaleski, PARIS simulator code: A parallel robust interface
simulator that combines VOF and front-tracking, 2012-2015.

[4] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, J. Comput.
Phys. 113 (1994) 134–147.

[5] S. Popinet, The gerris flow solver, 2001-2014, URL http://gfs.sf.net.
[6] S. Popinet, Basilisk, a Free-Software program for the solution of partial

differential equations on adaptive cartesian meshes, 2018, URL http://
basilisk.fr.

[7] J. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100 (1992) 335–354.
[8] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, J. Comput. Phys. 152 (2)

(1999) 457–492.
[9] T. Arrufat, M. Crialesi-Esposito, D. Fuster, Y. Ling, L. Malan, S. Pal, R.

Scardovelli, G. Tryggvason, S. Zaleski, Comput. & Fluids 215 (2021) 104785.
[10] M. Bussmann, D.B. Kothe, J.M. Sicilian, ASME 2002 Joint US-european

Fluids Engineering Division Conference, American Society of Mechanical
Engineers, 2002, pp. 707–713.

[11] O. Desjardins, V. Moureau, Cent. Turbul. Res. Summer Program. 2010
(2010) 313–322.

http://refhub.elsevier.com/S0010-4655(21)00017-5/sb1
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb2
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb2
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb2
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb3
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb3
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb3
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb3
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb3
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb4
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb4
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb4
http://gfs.sf.net
http://basilisk.fr
http://basilisk.fr
http://basilisk.fr
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb7
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb8
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb8
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb8
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb9
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb9
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb9
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb10
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb10
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb10
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb10
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb10
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb11
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb11
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb11

W. Aniszewski, T. Arrufat, M. Crialesi-Esposito et al. Computer Physics Communications 263 (2021) 107849
[12] M. Raessi, H. Pitsch, Comput. & Fluids 63 (2012) 70–81.
[13] V. Le Chenadec, H. Pitsch, J. Comput. Phys. 249 (2013) 185–203.
[14] S. Ghods, M. Herrmann, Phys. Scr. 2013 (T155) (2013) 014050.
[15] G. Vaudor, T. Menard, W. Aniszewski, M. Doring, A. Berlemont, Comput. &

Fluids 152 (2017) 204–216.
[16] J.K. Patel, G. Natarajan, J. Comput. Phys. 350 (2017) 207–236.
[17] N. Nangia, B.E. Griffith, N.A. Patankar, A.P.S. Bhalla, J. Comput. Phys. 390

(2019) 548–594.
[18] C.B. Ivey, P. Moin, J. Comput. Phys. 350 (2017) 387–419, http://dx.doi.org/

10.1016/j.jcp.2017.08.054.
[19] M. Owkes, O. Desjardins, J. Comput. Phys. 332 (2017) 21–46, http://dx.doi.

org/10.1016/j.jcp.2016.11.046.
[20] M. Rudman, Internat. J. Numer. Methods Fluids 28 (1998) 357–378.
[21] G.D. Weymouth, D.K.P. Yue, J. Comput. Phys. 229 (8) (2010) 2853–2865.
[22] M. Razizadeh, S. Mortazavi, H. Shahin, Acta Mech. 229 (2018) 1021–1043.
[23] J. Lu, G. Tryggvason, Phys. Rev. Fluids 3 (2018) 084401, (20 pages).
[24] J. Lu, G. Tryggvason, Phys. Rev. Fluids 4 (2019) 084301, http://dx.doi.org/

10.1103/PhysRevFluids.4.084301.
[25] D.M. McQueen, C.S. Peskin, J. Comput. Phys. 82 (1989) 289–297.
[26] E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, J. Comput. Phys. 225

(2007) 2301–2319.
[27] D.L. Youngs, An Interface Tracking Method for a 3D Eulerian Hydrodynam-

ics Code, Technical Report 44/92/35, AWRE, 1984.
[28] R. Scardovelli, S. Zaleski, J. Comput. Phys. 164 (2000) 228–237.
[29] S. Bnà, S. Manservisi, R. Scardovelli, P. Yecko, S. Zaleski, Comput. & Fluids

113 (2015) 42–52.
[30] S. Bnà, S. Manservisi, R. Scardovelli, P. Yecko, S. Zaleski, Comput. Phys.

Comm. 200 (2016) 291–299.
[31] J. Li, C. R. Acad. Sci., Paris II 320 (1995) 391–396.
[32] R. Scardovelli, S. Zaleski, Internat. J. Numer. Methods Fluids 41 (2003)

251–274.
[33] S. Popinet, Annu. Rev. Fluid Mech. 50 (2018) 49–75.
[34] S. Popinet, J. Comput. Phys. 228 (2009) 5838–5866.
[35] G. Bornia, A. Cervone, S. Manservisi, R. Scardovelli, S. Zaleski, J. Comput.

Phys. 230 (2011) 851–862.
[36] M. Owkes, O. Desjardins, J. Comput. Phys. 281 (2015) 285–300, http:

//dx.doi.org/10.1016/j.jcp.2014.10.036, URL http://www.sciencedirect.com/
science/article/pii/S0021999114007189.
21
[37] W.L. Briggs, A Multigrid Tutorial, SIAM Philadelphia, 1987.
[38] M. Kang, R.P. Fedkiw, X.-D. Liu, J. Sci. Comput. 15 (3) (2000) 323–360.
[39] R.K.C. Chan, R.L. Street, J. Comput. Phys. 6 (1970) 68–94.
[40] S. Popinet, S. Zaleski, J. Fluid Mech. 464 (2002) 137–163.
[41] M. Sussman, J. Comput. Phys. 187 (2003) 110–136.
[42] W. Aniszewski, S. Zaleski, A. Llor, L. Malan, Numerical simulations

of pore isolation and competition in idealized micro-spall process,
International Journal of Multiphase FlowDOI: https://doi.org/10.1016/j.
ijmultiphaseflow.2018.10.013. URL http://www.sciencedirect.com/science/
article/pii/S0301932218303082.

[43] L. Malan, Y. Ling, R. Scardovelli, A. Llor, S. Zaleski, Comput. & Fluids 189
(2019) 60–72, URL arXiv:1711.04561 [physics.flu-dyn].

[44] Y. Ling, S. Zaleski, R. Scardovelli, Int. J. Multiph. Flow. 76 (2015) 122–143,
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.07.002, URL http://www.
sciencedirect.com/science/article/pii/S0301932215001524.

[45] M. Herrmann, J. Comput. Phys. 229 (3) (2010) 745–759.
[46] C.T. Crowe, M. Sommerfield, Y. Tsuji, Multiphase Flows with Droplets and

Particles, CRC Press, 1998.
[47] R. Clift, W.H. Gauvin, Proc. Chemeca 1 (1970) 14–28.
[48] M.R. Maxey, B.K. Patel, E.J. Chang, L.P. Wang, Fluid Dyn. Res. 20 (1997)

143–156.
[49] Y. Ling, M. Parmar, S. Balachandar, Int. J. Multiph. Flow. 57 (2013) 102–114.
[50] P. Kundu, I. Cohen, D. Dowling, Fluid Mechanics, 891 pp, Elsevier,

Amsterdam, 2012.
[51] A. Prosperetti, Phys. Fluids 24 (1981) 1217–1223.
[52] F. Denner, G. Paré, S. Zaleski, Eur. Phys. J. Spec. Top. 226 (6) (2017)

1229–1238.
[53] D. Fuster, G. Agbaglah, C. Josserand, S. Popinet, S. Zaleski, Fluid Dyn. Res.

41 (6) (2009) 065001.
[54] D.J. Torres, J.U. Brackbill, J. Comput. Phys. 165 (2) (2000) 620–644.
[55] U. Olgac, D. Izbassarov, M. Muradoglu, Comput. & Fluids 77 (C) (2013)

152–158.
[56] C. Pairetti, S. Popinet, S.M. Damián, N. Nigro, S. Zaleski, Bag mode

breakup simulations of a single liquid droplet, 6th European Conference
on Computational Mechanics (ECCM 6) and 7th European Conference on
Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK.

[57] P. Sloot, C. Tan, J. Dongara, A. Hoekstra (Eds.), Computational Science -
ICCS, Springer-Verlag, ICSS 2002, Berlin, 2002.

http://refhub.elsevier.com/S0010-4655(21)00017-5/sb12
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb13
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb14
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb15
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb15
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb15
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb16
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb17
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb17
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb17
http://dx.doi.org/10.1016/j.jcp.2017.08.054
http://dx.doi.org/10.1016/j.jcp.2017.08.054
http://dx.doi.org/10.1016/j.jcp.2017.08.054
http://dx.doi.org/10.1016/j.jcp.2016.11.046
http://dx.doi.org/10.1016/j.jcp.2016.11.046
http://dx.doi.org/10.1016/j.jcp.2016.11.046
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb20
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb21
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb22
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb23
http://dx.doi.org/10.1103/PhysRevFluids.4.084301
http://dx.doi.org/10.1103/PhysRevFluids.4.084301
http://dx.doi.org/10.1103/PhysRevFluids.4.084301
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb25
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb26
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb26
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb26
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb27
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb27
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb27
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb28
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb29
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb29
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb29
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb30
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb30
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb30
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb31
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb32
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb32
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb32
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb33
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb34
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb35
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb35
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb35
http://dx.doi.org/10.1016/j.jcp.2014.10.036
http://dx.doi.org/10.1016/j.jcp.2014.10.036
http://dx.doi.org/10.1016/j.jcp.2014.10.036
http://www.sciencedirect.com/science/article/pii/S0021999114007189
http://www.sciencedirect.com/science/article/pii/S0021999114007189
http://www.sciencedirect.com/science/article/pii/S0021999114007189
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb37
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb38
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb39
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb40
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb41
https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.013
https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.013
https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.013
http://www.sciencedirect.com/science/article/pii/S0301932218303082
http://www.sciencedirect.com/science/article/pii/S0301932218303082
http://www.sciencedirect.com/science/article/pii/S0301932218303082
http://arxiv.org/abs/1711.04561
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.07.002
http://www.sciencedirect.com/science/article/pii/S0301932215001524
http://www.sciencedirect.com/science/article/pii/S0301932215001524
http://www.sciencedirect.com/science/article/pii/S0301932215001524
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb45
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb46
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb46
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb46
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb47
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb48
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb48
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb48
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb49
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb50
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb50
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb50
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb51
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb52
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb52
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb52
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb53
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb53
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb53
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb54
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb55
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb55
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb55
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb57
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb57
http://refhub.elsevier.com/S0010-4655(21)00017-5/sb57

	PArallel, Robust, Interface Simulator (PARIS)
	Introduction
	Navier–Stokes equations with interfaces
	Basic equations
	Boundary conditions
	Free-surface flow

	Numerical methods implemented in the code
	Spatial discretization
	Time marching
	Non-conservative momentum advection
	Mass–momentum consistent momentum advection
	Implicitation of the viscous terms

	Interface advection: Front-tracking method
	Connecting the front and the fluid grid
	Constructing the marker function I

	Surface tension: Front-Tracking method
	Interface advection: VOF method
	Normal vector determination
	Plane constant determination
	Volume initialization
	General split-direction advection

	Surface tension: VOF method
	CSF method
	Height functions

	Pressure solver
	In-code Gauss–Seidel solver
	Library multigrid solver
	In-code multigrid solver
	GPU-accelerated solver
	Free-surface flow solver

	Solid boundaries
	Lagrangian point-particle model
	Overview
	Two-way coupling between LPP and RF
	Two-way conversion between LPP and resolved droplets

	Testing
	Elementary tests
	Poiseuille flow
	Stokes flow around a disk
	Droplet advection
	Cylinder advection
	Speed

	Capillary wave
	Oscillating droplets and bubbles
	Falling raindrop

	Installation and usage
	External libraries
	Output files
	Input files

	Declaration of competing interest
	Acknowledgments
	Appendix. Details of curvature computation from height functions (HF)
	Height computation
	First pass, first attempt: fully-aligned heights
	First pass, second attempt: mixed heights
	Averaging scheme
	Second pass: centroid fit
	Comparison with other implementations of height-function curvature

	References

