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Abstract—In addition to the multiple sensors to measure
parameters that can be used to improve both safety and efficiency,
modern vehicles also gather information about external data
(e.g., traffic conditions, weather) which, if properly used, could
further improve the overall trip experience. Specifically, when
it comes to navigation, one source that can provide increased
context awareness, especially for autonomous driving, are the
High Definition (HD) maps, which have recently witnessed a
tremendous growth of popularity in vehicular technology and
use. As they are limited to a particular geographic area, different
portions need to be downloaded (and processed) on multiple
occasions throughout a given trip, along with the other data
from other internal and external sources.

In this paper, we provide an effective deep learning approach
for the recently introduced problem of Predicting Map Data
Consumption (PMDC) in the future time instants for a given
trip. We propose a novel methodology that integrates multiple
data sources (road network, traffic, historic trips, HD maps) and,
for a given trip, enables prediction of the map data consumption.
Our experimental observations demonstrate the benefits of the
proposed approach over the candidate baselines.

Index Terms—Mobile Data Consumption, Prediction, High
Definition Maps.

I. INTRODUCTION AND MOTIVATION

Ensuring driving safety is a paramount in the autonomous
driving industry, and the combining of on-board real-time
sensing techniques and (external) knowledge based “verifi-
cation” algorithms is a belt-and-braces approach to achieve
the objective [1]-[3]. Low-level real-time perception systems
involving cameras and LiDAR, accompanied with machine
learning [4], have shown impressive performance in well-
controlled environments and scenarios. However, even more
functionalities can be realized, such as a higher level of
assisted driving, improvement of fuel/energy consumption and
driving experience/comfort, with the help of High Definition
(HD) maps [5],

Among other applications and systems, HD maps have been
used in vehicle self-localization [6], however, their notable
feature is that they are of enormous data size. They store

representations of road objects such as lane boundaries, pole-
like objects, occupancy grids and other entities, which are
also known as road “furniture”. Nowadays, the HD maps
can easily contain over a thousand voxels (highway scenario)
or even tens of thousands of voxels (urban scenario) per
road meter at a higher resolution, in contrast to dozens of
points per road link in conventional maps [7]. Complementary
to this, the map-based solutions to vehicular tasks such as
self-localization [6], visualization and micro motion plan-
ning/adjustment, are computationally expensive. These two
factors (data size and computational complexity) result in HD
maps being the largest consumer of processing power and
transmission bandwidth, from server end, through network, to
vehicle/user end.

In recent years, numerous companies have started to send
out their experimental AVs (Autonomous Vehicles) on public
roads. For example, in California, roughly 650 Avs have com-
pleted trips of cumulative length of 2, 855, 739 and 1, 955,201
miles in 2019 and 2020 respectively [8]. Considering the
market size of the “conventional” (i.e., without any assisted
driving features) vehicles, increasing investment in [9] and
the continuous growth of AVs [10], in the foreseeable future,
vehicles with high level assisted driving functions are likely to
dominate the market. Currently, experimental/testing vehicles
equipped with high performance on-board hardware can easily
handle the load of both storage and computation — but with an
overhead of high cost. When AVs become commercialized and
operated as daily drivers, HD maps (and real-time/live maps)
streaming will cause extremely heavy communication-load to
the network, linearly increasing with the number of on-line
vehicles on the roads.

Hence, optimizing the use of the HD maps data is of primary
importance in many AV tasks. The most straightforward and
widely used solution is to shrink/compress the map data, in
order to use the bandwidth more efficiently [11], [12]. In gen-
eral, HD maps objects (i.e., furniture) are represented as voxels
over an underlying grid [13], and are potentially compatible
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with hierarchical structures. Furniture can be downloaded
on-demand and at different resolutions, depending on the
system configurations (e.g., hardware limitation and safety
requirements) of particular use cases.

Brute-force downloading all the data, even with a high
compression rate, does not solve the problem. In most cases,
on-board hardware struggles with handling expensive algo-
rithms which, in addition to delaying the progress of other
applications, may also increase the decision response time,
which raises safety concerns.

If the Map Data Consumption (MDC) — in total, or even
at certain time-intervals — can be predicted, the system will
have more time to arrange the size of streaming data and, just
as importantly, couple it with other external variables (e.g.,
weather, traffic updates, etc.). This would enable designing
more efficient and reliable/robust context-aware strategies for
HD maps data download. As a specific example, driving during
a heavy rain and in areas with pedestrians would require higher
resolution HD maps to be downloaded, for safer navigation in
AVs.

We have recently introduced the problem of Prediction of
Map Data Consumption (PMDC) in [14] and proposed a naive
solution. In this paper, we incorporate more heterogeneous
datasets, devise novel methodologies for data integration and
provide a deep learning based architecture for effective solu-
tion to PMDC. Our main contributions can be summarized as
follows:

o We refine the definition of MDC problem and provide
more rigorous formalism to specify the (integration of
the) input data and the output of the predictions.

« We propose a novel Neural Network (NN) structure — a
hybrid of GNN and LSTM - that takes heterogeneous
data sources (graph, trips and tiles) and combines their
encodings.

« We propose a GNN-based solution to PMDC problem,
which learns not only local sequential properties (from a
trip), but spatial and temporal information from adjacent
edges.

« We provide experimental evaluation over a synthetic
dataset, demonstrating that our solution provides signifi-
cant improvements over baselines.

In the rest of this paper, in Sec. II we review the related
works, with a note that PMDC is a relatively novel problem.
In Sec. III, we give a detailed overview and formalize the
definition of the PMDC, along with the role of each input
dataset. Our new framework to tackle the PMDC, based on
GNN (Graph Neural Networks) is proposed and described in
detail in Sec. IV. The experimental observations are reported
in Sec. VI, and conclusions and directions for future work are
summarized in Section VII.

II. RELATED WORKS

MDC and PMDC are relatively new concepts that have been
recently proposed in [14] and, as a consequence, there are
no other state-of-the-art methodologies that can be directly
leveraged. Compared to our previous solution, which had only
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preliminary results using LSTM (Long Short-Term Memory),
in this paper, we proposed a GNN [15] based framework
inspired by travel-time estimation problem. In the rest of this
section, we outline several related works in travel-time esti-
mation, graph representation learning, HD maps, and MDC.

A. Travel-time estimation

Trip planning, ETA (Estimated Time of Arrival), as well
as some related “derived” topics such as fuel consumption
prediction [16] and electric vehicle energy management [17]
are the closest ideas to our objective. Therein, the travel-
time estimation — also known as ETA and Origin-Destination
(OD) time estimation problem [18], [19] — is one of the
widely used tasks in of high importance in location-based
services/applications in both consumer market and industry.
Given a pair of origin and designation locations (or the
entire route), and prerequisite road network and other informa-
tion/pattern (such as traffic, weather and accident), an accurate
time predicting result not only benefits consumers’ everyday
life, but also the optimization of entire social system in the
aspects such as logistic and ride-sharing [20].

The history of solving ETA problem can be traced back
for decades, evolving from simple statistic model and re-
gression [21] to modern convolutional neural network (CNN)
based solutions [22], [23]. Numerous works using LSTM [24],
[25], GNN [26]-[28], the hybrid of LSTM and GNN [29],
and even image based [30] solutions have achieved impressive
results. The concurrent works such as Curb-GAN [31] and
DeepOD [32] integrate/embed external factors and historical
data into the training process and show the strong correlation
to prediction results.

B. LSTM and GNN

The fast development of LSTM has drawn substantial
attention due to its ability to model the long-term/historical
dependencies of time-series data such as speed, ETA [33],
fuel/energy consumption [16], [17] for a single vehicle. Mean-
while, the lacking of information from adjacent “samples”
(such as links/edges in a graph) limits the LSTM from learning
surrounding knowledge.

Complementary, GNN-like architectures are potentially
compatible with road networks and have inherent advantages
over LSTM-like solutions. Conventional GNNs have disad-
vantages in handling the changes of the graph, not only the
deletion/insertion of nodes, but also the ever-changing features
of the nodes. Re-training the model is needed in order to
represent this node [15], [34] once changes are obtained.
Fortunately, being different from social network, maps and
HD maps are relatively “stable”/staic on both topological and
featurization aspects. Researchers working on dynamic graph
representation learning [35], [36] are trying to eliminate such
issues.

C. HD maps and Map Data Consumption

HD maps being used in AVs consist of at least lane bound-
ary geometries, road signs, and other road furniture/objects,
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composed by points (for lane boundaries) and voxels (for
other furniture), attached with other descriptive tags and
information. Due to extremely high level of detail, their data
size is much larger than conventional maps. For references,
in conventional maps, dozens of control points are sufficient
to represent a hundred even a thousand meters long center
line of a lane or road. In contrast, in HD maps, each urban
lane meter can have over 1.2 x 10* and 4 x 10% voxels at
resolutions of 10! meter and 2 x 10~ meter respectively [6].
Voxels also have the advantage of potentially compatible with
tree-like (i.e., quadtree and octree) hierarchy structures. There
are mainly two types of containers that we can use to organize
the road furniture which are distinct from the container dimen-
sions: attach objects to one-dimensional road network and two-
dimensional global tile [37]. One-dimensional data structure
is rarely used [38], [39], because the objects do not have a
global view, which may cause data redundancy (same furniture
appears/obtained multiple times from different link/edge) and
makes global optimization and alignment harder. Tile-like
structure is the ideal container but inherently incompatible
with road network (graph representation).

Similar to the definition of energy/fuel consumption in ve-
hicle energy management study (i.e., miles per gallon or watt-
hours per mile), MDC is based on the size of the maps data that
a vehicle needs for its semi-autonomous or fully-autonomous
driving function(s) [7]. One possibility to quantify the MDC
is by the amount of data the vehicle needs to load for exe-
cuting real-time applications. Specifically, the vehicle needs
to load surrounding objects, represented in polygons/vertices
or grids/voxels depending on the object representation. Even
though representing objects in vectors can significantly reduce
the size of the data and has invariance advantages such as
scale and shift, raster representation is still more widely used
in real-time autonomous driving applications since (cf. [7]):
(1) sensors (e.g., LiDAR, depth/stereo cameras) equipped on
vehicles acquire data that is either directly represented in
raster format, or can straightforwardly converted into raster-
like information. (2) most algorithms for autonomous (and
assisted driving) applications, such as the ones used in vehicle
self-localization, need to be fed with raster data [40].

HD Maps

Traffic

Trip

Road Network

G

Fig. 1: The stacking of four types of data: HD maps, traffic,
trip, and road network from top to bottom (left); the overlay
of tiles (gray grids), a trip (green trajectory) and road network
(red graph) (right).

If there are higher safety requirements (under certain inter-
nal and external factors/constraints), the resolution of retrieved
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voxels needs to be increased, causing a substantial increase in
the size of the map data to be downloaded. The size of objects
information that the vehicle needs is also highly dependent
on the sensor configuration, such as refresh rate, layout and
orientation, angular/spatial resolution, sensing range, and even
vehicle’s motion. On-board acquisition is irrelevant to our
paper, we only focus on the data (size) retrieved from server.
What separates our work from the related literature is that
we combine data from multiple heterogeneous but spatially
correlated sources, as illustrated in Figure 1. More specifically,
we embed the HD maps — or, in a broader sense, the tile/raster
based data — as a part of the heterogeneous input of a
graph representation learning architecture, and design a unique
framework to train MDC problem with other important (e.g.,
traffic) data sources, and use it to solve the PMDC of a trip.

III. PRELIMINARIES

We now describe the specifics of the data sources, and

present formal definitions of the concepts used in the rest of
this paper.
Maps and HD maps. We assume that an HD map is
represented in the widely accepted 2D tile system for geo-
regions, accompanied with a resolution value, denoted by
M C RIPIXIQIXIEI where |P| is the number of cells
along z-coordinate; |Q| is the number of cells along the
y-coordinate of the suitably selected system; and R is the
set of resolution values used among the cells. Typically, the
values of R correspond to voxel-sizes (i.e., one can have
different resolution levels for a given configuration of 2D
tiles). The cell (p,q,r) € M, denoted m,, 4, contains the
voxels corresponding to single tile at tile coordinate p € P,
g € @ and resolution » € R in a respective grid of the
geographical area of interest.

We assume a conventional road network represented as
a directed graph G = <V, E>, where the elements of V'
(i.e., vertices) correspond to an intersection, and the elements
of F (i.e., the edges) correspond to road segments. Each
v; € V has unique location, specified by its coordinates
(v;.,v;.y). Similarly, each e, € FE is represented as the
triplet <ug, vk, w> where ug, vy € V are the start node and
end node of ey, while wy, denotes the “weight”, which could
stem from different context, such as: length, traffic travel index
(TTI), or HD maps corresponding to ey.

We further assume that M and G are specified in the same
coordinate system. However, we note that an extra linear
projection is still needed to calculate the conversion from
G to M. To simplify the problem, we introduce I« 4> )
to indicate the quantity of that data with respect to a tile
location <p, ¢> and resolution 7, and f,(<z,y>) = <p, ¢>
to indicate the project from geolocation <x,y> to tile co-
ordinate <p,¢>. Given a vehicle at <z,y> with a set of
configuration c (a combination of internal and external factors,
such as speed, acceleration, hardware configuration, weather
and traffic), the vehicle needs the surrounding information not
only consists of the current tile f,(<,y>), but also nearby
tiles, at certain resolution(s). We also define piecewise-defined
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functions f4(c) = d and f,(c) = r which use ¢ to determine
a pair of tile search size d,d < 0 and resolution r € R.
Therefore, the HD maps information of vehicle at < z,y, c>
can be represented by a set B consists of HD maps indices,
where

By y.e = {fo(<z,y>) + <p,q>,7},
pe [_fd(c)vfd(c)]vq € [_fd(c)v fd(C)],T‘ = fT(C)

and then the MDC at single moment < z,y,c > can be
formalized as:

MDCyye=f(M,Byye)= > I
bEBy y,c

ey

(©))

Trip. A trip, or a trajectory, is a sequence of geospatial points
represented as L = {l;}, where I; =< z;,yi,t;,c; > or
li =< i, Yi, Zis tiy >! s the it? point of L. <z;,y;>, t;
and c¢; denote the geo-location, timestamp and configuration
respectively.

In this study, a raw trip L needs to be converted into a graph
G representation and then processed with GNN framework.
Let L, = <y} ti,c;> denote the map-matched L to
graph G, and L, = <uj,7j,€¢;> denote the trip in graph
representation, where <z},y.> is the map-matched point of
raw point <wx;,y;> at ¢;, and u; € V is a node between
map-matched points <zj,y;> and <j,,,y;,,>, 7; is the
interpolated timestamp between ¢; and t;11, and ¢; is the
interpolated configuration of ¢; and c;;, for the cases when
<xi,y;> and <x;y1,¥;+1> do not match to a same edge.

Define dist(<x;,y;>,<Ti+1,Yi+1>) is the in-graph dis-
tance between <z;,y;> and <x;41,¥y;4+1>, in this example:

dist(<xi, yi>, <Titl, Yit1>)
=dist(<x},y;>, <Tiy1,Yii1>)
=dist(<m;, y;>,u;) + dist(uj, <Tiy1, Yiy1>).

3

Then we can define interpolated 7; as

S dist(Uj, <x;, yi>)
T dist(<xi, yi>, <Tigt, Yig1>)

as well as ¢; (assume c can be interpolated)

dist(uj7 <Xy Yi>)
€; = "
J dzst(<a:7;,y7;>,<x,;+1,yi+1>)

X (Ci+1 - Ci) -+ C;. (5)

Note that if the trajectory sampling rate is sparse or many
intersections are clustered together, multiple nodes may occur
between two adjacent <aj,y;> and <wi i,y 1>
MDC. Assume there is a trip L; = {<&, Uk, tk,C >}
converted from a map-matched trip L,,, has a perfect sampling
rate which let there is one and only one trajectory point locates
in each adjacent tile, where f,(Zx,0k) = fp(&r41,9p+1) £
<{0,1},{0,1}>. To form such trajectory, if there is no such
trajectory point locates in a tile from the map-matched trip L,,,
a new point should be interpolated and the construction of its ¢

'In this paper we only use 2D points/cells. Z-axis in coordinate system
(e.g., altitude) should be considered in future 3D transportation, such as drone
delivery.

57

follows Equation 4; if multiple trajectory points cluster in tile,
the center trajectory point will be selected. Note that, L,, is
unidirectional transferred from L, L, and L; are unidirectional
transferred from L,,. |L| = |L,,|, but not necessary equals to
ILy| or |Lil.

Thus, the total MDC of trip L can be formalized as

MDCy = MDCy, =
MDC sy 91,658 W MDCcs 1, 91,,600,>

(6)

where & denotes a special MDC accumulation operation which
unions U of two sets of HD tiles inside function f. For
instance,

MDC<.i1,Q1.,61> W MDC<§)2,’Q2,@2> =
f(M, Bﬁ:h@)hﬁ) W f(M, Bizvﬂz,éz) =

f(Mv Bi’l,l}l,&l U 3127@2752) =
beB;

)

>

uUB

Iy,

1:91,¢1 22,92,62

We note that, whenever there is no ambiguity, we will omit
certain subscript(s) and/or superscripts. Thus, for example, to
denote the MDC of a given trajectory L, we will use MDCp,

when clear from the context.

IV. METHODOLOGY

In this section, we elaborate each module of the framework.
As shown in Figure 2, our framework mainly consists of three
components: HD maps encoder, which encodes the HD maps
information of each edge into a fixed-length (d,,) vector; Road
segment encoder converts each road segment into a d,.-length
vector; MDC generator enabling the training for trip planning
purposes.

Note a trip will be firstly map-matched and converted into
an |L,|-length vector in graph representation (cf. Section III).
Traffic information, i.e., road conditions and traffic flow, has
already been processed into a graph (for each edge at a specific
timestamp, there is a d;-dimensional vector), hence we do not
further encode the traffic information.

A. MDC Generator

Since there is no real MDC data acquired by either experi-
mental or consumer vehicles, we create an MDC for each trip
following Equations 1, 2, 6 and 7 — using the trip, road net-
work, HD maps and the related hard-coded variables as input.
The process is illustrated in Figure 2. To reduce redundant
description of this process, we elaborate the construction in
Section V. The output of this module is a stand-along MDC
value, which is denoted by M DC'y, for trip L.

B. Road Segment Embedding

In general, the city road network consists of a set of
interconnected road segments. Each of the segments denotes a
sample of the physical connectivity. As for a specific trip, its
map-matched trajectory can be split into a sequence of road
segments sorted by time, and each segment is unique in the
whole road network. Thus, road segment can be considered as
the meta component of the trip and city road network. Since
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Fig. 2: The architecture of all the modules of PMDC solution. The dimensions are color-coded, shown next to each output.

the explicit knowledge about the underlying interaction has
been extracted and saved in the topological graph structure,
implicit representations of road segments are necessary for
resolving trips. To enhance and ensure the conciseness, we
have established the city road network according to historical
trip trajectories in Section III. In this section, we introduce
an approach for learning the road segment representation
and preserving the similarity of neighboring segments in the
embedding space.

Given the weighted road graph network G =< V, E >,
we first use a |V'|-dimensional one-hot vector o; as the initial
feature of node v;(v; € V'), which attaches a unique represen-
tation to each of the nodes. However, one-hot representation
can not fully reflect the connectivity of the city road network.
For example, the standard similarity calculation — Euclidean
distance between any two one-hot embeddings is the same.
Spatially adjacent nodes, e.g., neighboring nodes, should be
given close embeddings. Inspired by the similarity-preserving
network representation methods [41], we leverage Graph-
Wave [42], i.e., an unsupervised node embedding method,
to extract the topological road structure and represent nodes’
network neighborhood via a low-dimensional embedding. The
process can be defined as,

U = GraphWave(G, X = [01,02,...,0/y(]), (8)

where X = [01,09,...,0y] is the input one-hot embedding
matrix, G denotes the topological structure of the road network
and U represents the learned node embedding vectors.

However, in this study, road segments, i.e., edges E of the
graph G, are the key components of each trip that we want to
represent. For example, if e, € F and ex =< uyg, vg, wi, >
is a part of a trip, the car will first pass through uy. Thus,
to take the direction of road segments into consideration, we
splice two nodes’ representation by order with learn node
embedding and leverage the concatenation to determine the
spatial feature of edge. Specifically, for a given edge ey, its
hidden representation can be defined as,

e = u; D vy, )

where the the @ symbol refers to the concatenation of embed-
dings. We note that the edge weight wj has been considered

in the node embedding process, i.e., the road network G is
weighted, thus we omit it here.

C. HD maps Embedding

= 2XxXd+1 =p

() (b) (©

Fig. 3: Illustration of HD maps information featurization: (a)
one road segment e, = wu, — v, (b) three sequential tiles
red — green — blue belong to e, and (c) HD maps
information HD., assigned to this edge.

Max-

pooling Nl

P Lk
pooling

node2vec

embed (uy)

Fig. 4: Architecture of HD maps encoder. =~
Recall (cf. Section III) that at tile < p,q >, with given

search window size d (tiles), the surrounding HD information
can be represented as [M,_4—p+d,q—d—q+d,1—r)» Which is
a 3-dimensional vector. Assume an edge e, € G with start
and end points up,vy € V (shown in Figure 3 (a)) has
a Ny, v, -length sequential footprint {< py,,qu, >,...,<
Doy Qv >} in HD maps tile coordinate, where < pu,, , ¢u, >=
Jp(ug.z, ug.y) (illustrated in red — green — blue small boxes
in Figure 3 (b)). Thus, the HD maps HD., information of
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edge ej can be represented as a 4-dimensional vector

HD., =

([Mp., —d—pu, +d.qu, —d—qu, +d1—R]; - - (10)
[Myp,, —d—sp., +d,qu;, —d—gu, +d,1—R]]s

HD, € R+ X(2d+1) X RX 0wy, 0y,
k

Where n,, ., denotes the distance from wuj to v in tile
coordinate.

The purpose is to extract a fix-sized feature vector for each
edge using the associated HD maps features and the graph
connections. We utilize the nodes and edges in all trips to
build a graph neural network and apply max-pooling to the
last dimension (across its batches) of the HD maps associated
with a node to obtain the HD maps features for each node
HD,, . To be specific, given a set of edges {e;} connect to
node uy, HD,, = Maxpool([HD,,]).

Inspired by the word2vec [43] work in natural language
processing studies, we create a sliding window among nodes
in our trips and maximize the probabilities of two connected
nodes being on the same trip. We first generate node embed-
dings embed(uy) using skipgram and negative samplings in
node2vec [44]; we then concatenate the node embeddings and
the pooled HD maps features u’ = [embed(uy), HD,, ] via
Hadamard transform. Similar to the process used in the previ-
ous section (cf. Equation 9), the final HD maps embeddings e},
for edge ey, can calculated as e}, = uj, ® v}, with a dimension
of d,,,. The architecture of HD maps encoder is illustrated in
Figure 4.

D. PMDC

ll‘Lﬁ‘
/ﬁl

— c,
,‘L't r Cital """'l
Ll

gl

MLP
Layer

|

Predicted
MDC

h Ll

ViLgl

-~ETITEC

Fig. 5: Architecture of PMDC module.

Aforementioned, a trip L has an equivalent representation in
graph which is L, = {<u;,7;,€;>}, and this representation
can be further converted in to a sequential sets of adjacent
edges which denoted as P = <<uqj,us>,...,<uj_1,uj> =
<ej,eg,...ej_1>>, where J |Lg| — 1. The outputs
of Road Network Encoder and HD Maps Encoder are
denoted as e and €/, respectively, and the road network traffic
information directly pulled from the dataset is denoted by t.
For each e; € P, we construct a fixed-length vector v; by
concatenating each embedding of this edge to get the final
embedding v; = [e;, €}, t;].

Given its effectiveness in summarizing the contextual infor-
mation from sequential data, we utilize LSTM to encode the
trajectory knowledge into a fixed-length vector from historical
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segments, and each road segment e; of a trip L, is an LSTM
time step LST M (i) defined by

ej = o(Welhj—1,v;] +de),
fi=oWglhj—1,v;] +dy),

0j = U(Wo[hjfhvj‘] + d0)7 an
ij = tanh(Wc[hj_l,Vj] + dc),
¢j=fi®cj1+e¢®6,

hj = 0; ® tanh(c;).

The input, forget, and output gates are e;, f;, and o;, re-
spectively, which represent how much information we extract
from the current input, save from the previous hidden state,
and keep in current output. The hidden state h; indicates
the sequential embeddings, and c; represents the contextual
embeddings. ¢; denotes the intermediate embeddings carried
out from input contexts. Weight matrices W, Wy, W,,, W, and
bias vectors d.,dy, d,, d. are shared across different trips. The
initial hidden vector hg is a vector of zeros.

m:thJ+1 + by. (12)

We utilize the hidden state of the final step h ;41 to embed one
complete trip and append one multilayer perceptron (MLP)
layer to obtain the predicted MDC value M DC; we use
the standard mean squared error (MSE) as the loss function.
Equation 12 shows the prediction function, where W; and by
are trainable weights for converting dimension |hj4q| to 1.
The structure of PMDC module is illustrated in Figure 5.

V. DATA PREPARATION

Other than the deep learning framework, the data is another
pillar for tackling any learning problem. As mentioned, since
MDC and PMDC are new concepts, there is no existing
dataset collected or built for this specific task. We integrate
heterogeneous data from various sources to create what we
call Synthetic City Dataset (SCD), which consists of road
network (in graph representation) from OSM [45], traffic
information [46] (in plain text) and trips from DiDi Open
Dataset [46] and HD maps model from previous work [7].

In this paper, we make several important improvements on
the SCD with respect to [14]. Below is a concise summary of
the SCD:

« Road network, an 8, 060 meters (longitudinal) by 8, 053
meters (lateral) area of Xi’An, consists of 1,814 OSM
links (roads) and 7,421 OSM nodes. A graph with 4, 771
edges and 2, 140 nodes is generated when converting the
raw OSM data into graph representations.

« HD map, a map created by attaching the
voxel/occupancy-grid distribution (at different
resolutions) learned from Chicago to Xi’An road
network randomly (with several hard-coded constraints).

« Traffic, a “week calendar” size — which has a size of 7
days by 6 x 24 time sections (TTI information is recorded
every 10 minutes for each link) per day — matrix contains
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traffic information of each link. 53.20% of edges have
traffic information recorded, and accounts 61.82% of the
total length of the road network. If there is no traffic
information attached to an edge, Os will be assigned.

o Trips, 113,976 filtered and processed trips from the DiDi
trip dataset which contains over 3 millions trips.

Note, due to the data security policy, The data (both trips

and traffic) provided by DiDi is enforced to be encoded in
GCJ-02 coordinate [47]. Which, in turn, a consistent (locally)
misalignment? between DiDi’s coordinate and OSM coordi-
nate is obtained (by manually aligning several intersections).
Map-matching When switching from LSTM-based solu-
tion [14] to a GNN-based architecture, a serious map-matching
is prerequisite. After testing out several solutions, we select
Fast Map-Matching (FMM) [48], [49] — a hidden Markov
model based solution with pre-computation of an upper
bounded origin-destination hash table for acceleration purpose
— due to its high accuracy, speed and accessibility. The config-
urations of FMM are 8 nearest neighbours (edges), 3 x 1073°
search radius (approximately 300 meters) and a GPS error of
5 x 10~%° (approximately 50 meters).
Trip MDC When generating the MDC for a given trip, some
rules/configurations need to be “hard-coded”, such as search
range d and resolution » € R at different vehicle internal
parameters (motion), along with values of external factors at
a given time instant. Ideally, the sensors (and the hardware)
are inclined to keep a high/consistent acquisition rate and
quality to ensure driving safety. Unfortunately, due to hardware
limitations, a trade-off between sampling rate (maintaining
sampling rate and lower the data quality/resolution) and data
quality (keep data resolution and drop frames) rises [50], [51].
Most solutions tend to be the first solution to fulfill AV’s
reaction time requirement [52].

In DiDi’s trip dataset, the only motion information recorded
is the velocity of each trajectory point. Thus, for each trajec-
tory point’s velocity ¢, we define two thresholds I'; = 5m/s
and I'y 10m/s to determine different d,r combinations
into three segments as searching criteria 3. dy 23 = 1,3, 5 and
r1,2,3 = 13, 12, 11 4.

VI. EXPERIMENTAL RESULTS

In this section, we compare our result to several baseline
approaches being used in similar tasks and discuss the im-
pacts/effectiveness of each encoder in our framework. The
full length of embedding is d, = |v| = |[e,¢€’,t]|, where
each component has a length of d,, = 100, d, 128
and d; = 2. We note that, for reproducibility, the SCD
data and the source codes are publicly available at https:
//github.com/zangandi/HDMapsDataPrediction.

2The misalignment from OSM coordinate to DiDi coordinate is
[—0.0016°,0.0047°] roughly equivalents to a 468.1 meters ground resolution.

3The reason we use these two thresholds is the distribution of vehicle speed
(at certain time interval) learned from the dataset follows normal distribution
with p ~ 8m/s.

“4Tile level 13 equivalents to a = 10~ ! meter voxel size, 12 — 2x 101,
and so forth.
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A. Baseline

Due to the novelty of the PMDC, there are no approaches
that we are aware of that can be categorized as related ones.
Hence, for complementary perspectives, we use the following
approaches as baselines:

a) LSTM: ( [14]) an LSTM based solution that concate-
nates all the sequential HD maps tile information along a given
trip, combined with related internal and external features such
as velocity and traffic. This pipeline is extremely expensive
(both computation-wise and storage-wise) when encodes each
trip since the HD maps are represented in their raw format.
No neighbor (global) information is encoded.

b) Linear Regression: ( [53]) a Linear Regression (LR)
model is trained to minimize the loss (Euclidean distance)
between predict MDC and true MDC to solve the PMDC. The
complexity of building such feature vector (and normalized to
a fixed-length vector) is the same as it in the LSTM pipeline.
One of the significant drawbacks of this type of solution is
the lack of representing both sequential spatial and temporal
information.

c) DeepOD: ( [32]) Deep Origin-Destination is a neural
network based solution that learns and encodes both spatial
and temporal properties from adjacent edges and all given trips
to represent the current edge. The final travel estimation model
is trained by concatenating each sequential edge from different
trips and a Multilayer perceptron (MLP). Note this work aims
to solve the ETA problem and is irrelevant to our case. Hence,
to make a fair comparison, we add the HD maps information
into the training process as a part of the embedding.

B. Evaluation Metrics

To systematically evaluate the performance of PMDC, pop-
ular assessment criteria such as Mean Absolute Error (MAE),
Mean Absolute Peﬁgn\t Error (MAPE) are used in our paper.
Let MDCp, and M DC';, denote the ground truth MDC and
predicted MDC of a trip L € dataset S, the MAE and MAPE
of the entire set can be computed as,

1 I
MAEs = -, > IMDCy, — MDCy|,
151 7%
1 |MDCy, — MDCy| (13)
MAPEs = — L L
59 LZS MDCy,

To reflect the performances on the entire dataset consisting
of the varying length trips, we also bring in weighted MAPE
(WMAPE) in the evaluation, where the weight is the travel
distance of the trip:

|MDC;, — MDC|
MDC},

length of L
total length of S

WMAPEg = Z
LeS

(14)

C. Comparison with Baselines

Firstly, the MAEs, MAPEs and wMAPEs of the experiment
results are shown in Table I, and the Probability Density
Function (PDF) of MAPEs is illustrated in Figure 6 (top).
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| MAE (“voxels”) MAPE % wMAPE %
LR | 7.67¢C 21.58 22.81
LSTM | 1.82¢7 53.66 —
DeepOD | 4.54¢° 15.25 1530
Ours | 3.41€8 11.08 11.19

TABLE I: Experiment results on test set with different mod-
els. Note experiment LSTM has no wMAPE value assigned
because in that experiment, all trip lengths are normalized.

The first thing to catch our sight is the extremely poor
performance of LSTM. Aforementioned, this LSTM frame-
work is borrowed from our previous work, which is designed
and optimized for the objective of giving a sequence of
embeddings from previous trajectory points within a time
window, predicting the MDC for the next time interval. We
modify this work by simply expanding the size of time window
to the entire trip for predicting the MDC.

Secondly, the LR’s performance is impressive. Recall pre-
vious sections, the HD maps — or to be precise, I, the number
of objects of an HD map tile — are generated using the normal
distribution learned from real-world data and applied/attached
to Xi’an’s road network randomly. In real-world scenario,
the distribution of “objects” is not only spatial-wise, but also
graph-wise unique, varies from districts/blocks functionalities.
For instance, central business districts consist of a higher vol-
ume of objects than park districts. Once the voxel distribution
is applied to the entire city, the discrimination of number
of voxels is eliminated. At the same time, the generation of
trip MDC follows a straightforward piecewise-defined function
with several hard-coded variables, no regularization applied.

Even though the synthesizing of HD maps and trip MDCs
have such drawbacks, the performance of our proposed model
is ahead of LR and the DeepOD. Considering the low margin
of performance difference, a 4.17% improvement of MAPE
shows the effectiveness of the integration of HD maps encoder
and road network traffic information. Once real-world data is
used, a dilated performance margin is expected.

The introduction of wMAPE shows whichever module is
deployed, the trips with longer travel distance intending to
have a worse prediction result in MDC.

D. Effectiveness of Embeddings

Since there are multiple modules integrated in our frame-
work, we disable different modules to evaluate the effective-
ness of each embedding. As aforementioned, we have three
embeddings: road network, HD maps, and traffic information,
which leads to 23 experiments. Note, if ether road network
embedding or HD maps embedding is disabled, we will
use one-hot vector to replace the graph embedding, and the
experiments on some embedding combinations are meaning-
less, which we will ignore. Given the fixed order of “road
network, HD maps, traffic”’, we use a 3-digit abbreviation
- {111,110,101, 100,010,011} — to denote each experiment
combination. The MAPESs of experiments are shown in Table II
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Fig. 6: Probability Density Functions (PDFs) of MAPES
on the test set using different methodologies (top), and the
effectiveness experiments (bottom).

and PDFs are shown in Figure 6 (bottom), from which the
following observations are made:

1) Comparing all the controlled trials of traffic information
(i.e., {111 +» 110}, {101 «<» 100} and {011 <» 010}), the
integration of such information significantly improves the
performance with the combination of HD maps encoding
(11.08% 13.34% — 2.26% and 11.58% 14.38% —
2.8%). Once the traffic information stands alone, less im-
provement can be obtained (14.22% = 14.43% — 0.21%);
Both HD maps and road network encoders do not con-
tribute the performance as well as the traffic information
when being concatenated independently (i.e., {110 <> 100}
and {110 «» 010}). The performances only rise by 1.09%
and 1.04% respectively;

The higher wMAPEs (over MAPEs) and Figure 7 (left)
both indicate the majority of longer (distance-wise) trips
have worse prediction results than shorter trips. The com-
mon issue where a certain amount of “outliers” appear
on the shorter-trip-end can also be found in similar trip
property estimation problems [14], [54], which is caused
by the amplification of features’ volatility in a shorter
sampling time. The quantified performance drops are
0.11%, 0.16%, 0.20%, 0.35%, 0.48%, —0.07% for six ex-
periments respectively, and have positive correlations with
their overall performances;

When switch the weights from trip length to trip dura-

. : duration of L . .
tion (i.e., m), another observation (from Fig-

2)

3)

4)
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code | MAPE % (change %) | code | MAPE % (change %))
111 ‘ 11.08 (0.00) ‘ 100 ‘ 14.43 (3.35)

110 | 1334 (226) | 010 | 1438 (330)

101 | 1422 (3.14) | 011 | 1158 (0.50)

code | wMAPE! % (change %) | code | wMAPE! % (change %))
11| 1119 0.00) | 100 | 1478 (3.59)

110 | 1350 231) | 010 | 14.86 3.67)

101 | 1442 (323) | o011 | 1151 (032)

code | wMAPE? % (change %) | code | wMAPE? % (change %))
111 ‘ 11.35 (0.00) ‘ 100 ‘ 14.35 (3.00)

110 | 1376 241) | 010 | 1456 321)

101 | 1418 (2.83) | 011 | 1181 (0.46)

TABLE II: MAPE and wMAPEs of effectiveness experiments.
wMAPE! and wMAPE? denote the wMAPE use trip
distance and duration as weights.

ure 7 (right) and Table II) is the performance differ-
ence of each experiment has a negative correlation to
its trip duration. The performance drops are, respec-
tively: 0.27%, 0.42%, —0.04%, —0.08%, 0.18%, 0.23% re-
spectively. This result shows a better embedding (with tem-
poral information integrated) is more effected by extending
the trip duration.

500 1000
Trip Duration (s)

1hoo™"2000 3000 5000 6000 7000 0
Trip Length (m)

500 2000 2500 3000

Fig. 7: Distribution of Percentage Error (PE) to trip length
(left) and trip duration (right) of experiments 111 (best per-
formance) and 010 (worst case).

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we studied the PMDC problem — a novel
challenge for AVs, which aims to predict the HD maps
data consumption with given HD maps, road network, and
predetermined route. In comparison with its recent introduc-
tion [14], we have revised the definition of MDC and we
have also improved the dataset based on integrating hetero-
geneous information sources. We proposed a comprehensive
deep learning approach and neural network architecture, which
is able to not only exploit historical trips, but also encode the
HD maps of each edge into a fixed-length embedding and
trained with a graph-based neural network instead of a naive
one-hot encoding or average pooling. As our experiments
have demonstrated, our model achieved superior performance
over the conventional LR, LSTM and modified GNN based
solutions (designed for similar objectives). A detailed study on
module effectiveness not only shows the contribution of each
encoder, but also indicates the robustness/consistency to trip
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length and duration. A future model can tweak the embeddings
based on its objective (e.g., prediction preferences).

Since, to our knowledge, this is a forerunner work for the
MDC problem, we recognize certain, at this point unavoidable,
limitations. One notable limitation is the lack of real-world
data. Both SCD (especially HD maps) and the MDC of each
trip are constructed by following straightforward algorithms.
Specifically, to generate the MDC, vehicle speed is the only
input/factor that affects two variables: search window size
and resolution. We believe that numerous other factors (both
internal and external) from multiple software and hardware
component, would create a more sophisticated variant of the
MDC problem and enable more realistic settings to be tackled.
One feasible solution in the short run is generating the map
data and acquiring real-time vehicle configurations from 3D
AV simulation platforms.

A specific variant of the problem that we want to address in
the future is the one which would enable incorporation of the
impact of (partial) HD maps updates. Such cases occur in the
settings in which a new, possibly long-lasting, construction
project has started, affecting larger metropolitan area. We
are planning to investigate their efficient propagation into the
corresponding embedding.
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