
Integrating Heterogeneous Sources for Learned
Prediction of Vehicular Data Consumption

Andi Zang∗, Xiaofeng Zhu†, Ce Li ‡, Fan Zhou‡ and Goce Trajcevski§
∗Department of Computer Science

Northwestern University, Evanston, IL/USA

Email: {andi.zang}@u.northwestern.edu
†Microsoft, Redmond, WA/USA

Email: {xiaofzhu}@microsoft.com
‡ School of Information and SW Engineering

University of Electronic Science and Technology, Chengdu, PR China

Email: {ce.lc}@std.uestc.edu.cn, {fan.zhou}@uestc.edu.cn
§ Department of Electrical and Computer Engineering

Iowa State University, Ames, IA/USA

Email: {gocet25}@iastate.edu

Abstract—In addition to the multiple sensors to measure
parameters that can be used to improve both safety and efficiency,
modern vehicles also gather information about external data
(e.g., traffic conditions, weather) which, if properly used, could
further improve the overall trip experience. Specifically, when
it comes to navigation, one source that can provide increased
context awareness, especially for autonomous driving, are the
High Definition (HD) maps, which have recently witnessed a
tremendous growth of popularity in vehicular technology and
use. As they are limited to a particular geographic area, different
portions need to be downloaded (and processed) on multiple
occasions throughout a given trip, along with the other data
from other internal and external sources.

In this paper, we provide an effective deep learning approach
for the recently introduced problem of Predicting Map Data
Consumption (PMDC) in the future time instants for a given
trip. We propose a novel methodology that integrates multiple
data sources (road network, traffic, historic trips, HD maps) and,
for a given trip, enables prediction of the map data consumption.
Our experimental observations demonstrate the benefits of the
proposed approach over the candidate baselines.

Index Terms—Mobile Data Consumption, Prediction, High
Definition Maps.

I. INTRODUCTION AND MOTIVATION

Ensuring driving safety is a paramount in the autonomous

driving industry, and the combining of on-board real-time

sensing techniques and (external) knowledge based “verifi-

cation” algorithms is a belt-and-braces approach to achieve

the objective [1]–[3]. Low-level real-time perception systems

involving cameras and LiDAR, accompanied with machine

learning [4], have shown impressive performance in well-

controlled environments and scenarios. However, even more

functionalities can be realized, such as a higher level of

assisted driving, improvement of fuel/energy consumption and

driving experience/comfort, with the help of High Definition

(HD) maps [5],

Among other applications and systems, HD maps have been

used in vehicle self-localization [6], however, their notable

feature is that they are of enormous data size. They store

representations of road objects such as lane boundaries, pole-

like objects, occupancy grids and other entities, which are

also known as road “furniture”. Nowadays, the HD maps

can easily contain over a thousand voxels (highway scenario)

or even tens of thousands of voxels (urban scenario) per

road meter at a higher resolution, in contrast to dozens of

points per road link in conventional maps [7]. Complementary

to this, the map-based solutions to vehicular tasks such as

self-localization [6], visualization and micro motion plan-

ning/adjustment, are computationally expensive. These two

factors (data size and computational complexity) result in HD

maps being the largest consumer of processing power and

transmission bandwidth, from server end, through network, to

vehicle/user end.

In recent years, numerous companies have started to send

out their experimental AVs (Autonomous Vehicles) on public

roads. For example, in California, roughly 650 Avs have com-

pleted trips of cumulative length of 2, 855, 739 and 1, 955, 201
miles in 2019 and 2020 respectively [8]. Considering the

market size of the “conventional” (i.e., without any assisted

driving features) vehicles, increasing investment in [9] and

the continuous growth of AVs [10], in the foreseeable future,

vehicles with high level assisted driving functions are likely to

dominate the market. Currently, experimental/testing vehicles

equipped with high performance on-board hardware can easily

handle the load of both storage and computation – but with an

overhead of high cost. When AVs become commercialized and

operated as daily drivers, HD maps (and real-time/live maps)

streaming will cause extremely heavy communication-load to

the network, linearly increasing with the number of on-line

vehicles on the roads.

Hence, optimizing the use of the HD maps data is of primary

importance in many AV tasks. The most straightforward and

widely used solution is to shrink/compress the map data, in

order to use the bandwidth more efficiently [11], [12]. In gen-

eral, HD maps objects (i.e., furniture) are represented as voxels

over an underlying grid [13], and are potentially compatible

54

2022 23rd IEEE International Conference on Mobile Data Management (MDM)

2375-0324/22/$31.00 ©2022 IEEE
DOI 10.1109/MDM55031.2022.00029

20
22

 2
3r

d 
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 M
ob

ile
 D

at
a 

M
an

ag
em

en
t (

M
DM

) |
 9

78
-1

-6
65

4-
51

76
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

M
DM

55
03

1.
20

22
.0

00
29

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



with hierarchical structures. Furniture can be downloaded

on-demand and at different resolutions, depending on the

system configurations (e.g., hardware limitation and safety

requirements) of particular use cases.

Brute-force downloading all the data, even with a high

compression rate, does not solve the problem. In most cases,

on-board hardware struggles with handling expensive algo-

rithms which, in addition to delaying the progress of other

applications, may also increase the decision response time,

which raises safety concerns.

If the Map Data Consumption (MDC) – in total, or even

at certain time-intervals – can be predicted, the system will

have more time to arrange the size of streaming data and, just

as importantly, couple it with other external variables (e.g.,

weather, traffic updates, etc.). This would enable designing

more efficient and reliable/robust context-aware strategies for

HD maps data download. As a specific example, driving during

a heavy rain and in areas with pedestrians would require higher

resolution HD maps to be downloaded, for safer navigation in

AVs.

We have recently introduced the problem of Prediction of

Map Data Consumption (PMDC) in [14] and proposed a naı̈ve

solution. In this paper, we incorporate more heterogeneous

datasets, devise novel methodologies for data integration and

provide a deep learning based architecture for effective solu-

tion to PMDC. Our main contributions can be summarized as

follows:

• We refine the definition of MDC problem and provide

more rigorous formalism to specify the (integration of

the) input data and the output of the predictions.

• We propose a novel Neural Network (NN) structure – a

hybrid of GNN and LSTM – that takes heterogeneous

data sources (graph, trips and tiles) and combines their

encodings.

• We propose a GNN-based solution to PMDC problem,

which learns not only local sequential properties (from a

trip), but spatial and temporal information from adjacent

edges.

• We provide experimental evaluation over a synthetic

dataset, demonstrating that our solution provides signifi-

cant improvements over baselines.

In the rest of this paper, in Sec. II we review the related

works, with a note that PMDC is a relatively novel problem.

In Sec. III, we give a detailed overview and formalize the

definition of the PMDC, along with the role of each input

dataset. Our new framework to tackle the PMDC, based on

GNN (Graph Neural Networks) is proposed and described in

detail in Sec. IV. The experimental observations are reported

in Sec. VI, and conclusions and directions for future work are

summarized in Section VII.

II. RELATED WORKS

MDC and PMDC are relatively new concepts that have been

recently proposed in [14] and, as a consequence, there are

no other state-of-the-art methodologies that can be directly

leveraged. Compared to our previous solution, which had only

preliminary results using LSTM (Long Short-Term Memory),

in this paper, we proposed a GNN [15] based framework

inspired by travel-time estimation problem. In the rest of this

section, we outline several related works in travel-time esti-

mation, graph representation learning, HD maps, and MDC.

A. Travel-time estimation

Trip planning, ETA (Estimated Time of Arrival), as well

as some related “derived” topics such as fuel consumption

prediction [16] and electric vehicle energy management [17]

are the closest ideas to our objective. Therein, the travel-

time estimation – also known as ETA and Origin-Destination

(OD) time estimation problem [18], [19] – is one of the

widely used tasks in of high importance in location-based

services/applications in both consumer market and industry.

Given a pair of origin and designation locations (or the

entire route), and prerequisite road network and other informa-

tion/pattern (such as traffic, weather and accident), an accurate

time predicting result not only benefits consumers’ everyday

life, but also the optimization of entire social system in the

aspects such as logistic and ride-sharing [20].

The history of solving ETA problem can be traced back

for decades, evolving from simple statistic model and re-

gression [21] to modern convolutional neural network (CNN)

based solutions [22], [23]. Numerous works using LSTM [24],

[25], GNN [26]–[28], the hybrid of LSTM and GNN [29],

and even image based [30] solutions have achieved impressive

results. The concurrent works such as Curb-GAN [31] and

DeepOD [32] integrate/embed external factors and historical

data into the training process and show the strong correlation

to prediction results.

B. LSTM and GNN

The fast development of LSTM has drawn substantial

attention due to its ability to model the long-term/historical

dependencies of time-series data such as speed, ETA [33],

fuel/energy consumption [16], [17] for a single vehicle. Mean-

while, the lacking of information from adjacent “samples”

(such as links/edges in a graph) limits the LSTM from learning

surrounding knowledge.

Complementary, GNN-like architectures are potentially

compatible with road networks and have inherent advantages

over LSTM-like solutions. Conventional GNNs have disad-

vantages in handling the changes of the graph, not only the

deletion/insertion of nodes, but also the ever-changing features

of the nodes. Re-training the model is needed in order to

represent this node [15], [34] once changes are obtained.

Fortunately, being different from social network, maps and

HD maps are relatively “stable”/staic on both topological and

featurization aspects. Researchers working on dynamic graph

representation learning [35], [36] are trying to eliminate such

issues.

C. HD maps and Map Data Consumption

HD maps being used in AVs consist of at least lane bound-

ary geometries, road signs, and other road furniture/objects,

55

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



composed by points (for lane boundaries) and voxels (for

other furniture), attached with other descriptive tags and

information. Due to extremely high level of detail, their data

size is much larger than conventional maps. For references,

in conventional maps, dozens of control points are sufficient

to represent a hundred even a thousand meters long center

line of a lane or road. In contrast, in HD maps, each urban

lane meter can have over 1.2 × 104 and 4 × 103 voxels at

resolutions of 10−1 meter and 2×10−1 meter respectively [6].

Voxels also have the advantage of potentially compatible with

tree-like (i.e., quadtree and octree) hierarchy structures. There

are mainly two types of containers that we can use to organize

the road furniture which are distinct from the container dimen-

sions: attach objects to one-dimensional road network and two-

dimensional global tile [37]. One-dimensional data structure

is rarely used [38], [39], because the objects do not have a

global view, which may cause data redundancy (same furniture

appears/obtained multiple times from different link/edge) and

makes global optimization and alignment harder. Tile-like

structure is the ideal container but inherently incompatible

with road network (graph representation).
Similar to the definition of energy/fuel consumption in ve-

hicle energy management study (i.e., miles per gallon or watt-

hours per mile), MDC is based on the size of the maps data that

a vehicle needs for its semi-autonomous or fully-autonomous

driving function(s) [7]. One possibility to quantify the MDC

is by the amount of data the vehicle needs to load for exe-

cuting real-time applications. Specifically, the vehicle needs

to load surrounding objects, represented in polygons/vertices

or grids/voxels depending on the object representation. Even

though representing objects in vectors can significantly reduce

the size of the data and has invariance advantages such as

scale and shift, raster representation is still more widely used

in real-time autonomous driving applications since (cf. [7]):

(1) sensors (e.g., LiDAR, depth/stereo cameras) equipped on

vehicles acquire data that is either directly represented in

raster format, or can straightforwardly converted into raster-

like information. (2) most algorithms for autonomous (and

assisted driving) applications, such as the ones used in vehicle

self-localization, need to be fed with raster data [40].

Fig. 1: The stacking of four types of data: HD maps, traffic,

trip, and road network from top to bottom (left); the overlay

of tiles (gray grids), a trip (green trajectory) and road network

(red graph) (right).

If there are higher safety requirements (under certain inter-

nal and external factors/constraints), the resolution of retrieved

voxels needs to be increased, causing a substantial increase in

the size of the map data to be downloaded. The size of objects

information that the vehicle needs is also highly dependent

on the sensor configuration, such as refresh rate, layout and

orientation, angular/spatial resolution, sensing range, and even

vehicle’s motion. On-board acquisition is irrelevant to our

paper, we only focus on the data (size) retrieved from server.

What separates our work from the related literature is that

we combine data from multiple heterogeneous but spatially

correlated sources, as illustrated in Figure 1. More specifically,

we embed the HD maps – or, in a broader sense, the tile/raster

based data – as a part of the heterogeneous input of a

graph representation learning architecture, and design a unique

framework to train MDC problem with other important (e.g.,

traffic) data sources, and use it to solve the PMDC of a trip.

III. PRELIMINARIES

We now describe the specifics of the data sources, and

present formal definitions of the concepts used in the rest of

this paper.

Maps and HD maps. We assume that an HD map is

represented in the widely accepted 2D tile system for geo-

regions, accompanied with a resolution value, denoted by

M ⊆ R|P |×|Q|×|R|, where |P | is the number of cells

along x-coordinate; |Q| is the number of cells along the

y-coordinate of the suitably selected system; and R is the

set of resolution values used among the cells. Typically, the

values of R correspond to voxel-sizes (i.e., one can have

different resolution levels for a given configuration of 2D

tiles). The cell (p, q, r) ∈ M , denoted mp,q,r, contains the

voxels corresponding to single tile at tile coordinate p ∈ P ,

q ∈ Q and resolution r ∈ R in a respective grid of the

geographical area of interest.

We assume a conventional road network represented as

a directed graph G = <V,E>, where the elements of V
(i.e., vertices) correspond to an intersection, and the elements

of E (i.e., the edges) correspond to road segments. Each

vi ∈ V has unique location, specified by its coordinates

(vi.x, vi.y). Similarly, each ek ∈ E is represented as the

triplet <uk, vk, wk> where uk, vk ∈ V are the start node and

end node of ek, while wk denotes the “weight”, which could

stem from different context, such as: length, traffic travel index

(TTI), or HD maps corresponding to ek.

We further assume that M and G are specified in the same

coordinate system. However, we note that an extra linear

projection is still needed to calculate the conversion from

G to M . To simplify the problem, we introduce I(<p,q>,r)

to indicate the quantity of that data with respect to a tile

location <p, q> and resolution r, and fp(<x, y>) = <p, q>
to indicate the project from geolocation <x, y> to tile co-

ordinate <p, q>. Given a vehicle at <x, y> with a set of

configuration c (a combination of internal and external factors,

such as speed, acceleration, hardware configuration, weather

and traffic), the vehicle needs the surrounding information not

only consists of the current tile fp(<x, y>), but also nearby

tiles, at certain resolution(s). We also define piecewise-defined

56

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



functions fd(c) = d and fr(c) = r which use c to determine

a pair of tile search size d, d ≤ 0 and resolution r ∈ R.

Therefore, the HD maps information of vehicle at < x, y, c>
can be represented by a set B consists of HD maps indices,

where

Bx,y,c = {fp(<x, y>) +<p, q>, r},
p ∈ [−fd(c), fd(c)], q ∈ [−fd(c), fd(c)], r = fr(c)

(1)

and then the MDC at single moment < x, y, c > can be

formalized as:

MDCx,y,c = f(M,Bx,y,c) =
∑

b∈Bx,y,c

Ib. (2)

Trip. A trip, or a trajectory, is a sequence of geospatial points

represented as L = {li}, where li =< xi, yi, ti, ci > or

li =< xi, yi, zi, ti, ci >1 is the ith point of L. <xi, yi>, ti
and ci denote the geo-location, timestamp and configuration

respectively.

In this study, a raw trip L needs to be converted into a graph

G representation and then processed with GNN framework.

Let Lm = <x′
i, y

′
i, ti, ci> denote the map-matched L to

graph G, and Lg = <uj , τj , εj> denote the trip in graph

representation, where <x′
i, y

′
i> is the map-matched point of

raw point <xi, yi> at ti, and uj ∈ V is a node between

map-matched points <x′
i, y

′
i> and <x′

i+1, y
′
i+1>, τj is the

interpolated timestamp between ti and ti+1, and εj is the

interpolated configuration of ci and ci+1, for the cases when

<xi, yi> and <xi+1, yi+1> do not match to a same edge.

Define dist(<xi, yi>,<xi+1, yi+1>) is the in-graph dis-

tance between <xi, yi> and <xi+1, yi+1>, in this example:

dist(<xi, yi>,<xi+1, yi+1>)

=dist(<x′
i, y

′
i>,<x′

i+1, y
′
i+1>)

=dist(<xi, yi>, uj) + dist(uj , <xi+1, yi+1>).

(3)

Then we can define interpolated τj as

τj =
dist(uj , <xi, yi>)

dist(<xi, yi>,<xi+1, yi+1>)
× (ti+1 − ti) + ti. (4)

as well as εj (assume c can be interpolated)

εj =
dist(uj , <xi, yi>)

dist(<xi, yi>,<xi+1, yi+1>)
× (ci+1 − ci) + ci. (5)

Note that if the trajectory sampling rate is sparse or many

intersections are clustered together, multiple nodes may occur

between two adjacent <x′
i, y

′
i> and <x′

i+1, y
′
i+1>.

MDC. Assume there is a trip Lt = {<x̂k, ŷk, t̂k, ĉk>}
converted from a map-matched trip Lm, has a perfect sampling

rate which let there is one and only one trajectory point locates

in each adjacent tile, where fp(x̂k, ŷk) = fp(x̂k+1, ŷk+1) ±
<{0, 1}, {0, 1}>. To form such trajectory, if there is no such

trajectory point locates in a tile from the map-matched trip Lm,

a new point should be interpolated and the construction of its ĉ

1In this paper we only use 2D points/cells. Z-axis in coordinate system
(e.g., altitude) should be considered in future 3D transportation, such as drone
delivery.

follows Equation 4; if multiple trajectory points cluster in tile,

the center trajectory point will be selected. Note that, Lm is

unidirectional transferred from L, Lg and Lt are unidirectional

transferred from Lm. |L| = |Lm|, but not necessary equals to

|Lg| or |Lt|.
Thus, the total MDC of trip L can be formalized as

MDCL = MDCLt
=

MDC<x̂1,ŷ1,ĉ1> � · · · �MDC<x̂|Lt|,ŷ|Lt|,ĉ|Lt|>,
(6)

where � denotes a special MDC accumulation operation which

unions ∪ of two sets of HD tiles inside function f . For

instance,

MDC<x̂1,ŷ1,ĉ1> �MDC<x̂2,ŷ2,ĉ2> =

f(M,Bx̂1,ŷ1,ĉ1) � f(M,Bx̂2,ŷ2,ĉ2) =

f(M,Bx̂1,ŷ1,ĉ1 ∪Bx̂2,ŷ2,ĉ2) =
∑

b∈Bx̂1,ŷ1,ĉ1
∪Bx̂2,ŷ2,ĉ2

Ib.
(7)

We note that, whenever there is no ambiguity, we will omit

certain subscript(s) and/or superscripts. Thus, for example, to

denote the MDC of a given trajectory L, we will use MDCL

when clear from the context.

IV. METHODOLOGY

In this section, we elaborate each module of the framework.

As shown in Figure 2, our framework mainly consists of three

components: HD maps encoder, which encodes the HD maps

information of each edge into a fixed-length (dm) vector; Road
segment encoder converts each road segment into a dr-length

vector; MDC generator enabling the training for trip planning

purposes.

Note a trip will be firstly map-matched and converted into

an |Lg|-length vector in graph representation (cf. Section III).

Traffic information, i.e., road conditions and traffic flow, has

already been processed into a graph (for each edge at a specific

timestamp, there is a dt-dimensional vector), hence we do not

further encode the traffic information.

A. MDC Generator

Since there is no real MDC data acquired by either experi-

mental or consumer vehicles, we create an MDC for each trip

following Equations 1, 2, 6 and 7 – using the trip, road net-

work, HD maps and the related hard-coded variables as input.

The process is illustrated in Figure 2. To reduce redundant

description of this process, we elaborate the construction in

Section V. The output of this module is a stand-along MDC

value, which is denoted by MDCL for trip L.

B. Road Segment Embedding

In general, the city road network consists of a set of

interconnected road segments. Each of the segments denotes a

sample of the physical connectivity. As for a specific trip, its

map-matched trajectory can be split into a sequence of road

segments sorted by time, and each segment is unique in the

whole road network. Thus, road segment can be considered as

the meta component of the trip and city road network. Since

57

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: The architecture of all the modules of PMDC solution. The dimensions are color-coded, shown next to each output.

the explicit knowledge about the underlying interaction has

been extracted and saved in the topological graph structure,

implicit representations of road segments are necessary for

resolving trips. To enhance and ensure the conciseness, we

have established the city road network according to historical

trip trajectories in Section III. In this section, we introduce

an approach for learning the road segment representation

and preserving the similarity of neighboring segments in the

embedding space.

Given the weighted road graph network G =< V,E >,

we first use a |V |-dimensional one-hot vector oi as the initial

feature of node vi(vi ∈ V ), which attaches a unique represen-

tation to each of the nodes. However, one-hot representation

can not fully reflect the connectivity of the city road network.

For example, the standard similarity calculation – Euclidean

distance between any two one-hot embeddings is the same.

Spatially adjacent nodes, e.g., neighboring nodes, should be

given close embeddings. Inspired by the similarity-preserving

network representation methods [41], we leverage Graph-

Wave [42], i.e., an unsupervised node embedding method,

to extract the topological road structure and represent nodes’

network neighborhood via a low-dimensional embedding. The

process can be defined as,

U = GraphWave(G,X = [o1,o2, . . . ,o|V |]), (8)

where X = [o1,o2, . . . ,o|V |] is the input one-hot embedding

matrix, G denotes the topological structure of the road network

and U represents the learned node embedding vectors.

However, in this study, road segments, i.e., edges E of the

graph G, are the key components of each trip that we want to

represent. For example, if ek ∈ E and ek =< uk, vk, wk >
is a part of a trip, the car will first pass through uk. Thus,

to take the direction of road segments into consideration, we

splice two nodes’ representation by order with learn node

embedding and leverage the concatenation to determine the

spatial feature of edge. Specifically, for a given edge ek, its

hidden representation can be defined as,

ek = uk ⊕ vk, (9)

where the the ⊕ symbol refers to the concatenation of embed-

dings. We note that the edge weight wk has been considered

in the node embedding process, i.e., the road network G is

weighted, thus we omit it here.

C. HD maps Embedding

(a) (b) (c)

Fig. 3: Illustration of HD maps information featurization: (a)

one road segment ek = ux → vx, (b) three sequential tiles

red → green → blue belong to ek, and (c) HD maps

information HDek assigned to this edge.

Fig. 4: Architecture of HD maps encoder.
Recall (cf. Section III) that at tile < p, q >, with given

search window size d (tiles), the surrounding HD information

can be represented as [Mp−d→p+d,q−d→q+d,1→R], which is

a 3-dimensional vector. Assume an edge ek ∈ G with start

and end points uk, vk ∈ V (shown in Figure 3 (a)) has

a nuk,vk -length sequential footprint {< puk
, quk

>, . . . , <
pvk

, qvk
>} in HD maps tile coordinate, where < puk

, quk
>=

fp(uk.x, uk.y) (illustrated in red → green → blue small boxes

in Figure 3 (b)). Thus, the HD maps HDek information of

58

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



edge ek can be represented as a 4-dimensional vector

HDek =

[[Mpuk
−d→puk

+d,quk
−d→quk

+d,1→R], . . . ,

[Mpvk
−d→pvk

+d,qvk−d→qvk+d,1→R]],

HDek ∈ R(2d+1)×(2d+1)×R×nuk,vk

(10)

Where nuk,vk denotes the distance from uk to vk in tile

coordinate.

The purpose is to extract a fix-sized feature vector for each

edge using the associated HD maps features and the graph

connections. We utilize the nodes and edges in all trips to

build a graph neural network and apply max-pooling to the

last dimension (across its batches) of the HD maps associated

with a node to obtain the HD maps features for each node

HDuk
. To be specific, given a set of edges {ej} connect to

node uk, HDuk
= Maxpool([HDej ]).

Inspired by the word2vec [43] work in natural language

processing studies, we create a sliding window among nodes

in our trips and maximize the probabilities of two connected

nodes being on the same trip. We first generate node embed-

dings embed(uk) using skipgram and negative samplings in

node2vec [44]; we then concatenate the node embeddings and

the pooled HD maps features u′ = [embed(uk),HDuk
] via

Hadamard transform. Similar to the process used in the previ-

ous section (cf. Equation 9), the final HD maps embeddings e′k
for edge ek can calculated as e′k = u′

k ⊕v′
k with a dimension

of dm. The architecture of HD maps encoder is illustrated in

Figure 4.

D. PMDC

Fig. 5: Architecture of PMDC module.

Aforementioned, a trip L has an equivalent representation in

graph which is Lg = {<uj , τj , εj>}, and this representation

can be further converted in to a sequential sets of adjacent

edges which denoted as P = <<u1, u2>, . . . , <uJ−1, uJ> =
<e1, e2, . . . eJ−1>>, where J = |Lg| − 1. The outputs

of Road Network Encoder and HD Maps Encoder are

denoted as e and e′, respectively, and the road network traffic

information directly pulled from the dataset is denoted by t.

For each ei ∈ P , we construct a fixed-length vector vi by

concatenating each embedding of this edge to get the final

embedding vi = [ei, e
′
i, ti].

Given its effectiveness in summarizing the contextual infor-

mation from sequential data, we utilize LSTM to encode the

trajectory knowledge into a fixed-length vector from historical

segments, and each road segment ej of a trip Lg is an LSTM

time step LSTM(i) defined by

ej = σ(We[hj−1,vj ] + de),

fj = σ(Wf [hj−1,vj ] + df ),

oj = σ(Wo[hj−1,vj ] + do),

c̃j = tanh(Wc[hj−1,vj ] + dc),

cj = fj ⊗ cj−1 + ej ⊗ c̃j ,

hj = oj ⊗ tanh(cj).

(11)

The input, forget, and output gates are ej , fj , and oj , re-

spectively, which represent how much information we extract

from the current input, save from the previous hidden state,

and keep in current output. The hidden state hj indicates

the sequential embeddings, and cj represents the contextual

embeddings. c̃j denotes the intermediate embeddings carried

out from input contexts. Weight matrices We,Wf ,Wo,Wc and

bias vectors de, df , do, dc are shared across different trips. The

initial hidden vector h0 is a vector of zeros.

M̂DC = WfhJ+1 + bf . (12)

We utilize the hidden state of the final step hJ+1 to embed one

complete trip and append one multilayer perceptron (MLP)

layer to obtain the predicted MDC value M̂DC; we use

the standard mean squared error (MSE) as the loss function.

Equation 12 shows the prediction function, where Wf and bf
are trainable weights for converting dimension |hJ+1| to 1.

The structure of PMDC module is illustrated in Figure 5.

V. DATA PREPARATION

Other than the deep learning framework, the data is another

pillar for tackling any learning problem. As mentioned, since

MDC and PMDC are new concepts, there is no existing

dataset collected or built for this specific task. We integrate

heterogeneous data from various sources to create what we

call Synthetic City Dataset (SCD), which consists of road

network (in graph representation) from OSM [45], traffic

information [46] (in plain text) and trips from DiDi Open

Dataset [46] and HD maps model from previous work [7].

In this paper, we make several important improvements on

the SCD with respect to [14]. Below is a concise summary of

the SCD:

• Road network, an 8, 060 meters (longitudinal) by 8, 053
meters (lateral) area of Xi’An, consists of 1, 814 OSM

links (roads) and 7, 421 OSM nodes. A graph with 4, 771
edges and 2, 140 nodes is generated when converting the

raw OSM data into graph representations.

• HD map, a map created by attaching the

voxel/occupancy-grid distribution (at different

resolutions) learned from Chicago to Xi’An road

network randomly (with several hard-coded constraints).

• Traffic, a “week calendar” size – which has a size of 7
days by 6×24 time sections (TTI information is recorded

every 10 minutes for each link) per day – matrix contains

59

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



traffic information of each link. 53.20% of edges have

traffic information recorded, and accounts 61.82% of the

total length of the road network. If there is no traffic

information attached to an edge, 0s will be assigned.

• Trips, 113, 976 filtered and processed trips from the DiDi

trip dataset which contains over 3 millions trips.

Note, due to the data security policy, The data (both trips

and traffic) provided by DiDi is enforced to be encoded in

GCJ-02 coordinate [47]. Which, in turn, a consistent (locally)

misalignment2 between DiDi’s coordinate and OSM coordi-

nate is obtained (by manually aligning several intersections).

Map-matching When switching from LSTM-based solu-

tion [14] to a GNN-based architecture, a serious map-matching

is prerequisite. After testing out several solutions, we select

Fast Map-Matching (FMM) [48], [49] – a hidden Markov

model based solution with pre-computation of an upper

bounded origin-destination hash table for acceleration purpose

– due to its high accuracy, speed and accessibility. The config-

urations of FMM are 8 nearest neighbours (edges), 3× 10−3°

search radius (approximately 300 meters) and a GPS error of

5× 10−4° (approximately 50 meters).

Trip MDC When generating the MDC for a given trip, some

rules/configurations need to be “hard-coded”, such as search

range d and resolution r ∈ R at different vehicle internal

parameters (motion), along with values of external factors at

a given time instant. Ideally, the sensors (and the hardware)

are inclined to keep a high/consistent acquisition rate and

quality to ensure driving safety. Unfortunately, due to hardware

limitations, a trade-off between sampling rate (maintaining

sampling rate and lower the data quality/resolution) and data

quality (keep data resolution and drop frames) rises [50], [51].

Most solutions tend to be the first solution to fulfill AV’s

reaction time requirement [52].

In DiDi’s trip dataset, the only motion information recorded

is the velocity of each trajectory point. Thus, for each trajec-

tory point’s velocity c, we define two thresholds Γ1 = 5m/s
and Γ2 = 10m/s to determine different d, r combinations

into three segments as searching criteria 3. d1,2,3 = 1, 3, 5 and

r1,2,3 = 13, 12, 11 4.

VI. EXPERIMENTAL RESULTS

In this section, we compare our result to several baseline

approaches being used in similar tasks and discuss the im-

pacts/effectiveness of each encoder in our framework. The

full length of embedding is dv = |v| = |[e, e′, t]|, where

each component has a length of dm = 100, dr = 128
and dt = 2. We note that, for reproducibility, the SCD

data and the source codes are publicly available at https:

//github.com/zangandi/HDMapsDataPrediction.

2The misalignment from OSM coordinate to DiDi coordinate is
[−0.0016°, 0.0047°] roughly equivalents to a 468.1 meters ground resolution.

3The reason we use these two thresholds is the distribution of vehicle speed
(at certain time interval) learned from the dataset follows normal distribution
with μ ≈ 8m/s.

4Tile level 13 equivalents to a ≈ 10−1 meter voxel size, 12 −→ 2×10−1,
and so forth.

A. Baseline

Due to the novelty of the PMDC, there are no approaches

that we are aware of that can be categorized as related ones.

Hence, for complementary perspectives, we use the following

approaches as baselines:

a) LSTM: ( [14]) an LSTM based solution that concate-

nates all the sequential HD maps tile information along a given

trip, combined with related internal and external features such

as velocity and traffic. This pipeline is extremely expensive

(both computation-wise and storage-wise) when encodes each

trip since the HD maps are represented in their raw format.

No neighbor (global) information is encoded.

b) Linear Regression: ( [53]) a Linear Regression (LR)

model is trained to minimize the loss (Euclidean distance)

between predict MDC and true MDC to solve the PMDC. The

complexity of building such feature vector (and normalized to

a fixed-length vector) is the same as it in the LSTM pipeline.

One of the significant drawbacks of this type of solution is

the lack of representing both sequential spatial and temporal

information.

c) DeepOD: ( [32]) Deep Origin-Destination is a neural

network based solution that learns and encodes both spatial

and temporal properties from adjacent edges and all given trips

to represent the current edge. The final travel estimation model

is trained by concatenating each sequential edge from different

trips and a Multilayer perceptron (MLP). Note this work aims

to solve the ETA problem and is irrelevant to our case. Hence,

to make a fair comparison, we add the HD maps information

into the training process as a part of the embedding.

B. Evaluation Metrics

To systematically evaluate the performance of PMDC, pop-

ular assessment criteria such as Mean Absolute Error (MAE),

Mean Absolute Percent Error (MAPE) are used in our paper.

Let MDCL and M̂DCL denote the ground truth MDC and

predicted MDC of a trip L ∈ dataset S, the MAE and MAPE

of the entire set can be computed as,

MAES =
1

|S|
∑

L∈S

|MDCL − M̂DCL|,

MAPES =
1

|S|
∑

L∈S

|MDCL − M̂DCL|
MDCL

.

(13)

To reflect the performances on the entire dataset consisting

of the varying length trips, we also bring in weighted MAPE

(wMAPE) in the evaluation, where the weight is the travel

distance of the trip:

wMAPES =
∑

L∈S

length of L
total length of S

|MDCL − M̂DCL|
MDCL

(14)

C. Comparison with Baselines

Firstly, the MAEs, MAPEs and wMAPEs of the experiment

results are shown in Table I, and the Probability Density

Function (PDF) of MAPEs is illustrated in Figure 6 (top).

60

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



MAE (“voxels”) MAPE % wMAPE %

LR 7.67e6 21.58 22.81

LSTM 1.82e7 53.66 —-

DeepOD 4.54e6 15.25 15.30

Ours 3.41e6 11.08 11.19

TABLE I: Experiment results on test set with different mod-

els. Note experiment LSTM has no wMAPE value assigned

because in that experiment, all trip lengths are normalized.

The first thing to catch our sight is the extremely poor

performance of LSTM. Aforementioned, this LSTM frame-

work is borrowed from our previous work, which is designed

and optimized for the objective of giving a sequence of

embeddings from previous trajectory points within a time

window, predicting the MDC for the next time interval. We

modify this work by simply expanding the size of time window

to the entire trip for predicting the MDC.

Secondly, the LR’s performance is impressive. Recall pre-

vious sections, the HD maps – or to be precise, I , the number

of objects of an HD map tile – are generated using the normal

distribution learned from real-world data and applied/attached

to Xi’an’s road network randomly. In real-world scenario,

the distribution of “objects” is not only spatial-wise, but also

graph-wise unique, varies from districts/blocks functionalities.

For instance, central business districts consist of a higher vol-

ume of objects than park districts. Once the voxel distribution

is applied to the entire city, the discrimination of number

of voxels is eliminated. At the same time, the generation of

trip MDC follows a straightforward piecewise-defined function

with several hard-coded variables, no regularization applied.

Even though the synthesizing of HD maps and trip MDCs

have such drawbacks, the performance of our proposed model

is ahead of LR and the DeepOD. Considering the low margin

of performance difference, a 4.17% improvement of MAPE

shows the effectiveness of the integration of HD maps encoder

and road network traffic information. Once real-world data is

used, a dilated performance margin is expected.

The introduction of wMAPE shows whichever module is

deployed, the trips with longer travel distance intending to

have a worse prediction result in MDC.

D. Effectiveness of Embeddings

Since there are multiple modules integrated in our frame-

work, we disable different modules to evaluate the effective-

ness of each embedding. As aforementioned, we have three

embeddings: road network, HD maps, and traffic information,

which leads to 23 experiments. Note, if ether road network

embedding or HD maps embedding is disabled, we will

use one-hot vector to replace the graph embedding, and the

experiments on some embedding combinations are meaning-

less, which we will ignore. Given the fixed order of “road

network, HD maps, traffic”, we use a 3-digit abbreviation

– {111, 110, 101, 100, 010, 011} – to denote each experiment

combination. The MAPEs of experiments are shown in Table II

Fig. 6: Probability Density Functions (PDFs) of MAPES

on the test set using different methodologies (top), and the

effectiveness experiments (bottom).

and PDFs are shown in Figure 6 (bottom), from which the

following observations are made:

1) Comparing all the controlled trials of traffic information

(i.e., {111 ↔ 110}, {101 ↔ 100} and {011 ↔ 010}), the

integration of such information significantly improves the

performance with the combination of HD maps encoding

(11.08% = 13.34% − 2.26% and 11.58% = 14.38% −
2.8%). Once the traffic information stands alone, less im-

provement can be obtained (14.22% = 14.43%− 0.21%);

2) Both HD maps and road network encoders do not con-

tribute the performance as well as the traffic information

when being concatenated independently (i.e., {110 ↔ 100}
and {110 ↔ 010}). The performances only rise by 1.09%
and 1.04% respectively;

3) The higher wMAPEs (over MAPEs) and Figure 7 (left)

both indicate the majority of longer (distance-wise) trips

have worse prediction results than shorter trips. The com-

mon issue where a certain amount of “outliers” appear

on the shorter-trip-end can also be found in similar trip

property estimation problems [14], [54], which is caused

by the amplification of features’ volatility in a shorter

sampling time. The quantified performance drops are

0.11%, 0.16%, 0.20%, 0.35%, 0.48%,−0.07% for six ex-

periments respectively, and have positive correlations with

their overall performances;

4) When switch the weights from trip length to trip dura-

tion (i.e., duration of L
total duration of S ), another observation (from Fig-

61

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



code MAPE % (change %) code MAPE % (change %))

111 11.08 (0.00) 100 14.43 (3.35)

110 13.34 (2.26) 010 14.38 (3.30)

101 14.22 (3.14) 011 11.58 (0.50)

code wMAPE1 % (change %) code wMAPE1 % (change %))

111 11.19 (0.00) 100 14.78 (3.59)

110 13.50 (2.31) 010 14.86 (3.67)

101 14.42 (3.23) 011 11.51 (0.32)

code wMAPE2 % (change %) code wMAPE2 % (change %))

111 11.35 (0.00) 100 14.35 (3.00)

110 13.76 (2.41) 010 14.56 (3.21)

101 14.18 (2.83) 011 11.81 (0.46)

TABLE II: MAPE and wMAPEs of effectiveness experiments.

wMAPE1 and wMAPE2 denote the wMAPE use trip

distance and duration as weights.

ure 7 (right) and Table II) is the performance differ-

ence of each experiment has a negative correlation to

its trip duration. The performance drops are, respec-

tively: 0.27%, 0.42%,−0.04%,−0.08%, 0.18%, 0.23% re-

spectively. This result shows a better embedding (with tem-

poral information integrated) is more effected by extending

the trip duration.

Fig. 7: Distribution of Percentage Error (PE) to trip length

(left) and trip duration (right) of experiments 111 (best per-

formance) and 010 (worst case).

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we studied the PMDC problem – a novel

challenge for AVs, which aims to predict the HD maps

data consumption with given HD maps, road network, and

predetermined route. In comparison with its recent introduc-

tion [14], we have revised the definition of MDC and we

have also improved the dataset based on integrating hetero-

geneous information sources. We proposed a comprehensive

deep learning approach and neural network architecture, which

is able to not only exploit historical trips, but also encode the

HD maps of each edge into a fixed-length embedding and

trained with a graph-based neural network instead of a naive

one-hot encoding or average pooling. As our experiments

have demonstrated, our model achieved superior performance

over the conventional LR, LSTM and modified GNN based

solutions (designed for similar objectives). A detailed study on

module effectiveness not only shows the contribution of each

encoder, but also indicates the robustness/consistency to trip

length and duration. A future model can tweak the embeddings

based on its objective (e.g., prediction preferences).
Since, to our knowledge, this is a forerunner work for the

MDC problem, we recognize certain, at this point unavoidable,

limitations. One notable limitation is the lack of real-world

data. Both SCD (especially HD maps) and the MDC of each

trip are constructed by following straightforward algorithms.

Specifically, to generate the MDC, vehicle speed is the only

input/factor that affects two variables: search window size

and resolution. We believe that numerous other factors (both

internal and external) from multiple software and hardware

component, would create a more sophisticated variant of the

MDC problem and enable more realistic settings to be tackled.

One feasible solution in the short run is generating the map

data and acquiring real-time vehicle configurations from 3D

AV simulation platforms.
A specific variant of the problem that we want to address in

the future is the one which would enable incorporation of the

impact of (partial) HD maps updates. Such cases occur in the

settings in which a new, possibly long-lasting, construction

project has started, affecting larger metropolitan area. We

are planning to investigate their efficient propagation into the

corresponding embedding.

ACKNOWLEDGEMENTS

Research supported in part by the National Science Foun-

dation SWIFT Grant No. 2030249, and the National Natural

Science Foundation of China under Grant No.62176043 and

No.62072077.

REFERENCES

[1] K. Kuru and W. Khan, “A framework for the synergistic integration of
fully autonomous ground vehicles with smart city,” IEEE Access, vol. 9,
pp. 923–948, 2020.

[2] H. G. Seif and X. Hu, “Autonomous driving in the icity—hd maps as
a key challenge of the automotive industry,” Engineering, vol. 2, no. 2,
2016.

[3] J. Neil, L. Cosart, and G. Zampetti, “Precise timing for vehicle naviga-
tion in the smart city: an overview,” IEEE Communications Magazine,
vol. 58, no. 4, pp. 54–59, 2020.

[4] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” CoRR, vol.
abs/1610.03295, 2016.

[5] K. Jo, C. Kim, and M. Sunwoo, “Simultaneous localization and map
change update for the high definition map-based autonomous driving
car,” Sensors, vol. 18, no. 9, 2018.

[6] A. Zang, Z. Li, D. Doria, and G. Trajcevski, “Accurate vehicle self-
localization in high definition map dataset,” in 1st ACM SIGSPATIAL
Workshop on High-Precision Maps and Intelligent Applications for
Autonomous Vehicles. ACM, 2017, p. 2.

[7] A. Zang, S. Luo, X. Chen, and G. Trajcevski, “Real-time applications
using high resolution 3d objects in high definition maps (systems
paper),” in ACM SIGSPATIAL, 2019, pp. 229–238.

[8] S. of California DMV, “DISENGAGEMENT REPORTS,”
https://www.dmv.ca.gov/portal/vehicle-industry-services/
autonomous-vehicles/disengagement-reports/, 2020, online.

[9] J. Laborda and M. J. Moral, “Automotive aftermarket forecast in a
changing world: The stakeholders’ perceptions boost!” Sustainability,
vol. 12, no. 18, p. 7817, 2020.

[10] S. Trommer, L. Kröger, and T. Kuhnimhof, “Potential fleet size of
private autonomous vehicles in germany and the us,” in Road Vehicle
Automation 4. Springer, 2018, pp. 247–256.

[11] K. Jiang, D. Yang, C. Liu, T. Zhang, and Z. Xiao, “A flexible multi-
layer map model designed for lane-level route planning in autonomous
vehicles,” Engineering, vol. 5, no. 2, pp. 305–318, 2019.

62

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 



[12] X. Chen, “Hd live maps for automated driving: an ai approach,” in
Proceedings of the 26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2018, pp. 1–1.

[13] N. D. Standard, “Navigation data standard - open lane model documen-
tation,” Navigation Data Standard, Tech. Rep., 2016.

[14] A. Zang, X. Zhu, Y. Guo, F. Zhou, and G. Trajcevski, “Towards pre-
dicting vehicular data consumption,” in 2021 22nd IEEE International
Conference on Mobile Data Management (MDM). IEEE, 2021, pp.
109–114.

[15] J. Skardinga, B. Gabrys, and K. Musial, “Foundations and modelling
of dynamic networks using dynamic graph neural networks: A survey,”
IEEE Access, 2021.

[16] S. Wickramanayake and H. D. Bandara, “Fuel consumption prediction
of fleet vehicles using machine learning: A comparative study,” in 2016
Moratuwa Engineering Research Conference (MERCon). IEEE, 2016,
pp. 90–95.

[17] T. D. Gaikwad, Z. D. Asher, K. Liu, M. Huang, and I. Kolmanovsky,
“Vehicle velocity prediction and energy management strategy part 2:
Integration of machine learning vehicle velocity prediction with optimal
energy management to improve fuel economy,” SAE Technical Paper,
Tech. Rep., 2019.

[18] Z. Wang, K. Fu, and J. Ye, “Learning to estimate the travel time,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 858–866.

[19] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez,
M. Nunkesser, S. Lee, X. Guo, B. Wiltshire et al., “Eta predic-
tion with graph neural networks in google maps,” arXiv preprint
arXiv:2108.11482, 2021.

[20] D. Bertsimas, A. Delarue, P. Jaillet, and S. Martin, “Travel time
estimation in the age of big data,” Operations Research, vol. 67, no. 2,
pp. 498–515, 2019.

[21] N. I. Sapankevych and R. Sankar, “Time series prediction using support
vector machines: a survey,” IEEE Computational Intelligence Magazine,
vol. 4, no. 2, pp. 24–38, 2009.

[22] D. Wang, J. Zhang, W. Cao, J. Li, and Y. Zheng, “When will you arrive?
estimating travel time based on deep neural networks,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[23] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional re-
current neural network: Data-driven traffic forecasting,” arXiv preprint
arXiv:1707.01926, 2017.

[24] Y. Duan, L. Yisheng, and F.-Y. Wang, “Travel time prediction with
lstm neural network,” in 2016 IEEE 19th international conference on
intelligent transportation systems (ITSC). IEEE, 2016, pp. 1053–1058.

[25] N. C. Petersen, F. Rodrigues, and F. C. Pereira, “Multi-output bus travel
time prediction with convolutional lstm neural network,” Expert Systems
with Applications, vol. 120, pp. 426–435, 2019.

[26] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 25–34.

[27] R. Li, G. Rose, and M. Sarvi, “Evaluation of speed-based travel time
estimation models,” Journal of transportation engineering, vol. 132,
no. 7, pp. 540–547, 2006.

[28] Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, “Multi-task
representation learning for travel time estimation,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2018, pp. 1695–1704.

[29] Z. Lu, W. Lv, Z. Xie, B. Du, and R. Huang, “Leveraging graph
neural network with lstm for traffic speed prediction,” in 2019 IEEE
SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications, Cloud & Big
Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019, pp. 74–
81.

[30] T.-y. Fu and W.-C. Lee, “Deepist: Deep image-based spatio-temporal
network for travel time estimation,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
2019, pp. 69–78.

[31] Y. Zhang, Y. Li, X. Zhou, X. Kong, and J. Luo, “Curb-gan: Conditional
urban traffic estimation through spatio-temporal generative adversarial
networks,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 842–
852.

[32] H. Yuan, G. Li, Z. Bao, and L. Feng, “Effective travel time estimation:
When historical trajectories over road networks matter,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 2135–2149.

[33] Z. Lu, W. Lv, Y. Cao, Z. Xie, H. Peng, and B. Du, “Lstm variants meet
graph neural networks for road speed prediction,” Neurocomputing, vol.
400, pp. 34–45, 2020.

[34] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[35] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal graph networks for deep learning on dynamic graphs,”
arXiv preprint arXiv:2006.10637, 2020.

[36] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “In-
ductive representation learning on temporal graphs,” arXiv preprint
arXiv:2002.07962, 2020.

[37] K. Wong, Y. Gu, and S. Kamijo, “Mapping for autonomous driving:
Opportunities and challenges,” IEEE Intelligent Transportation Systems
Magazine, vol. 13, no. 1, pp. 91–106, 2020.

[38] TomTom, “Tomtom hd map with roaddna,” 2017. [On-
line]. Available: https://automotive.tomtom.com/automotive-solutions/
automated-driving/hd-map-roaddna/

[39] L. Li, M. Yang, C. Wang, and B. Wang, “Road dna based localization
for autonomous vehicles,” in Intelligent Vehicles Symposium (IV), 2016
IEEE. IEEE, 2016, pp. 883–888.

[40] Y. Xu, V. John, S. Mita, H. Tehrani, K. Ishimaru, and S. Nishino, “3d
point cloud map based vehicle localization using stereo camera,” in 2017
IEEE intelligent vehicles symposium (IV). IEEE, 2017, pp. 487–492.

[41] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Trans. Knowl. Data Eng., vol. 31, no. 5, pp. 833–852, 2019.

[42] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural
node embeddings via diffusion wavelets,” in SIGKDD, 2018, pp. 1320–
1329.

[43] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[44] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[45] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.

[46] DiDi, “DiDi Chuxing GAIA Open Dataset,” https://gaia.didichuxing.
com, 2019.

[47] P. N. W. Site, “Surveying and mapping law of the people’s republic of
china [eb/ol].”

[48] C. Yang and G. Gidofalvi, “Fast map matching, an algorithm integrating
hidden markov model with precomputation,” International Journal of
Geographical Information Science, vol. 32, no. 3, pp. 547–570, 2018.
[Online]. Available: https://doi.org/10.1080/13658816.2017.1400548

[49] G. Boeing, “Osmnx: New methods for acquiring, constructing, analyz-
ing, and visualizing complex street networks,” Computers, Environment
and Urban Systems, vol. 65, pp. 126–139, 2017.

[50] X. Xu, X. Wang, X. Wu, O. Hassanin, and C. Chai, “Calibration and
evaluation of the responsibility-sensitive safety model of autonomous
car-following maneuvers using naturalistic driving study data,” Trans-
portation research part C: emerging technologies, vol. 123, p. 102988,
2021.

[51] C. Basu, Q. Yang, D. Hungerman, M. Sinahal, and A. D. Draqan,
“Do you want your autonomous car to drive like you?” in 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI.
IEEE, 2017, pp. 417–425.

[52] V. V. Dixit, S. Chand, and D. J. Nair, “Autonomous vehicles: disen-
gagements, accidents and reaction times,” PLoS one, vol. 11, no. 12, p.
e0168054, 2016.

[53] C.-H. Wu, J.-M. Ho, and D.-T. Lee, “Travel-time prediction with sup-
port vector regression,” IEEE transactions on intelligent transportation
systems, vol. 5, no. 4, pp. 276–281, 2004.

[54] K. Liu, Z. Asher, X. Gong, M. Huang, and I. Kolmanovsky, “Vehicle
velocity prediction and energy management strategy part 1: Determin-
istic and stochastic vehicle velocity prediction using machine learning,”
SAE Technical Paper, Tech. Rep., 2019.

63

Authorized licensed use limited to: Iowa State University Library. Downloaded on March 28,2023 at 05:18:35 UTC from IEEE Xplore.  Restrictions apply. 


