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ABSTRACT

Determining user geolocation from social media data is essential in various location-based applica-
tions — from improved transportation/supply management, through providing personalized services
and targeted marketing, to better overall user experiences. Previous methods rely on the similarity of
user posting content and neighboring nodes for user geolocation, which suffer the problems of: (1)
position-agnostic of network representation learning, which impedes the performance of their predic-
tion accuracy; and (2) noisy and unstable user relation fusion due to the flat graph embedding methods
employed. This work presents Hierarchical Graph Neural Networks (HGNN) — a novel methodology
for location-aware collaborative user-aspect data fusion and location prediction. It incorporates ge-
ographical location information of users and clustering effect of regions and can capture topological
relations while preserving their relative positions. By encoding the structure and features of regions
with hierarchical graph learning, HGNN can primarily alleviate the problem of noisy and unstable
signal fusion. We further design a relation mechanism to bridge connections between individual users
and clusters, which not only leverages the information of isolated nodes that are useless in previous
methods but also captures the relations between unlabeled nodes and labeled subgraphs. Further-
more, we introduce a robust statistics method to interpret the behavior of our model by identifying
the importance of data samples when predicting the locations of the users. It provides meaningful
explanations on the model behaviors and outputs, overcoming the drawbacks of previous approaches
that treat user geolocation as “black-box” modeling and lacking interpretability. Comprehensive
evaluations on real-world Twitter datasets verify the proposed model’s superior performance and its
ability to interpret the user geolocation results.

1. Introduction

ploited in multiple industrial applications. However, in

The plethora of Online Social Networks (OSN) have
enabled novel interactions in daily activities — e.g., shar-
ing notifications about events related to product descrip-
tions and traffic jams; sharing personal experiences on In-
stagram and Facebook; reading news and popular topics on
Twitter; building academic connections on ResearchGate,
etc. These have not only changed our way of communica-
tion, reading, and social activities but also enabled a gen-
eration of an unprecedented volume of heterogeneous data,
which, in turn, fosters business innovations and emerging
industrial opportunities [13]. Among various applications,
identifying the geographic locations of users receives last-
ing interest from both academia and industry and has be-
come an essential Internet service for many industrial ser-
vices, such as location-based targeted advertising, emer-
gency location identification, political elections, substance
use surveillance, local event/place recommendation and nat-
ural disaster response [20, 71, 74].

Fine-grained localization, such as various sensor-based
tracking of assets and processes, have already been ex-
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more extensive geographical settings, there is the issue
of inaccuracy due to, e.g., cellular access restrictions,
high measurement overhead, and unreliable client response
times [45]. Complementary to this, the increased popularity
of social media services (e.g., Twitter, Facebook, and In-
stagram) provide rich and timely metadata, e.g., published
message contents, mention tags, and follow/followee rela-
tions. This information could be efficiently leveraged to
promptly geolocate OSN users — which has recently spurred
research interest in the, so calls, User Geolocation (UG)
problem in OSN [15, 24, 42, 50]. For example, the CDC
(centers for disease control and prevention) has been utiliz-
ing social media to help the epidemiological investigation in
responding to the virus that causes COVID-19 [59].

Online user geolocation is a passive crowd-sensing
problem that requires hybrid information fusion and in-
sights from many user activities and sensing data to distill
the knowledge and refine the predicted results. Early ef-
forts [24, 54] mainly focused on mining indicative infor-
mation from users’ posting content relying on indicative
words that can link users to their home locations, based
on various natural language processing techniques (e.g.,
topic models and statistic models). For example, Term Fre-
quency-Inverse Document Frequency (TF-IDF [29]) is a
commonly used method to measure the distribution of lo-
cation words [24]. More recent efforts fuse users interac-
tions for collaborative sensing and boosting the geoloca-
tion accuracy — e.g., node2vec [19] is used to learn repre-
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sentation of users [15], combined with text representation
via doc2vec [36] to predict user locations in an end-to-end
manner. Recurrent Neural Networks (RNNs) with atten-
tion mechanism to model user tweet content are also used
in [42], further combining the metadata such as timezone
and self-declared profiles to predict user locations. A more
recent work [50] employs GCNs [32] for learning network
structures with graph convolution and pooling operations.

Broadly speaking, the existing state-of-the-art methods
employ deep learning techniques for learning user inter-
action and content representation — without fully exploit-
ing the specific constraints in the user geolocation task.
When learning user interactions, graph representation meth-
ods (e.g., GCN [32], GAT [57], node2vec [19], Graph-
SAGE [21]) are commonly used — however, the approaches
are general, unweighted and location-agnostic graph learn-
ing methods, without considering the geographical posi-
tion/location of nodes (users). Since the graph embedding
methods are not specifically tailored for user geolocation
task, existing approaches ignore the strong geolocaiton de-
pendencies among nodes and thus cannot capture the rela-
tive distance between any pair of nodes. In addition, existing
graph-based UG methods are inherently flar graph learning
models, which cannot capture the region-level features and
thus are very sensitive to local network structure. For exam-
ple, the homphily assumption, i.e., online interactions imply
a higher probability of geographical proximity, is not held in
many cases [14, 71].

Our main motivation is based on the observation that the
methodologies in the existing literature do not exploit the
benefits of joint consideration of identifying the topological
structure of users along with the influence of crowds from
different regions. While the former is usually noisy and un-
stable, the latter may provide a more robust signal for geolo-
cating. In addition, existing models, especially those based
on deep neural networks, often lack transparency and can-
not interpret model behavior and localization results. Thus,
their applicability in safety-critical areas is restricted. For
example, when locating area with specific emergencies (for
example, the spread of COVID-19), it would be more sig-
nificant to explain why and how such a prediction was made
instead of just presenting the predicted results [2, 26, 39].

To address the aforementioned limitations of previ-
ous works, we propose a novel multi-view user geoloca-
tion framework, called Hierarchical Graph Neural Networks
(HGNN), to fuse user-generated content and network infor-
mation for collaborative user geolocation. It enhances user
geolocation performance from the following aspects. First,
it incorporates the relative distances of each node to other
nodes (clusters) in the network, which enables the model to
discriminate the nodes having similar topological structures
but residing in different regions. Second, the hierarchical
feature fusion method that we propose provides both coarse-
and fine-grained graph representation by learning and dis-
tinguishing the crowd effects from different geographic re-
gions. Third, our model naturally exploits unlabeled and
isolated nodes for context information aggregation, which

are absent in previous UG models. Fourth, the interpretabil-
ity of information fusion allows us to understand the trained
geolocation model’s behavior and how it is affected by the
information aggregated from the training samples (i.e., all
in-network users and their associated features). The main
contributions of this work in terms of the novelty of the pro-
posed approach are four-fold. Specifically, we present:

* A new location-aware node relation learning model that
takes the geographical location and relative distance into
account when performing non-linear transformation and
feature aggregation, which not only preserves network
topology but also encodes node position with respect to
the other nodes and/or clusters.

* A new hierarchical GNN framework that learns both
region- and node-level features for robust feature aggre-
gation and propagation, which can be combined with
any graph learning approaches in an end-to-end manner.
Compared to flat node-level embedding in existing UG
approaches, we are able to alleviate the influence of noisy
interactions and the impact of outlier nodes.

* A new general framework to explain the behavior of user
geolocation models and the prediction results. We take
the initiatives to use influence function [33] to quantify
the impact of in-network users and corresponding features
on the predicted outcomes.

» Extensive evaluations on three benchmark Twitter
datasets. The results demonstrate that our method sig-
nificantly outperforms the state-of-the-art baselines while
providing explanations on both model behavior and detec-
tion results.

In the rest of this paper, Section 2 reviews the related
work, followed by Section 3 that formalizes the problem and
presents the necessary backgrounds. In Section 4, we give
the details of the methodology, as well as the approach for
explaining the user-aspect data fusion and location predic-
tion. Experimental evaluations quantifying the benefits of
our approach are performed in Section 5. We conclude this
work and outline directions for future work in Section 6.

2. Related Work

In the body of previous works on geolocating online so-
cial networks, the models can be broadly categorized into
three groups according to the type of data used to make the
prediction. We now review relevant works and position our
paper in the context of the existing literature.

2.1. Content-based Approaches

User-generated content (UGC) such as textual posts and
photos may be casually attached with real-time locations
facilitated by the increasing popularity of GPS-equipped
devices. However, these geo-tagged tweets are extremely
sparse, e.g., no more than 1% of published tweets are
labeled with geographical locations [8]. A plethora of
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works [1, 24, 25, 54, 61] have studied the possibility of
leveraging UGC for locating users. These methods ad-
dress the geolocation problem by inferring locations from
the location-relevant words with various classification mod-
els. Therefore, identifying meaningful indicative words is
an important step towards accurate user geolocation, where
TF-IDF [29] is a widely adopted textual content represen-
tation method in the literature [24, 47, 48, 50, 52]. For
example, inverse location/city frequency has been used to
measure the location words in the content [24, 52]. In
contrast, probabilistic models are usually used to charac-
terize the users’ location distributions w.r.t. their published
UGC, which, however, requires extensive manually labeled
location-related words to achieve satisfactory results.

Inspired by recent advances in applying deep learning
in natural language processing, a few studies turn to model
users’ textual contents with various neural networks based
models in order to learn the tweet representation in an end-
to-end manner [15, 42, 49, 51]. Among these methods,
doc2vec [36] and recurrent neural networks (RNNs) are
simple yet effective choices for learning vector represen-
tation of textural contents. For example, in [15], combin-
ing TF-IDF and doc2vec representations of textual infor-
mation is proposed to enhance the prediction performance.
GRU [10] with attention mechanism [4] was used in [42]
to model user tweet content and obtain a timeline repre-
sentations. Though doc2vec and RNN-based methods can
learn the language characteristics efficiently without man-
ual location feature engineering, a recent study [22] finds
that TF-IDF is consistently superior to doc2vec due to the
location-indicative words captured in TF-IDF.

Our present work enables better location-awareness than
the existing literature and, in particular, HGNN distin-
guishes the crowd effects from different geographic regions.

2.2. Network-based Methods

Online social relationships are also important indica-
tors for user geolocation under the homophily assump-
tion [3, 11, 34, 53], i.e., people prefer to interact with oth-
ers in nearby areas. Backstrom et al. [3] examine the re-
lationship between users’ geographical proximity and on-
line friendships on Facebook, and find that the likelihood
of relations between any user pair drops monotonically as a
function of distance. Rather than solely relying on friend-
ships, more and more works utilize various types of connec-
tions, such as the co-mention tags and mentions between
non-friends, to construct closer social interactions beyond
friendships [49, 71]. In this way, similar interests among
users can be retrieved from such implicit networks to im-
prove geolocation accuracy [30, 41, 51]. Moreover, re-
searchers also identify some noisy interaction factors that
may degrade the prediction performance. For example, so-
cial influence of celebrities is a distracting factor that may
confuse the prediction and thus is removed from the built
user network [38, 51].

Although the existing approaches have tackled the as-
pect of explicitly modeling location dependency between

social connected users, some challenges have not been
properly addressed — namely, the sparsity of geo-tagged
users and the inaccurate label propagation. More im-
portantly, friends’ locations are usually contradicting each
other, which hinders the practical applicability of these
works. In contrast, our HGNN learns both region-level and
node-level features and aggregates them in a manner that
provides better intepretability.

2.3. Multi-Information Fusion based Models

Recent efforts have leveraged deep graph learning meth-
ods to model user interaction networks by fusing user-
generated contents and various meta-data, such as user
profiles, tweeting time, and user timezone. For example,
MENET [15] exploits node2vec [19] to learn user repre-
sentations, combined with text representation learned by
doc2vec, for predicting users’ locations. Another work [50]
employs GCNs [32] for learning network structures with
the graph convolution and pooling operations, which has
achieved state-of-the-art geolocation performance. A recent
work [22] investigate several graph embedding methods and
found that NetMF [46] performs better than node2vec and
GraphSAGE [21] on user geolocation task, but does not
show superior performance than GCN-based models [22,
50].

It is worth noting that some works make use of var-
ious meta-data (e.g., self-declared location in profile and
timezone information) for improving the prediction perfor-
mance. For example, user timezone, as well as UTC off-
set and country noun, have been used for user geoloca-
tion [15, 42, 48, 49, 79]. While such auxiliary informa-
tion is a strong indicator for regularizing the locations the
model predicted, a majority of users are not willing to open
this privacy information, which is sometimes camouflaged
or posted casually. We further note that there is another line
of efforts [5, 9, 11, 37, 43] studying the Twitter message
geolocation problem which tries to identify the tweeting lo-
cations rather than the Twitter user location discussed in this
work.

Despite the promising results on improving geolocation
performance, existing state-of-the-art methods fail to iden-
tify the importance of individual users that we addressed in
this work. Arguably, while various graph embedding tech-
niques can be utilized for network representation in user ge-
olocation, understanding the influence of user connections
is more important for interpreting the behavior of the geolo-
cation models and therefore benefits downstream decision
makings. In this spirit, we initiate the attempt to analyze
theoretically and experimentally how the properties of graph
structures influence the geolocation performance. This not
only demystifies and interprets the predictions made by the
model but outlines the underlying constraints of existing ap-
proaches, which, in turn, should be taken into consideration
in modeling and predicting user geolocation.

2.4. Graph Neural Networks
Graph neural networks are effective methods models for
analyzing and learning from data on graphs, and have been

Fan Zhou et al.: Preprint submitted to Elsevier

Page 3 of 16



Identifying User Geolocation with Hierarchical Graph Neural Networks and Explainable Fusion

successfully applied to a variety of domains including im-
age processing [44], social networks [76], transportation
systems [77], etc. Existing GNN models vary from each
others on message passing mechanisms, while most of them
rely on flat information aggregations [32]. There are sev-
eral hierarchical GNN frameworks that gradually coarsen
the original graph with pooling operation for graph clas-
sification [67, 70] and image recognition [44, 73]. The
main difference with our work is how HGNN model de-
fines the graph hierarchy for clusters and exploits the ge-
ographic information. Directly applying GraphPool [67] or
HGP-SL [70] for UG task is problematic since both of them
fail to consider the relative location of nodes w.r.t. other
nodes/clusters and cannot cluster the unlabeled nodes. An-
other related work is PGNN [68], recently proposed to learn
the relative position of nodes. However, it does not lever-
age nodes’ geographic information that is critical for UG.
More importantly, all these methods are suitable for fully
connected graph learning, while our HGNN model is capa-
ble of incorporating unlabeled and isolated nodes and thus
is more suitable for UG task.

Despite the promising performance gains on many
graph tasks, most GNNs are still black-box models without
human-understandable model behaviors and explanations.
Although GAT [57] can learn the importance of edges and
thus, to some extent, explain the node aggregation behaviors
via attention mechanism, it is limited to specific architec-
tures and fails to provide single-instance explanations. To
adaptively adjust the influence of each node, a learnt ex-
ploitation of information from neighborhoods of differing
locality and selective combining of different aggregations
was proposed in [65]. Though their method can automati-
cally discover the importance of each node in a GNN, it is
not specifically designed for explaining model predictions.
GNNEXxplainer [66] was proposed to explain the predictions
of model-agnostic GNNs. It interprets the GNN models by
maximizing the mutual information between a subgraph (or
a subset of node features) and the predictions for the original
graph. Another work [6] uses image interpretation meth-
ods, such as sensitivity analysis, guided backpropagation,
and layer-wise relevance propagation (LRP), to explain the
node-level predictions. GraphLIME [28] is a local inter-
pretable method that captures the nonlinear dependency be-
tween features and predictions. It then considers the pertur-
bation near a node and uses a linear explanation model to
find features as explanations for GNNs. X-GNN [69] pro-
poses to find the graph patterns that maximize a particular
prediction through graph generation, which is formulated as
a reinforcement learning problem and trained with a policy
gradient method. GNN-LRP [55] is a theoretically founded
XAI method for interpreting GNN predictions, which is
derived from the higher-order Taylor expansions based on
LRP. A recent work [27] systematically reviews existing ex-
plainable GNN methods, and proposes to enable informa-
tion fusion for multi-modal causability using interpretable
GNNeE.

What separates our work from the existing GNN-based

approaches is that we propose a learning model which in-
corporates the geolocations and distances and we provide a
greater extent of explainability.

3. Preliminaries

Without loss of generality, we use as a running illustra-
tive scenario the domain of Twitter, and explore the problem
of geolocation detection based on tweets — i.e., short texts
with no more than 140 characters. Some auxiliary informa-
tion is typically associated with a tweet, describing specific
semantic aspects —e.g., “@” means mention another Twitter
accounts, and words starting with “#” are hashtags, which
indicate mentioning a topic. In Table 1, we summarize the
frequently used notations in this paper.

3.1. User Content

For each user, we combine his/her messages as linguis-
tic content, including both tweet messages by himself and
retweets forwarding other users’ postings. Following pre-
vious works [42, 50], we filter out photos and symbols for
each user. We denote content embedding vector of a user v
as X,,, and the vectors for all users as X.

3.2. Mention Graph

In addition to text, we construct a mentioning graph
to represent social relationships among users by extracting
mention (@-somebody) information from the content. The
mention graph is defined as G = (V, £), where V is a set of
all users (nodes) where a node v € V is associated with a
feature (tweet content) vector X, € X. An edge exists be-
tween two nodes v; and v ; either if they are social friends,
or one has re-tweeted an item from the other. Note that the
graph need not be fully connected, i.e., some isolated nodes
might exist.

3.3. Problem Definition

We focus on predicting the “home” location of the
user [71], i.e., the location that a user most probably resides
in. Since geolocations are typically described by longitude
and latitude, we formulate this problem as a classification
task by dividing the surface of earth into closed and non-
overlapping clusters using k-d tree [7] following and im-
proving upon the related works [48, 50]. Thus, each user is
tagged with one (and only one) label indicating the cluster
he/she belongs to. We denote labels (clusters) as Y € R"¥¢,
where n is the number of all users, and ¢ is the number of
clusters. The geolocation problem can now be more for-
mally phrased as follows:

Definition 1. User Geolocation from Social Media Con-
tent: Given the tweet contents X and the mention graph G,
as well as partially labeled users, we identify the geograph-
ical locations of unlabeled users through information fusion
of user generated contents and social relationships.
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Table 1
Frequently used notations.
Notation Description
Gl & mention network with a set of edges.

v/V a user (a node in @) / all users (nodes of G).
N(v) the neighborhoods of node v in G.

x, /X content representation of user v / all users.
). ¢ the updated representations of all users.

Y/Y truth label / predicted label of all users.
k! K k-th layer of model / the total layers.
o® the parameters at k-th layer.

nlc number of all users / clusters.

d the dimension of initial x,.

4 loss of model training.

5,18 Jj-th cluster / the set of all clusters.

s /80 features of j-th / all cluster at k-th layer.
s reachable node set in s; of user v.

G, the cluster graph.

A the weighted adjacency matrix of G,.
D, the degree matrix of A .

e; = (x;,y;) attribute vector and its label of i-th sample.
0* /6%, the optimal parameters with / without e.
m the number of all training samples.

y small upweighted value on e.

H the Hessian matrix.

% the influence value.

Ciest a testing sample.

3.4. Graph Neural Networks (GNNs)

GNNss is a powerful tool for graph representation learn-
ing, which has received increasing attention over the past
years [63, 78]. A GNN model consists of a stack of neu-
ral network layers, where each layer aggregates neighbor-
hood information around each node and then passes the
aggregated information to the next layer. Given a graph
G = (V,€) and node features x, € X of the node v, the
GNN model try to calculate the node vectors in an iterative
manner. Specifically, in the k-th (k > 0) layer, the model
updates the nodes as following:

0 = 8 (0 (e o)),

where N'(-) denotes the neighbor nodes, and parameters 6,
and 0, are trained with the model. The aggregation function

ff ! updates the features from neighbors using one of the

operations such as Mean and Pooling [21]. f ,(ff is to merge
node’s representations from previous k — 1 step. The two
functions can be implemented with any arbitrary differen-
tiable, permutation-invariant functions such as deep neural
networks. The learned node embeddings can be used for
downstream tasks including link prediction [32], node clas-
sification [57], user geolocation [50], location/trip recom-
mendation [75], information cascade prediction [76], traffic
forecasting [77], etc.

Cluster
@ Center

User
Location

Figure 1: lllustration of the basic idea of HGNN. (1) Aggre-
gating nodes features to form cluster attributes; and (2) Up-
dating node features by merging cluster attributes. Colors
represent node or cluster connections across the maps; dot-
ted circles indicate clusters.

4. HGNN: Structure and Methodology

The HGNN aims to learn both cluster-level and node-
level influences of crowds and individual users, respectively.
Figure 1 briefly illustrates our model setup. On the cluster-
level, it aggregates the features of users in the same cluster
so as to form the regional influence. The learned regional
attributes embed location information and content features,
which are propagated by a GNN on the cluster graph. On the
node-level, nearby regions for each user based on the hops-
distance (i.e., the topology of connectivity) are extracted.
Combined with the regional influence, these are fed into an-
other GNN to learn the node representation. In this way, the
relative position of each node to the clusters can be captured
for boosting the UG performance.

4.1. Cluster-level GNN

Let s; be the j-th cluster, whose location is the geo-
graphical centroid of all the nodes within j-th cluster. The
set of all clusters is denoted by .S = {s(,...,s.}, which is
also considered as the vertices set of cluster graph. For each
cluster s;, we utilize an aggregation function f, to learn its
attributes sj,k_l)
this cluster:

by fusing the content features of users in

(k=1) _ (k—1)
S = 7, (Ve s ). @
where X,(lk_l) represents the content features of user u in (k —

1)-th layer. There are many choices for function f,, such as
MEAN, MIN, MAX, SUM and LSTM [21]. Here we choose
SUM as the aggregation function due to its expressiveness
and injectivity property [64].

Now we can construct a cluster graph G, = (S,A)),
where A, € R is a weighted adjacency matrix
representing the geographic distance between any pair
of clusters.  Specifically, each element AY = 1 —
Haversine(si,sj)/Max, where Max is the maximum dis-
tance calculated by Haversine(:) distance [56]. Here we
use Haversine distance because it can determine the great-
circle distance between any two points (cluster centers) on a
sphere, given their longitudes and latitudes. In practice, we
first calculate the distance by Haversine(, -, ) between every
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pair of clusters, since each cluster has its own cluster center
with deterministic coordinates. Then, the longest distance is
denoted as Max and used to normalize the rest distances.

We use a message passing function to learn the coars-
ened cluster graph by propagating the aggregated features
sﬁk_l) € S*=D of clusters into the next layer. To make our
method general, we adopt a vanilla GCN [32] as the mes-
sage passing function:

-1 _L
5% = o(D, 74,0, 8¢ DgV), 3)

where D is the degree matrix of A, Hik) is a layer-specific
trainable weight matrix, and o(-) denotes an activation func-
tion — which is ReLU(-) = max(0, -) in our implementation.
Now, we can update attributes of all regions S*) by ag-
gregating the information from neighboring clusters, which
will be scaled by the topological distance of each user in
the next step. In addition, we have following result assum-
ing that feature aggregation is invariant under node permu-
tations in each cluster.

Proposition 1. The cluster-level GNN learning in HGNN is
permutation invariant for as long as the aggregation func-
tion f,(-) is permutation invariant.

Proof. Given an arbitrary set s ;= {ug,...,u,} and a bi-
jective function z(-) whose domain and codomain are both
sj, 1.e., w(s;) =s;. If f,(-) is node permutation invariant,
the cluster-level feature aggregation (Eq. (2)) would not
change if the inputs are reordered, i.e., fa({xul, Xy H=
SalXz@ys -+ s Xruy) > Where X, and X, ) are the features
of nodes u; € s; and 7 (u;) € n(s;), respectively. O

We note that one can readily replace the GCN used here
with other more sophisticated GNN models such as Graph-
SAGE [21], GAT [57], SGC [62].

4.2. Node-level GNN

Above we have learned the regional attributes for each
cluster, which could capture high level features of different
regions and their relations. Now we are interested in learn-
ing the location-aware node representation to preserve the
relative position of each node. Here we take the geograph-
ical information of each cluster into account to capture the
topological distance of each node to its nearby clusters. That
is, the clusters with geographic information will act as an-
chor nodes/clusters that would be used for positioning all
other nodes, including the unlabeled nodes and topologi-
cally isolated nodes.

4.2.1. Location-aware Representation

We utilize the topological distance to represent the rela-
tive position of a node w.r.t. all clusters. Formally, we define
the concept of reachable nodes set as:

Definition 2 (Reachable nodes set). Consider a node v €

V and a cluster S, where v is not a node from s; (v & sj).

For a node u € s, if there exists a path between v and u

U1 (g
V4 S ]_

Ug
V2 / U5
\ / \'U
V3 6
Figure 2: An illustration of calculating topological distance
between a node and a cluster, where nodes with the same

label are in the same color, and the gray nodes (v,,v,) are
unlabeled.

on G, we call u a reachable node for v, and the existence of
such u makes the cluster s; reachable from v. The set of all

the nodes in s; reachable from v is denoted sj’? ( sj’? Cs))

We use a function hops(:, -) to stand the topological dis-
tance between a node and a cluster and use it to measure the
impact of the cluster to the node. The intuition behind of this
choice is that the shorter distance from the user to the clus-
ter, the greater impact of this cluster on the user. The ratio-
nale is that the crowd effect from a region is more stable than
the influence of individual user which is usually noisy and
volatile. Note that we do not employ the geographical dis-
tance between users because there are many unlabeled users
whose geographical locations are unknown (or masked for
testing).

Specifically, for a node v, we first select the eligible
nodes from set s ; to form the reachable nodes set sj”, , and
then define the function hops(:, -) as:

0 9U e Sj7
hops(v,s;) =4 Ewuest({hop(v,)}) ,v & s,&s # @,
oo LU & sj&s;.’ =@,

“

where hop(v, u) indicates the shortest topological path from
v to u on mention graph G. [E(-) represents an averaging
operation and the mean value can effectively avoid interfer-
ence with partial extremes and outliers, which makes it more
stable to obtain the topological structure information.

Figure 2 shows an example summarizing all cases in
calculating hops(-, ). Case 1: For a node within a clus-
ter (v € sy), hops(v,s;) = 0 — e.g., nodes vs, vg, U7, and
vg. Case 2: For nodes v ¢ s &s| # @, we compute
E({hop(v,w)}), Vu € s{. e.g., for vy, sllj2 = {vs, vg, U7} and
hops(v,, s1) = E({hop(v,, vs5), hop(v,, vg), hop(v,, v7)}) =
E({2,3,4}) = 3. Case3: v ¢ 5, & sf = @, e.g., unla-
beled and isolated node v, hops(vy, s;) = co. Note that the
unlabeled nodes and isolated nodes have been incorporated
into the model for message aggregation. Since the unlabeled
nodes have no geographic information and therefore do not
belong to any cluster, they can be considered as either the
second (e.g., node v,) or the third case (e.g., node v;) when
calculating their value of hops(-, -).
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4.2.2. Feature Merging

Above we have elaborated the measuring the impact of
regions according to the topological distance from a node to
the clusters —i.e., the shorter distance, the larger influence of
the clusters. We normalize the impact of clusters by scaling
the value of hops(, -), i.e., we convert hops(:, -) into (0, 1]
via WI)H to make the nearby regions more influential.
Finally, we can update the features of each user by merging
the regional attributes and propagating the message in the
HGNN as:

® — % (D) (B
XU = fm (XU ’Sj )
(k)

=0 [x("—””—sj 160 ).vs; €8
B v hops(v,s;))+ 112 )7/ ’
(5

where [-||-] is a column-wise concatenation combining the
node features with regional attributes to form a matrix. The
learnable parameters ng) are therefore expected to capture
both regional attributes from different clusters and features
of individual nodes, which will be trained with the graph
neural networks. As Eq. (5) shows, the cluster attributes s;
are crucial for updating the user features x,,. Thus, in order
to efficiently extract the attributes, function f,(-) should be
an universal approximator which can be achieved by tuning
the dimension (d) of the content features. We have:

Proposition 2. The function f,(-) is an universal approxi-

mator of a cluster if d > %, where M is the maximum
size of all clusters.

Proof. The dimensions of x,, at layers k — 1 and k of the
HGNN are 2¥~14 and 2%d, respectively. The dimension of
clusters s; at k-th layer equals to the dimension of x, at k—1-
st layer, i.e., 2K~1d. According to the universal approxima-
tion theory on sets, universal function representation for set
inputs can only be achieved with a latent dimension at least
the size of the maximum number of input elements M [58].
Therefore, let 2<~1d > M, we getd > % O
4.3. User Geolocation

We note that the user content representations X (X €
R™9Y are considered as node features in our HGNN. In ad-
dition to two widely used content representation techniques
— TF-IDF [29] and doc2vec [36], we also leverage Bert [12]
to embed the user content. We will discuss the effects of the
three methods in Sec. 5.

Given the content features X and the mention graph G,
the output of HGNN can be represented as follows:

X = flfGNN(g’ X)’ (6)

where K is the last layer of HGNN. The updated representa-
tions X' (X’ € R"XZKd) of all the users combine multi-view
features, including content features, network information of

mention graph G, as well as location information of the clus-
ter graph G,. In order to map the new representations into
the corresponding labels, we use a multi-layer perceptron
(MLP) with softmax function as output for user geolocation:

Y’ = softmax (MLP(X’) ), @)

where Y/ (Y € R™) are the predicted results, and y/. € Y’
denotes the probability of i-th user belongs to j-th cluster.
During training, we use cross entropy between predictions
Y’ and ground truth Y as loss function:

n c
1/”=—ZZYU]0%Y;J-- ®)

i=1 j=1

Parameters 05") and 0;") (k={1,...,K}), as well as the
parameters of MLP, are trained together using Adam [31]
optimizer. The pseudo-codes for training HGNN is outlined
in Algorithm 1.

4.4. Discussion

The presented HGNN with two-level GNNs can learn
hierarchical structures of user mention graph — the cluster-
level GNN aims at learning regional attributes that are bene-
ficial for anchoring unlabeled nodes at the node-level GNN.
Now we discuss the design choices and the model complex-

ity.

4.4.1. Why cluster-level aggregation?

The different impacts of individual user or locally con-
nected users are not enough to locate users, because the ho-
mophily assumption (from sociological theories of connec-
tions forming) is often violated [42]. In addition, consid-
ering only the neighborhood aggregation [71] yields noise
and affects stability. In HGNN, the geographic locations of
clusters can be explicitly calculated, which can be used to
enhance the regional influence and combine with the tweet-
ing behavior of users in the same cluster (cf. Eq. (3)).
The learned regional influence represents the crowd features
which are more representative than individual or topologi-
cally neighboring user features. We note that there may ex-
ists a number of isolated users (both labeled and unlabeled)
after building the mention graph G which, in the previous
solutions, were useless and cannot be accurately located. In
contrast, these node features can be leveraged in our HGNN.

4.4.2. Alternative Choices

Though we choose the regions obtained by k-d tree [7]
as the clusters — a natural choice in the context of UG task
— one can alternatively use other clustering methods (e.g.,
k-means and DBSCAN [17]) to form the clusters in HGNN,
i.e., the way of forming clusters in HGNN is independent
of the way of region split. Notably, HGNN would degener-
ate to general GNN if we treat each node as an individual
cluster (S = {v;}), in which case the cluster-level GNN is
exactly the same as the node-level GNN. Furthermore, other
GNN models [21, 57] can be easily adapted to HGNN in an
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Algorithm 1: Training Algorithm of HGNN.

Input: Tweet content X, Mention network
G=0,&), Userlabel Y.
Output: Trained HGNN.
/* Data Preprocessing */
1 Compute the shortest topological distance between
any pair of nodes on G;
2 Split all nodes into multiple clusters
S = {sq,...,s.} according to their labels;
3 Construct the weighted complete graph G, based on
all clusters and their locations;
4 foreach node v € V do
for clusterid j = 1 to c do

6 Calculate the reachable nodes set s; based
ons; and G;
7 Compute the topological distance between v
and s; via Eq. (4);
8 end
9 end
10 for layer k =1 to K do
/% Cluster—level GNN */
11 for cluster id j = 1to c do
12 Learn j-th cluster’s attributes s;k_l) by
aggregating nodes’ features via Eq. (2);
13 Perform convolution on G, and form the
regional attributes S® via Eq. (3);
14 end
/* Node-level GNN */
15 foreach node v € V do
16 Get the new representation x(vk) by merging
all scaled regional attributes via Eq. (5);
17 end
18 end
/* Geolocation Predictor */

19 Get the new representation of all user X’;

20 Compute predictions Y’ with X’ via Eq. (7);
21 Calculate loss between Y and Y’ via Eq. (8);
22 Update model parameters with Adam.

end-to-end manner. Therefore, HGNN can be considered
as a general GNN framework independent of specific mes-
sage passing while enabling hierarchical and location-aware
graph learning.

4.4.3. Complexity

In HGNN, the number of clusters equals to the num-
ber of labels ¢ which is a fixed number in a given dataset.
For each node, there are at most n features of clusters to
merge, resulting in O(nc) complexity. Therefore, HGNN
has the same computational complexity as the specific GNN
model that is applied in each level. An additional overhead
is to calculate shortest path between any pairs of nodes in
G, which only needs to be performed once since the shortest
paths are fixed for a static mention graph.

4.5. Interpretability

Most of the graph neural network-based methods includ-
ing those user geolocation approaches [15, 42, 50] model
the process of learning and predicting user geolocations as
“black-box” and therefore are limited in terms of explaining
the geolocation results. However, it is important for down-
stream decision making to understand how the model learns
the data and why the prediction are generated. Whether in-
fluence functions can be applied to GNN-based models re-
mained unclear. We take a step towards bridging this gap by
tracing the geolocation results from the GNN-based models
back to the important nodes in the mention network.

The empirical influence function [23] is a measure of the
dependence of the model on one of the samples, which has
been widely used for inferring data samples in computer vi-
sion [33], graph-structural learning [72], etc. In particular,
we utilize the influence function to estimate the importance
of each training user e on a particular user geolocation result
e during testing. We achieve this goal by tracing the ge-
olocation results output by specified model and back to the
nodes in the mention graph that are important for predicting,
both positively and negatively.

Formally, assume we have m training samples
e, ...,e,, which are the nodes (users) in the mention graph
G. Here each ¢; = (x;,y;) consists of the attribute vector

x; and the corresponding label y;. According to the robust
statistics [23, 33], removing one data e from the training set
leads to a change of the optimal model parameters from 6*
to 0%, where 6™ and 0* , are optimal parameter sets before
and after removing the data point e, respectively. The pos-
terior one 6%  is estimated as:

def
0%, = argmin )’ £(e;,0), ©)
¢ =E) =

where Z(e;, 8) denotes the loss of a particular node e;. Koh
et al. [33] propose to efficiently approximate the influence
of removing a data e by computing the change of parame-
ters, which is similar to upweight e with a small value y.
Then, the updated parameters can be estimated as:

def | i
0;, = argmin - ; #(e;,0) +r¢(e.0), (10)

where the effect of upweighting e on 8* is inferred as:

dEf 09:’8

= ~H,!Vyt(e.0%), (1D
}/:

Wup,a* (e)

where Hy. is the Hessian matrix. This formula implies that
the effect of removing e equals to upweight it by y = —i. In
other words, it allows us to approximate the model change
as 0, — 0" ~ _iwup,ﬂ* (e) without retraining the model. Its
influence a testing node e is thereby computed:

def al’ﬂ(etesl’ 0;})

Yy ,loss(e’ Clest) =
P oy r=0
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Table 2

Statistics of datasets.
Dataset |vtrain| / |vval| / |vrest| |€| c
GeoText 5,685/ 1,895/ 1,895 77,155 129
Twitter-US 429,200/ 10,000/10,000 18,498,702 256

Twitter-World

1,366,766 / 10,000 / 10,000

1,001,181 930

*

9
= Vot (eeqs 07T ——
VQ (etest ) ay y=0

= =Vt (eroq, 0 )TH, N y£ (e, 0%). (12)

In real implementation, one can use implicit Hessian-
def

vector products to accelerate the approximation of £

H(;*l Vo€ (eest» 0%). It means that Eq. (12) can be reformu-
lated as Wyp 1oss (€ €iest) = —Eiest V 2 (€, 6%). Since the ma-
trix Hy. is assumed to be positive semi-definite, we have:

.o
£test =arg mﬂm {EWTH()*’I - vaf(etest’ 9*)T,1}’ (13)

where the exact solution # is achieved with conjugate gra-
dients that only needs to estimateHy.#. That is, it becomes
unnecessary to calculate H;*l that is computational expen-
sive. We refer the details of influence function and its ap-
plications to [23, 33, 72]. In next section, we will present
the empirical results of explaining the model behavior and
information fusion results.

5. Experiments

In this section, we present the results of the evaluation
of our proposed methods on real-world datasets.

We first describe the experimental settings, including
datasets, baselines, evaluation protocols and parameter set-
tings. Next, we follow with performance comparison and
model interpretability. Specifically, our extensive experi-
ments aimed to answer the following research questions:

* (RQ1 How does HGNN perform on user geolocation
compared with the state-of-the-art baselines?

* (RQ2 What is the effect of each component in the pro-
posed model?

* (RQ3 Can HGNN explain the model behavior on infor-
mation fusion and location prediction?

5.1. Experimental Settings
5.1.1. Datasets

We conduct all the experiments on three real-world
Twitter datasets which have been widely used for evaluat-
ing user geolocation models:

* GeoText [16] is a Twitter dataset consisting of 9.5K users
from 49 states in the U.S., which is originally compiled
by the authors in [16].

» Twitter-US [54] is a larger dataset consisting of 449K
users from the U.S. This dataset is also referred to as UT-
Geo2011 in some papers [15, 54].

» Twitter-World [24] is a much larger dataset released by
the authors of [24] and had been rebuilt by the authors
of [50]. This dataset consists 1.3M users from differ-
ent countries in the world, and the primary locations of
users are mapped to the geographic center of the city from
where the majority of their tweets are posted.

The statistics of the datasets are presented in Table 2.
The distributions of clusters after dividing the training users
are shown in Figure 3, where each cluster is outlined using
minimum convex polygon algorithm [18].

5.1.2. Baselines

We compare HGNN with two categories of baselines.
For fair comparison, we remove the metadata (e.g., time-
zone information and geographical description) in this line
of work.

The first category consists of fext-based methods, in-
cluding:

* HierLR [60] employs logistic regression (LR) for user
classification.

* MLP4Geo [49] utilizes dialectal terms to improve the pre-
diction performance and a MLP network to predict the lo-
cations.

* DocSim [54] uses the similarity (KL divergence) of the
tweet contents for user geolocation.

* MixNet [47] applies mixture density network for embed-
ding coordinates and MLP for classification.

The second category considers user mention graph for
multi-view information fusion and user geolocation, includ-
ing:

e MADCEL [48] combines the text and network information
and uses LR for prediction.

e MENET [15] concatenates the features from textual infor-
mation (TF-IDF and doc2vec) and embeds user network
with node2vec.

e GeoAtt [42] models the textual context with RNN and at-
tention mechanism.

e DCCA [50] is a multiview geolocation model using Twit-
ter text and network information and measures the canon-
ical correlations among users for location prediction.
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Figure 3: Clusters distribution of training users in three
datasets, produced by k-d tree and minimum convex poly-
gon algorithm. The number of polygons equals to the num-
ber of clusters (labels) for corresponding dataset. Due to the
limited map resolution, many areas (polygons) are too small
to see clearly in Twitter-World.

e GCN4Geo [50] is a GCN-based multi-view UG model.

* KB-emb [43] is UG method based on entity linking and
the embedding of knowledge-base.

e GaussMix [5] utilizes a series of Gaussian mixture mod-
els to exploit both text and network features according to
geographic information.

5.1.3. Evaluation protocols

We evaluate all approaches using following three met-
rics following previous works: (1) Mean is the averaged er-
rors between the predicted cluster centers and the ground-
truth geolocations. (2) Median reports the median value of
all predicted results (3) Acc@ 100 measures the accuracy of
the classification, i.e., if the distance between the predicted
center and ground-truth is within 100 miles, the result will
be considered as a correct prediction. We respectfully note
that, while this may be perceived as a rather coarse value, it
is widely used in the literature (e.g., [42, 50]) and we used
it for comparison with the baselines.

5.1.4. Parameter settings

We apply two-layer convolutions on both cluster- and
node-level aggregations in HGNN, i.e., K = 2. We adopt
the Adam [31] optimizer to train the model with learning
rate in the range of [0.001,0.1] and weight decay in the set
of {5e —9,5e — 8,5¢ — 7}. We also add dropout to the hid-
den units at each layer of MLP to stabilize the training of
our model. Besides, the dimension of cluster attributes is
equal to the dimension of user features at the same layer.
When proceeding to the next layer, the dimension of user
features will be doubled by extending the cluster attributes.
Specifically, the dimension of initial user features x,, (i.e.,
content features) is d. As for the learnable weight matri-

ces, the size of Hik) (used for cluster-level convolution) is
(2k=1g,2%=1¢), and the size of Hék) (used for node-level

learning) is (2€d,2%d). Consequently, the size of parame-
ters for MLP output is (2Xd, ¢). We performed a grid search
for the parameter d and set d to 128, 256 and 256 for the
GeoText, Twitter-US, and Twitter-World, respectively. In
addition, early stopping strategy is adopted when training
the HGNN if the validation loss does not decrease for 30
consecutive epochs.

5.2. Performance Comparison (RQ1)

The overall performance of all methods across three
datasets is presented in Table 3, from which we make the
following observations.

First, the HGNN model consistently outperforms the
baselines on all metrics, demonstrating the effect of ad-
dressing the user geolocation problem with the proposed
location-aware hierarchical GNNs. In particular, the per-
formance gains of HGNN over the best baseline method in
terms of Mean, Median, and Acc@ 100 metrics are 6.78%,
17.86%, and 5.00% on GeoText, 12.62%, 15.91%, and
4.84% on Twitter-US, and 9.47%, 7.41%, and 3.70% on
Twitter-World, respectively.

Next, we observe that solely relying on tweet content
(e.g., HierLR, MLP4Geo, DocSim, and MixNet) is not
enough for accurate user geolocation, which usually ex-
hibits too high prediction bias. This is intuitive since nei-
ther indicative words nor topic-based language models can
filter out noisy signals with only user tweeting contentand,
in a sense, also verifies that users often write tweets and
engage in retweeting articles in a very casual manner [71],
which makes word-centric and location-centric methods in-
accurate.

Third, the performance of multi-view information fu-
sion models, including MENET, GeoAtt, DCCA, KB-emb,
GaussMix, and GCN4Geo, are very similar if both text and
network features are used for user geolocation. In many
online social networks, mention and following are two es-
sential user interactions, which have been widely used for
modeling close relationships or similar attributes. As shown
in the results, this kind of information is a strong indicator
for user geolocation, which should be carefully incorporated
into the model. Nevertheless, previous models rely on one-
or two-hop friendship or mentioning to infer the geolocation
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Table 3

Performance comparison.
Method GeoText Twitter-US Twitter-World

etho
Mean Median Acc@100 Mean Median Acc@100 Mean Median Acc@100

HierLR 518 250 41 437 106 49 1065 304 32
MLP4Geo 524 242 38 344 75 54 904 258 34
DocSim 557 268 35 534 288 34 - - -
MixNet 537 256 39 407 134 42 - - -
MADCEL 361 35 59 329 48 60 872 69 53
MENET 400 78 55 327 58 52 802 78 52
GeoAtt 380 50 57 339 57 54 785 133 50
DCCA 390 49 56 321 56 58 1302 567 21
GCN4Geo 339 28 60 301 44 62 702 67 54
KB-emb 485 211 43 373 122 45 - - -
GausMix 368 43 56 336 55 56 844 124 51
HGNN 316 23 63 263 37 65 636 62 56

Table 4

Comparison of different GNN models.
GNN GeoText Twitter-US Twitter-World

Mean Median Acc@100 Mean Median Acc@100 Mean Median Acc@100

GCN 336 27 61 300 43 62 719 113 54
GAT 358 34 59 291 42 63 831 144 50
SGC 347 28 61 295 43 62 722 71 54
GraphPool 418 110 54 349 70 51 923 178 48
PGNN 404 102 55 365 88 50 888 160 49

of users, which can easily suffer from data sparsity problem
(e.g., the users with fewer social interactions) and inaccu-
rate prediction (e.g., the friends of the current user have un-
known home locations).

Recently, graph neural networks have emerged as
de facto tools for network information fusion in graph-
structured data. Notably, GCN4Geo is a GNN-based UG
method and relies on flat GCN [32] for node feature learn-
ing and fusion. However, GCN4Geo only leverages the ex-
plicit user-mentioned graph and therefore exhibits inferior
performance compared to our HGNN that uses hierarchical
knowledge distillation. In addition, our method explicitly
captures the features of isolated nodes and their relations to
the clusters. That is, the rich information of the unlabeled
data has been modeled for knowledge fusion and improving
the prediction performance in HGNN.

5.3. Ablation Study (RQ2)

We now discuss the ablation study which we conducted
to explore the effect of each component in HGNN. Specifi-
cally, we investigate two important information fusion com-
ponents in our model: the structural learning and linguistic
representation.

5.3.1. Which GNN is better?
Since HGNN is a general framework for hierarchical
network structure learning, any GNN model can be adapted

into HGNN. Here we compare several representative GNN
models using the publicly released implementations. As
shown in Table 4, their performance are very similar — while
GCN slightly outperforms others on GeoText and Twitter-
World, GAT performs better on Twitter-US. This result sug-
gests that the performance of HGNN lies in the hierarchi-
cal structure learning and leveraging unlabeled and isolated
nodes rather than specific graph neural networks.

We also compare HGNN with a hierarchical GNN
framework — GraphPool [67] and a position-aware GNN
model — PGNN [68] by adapting them to solve the UG task.
Table 4 reports the results, which show that both of them are
not competitive. GraphPool is originally proposed for graph
classification, whose node clustering in each layer is based
on nodes’ topological proximity but fails to leverage the fea-
tures of unlabeled nodes. PGNN, on the other hand, learns
the topological relative position of nodes — rather than geo-
graphical relative location of nodes in HGNN - and, conse-
quently, does not perform well on the UG task. Meanwhile,
both GraphPool and PGNN cannot handle the prevalence of
isolated nodes in the user mention graph.

5.3.2. How to represent user content?

Though how to learn a better text representation is not
the main scope of this work, we provide a new choice in ad-
dition to TF-IDF and doc2vec by tuning a light Bert [35] for
text representation. Table 5 shows that Bert-style content
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Table 5
HGNN performance with various content representations.
Model GeoText Twitter-US Twitter-World
ode!
Mean Median Acc@100 Mean Median Acc@100 Mean Median Acc@100
HGNN-TF 329 25 61 304 45 62 747 74 53
HGNN-d2v 365 36 59 263 37 65 688 65 54
HGNN-Bert 316 23 63 289 43 63 636 62 56
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Figure 4: The average influence varies with distance (KM)
between training and testing samples.

representation works well on sparse datasets (i.e., GeoText
and Twitter-World) but degenerates on dense datasets (i.e.,
Twitter-US). This is because text similarity is more impor-
tant when the number of nodes is small. However, user in-
teractions become a dominant factor if sufficient mention is
available.

5.4. Fusion and Prediction Interpretability (RQ3)

To better understand the model behavior, we leverage
influence functions [33] to estimate the effect of individual
training sample and interpret the prediction results made by
our HGNN. The main idea is to estimate the effect that re-
moving of a particular training node has on the model’s final
prediction. This is achieved by tracing the geolocation re-
sults back to the nodes/clusters in the mention graph that
are important for prediction, both positively and negatively.
Next, we turn to interpret the results made by HGNN on
GeoText and Twitter-US from three aspects.

5.4.1. Influence of geographic distance

Intuitively, the geographically closed neighbors for a
particular user play more important roles in locating this
user, which is also the primary motivation of many previ-
ous works [5, 15, 42, 43, 48, 50]. However, there are few
prior studies on quantifying such impact. In addition, we
used the influence function to estimate each training sam-
ples’ influence, which does not use any information w.r.t.

Avg. Influence

Ssp = .
ting Usey. 2-hop
s

‘3—f10p
(b) Twitter-US.

Figure 5: The influence of A-hop (4 = 1,2, 3) neighbors. Pos-
itive and negative nodes are marked as dots () and pen-
tagons (%), respectively.

user geographical locations. Therefore, we would like to
discover the underlying relations between the two aspects.

In Figure 4, we compute the impact of all training sam-
ples on each testing user with the influence function and
average the results on the two datasets. As illustrated, the
estimated influence is strongly correlated with the distance,
especially when users are within 10 KM, as the users in both
datasets are from the U.S. Besides, we can also observe that
for those who are far away, their influence is trivial. This re-
sult not only verifies our motivation to investigate the train-
ing samples but also bridges the gap between influence esti-
mates and user geographical locations.

5.4.2. Influence of A-hop neighbors

As shown in Figure 5, we quantify the influence of A-
hop neighbors on each testing user in GeoText and Twitter-
US, e.g., each pink point is the averaged influence of all the
1-hop users on the testing user, and so on. In addition, we
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Figure 6: The box plot of the influence distribution of corre-
sponding neighbors. The triangles (a) and orange lines in
the boxes represent the mean and median values, respec-
tively. The circles (o) denote the outliers with extreme influ-
ence.

also draw a boxplot for each hop of nodes in Figure 6, where
the green triangle and orange line in the box denote the mean
and median of the corresponding set of nodes, respectively.

As Figure 5 illustrates, immediate neighbors generally
contribute more (i.e., positive influence) on the testing sam-
ples. By contrast, the positive influence of topologically
further nodes (e.g., 2-hop and 3-hop neighbors) gradually
decrease. However, we can also observe that in some cases
the immediate neighbors are noisy signals (or have negative
influences) on user geolocation, as those pentagons whose
influence value is less than 0. This phenomenon indicates
that aggregating features of neighboring nodes in a GNN
manner may confront the problem of noisy and unstable in-
formation fusion and, consequently, may yield unsatisfac-
tory prediction results.

Furthermore, we also have some insights from Figure 6.
First, both the mean and median values decrease as increas-

ing the number of hops. This result meets our expecta-
tion, i.e., the closer a training sample to the testing user,
the more positive impact. As for the outliers, the number is
gradually decreasing as the hops increase. This result also
raises an open problem for estimating the influence of in-
network nodes, i.e., the closer nodes (e.g., 1-hop neighbors)
are mixed with more noise even they have more significant
influence. Therefore, it is an interesting topic to identify the
anomaly samples in user geolocation, e.g., the nodes marked
as o. Finally, the influence fluctuation of IQR (Inter-Quartile
Range, i.e., the height of the box) in Geotext is larger than
that in Twitter-US. This phenomenon happens because Geo-
Text is a sparser mention graph compared to Twitter-US.
Therefore, it is too difficult for the HGNN model to sample
sufficient users from immediate neighbors for stabilizing the
influence estimation.

5.4.3. Influence of regions

Since our model relies on the cluster effect to geolocate
the users, we now investigate the influence of regions when
aggregating knowledge in the HGNN model. An important
assumption in the previous method is that physically close
users usually have an interactive relationship in the network
topology, or vice versa. To confirm this hypothesis and
quantify such relations, for each cluster, we regard the train-
ing samples in a region as in-cluster nodes, and the training
samples outside it as out-cluster nodes. Through computing
the average influence of in -cluster and out -cluster nodes for
each testing user, we can gauge the impact of each cluster.

As illustrated in Figure 7, in-cluster nodes play domi-
nant role in user geolocation. For example, the nodes in the
region have more significantly positive influences than those
out of the region, which are applicable to both datasets. This
result provides intuitive explanations on the performance of
HGNN and justifies our motivation — i.e., using clustering
effect to provide robust signals for user geolocation, rather
than only relying on individual users as in previous works.
On the other hand, the influence variations on GeoText are
smaller than on Twitter-US, caused by the differences of re-
gion split on two datasets. That is, there are more clusters
(with smaller areas) in Twitter-US (cf. Figure 3), resulting
in larger variances for individual in- and out-cluster — the
densely region partition would have more regions that could
more easily confuse the model in terms of accurate geolo-
cation compared to sparse and distinct region partition. In
other words, the more clusters, the greater the variance when
estimating the influence of a single cluster.

5.4.4. Visualization of the latent space

In order to better understand the benefits of the hierar-
chical architecture in the proposed model, we plot the user
embeddings learned by different approaches. Towards that,
we randomly select four regions from GeoText and project
the latent space of users from those regions into the 2D
space using t-SNE [40]. Figure 8 shows the latent space
of MENET, GCN4Geo, GausMix, and our HGNN, where
nodes with the same color are from the same regions. As

Fan Zhou et al.: Preprint submitted to Elsevier

Page 13 of 16



Identifying User Geolocation with Hierarchical Graph Neural Networks and Explainable Fusion

0.181 .
v V¥ in-cluster A out-clusterl
" v Ywyy v Vyv Y
) WY YT ey Wy woo ¥ Wy Yy
w v vy VY YWV v VY, - Wow
kc) ",V'v"v' ‘Vvv," w "'v""" YY v 'v'
()
=
v
= 0.09
o
E
A, A A A A AAA AA LA A AA
LT !A A Y - - Aol
A ' LA“ Ady A'l)A"AA‘ ATA X AAAAAIA Al 4 Al
0.00+, : : : :
0 32 64 96 128
Index of clusters
(a) GeoText.
0.10

Y yv v

o -

WV vy \wv\v'v- ':vv W !_W
Woowvy . V% Rryy Wy VYV

v/
v - v TV YV Sy Y Yevy ¥
W vy W s wWw W Vv %7 '
§ v’ v v v Y v A YiwyY
v Yyv
v v v v v M
v
M v

A AT
T/ A A A A A
A A

Avg. Influence
o
o
(6]

0.001 V in-cluster A out-clusterl

0 64 128 192 256
Index of clusters

(b) Twitter-US.

Figure 7: The average cluster influence of both in-cluster
(upper) and out-cluster (bottom) samples. The means of in-
cluster and out-cluster influence are shown by the brown and
blue lines, respectively.

a direct feature concatenation method, MENET cannot dis-
criminate the user embeddings. GausMix and GCN4Geo
can generate more distinct user embeddings, although some
entangling users may not be correctly identified. In com-
parison, we can observe a more obvious clustering effect
generated by HGNN, which provides a more intuitive ex-
planation of the superiority of the hierarchical aggregations
in the proposed architecture.

6. Conclusions and Future Work

We introduced a novel approach, Hierarchical Graph
Neural Networks (HGNN) for UG prediction, that leverages
robust signals from geographically close crowds rather than
individuals (as done in previous works). HGNN couples the
topological structure and the physical locations of users with
arelation mechanism learning, which allows exploiting both
unlabeled nodes and isolated nodes in the data. Empirical
results demonstrated that HGNN not only achieves the state-
of-the-art geolocation performance, but also enables inter-
pretability of prediction results. We also presented a frame-
work for explaining the GNN-based models by extending
the influence function to estimate the effect of samples in
graph data, which provides explanations of information fu-

(c) GausMix.

(d) HGNN.

Figure 8: Visualization of the learned latent space. We ran-
domly select four regions from GeoText and plot the learned
user embeddings using t-SNE.

sion and allows us to quantify the influence of both individ-
ual nodes and the clusters during training our model. In the
future, we plan to investigate the impact of different space-
partitioning and spatial clustering methods. Another part of
our future work is to explore how to utilize the explainable
results for improving the collaborative user geolocation per-
formance.
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