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Abstract

The ongoing global pandemic has sharply increased the amount of data available to researchers in epidemiology and
public health. Unfortunately, few existing analysis tools are capable of exploiting all of the information contained ina
pandemic-scale data set, resulting in missed opportunities for improved surveillance and contact tracing. In this pa-
per, we develop the variational Bayesian skyline (VBSKY), a method for fitting Bayesian phylodynamic models to very
large pathogen genetic data sets. By combining recent advances in phylodynamic modeling, scalable Bayesian infer-
ence and differentiable programming, along with a few tailored heuristics, VBSKY is capable of analyzing thousands
of genomes in a few minutes, providing accurate estimates of epidemiologically relevant quantities such as the ef-
fective reproduction number and overall sampling effort through time. We illustrate the utility of our method by
performing a rapid analysis of a large number of SARS-CoV-2 genomes, and demonstrate that the resulting estimates

closely track those derived from alternative sources of public health data.
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Introduction

The COVID-19 pandemic has demonstrated an important
supporting role for phylogenetics in epidemiology and public
health, while also creating unforeseen technical and meth-
odological challenges. As the first global public health event
to occur in the era of ubiquitous sequencing, the pandemic
has resulted in a data explosion of unprecedented propor-
tions. GISAID, a worldwide repository of SARS-CoV-2 genom-
ic data, currently has over 7.5M samples, with contributions
from almost every country (Elbe and Buckland-Merrett
2017; van Dorp et al. 2021). A phylogenetic representation
of this database is believed to be the largest ever constructed
(Turakhia, Thornlow, Hinrichs, De Maio, et al. 2021). Existing
phylogenetic methods, which were developed and tested on
datasets orders of magnitude smaller, are inadequate for
pandemic-scale analysis, resulting in missed opportunities
to improve our surveillance and response capabilities
(Hodcroft et al. 2021; Morel et al. 2021; Ye et al. 2021).
These shortcomings have spurred new research initia-
tives into phylogenetic inference methods capable of ana-
lyzing millions of samples. In particular, there has been
significant recent progress in estimating and/or placing
novel sequences onto very large phylogenies (Minh et al.
2020; Aksamentov et al. 2021; Turakhia, Thornlow,
Hinrichs, De Maio, et al. 2021; Ye, Shum, et al. 2022; Ye,
Thornlow, et al. 2022). Accurate estimation of the under-
lying phylogeny has numerous downstream applications,
including contact tracing (e.g, Lam-Hine et al. 2027;
McBroome et al. 2022), surveillance (e.g, Abe and Arita
2021; Klink et al. 2021), and improved understanding of

pathogen biology (e.g, Majumdar and Sarkar 2027;

Turakhia, Thornlow, Hinrichs, Mcbroome, et al. 2021).
Another area of active research in phylogenetics, distinct

from tree inference, is so-called phylodynamics, which seeks
to understand how immunological, epidemiological, and evo-
lutionary forces interact to shape viral phylogenies (Volz et al.
2013). Here, the quantity of interest is typically a low-
dimensional parameter vector characterizing the underlying
phylodynamic model, whereas the phylogeny itself is a nuis-
ance parameter. Of particular interest for the current pandem-
ic are methods that can estimate effective population size and
reproduction number of the pathogen from viral genetic data
(e.g, Lai et al. 2020; Zhou et al. 2020; Campbell et al. 2021; Volz
et al. 2021). Compared to phylogeny estimation, less progress
has been made on so-called “phylodynamic inference” at the

pandemic scale. This absence motivates the present study.
Bayesian methods are often preferred for phylodynamic in-

ference because, in complex datasets, there are many possible
trees which explain the data equally well. Hence, downstream
quantities of interest possess a potentially significant amount
of “phylogenetic uncertainty” which is not reflected in fre-
quentist point estimates. Unfortunately, Bayesian phylogenet-
ic procedures inherently scale very poorly: the space of
phylogenetic trees grows rapidly, and there are an astronom-
ical number of possible trees to consider, even for relatively
small samples. Consequently, on large problems, the work-
horse algorithm of field, Markov chain Monte Carlo
(MCMOQ), tends to either conservatively explore very limited
regions of tree space, or liberally propose large moves that
are often rejected (Whidden and Matsen 2015; Zhang and
Matsen 2019).
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Even before the pandemic, awareness of the scalability
issues surrounding Bayesian phylogenetics was growing
(Héhna and Drummond 2012; Whidden and Matsen
2015; Aberer et al. 2016; Dinh et al. 2017). As a scalable al-
ternative to MCMC, variational inference (V1) has recently
garnered some attention in phylogenetics. VI is a general
method for sampling approximately from a posterior dis-
tribution using techniques from optimization (Jordan
et al. 1999). Fourment et al. (2020) used VI to accelerate
computation of the marginal likelihood of a fixed tree top-
ology. Fourment and Darling (2019) used the probabilistic
programming language STAN to perform variational infer-
ence of the Bayesian skyline model (Pybus et al. 2000). Both
of the preceding methods only analyze a fixed tree top-
ology, so they cannot account for phylogenetic uncer-
tainty. Simultaneously, Zhang and Matsen (2018, 2019)
and Zhang (2020) have made progress on a full variational
approach which includes optimization over the underlying
topology. Although these innovations represent significant
advances in terms of performance, they still cannot come
close to exploiting all of the information contained in a
pandemic-scale data set.

New Approaches

Inspired by these works, and responding to the need for
better tooling to study the ongoing pandemic, we devised
a method capable of providing accurate and calibrated es-
timates of the rates of transmission and recovery for
COVID-19 using data from tens of thousands of viral gen-
omes. Our approach unites several threads of research in
phylogenetics and scalable Bayesian inference. We build
on aforementioned advances in variational phylogenetic
inference (Fourment and Darling 2019; Zhang 2020), as
well as recent progress in phylodynamic modeling of infec-
tious diseases (Stadler et al. 2013), Bayesian stochastic op-
timization (Hoffman et al. 2013), and differentiable
programming (Bradbury et al. 2018). To achieve this level
of scalability, our method makes several tradeoffs and ap-
proximations which are detailed below. Briefly, we adopt a
divide-and-conquer strategy where distant subtrees of a
very large phylogeny are assumed to evolve approximately
independently, and we further assume that topological es-
timates of these subtrees are an accurate reflection of their
distribution under the prior. We argue that these are rea-
sonable approximations in the context of an massive, glo-
bal phylogeny, and that their combined effect appears to
be benign: the resulting estimates closely agree with the
existing state of the art on simulated data, and exhibit a
remarkable level of concordance with ground-truth esti-
mates on real data, although taking just minutes to
produce.

Results

In this section, we test our method on both simulated and
real data, and compare it to the existing implementation
of the birth—death skyline model in BEAST.

2

Simulation

First, we performed a simulation study to evaluate how
well VBSKY approximates the posterior distribution com-
pared with BEAST. We studied four different scenarios:

1) Constant: the effective reproductive number stays
constant through time.

2) Decrease: there is a sharp drop in the effective repro-
ductive number.

3) Increase: there is a sharp increase in the effective re-
productive number.

4) Zigzag: the effective reproductive number goes
through a series of decreases and increases.

We simulated transmission trees using the R package
TreeSim (Stadler 2011) and generated sequences data
along each tree using the program Seq-Gen (Rambaut
and Grass 1997).

Across all scenarios, the rate of becoming uninfectious,
0 is held constant at d(t) = 4 for all t. The sampling rate is
also held constant at s(t) = 0.25. Only R is allowed to vary.
Under the constant scenario, R(t) = 1.3 for all t. In the de-
crease scenario,

225 t<1
R(t)_{o.75, t>1.

In the increase scenario,

1: tS3
2.5 t>3.

R(t) = {

In the zigzag scenario,

R(t):{z.o, te[o,1U(2 3]

0.75, te€(1,2]U (3, 4]

Each simulation was run for four time units, and ten trees
were generated under each scenario. Because the sampling
process is stochastic in this model, the size of the simulated
tree varied from run to run. The minimum (maximum)
number of samples in each under the constant, decrease,
increase, and zigzag scenarios was 175 (1553), 117 (590),
124 (1075), and 161 (1852), respectively.

We compared the performance of our method with the
current state-of-the-art method for Bayesian phylogenetic
analysis (BEAST; Bouckaert et al. 2019). BEAST allows for
the birth—death skyline model to be used as a tree prior,
facilitating direct comparison with VBSKY. Because
BEAST uses MCMC to estimate the posterior, the number
of sequences it can analyze is limited. Therefore, for each
simulation, we randomly sampled 100 sequences for
BEAST to analyze. We allowed BEAST to run long enough
that the effective sample size exceeded 1,000 for each evo-
lutionary parameter. Since VBSKY is not limited by sample
size, we analyzed all sequences in each simulation, as fol-
lows: We set the size of each random subsample to be b =
100 tips. The number of trees in the ensemble was set to be
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the smallest integer such that the number of trees multi-
plied by 100 was larger than the number of sampled se-
quences. Under this scheme, each sequence was sampled
approximately once on average.

The results of the simulation study are shown in figure 1,
which displays the median of the medians and 95% equal-
tailed credible intervals of the simulations under each
scenario using VBSKY and BEAST. In the constant and in-
crease scenarios, both BEAST and VBSKY adequately cap-
ture the true value of the effective reproductive number.
However, in the decrease and zigzag scenarios, only
VBSKY is able to capture the initial elevated effective re-
productive number further back in time at the start of
the simulation. In contrast, BEAST appears to revert to
the prior as it seems unable to detect transmission events
within those intervals. Because VBSKY allows for more se-
quences to be analyzed, it is able to detect transmission
events further back in time. The credible intervals given
by BEAST are wider than those of VBSKY, and do a better
job of covering the true model in some cases; we return to
this point in section “Discussion.”

Even though in some cases we analyzed hundreds more
sequences using VBSKY than when we used BEAST, the
run-time of VBSKY was 71.75 s on average for each simula-
tion, whereas BEAST took 20 min to perform 107 MCMC
steps. The simulation results show that VBSKY produces
comparable results to BEAST in less time, and in some
cases it is more accurate as well.

As an additional point of comparison, we also analyzed
the smaller data sets given to BEAST using VBSKY. In this
case, we again set the size of each random subsample to be
100, and only use a single tree. The results are displayed in
supplementary figure S8, Supplementary Material online.
Using less data, VBSKY provides similar albeit slightly less
accurate results. It is still able to correctly infer changes
in the effective reproductive number even in the cases
where BEAST is unable to using the same dataset. The dif-
ference in accuracy between using the smaller or full data-
sets is most pronounced in the increase and zigzag
scenarios, where VBSKY is not able to accurately capture
the magnitude of the increase in the effective reproductive
number. The results from this analysis suggest that al-
though VBSKY needs a large sample for optimal perform-
ance, it can perform about as well as BEAST using a
comparable amount of data.

Analysis of the Global Pandemic
We tested our method on a large, serially sampled
COVID-19 dataset from the GISAID initiative (Elbe and
Buckland-Merrett 2017). At the time this analysis was per-
formed, there were 6.5M SARS-CoV-2 sequences in the
database. In addition to the raw nucleotide data, GISAID
provides sample time and location information. The col-
lection dates of the sequences range from January 3,
2020 to December 8, 2021.

For our analysis, we chose four geographical study areas:
the states of Michigan and Florida, as well as aggregate

data for the entire USA and UK. It is important to study
the epidemiology of COVID-19 at the sub-national level
as many public health policies such as mask mandates,
stay at home orders, vaccine distribution, and other social
distancing measures are enforced at the state level. Policies
or decisions made in one state may not be detected study-
ing national data. Due to the differences in health policies
across states and the reduced frequency of travel during
the pandemic, we expect the incidence and prevalence
of COVID-19 to vary from state to state. On the other
hand, policies are sometimes made at the national level,
and more recently travel especially around the holidays
has become widespread, so understanding trends at a na-
tional level is equally vital. It is also interesting to compare
the epidemiology of the pandemic in the USA and UK, as
the two countries are demographically similar, but differ
widely in terms of their healthcare systems, governance,
and policy responses (Unruh et al. 2022).

After filtering the sequences by location, the number of
sequences were 81,375, 34,978, 1,280,563, and 1,143,909 for
Florida, Michigan, the USA, and the UK, respectively. We
noticed that the number of confirmed cases increased or
decreased based on the day of the week, likely because
fewer cases are reported over the weekend. To correct
for any inaccuracies in the sample time distribution, we
set all sequences sampled in the same calendar week to
have the same sample time. We used a fixed molecular
clock model with substitution rate 1.12 X 103/bp/year,
as estimated by the World Health Organization (WHO)
(Koyama et al. 2020). We compared our estimates with a
“ground truth” estimator of the effective reproductive
number which is derived from orthogonal (i.e, non-
genetic) public health data sources (Shi et al. 2021).

We experimented with several different configurations
for the various hyperparameters supported by our meth-
od. The prior and hyperprior settings for all of the scen-
arios described below are shown in table 1. In general,
the three tuning parameters of VBSKY that had the biggest
effect on its output were the level of smoothing as
specified by the precision hyperparameter on the
Gauss—Markov random field (GMRF) smoothing prior
(columns 7z and 7, in table 1; see also section “Model
Parameterization”); the position of the origin (column x;
in the table); and the strategy used to generate the ensem-
ble of sampled subtrees (cf. section “Scalable Inference”
and supplementary section S3, Supplementary Material
online). Figure 2 and supplementary figure S1,
Supplementary Material online showcase the best esti-
mates that we obtained for R and s, respectively, after hy-
perparameter tuning; results for some other choices are
shown in supplementary figures S2-S7, Supplementary
Material online. We first discuss the qualitative features
of these estimates, and then explain how we selected the
hyperparameters.

In general, figure 2 shows a surprisingly close match be-
tween our model output and the ground-truth, which we
reiterate was estimated using a completely different type
of data. As already noted when we compared
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Fic. 1. Median of the medians and the equal-tailed 95% credible intervals of the posteriors of the effective reproductive number over time of the
10 simulations for each scenario using VBSKY and BEAST. The dotted line is the true effective reproductive number over time.

VBSKY with BEAST, the credible bands produced by
VBSKY tend to be narrower. This could reflect differences
in the underlying data, or violations of the modeling as-
sumptions described in section “Materials and Methods.”
Interestingly, both methods appear unable to reject the
null hypothesis R = 1 except for very early in the pandem-
ic (winter 2020) and very recently (spring—summer 2021).
The largest difference between the VBSKY and public
health-derived estimates are observed for the UK; the
latter are much smoother and do not exhibit pronounced
spikes compared with the former. However, the
VBSKY estimates are strikingly concordant with the macro-
scale history of the COVID-19 pandemic in the UK, which
consisted of a first wave in January—May 2020; a second

Table 1. Prior Distributions Used in Analyses.

wave which began in September 2020, abated in the
late fall, and peaked in January 2021; and Delta- and
Omicron-fueled waves which peaked in July and
November 2021, respectively (du Plessis et al. 2027;
Sutherland et al. 2021; UK Health Security Agency
2022). VBSKY recapitulates these dynamics almost exact-
ly. We hypothesize that estimates for the UK may be
more accurate because of greater uniformity in the col-
lection and reporting of COVID-19 genetic data by the
UK National Health Service compared with the health
care system in the USA.

In order to obtain these estimates, we utilized a “biased”
sampling approach whereby we preferentially sampled
leaves in the infection tree which occurred in the distant

TR Ts X1

Analysis R s
Uninformative Smoothing LogN(1,1) Beta(0.02, 0.98)
Less Smoothing LogN(1,1) Beta(20, 980)
Biased/Cluster Sampling LogN(1,1) Beta(20, 980)
Multistrain LogN(0,1) Beta(2, 98)

Gamma(0.001, 0.001)
Gamma(10, 100)

Gamma(0.001, 0.001)
Gamma(10000, 0.01)

Gamma(0.001, 0.001) LogN(—1.2, 0.1)
Gamma(10, 100) LogN(—1.2, 0.1)
Gamma(0.001, 0.001) —
Gamma(10000, 0.01) —
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Fic. 2. Posterior of R for Florida, Michigan, and the USA using biased sampling and a strong prior on s. For each method the posterior median and

equal-tailed 95% credible interval are shown. The dotted line is R = 1.

past, in order to give our method better power to infer epi-
demiological history there. Increases in our testing cap-
acity over time cause the overall density of sample times
to skew heavily towards the recent past (supplementary
fig. S9, Supplementary Material online). Hence, sampling
infections uniformly at random causes our method to
have good power to infer the recent epidemiological his-
tory of the pandemic, at the expense of poor resolution
in the early phases. Indeed, this is exactly what we observed
when we re-ran our method using this type of sampling
strategy (supplementary fig. S2, Supplementary Material
online). Except for Michigan, where sampling has been
relatively more uniform over time, the posterior for R is
very flat further back in the past; the posterior distribution
is essentially that of the prior in this region.

We also studied whether it was possible to obtain good
estimates of R using a combination of uniform sampling
and decreased smoothing. Supplementary figure S3,
Supplementary Material online shows the posterior
when we set the prior of the smoothing parameter to be
a gamma distribution with a = 10 and b = 100, giving a
mean of 0.1 and variance 0.001. Looking at the top left pa-
nel (Florida) of supplementary figure S3, Supplementary
Material online, we see that the posterior median of R
for VBSKY is no longer flat and instead oscillates slightly

to better match the results using surveillance data. The
bottom left panel (USA) also shows the estimates for R
for the entire USA are also no longer completely flat fur-
ther back in the past. The top right panel (Michigan)
shows that even with less smoothing, the results for
VBSKY in Michigan match well with the surveillance
data. When the sample time distribution is unbalanced,
as with Florida and the USA, imposing less smoothing
can help better capture the signal where the sampling
may be more sparse. However, it also widens the credible
intervals. This is not universally true however as looking at
the bottom right panel (UK), whereas the estimates for R
are not completely flat, given what supplementary figure
S10, Supplementary Material online tells us about case
count, we would expect larger peaks for R over time.
Finally, we experimented with a cluster-based sampling
approach, whereby we selected random subclades from a
pre-estimated SARS-CoV-2 phylogeny (Lanfear 2020).
Specifically, we sampled random tips within each study re-
gion, and then successively “walked” up the tree until
reaching an ancestral node which subtended at least 200
leaves. Each subsample is then made up of a single cluster.
Other hyperparameter settings were the same as in the
“Biased sampling” scenario. Results of this experiment
are shown in supplementary figures S4 and S7,
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Supplementary Material online. The results are generally
similar to the uniform sampling strategy—there is fairly
good power to estimate R in the recent past, but estimates
in the distant past appear somewhat oversmoothed.

Overall, using less smoothing only (supplementary fig.
S3, Supplementary Material online), VBSKY was able to
capture the shape of estimates using surveillance data,
but the biased/stratified sampling approach results in a
much closer estimate of R further back in the past. One
drawback of stratified sampling is that the estimates of R
towards the present seem to be further away from the es-
timates using surveillance data. Hence, although non-
uniform sampling can improve estimates within time
periods where sampling is sparse, it can also bias them in
densely sampled regions.

The other hyperparameters were chosen as follows: we
deterministically fixed the origin to 0.3 years prior to the
earliest sample date (therefore, no prior on x; is listed in
the table). We encountered occasional numerical issues
when attempting to learn the variational posterior distri-
bution over the origin parameter. This was not entirely un-
expected since there is only weak power to infer the origin
time using this model (Stadler et al. 2013). We ran
VBSKY with 50 subsamples of 200 sequences for a total
of 10* sequences. Additional discussion of the effect vari-
ous hyperparameters on our method’s output can be
found in supplementary section S-4, Supplementary
Material online.

Comparison to BEAST

We ran BEAST on the same data set as in the previous sec-
tion. BEAST was incapable of analyzing the same number
of samples as VBSKY, so to facilitate comparison, we lim-
ited the number of sequences we analyzed with BEAST.
Both the sample size and the sampling scheme can affect
the results of the analysis as well as the mixing time, so we
compared how BEAST performed with different combina-
tions of sample sizes and sampling schemes. We ran BEAST
with both 100 and 500 sequences. For each sample size, we
sampled the most-recent sequences by date (contempor-
ary sampling), and we also sampled uniformly at random
without any regard to the sample time (random sampling).
The XML configuration files we used to run BEAST are in-
cluded in the supplementary data.

Even after greatly reducing the number of sequences
analyzed, accurately sampling from the posterior may still
take longer than using VBSKY. We performed both a
“short” run for BEAST, where the MCMC sampler is only
allowed to run for as long as it took VBSKY to analyze
the full data, as well as a “long” run where BEAST was al-
lowed to perform 100 MCMC million iterations, or run
for 24 h, whichever was shorter.

The estimates of the effective reproductive number of
the short and long runs are shown in supplementary
figures S11-S14 and S15-518, Supplementary Material on-
line, respectively. For the short runs, depending on the
number of samples and the sampling scheme, the results
varied widely. Under a short time constraint, the posteriors

6

using 500 tips and the random sampling scheme for
Florida, the USA, and the UK as well as 500 tips and
both sampling schemes for Michigan were mostly flat
and centered close to 1. The posteriors did not reflect
the rise and fall in R that is exhibited in both the surveil-
lance data and VBSKY estimates. In most cases, BEAST is
unable to capture any signal further back in the past,
and the posterior provided by BEAST does not track the
estimates provided by the surveillance data as well as
VBSKY.

In the long runs, the issue of completely flat posteriors
when using 500 tips mostly disappeared. However, BEAST
is only capable of producing comparable results to
VBSKY and the surveillance method when analyzing 100
tips sampled uniformly at random, presumably because
mixing occurred more rapidly in the time allotted. The
long runs also illustrate that uniform random sampling
performs better than most-recent sampling when running
BEAST. This indicates that having samples throughout
time may help infer more transmission events further
back in the past rather than having only contemporary se-
quences. The discrepancy between using 100 tips and 500
tips exists only when the sampling scheme is random.
When using contemporary sequences, BEAST is able to
complete 100 million iterations. But when random sam-
pling is used, because the MCMC sampler mixes more
slowly, BEAST was unable to complete 100 million
MCMC moves within 24 h.

In summary, BEAST performed fairly well when we ran-
domly sampled 100 tips, though there was considerable
variation between data sets and scenarios. The main differ-
ence between VBSKY and BEAST is that the latter was usu-
ally unable to capture signal far back in the past. Analyzing
more sequences could help, but the computational diffi-
culties that would ensue imply that it is not practical to
completely resolve this issue if time is a constraint.
Overall, our results indicate that efficiently analyzing thou-
sands of sequences, even using an approximate inference
method, generally leads to a sharper posterior which is clo-
ser to the ground truth.

Strain Analysis

A distinct advantage of the molecular approach to epi-
demiological inference is the ability to incorporate genetic
signals which do not exist in traditional surveillance data.
As an example of this strategy, we used our method to
study the history of individual COVID-19 variants. Using
the variant annotations provided by GISAID, we split the
data into subsets containing Alpha, Delta, and Omicron
samples for each of the four study regions described above.
To generate ensembles of subtrees for our method, we ran-
domly sampled subtrees from a pre-computed reference
phylogeny (Lanfear 2020). We also found it necessary to
make some adjustments to the priors used the previous
section. Specifically, given that we are examining three var-
iants which successively replaced each other, a prior of R >
1 is not necessarily appropriate, and we found that results
were improved if we decreased the prior mean of R. (We
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discuss this choice further below.) Also, for the GMRF
smoothing prior, we chose 7z and 7, to have large expecta-
tions to increase smoothing.

The results of our analysis are shown in figure 3 for R
(supplementary fig. S19, Supplementary Material online
for s). The Alpha variant of COVID-19, also known as lin-
eage B.1.1.7, originated in England and was first reported
in the USA in early 2021. Using surveillance data, Volz
et al. (2021) showed that at the time, the Alpha variant
had a transmission advantage over other variants, which
is why it came to dominate in the USA and UK in early
2021. There are no samples for the Alpha variant beyond
summer 2021, so the estimates for Alpha are truncated
at various points during that period depending on the re-
gion considered. As shown in supplementary figure S10,
Supplementary Material online, the number of cases was
dropping in the regions after the first third of the year, cor-
responding to a decrease in R below one for the Alpha vari-
ant. At the same time, the Delta variant rose in prevalence,
such that R is estimated greater than one in all cases until
about the third quarter of 2021. Finally, Fall 2021 saw the
emergence of the Omicron variant, which quickly rose in
prevalence until it was the dominant strain. Estimates of
R across all study regions peak around November or
December 2021, before declining rapidly; by March 2022,
the R value of Omicron is declining estimated less than 1
in except perhaps in the UK. Of the three variants,
Omicron is estimated to have the highest peak R value
in all regions, likely reflecting its increased transmissibility.

Finally, we also explored whether the use of a different
method for generating ensembles of tree topologies
(sUPGMA; see supplementary section S2, Supplementary
Material online) had any effect on our results
(supplementary figs. S20 and S21, Supplementary
Material online). We found that results were generally con-
sistent across the two methods, however the estimates ob-
tained using sUPGMA indicated slightly different
dynamics for the Omicron variant in the UK in the early
portion of 2022—instead of R < 1, the sUPGMA-derived
estimates showed that Omicron continued to expand in
the UK throughout Winter 2022.

Analysis of the sampling fraction over time
(supplementary fig. S19, Supplementary Material online)
also shows some interesting trends, for example sampling
of the Alpha variant in Michigan seems to have been high
compared with other areas and strains, whereas sampling
of the Delta variant was rather low. Another interesting re-
sult is the apparent divergence in R for the Omicron vari-
ant between the USA and UK in the beginning of 2022. For
Michigan and Florida, as well as the USA as a whole, R is
estimated to have dropped below 1 around January
2022, and the credible intervals contain R = 1. In contrast,
R in the UK continued to climb throughout the winter,
and is credibly different from 1 as recently as March 2022.

Finally, we also explored using other hyperparameter
settings to analyze these data, but found that they pro-
duced generally worse results. In particular, without add-
itional smoothing, our model unrealistically estimated

large oscillations in R, especially for the Omicron variant.
Additionally, we noticed that for the Alpha variant, since
the number of available samples drops precipitously
near the point of truncation, the prior distribution domi-
nated the posterior in the recent past, which caused R to
counterintuitively increase in the direction of the prior
mode (as well as widening the credible band). Since R >
1 is not a reasonable prior assumption for a strain which
is known to have vanished, we shrank the prior distribu-
tion towards zero to attenuate this effect. We also found
that increased smoothing also helped mitigate this issue,
as intervals with a low number of samples are more heavily
influenced by neighboring intervals.

Discussion

In this paper, we presented the variational Bayesian skyline,
a method designed to infer evolutionary models from large
phylogenetic datasets. Our method works by fitting a vari-
ational Bayesian posterior distribution to a certain ap-
proximation of the phylogenetic birth-death model. We
showed that, under some simplifying heuristic assump-
tions, it can be used to infer epidemiologically relevant
quantities such as the effective reproduction number
and sampling fraction. We demonstrated that our esti-
mates adhere reasonably closely to those formed
using MCMC, but are much faster to obtain, and able to
incorporate larger numbers of observations. On real
data, we showed how our model corroborates public
health surveillance estimates, and could work to fill in
knowledge gaps when such data are unavailable.

The improvement in speed of our model compared to
previous approaches is due to both the divide and conquer
strategy and the stochastic variational inference compo-
nent. The divide and conquer strategy obviates the need
to estimate large phylogenies, whereas still retaining infor-
mation from a large number of samples. In turn, this re-
duces the number of nuisance parameters (e.g, branch
lengths) that we must coestimate along with the epi-
demiological parameters, and also reduces the computa-
tional burden of using expensive tree inference
algorithms. However, the divide and conquer strategy
would not be possible without the use of stochastic vari-
ational inference, as MCMC is prohibitively slow even for
small samples. Hence, an MCMC-based divide and con-
quer strategy method would still be unable to incorporate
large numbers of sequences. Both stochastic variational in-
ference and the divide and conquer strategy are necessary
for our approach to work.

One shortcoming of our model is that it tends to be
overconfident, in the sense that it produces credible inter-
vals which are narrower compared to other methods, and
not as well calibrated in simulations. Generally, it is prefer-
able for a method to overcover since this is inferentially
more conservative. We believe this behavior is attributable
to the heuristics that underlie our approach: since they ig-
nore certain forms of dependence in the data, they create
the illusion of a larger sample size than actually exists. We
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Fic. 3. The posterior median and equal-tailed 95% credible interval of R for the Alpha, Delta, Omicron variants.

suggest that the credible intervals produce by our method
are best interpreted relatively, as showcasing portions of
time where the estimates are particularly tight or loose.

Our method could be extended in several ways.
Currently, it estimates the tree topology and the continu-
ous variables separately, relying on a distance-based meth-
od to infer the topology. While faster, distance-based
methods are less accurate than likelihood-based methods
for tree reconstruction (Kuhner and Felsenstein 1994). Our
method could be potentially extended to unify the esti-
mating procedure for tree topologies and other variables
under one variational framework allowing (Zhang and
Matsen 2019). We also take random subsamples of data
to accelerate our inference. However, the subsampling ap-
proach we adopt is naive, and future work could include
developing an improved strategy for subsampling in phylo-
genetic problems.

The variational inference scheme we used makes a
standard but highly simplified mean-field assumption
about the dependence structure of the variational ap-
proximating family. We also experimented with other, re-
cent approaches such as normalizing flows (Rezende and
Mohamed 2015), but observed that, consistent with earlier
findings (Fourment and Darling 2019), they did not meas-
urably improve the results and occasionally caused the al-
gorithm to fail to converge. If our approach is adapted to

8

more complex problems, it could be advantageous to re-
visit this modeling choice.

Currently, our method is restricted to using a strict mo-
lecular clock model. Additionally, the substitution models
in our method do not currently allow for rate heterogen-
eity across sites. Allowing for more flexible and complex
substitution and clock models could aid in the application
of our method to other data sets that evolve differently
than COVID-19, when the time scale of the epidemic is
much larger. Lastly, we use a GMREF prior on the rate vector
parameters. Other choices of prior based on Gaussian pro-
cesses (Palacios and Minin 2012, 2013) or some other non-
parametric smoother (e.g, Faulkner and Minin 2018) could
lead to improved estimates in more complex scenarios.

Materials and Methods

In this section, we derive our method, which we call vari-
ational Bayesian skyline (VBSKY). As the name suggests,
VBSKY descends from a lineage of earlier methods de-
signed to infer evolutionary rate parameters from phylo-
genetic data (Pybus et al. 2000; Drummond et al. 2005;
Minin et al. 2008; Gill et al. 2013). Our running example
will be inferring the epidemiological history of the
COVID-19 pandemic, but the method applies generally
to any evolving system that is aptly modeled using a
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phylogenetic birth—death or coalescent process and ap-
proximately meets the assumptions described below.

Notation and Model

The data consist of a matrix of aligned sequences
D =1{A G G, T, N)™, where n is the number of viral se-
quences and L is the number of sites, and a vector of times
when each sample was collected y = (y4, ..., y,) where
y1 < - -+ < yn.Rowjof D corresponds to a sequenced viral
genome collected from an infected host at time y;.
Subsamples of rows of D are denoted by
D; € {A G G, T, N}, with corresponding sample times
y = (yﬁi), e yg)), where b is the size of the subsample.
We occasionally abuse notation and write D; C D to de-
note a subsample, and |D] to denote the number of sam-
ples contained in a dataset (so e.g, |D;j| = b above).
Phylogenetic trees are denoted by T = (7°°°, T,
which we decompose into a discrete topological compo-
nent and continuous branch length component. Given n
sampled taxa, the topological component 7 *P° lives in
the space of rooted, labeled bifurcating trees on n leaves,
and the branch length component lives in the non-
negative orthant [Ri’;,_1 and gives the length of each
edge of the tree (including an edge from crown to origin).

The data are assumed to be generated according to a
phylogenetic birth—death skyline model (Nee et al. 1994;
Morlon et al. 2011). In this model, samples are related by
an unobserved “transmission tree” that records every in-
fection event that occurred during the pandemic. Leaf
nodes in the transmission tree represent sampling events,
and internal nodes represent events where the virus was
transmitted from one host to another. Edges denote per-
iods during which the virus evolved within a particular
host, with the length proportional to the amount of evo-
lutionary time that elapsed between the parent and child
nodes. The distribution of the infection tree depends on
three fundamental parameters, usually denoted by u(t),
A(t), and p, which are respectively the time-varying per-
capita rates at which extant lineages in the phylogeny go
extinct and speciate, and the fraction of the extant popu-
lation that was sampled at the present.

Further generalizations (Stadler et al. 2013) incorporate
both random and deterministic sampling across time, and
it was also shown how phylogenetic BD model can be used
for parameter estimation in the susceptible-infected-
recovered model (Kermack and McKendrick 1927) that
forms the foundation of quantitative epidemiology. Let
w(t) denote the rate at which each extant lineage is sam-
pled in the phylogeny. (Henceforth we suppress depende
nce on time, but all parameters are allowed to be time-
varying.) If we assume that sampling is tantamount to re
covery (a valid assumption when positive testing leads to
quarantine, as is generally the case during the current
pandemic), then the overall rate of becoming uninfectious
isd = u + y; the average time to recovery is 1/J; the sampl
ing proportion is s = /J; and the effective reproduction
number is R =1/d. Using prior knowledge, it is also

common to specify an origin time t, when the pandemic
began.

Let { = (R, 9, s, ty) denote the vector of epidemiologic-
al parameters of interest. The hyperprior on ( is denoted
7({). The latent transmission tree describing the shared
evolutionary history of all of the sampled pathogens is de-
noted by 7 = (7P°, 7). We assume a simple “strict
clock” model, with known rates of substitution, so that
no additional parameters are needed to complete the evo-
lutionary model.

We desire to sample from the posterior distribution of {
given the phylogenetic data set D. Let p(7 | {) denote the
likelihood of the transmission tree given the evolutionary
model. An expression for p(7 | {) can be found in
Stadler et al. (2013, Theorem 1), and is reproduced in
supplementary Appendix S-1, Supplementary Material on-
line for completeness. The data depend on { only through
T, so that p(D | T,{) =p(D | T). Here p(D | T) de-
notes the “phylogenetic likelihood,” which can be efficient-
ly evaluated using the pruning algorithm (Felsenstein
1981). Putting everything together, the posterior distribu-
tion over the unobserved model parameters is

p((, T | D)o p(D | T)p(T | Oa(l). (M

Scalable Inference

The constant of proportionality in (1) is p(D), the mar-
ginal likelihood after integrating out all (hyper)para-
meters and the unobserved tree 7. In large
phylogenetic data sets, exact evaluation of the marginal
likelihood is impossible due to the need to enumerate
all possible trees, a set whose cardinality explodes in
the number of taxa (Alfaro and Holder 2006). In practice,
methods such as Markov chain Monte Carlo (e.g,
Drummond and Rambaut 2007) which do not require
evaluating p(D) are utilized.

Since current phylogenetic MCMC algorithms cannot
scale up to pandemic-sized datasets, we propose to modify
the inference problem (1) using a few heuristics in order to
make progress. Let D, D5, ..., Ds C D be subsamples of
by, ..., bs rows from the full dataset. If the subsamples are
temporally and geographically separated, and b; < n, then
it is reasonable to suppose that these subsamples are ap-
proximately independent conditional on the underlying
evolutionary model.

Heuristic 1. In a very large phylogenetic dataset D, small
subsets Dy, D, C D with |D,|, |D,| < |D| that are suffi-
ciently separated in space and/or time are approximately in-
dependent: p(D1, D, | {) = p(D1 | Op(D; | {).

True independence holds, for example, when the clades
corresponding to D;, D, are so distant that a reversible
substitution process reaches stationarity on the edge con-
necting them. While we do not expect this to occur in real
data, it seems like a reasonable approximation for studying
distant subclades in a large, dense phylogeny which are
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evolving under a common evolutionary model. An ex-
ample of the subsampling scheme we have in mind is
when D = “all of the samples collected in Florida”
(n ~ 81,000), D; = “all of the samples collected in
Florida during June, 2020” (b; =~ 300), and D, = “all of
the samples collected in Florida during June, 2021”
(b, =~ 5100). Different subsampling schemes are possible
depending on the data application, and these have an im-
pact on the estimates; see supplementary Section S-3,
Supplementary Material online for additional information.

Though incorrect, Heuristic 1 furnishes us with a useful
formalism for performing large-scale inference, as we now
demonstrate. Using the heuristic, we can approximate the
posterior distribution (1) as

S
P, Tris | Dus) Q) [ [pDi | Tp(Ti 1) (2)

i=1

where we used the array notation 7 1.s = (T4, ..., Ts)
to streamline the presentation.

Sampling from (2) is easier than sampling from the full
posterior (1) since it decomposes into independent sub-
problems, and each subtree 7 is much smaller than the
global phylogeny 7. However, the normalizing constant
in (2) remains intractable even for small trees, so naive
sampling would still require expensive MCMC algorithms.

To work around this, we start by rewriting the last term
in (2) as

p(Ti18) = p(TP | T, Op(T % | 0).

As noted in the Introduction, the primary difficulty in
Bayesian phylogenetic inference is navigating regions of
topological tree space that have high posterior probability.

If we could efficiently sample 7A',F°p° ~ p(T;°"° | {), then
the approximate posterior

S
P T | T, Dris) <o) [ [ p(D

i=1

| T T T T 6)
would have the property that
Ejom B This | T35 Duis) = P T i | Dris). (4)
This leads to our second heuristic.

Heuristic 2. Fitted tree topologies T % obtained from
subsets Dy, ..., Dy, pairwise satisfying Heuristic 1 are inde-
pendent and approximately distributed as p(T °"° | {).

By “fitted trees” we mean trees estimated using any meth-
od, including fast heuristic algorithms such as UPGMA, or
its extension to serially sampled time trees (sSUPGMA;
Drummond and Rodrigo 2000); maximum likelihood; or
simply extracting subtrees from a high-quality reference
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phylogeny constructed by domain experts (e.g, Lanfear
2020). The heuristic can fail in various ways: in reality, tree re-
construction algorithms do not necessarily target the cor-
rect/any evolutionary prior, and there could be
dependence between different trees if they are jointly esti-
mated as part of a larger phylogeny. Also, our current imple-
mentation uses the data twice, once to estimate each tree,
and again during model fitting to evaluate its phylogenetic
likelihood. The tree inference procedure we used to analyze
data in this paper is described more fully in the supplement
(supplementary section S-2, Supplementary Material online).
Note that we only utilize the topological information from
these procedures; we still perform posterior inference over
the branch lengths 7 as detailed below.

Setting these caveats aside, the point of Heuristic 2 is to
endow our posterior estimates with some measure of
phylogenetic uncertainty, without resorting to full-blown
MCMC in tree space. By (4), the approximate likelihood
(3) is unbiased for p(, Tﬁ’fs | Ds.s), and the latter quan-
tity correctly accounts for phylogenetic variance in the
posterior. However, since (3) conditions on 7 1%, all of
the remaining parameters to be sampled are continuous,
and the problem becomes much easier.

We stress that our method is not capable generating
useful samples from the posterior distribution p(7 | D),
that is of the overall transmission tree given the original
dataset D. But, as noted above, in skyline-type models
the main object of interest is the evolutionary posterior
p({ | D). In Section “Results,” we demonstrate that the
heuristic, subsampling-based approach developed here
yields a fairly sharp posterior on ¢, although still utilizing
a large amount of information from D.

Stochastic Variational Inference

Since (3) is a distribution over continuous, real-valued
parameters, it is amenable to variational inference
(Jordan et al. 1999). As noted in the introduction, vari-
ational Bayesian phylogenetic inference has previously
been studied by Zhang and Matsen (2019), Zhang (2020)
and Fourment and Darling (2019). Our approach is most
related to the latter since we do not optimize over the
topological parameters of our model in any way. Because
we are operating in a different data regime than either
of these two pre-pandemic papers, we further incorpo-
rated recent advances in large-scale Bayesian inference in
order to improve the performance of our method.

Given a Bayesian inference problem consisting of data x
and model parameters z, traditional VI seeks to minimize
the Kullback-Leibler (KL) divergence between the true
posterior of interest and family of tractable approximating
distributions Q:

arg min
9" (@) = KL(g(@) Il p(z | x)).
q(z)€Q
We cannot carry out this minimization as the KL diver-

gence still requires evaluating the intractable quantity
p(x). However,
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KL(q(2) |l p(z | x)) = E(logq(z)) — E(logp(z | x))
= [E(logq(z)) — E(logp(x, 2)) + logp(x)
= —ELBO(q(z)) + const.

(5)

where the expectations are with respect to the variational
distribution g, and

ELBO(q(2)): = Ezqx)[logp(x 2) —logq(2)]  (6)

is known as the evidence lower bound. Hence, minimizing
the divergence between the true and variational posterior
distributions is equivalent to maximizing the ELBO.

For VI involving complex (non-exponential family) like-
lihoods, the ELBO is generally approximated by replacing
the first term in (6) by a Monte Carlo estimate:

1 B
Fo-qe) logp(x 2) ~ Z log p(x, z;); o)

Zy, ...,23 ~q(z) iid.

where B = 1 is a common choice. Each evaluation of the
complete likelihood logp(x, z) requires a full pass over
the data, which can be prohibitive when the data are large.
Stochastic variational inference (SVI; Hoffman et al. 2013)
addresses this problem through stochastic optimization.
Many Bayesian models naturally factorize into a set of
shared, global hidden variables, and sets of local hidden
variables which are specific to each observation. Each ob-
servation is conditionally independent of all others given
its local parameters. Hoffman et al. show how models of
this form are well suited to stochastic gradient descent.
Specifically, they derive an unbiased gradient estimator
of the ELBO (6) which operates on a single, randomly
sampled data point at each iteration. The algorithm tends
to make better progress in early stages when the variation-
al approximation to the shared global parameters is still
quite inaccurate (Hoffman et al. 2013).

By design, the model we derived above is suited to SVI. In
equation (3), the evolutionary parameters { are shared
among all datasets, whereas the branch length parameters
TP are specific to the ith dataset D;. We therefore refer to
¢ as the global parameter, and the vectors of dataset-specific
branch lengths 7" 5 as local parameters. Our algorithm pro-
ceeds by iteratively sampling a single dataset D; and taking a
noisy (but unbiased) gradient step. Note that, because our
model is not in the exponential family, we cannot employ
the elegant coordinate-ascent scheme originally derived by
Hoffman et al. Instead, we numerically optimize the ELBO
using differentiable programming (see below).

Model Parameterization

It remains to specify our model parameterization and the
class of distributions Q that are used to approximate the
posterior. Recall from section “Notation and Model” that

the global parameter { includes the effective reproduction
number R(t), rate of becoming uninfectious J(t), and sam-
pling fraction s(t). We follow earlier work (Gill et al. 2013)
in assuming that these rate functions are piecewise constant
over time, with changepoints whose location and number are
fixed a priori. The changepoints are denoted t = (ty, ..., ty)
satisfying 0 =ty <ty <--- <ty <tpy; = 00. Thus,

m+1

R(t) = Z Rilgert, o0 (t)
i=

where the transmission rates in each time interval are de-
notedR = (R, ..., Rym) € RY. The rate of becoming unin-
fectious and sampling fraction are similarly denoted by
0 €RY, and s € [0, 1]", respectively. Finally, a Gaussian
Markov random field (GMRF) smoothing prior is used to
penalize consecutive differences in the log rates (Minin
et al. 2008). To account for the fact that each rate parameter
may have varying degrees of smoothness and also could be
on different scales, each rate parameter has a corresponding
precision hyperparameter t, 75, and ;.

An extension of the BDSKY model allows for additional
sampling efforts at each time t. Infected individuals are
sampled with probability p, at time t;. When all sequences
are sampled serially without the added sampling effort,
p =0 for 1 < k < m. When all sequences are sampled
contemporaneously, ¥ =0, p, =0 for T<k<m—1,
and p,, > 0. For our work, we only consider cases where
pr =0 for 1 <k <m — 1. We define b, as the number
of sequences sampled serially, and b, to be the number
of sequences sampled at time t,,. In other words, b, is
the number of contemporaneously sampled sequences
at time t,,. Note that b = b,,, + b;. The sample times of
the b, serially sampled sequences are denoted by
y = (ygi), ...,yg)). Because the sequences sampled at
t,, have the Iarges% sample time, Il(i) is just a truncated ver-
sion of y®. When all sequences are sampled serially,
y = ;l(i). To conserve notation, from this point onward,
we will use y to refer to )7([).

The final remaining global parameter is the epidemic ori-
gin time t,. In order for the model to be well defined, this
must occur earlier than the earliest sampling time in any of
the S subsamples. Therefore, we set ty + X; = Ymin, Where
Vmin is the earliest sampling time across all subsamples,
and place a prior on x; > 0 as detailed below.

Given the sampling times and estimated tree topology

A

t . . .
T 1°P°, we can identify each local parameter 7" with a vec-

tor ¥ € jo giving the height of each internal node
when enumerated in preorder. Hence the height of the
root node is hg'). We follow the parameterizations set forth
by Fourment and Darling (2019). In order for a sampled
tree to be valid, we must have h® <I’;'(O'21 y for every j.
Here pa(j) denotes the parent node of noge j- This con-
straint can be met by setting the height of internal node
j as hi-') = pﬁ-')(hg;(j) - h%) where d(j) is the earliest
sampled tip from the set of descendants of j and

p}i) € [0, 1]. Finally, let xgi) denote the distance of the
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root node from the origin measured forward in time. We
must have t, < x” <y since the root node of T has
to be between the origin and the earliest sample time.
Therefore we set x —t, = ry% for some r € [0, 1],
and calculate the root height hg') from it. Under this par-
ameterization, the set of local variables 2z =
(pﬁ'), ceo pg)_1, r) € [0,1]” is a set of proportions, with
transformations to switch between parameterizations for

BDSKY and the observed data likelihood.

Variational Approximating Family

We make a standard mean-field assumption, which
posits that members of Q completely factorize into a
product of independent marginals. Letting ¢ =
(R, ...,Rm 01, ..., Om) S1, ..., Sm) denote the collec-
tion of all global parameters defined above, and recalling
the definition of z) in the preceding paragraph, we as-
sume that

CI({; 1(1), ey Z(m)) = l_[q(é'l | 71-[.) l_[ l_[q(zgk)
i ik

where we have introduced variational parameters z; and
¢§-k) corresponding to each marginal distribution. The
distributions q({;|7;) and q(zi.k) | ¢§k)) are (suitably
transformed) Gaussians, so that 7, ¢5»k) € Rx Ry each
comprises a real location parameter and non-negative
scale parameter. In our model, all latent parameters, lo-
cal or global, are constrained to be positive (e.g., R, d) or
in the unit interval (e.g, s, z). For each parameter, we
take g to be an appropriately transformed normal
distribution. For positive parameters, we use an expo-
nential transformation, and for parameters constrained
to be in (0,1) we use an expit (inverse logistic)
transformation.

Implementation using Differentiable Programming

Our Python software implementation uses automatic dif-
ferentiation in order to efficiently optimize the variational
objective function (Kucukelbir et al. 2017; Bradbury et al.
2018). We sample from the variational distribution and es-
timate the gradient of the (7) objective function with re-
spect to the variational parameters 7 and ¢ using Monte
Carlo integration (cf. eq. 7). Gradients of the phylogenetic

ALcoriTHM 1: Variational Bayesian Skyline (VBSKY)

Input: Data set D, sampling times y; Fixed parameters m, v, S, b;
Step size a.

fori=1— Sdo

Sample with replacement b times from the data to get subsample
D,’, y(i).

. T~topo
Estimate the tree topology 7 ;°"".

end

12

Initialize 7, ¢ randomly.

while not converged do

fori=1— Bdo
Draw M samples z® ~ g(- | ¢?), ¢ ~ q(- | 7).
Approximate Vo £ and VL using MC integration.
Update ¢ « ¢@ + aVyo L.
Update 7 < m + aV, L.

end

end

Return 7, ¢

likelihood are computed in linear time using the recent al-
gorithm of )i et al. (2020). The complete fitting algorithm is
shown in Algorithm 1.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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