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ABSTRACT

We study the formation, evolution, and collapse of dense cores by tracking structures in a magnetohydrodynamic simulation of a
star-forming cloud. We identify cores using the dendrogram algorithm and utilize machine learning techniques, including Neural
Gas prototype learning and Fuzzy c-means clustering to analyse the density and velocity dispersion profiles of cores together with
six bulk properties. We produce a 2-d visualization using a Uniform Manifold Approximation and Projection (UMAP), which
facilitates the connection between physical properties and three partially-overlapping phases: i) unbound turbulent structures
(Phase I), ii) coherent cores that have low turbulence (Phase II), and iii) bound cores, many of which become protostellar
(Phase IIT). Within Phase II, we identify a population of long-lived coherent cores that reach a quasi-equilibrium state. Most
prestellar cores form in Phase II and become protostellar after evolving into Phase III. Due to the turbulent cloud environment,
the initial core properties do not uniquely predict the eventual evolution, i.e. core evolution is stochastic, and cores follow no one
evolutionary path. The phase lifetimes are 1.0 & 0.1 x 10° yr, 1.3 £ 0.2 x 10° yr, and 1.8 & 0.3 x 10 yr for Phase I, II, and III,
respectively. We compare our results to NH3 observations of dense cores. Known coherent cores predominantly map into Phase
II, while most turbulent pressure-confined cores map to Phase I or III. We predict that a significant fraction of observed starless
cores have unresolved coherent regions and that 20 per cent of observed starless cores will not form stars. Measurements of

core radial profiles in addition to the usual bulk properties will enable more accurate predictions of core evolution.
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1 INTRODUCTION

Since the first identification of dense cores in molecular line observa-
tions made by Myers, Linke & Benson (1983), astronomers have used
the term core to describe the small (~0.1 pc; Jijina, Myers & Adams
1999), roundish (aspect ratio < 2; Myers et al. 1991), and quiescent
(velocity dispersion nearly thermal; Fuller & Myers 1992) blobs
of gas that are likely progenitors of low-mass stars (Pineda et al.
2022). Later observations further characterized most star-forming
cores as gravitationally bound, if not collapsing (Caselli et al. 2002;
Enoch et al. 2008; Seo et al. 2015). On the other hand, Shu, Adams
& Lizano (1987) formulated analytical star formation models and
proposed an evolutionary sequence that describes the formation of
protostars within cores through continuous accretion initiated by
gravitational collapse and regulated by thermal pressure. Efforts
using both observations and numerical simulations to understand
the evolution of dense cores have since been largely focused on
how dense cores evolve from the point of time when they become
self-gravitating (prestellar cores) to when protostars form within
them (protostellar cores; Li et al. 2004; Tafalla et al. 2004; McKee &
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Ostriker 2007; Kauffmann et al. 2008; Lada et al. 2008; Offner, Klein
& McKee 2008; Rosolowsky et al. 2008a; Dib et al. 2010; Heigl,
Burkert & Hacar 2016; Chen & Ostriker 2018; Grudic et al. 2022).
Barranco & Goodman (1998) used observations of NH3 hyperfine
line emission to show that the line widths in the interiors of some
dense cores are roughly constant at a value slightly higher than a
purely thermal line width. Goodman et al. (1998) made observations
of OH and C'80 line emission of dense cores and proposed that
a characteristic radius exists where the scaling law between the
line width and the core size changes from a power law to a
virtually constant relationship. Goodman et al. (1998) found this
characteristic radius to be ~0.1pc and called this change in the
line width—size relation the transition to coherence. A coherent core
defined by the transition to coherence is hypothesized to provide the
ideal low-turbulence environment for further star formation through
gravitational collapse (Goodman et al. 1998; Caselli et al. 2002).
At around the same time, by measuring the near-infrared extinction,
Alves, Lada & Lada (2001) found that the internal density structures
of the dark cloud Barnard 68 are well described by a pressure-
confined, self-gravitating isothermal sphere that is critically stable
according to the Bonnor—Ebert criteria (Ebert 1955; Bonnor 1956).
Later observations of C'*O molecular line emission confirmed that
Barnard 68 is a thermally supported dense core (although a later
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study found evidence that Barnard 68 is possibly merging with a
smaller structure, which would lead to destabilization and collapse;
Lada et al. 2003; Burkert & Alves 2009). Both the observation of
coherent cores and the identification of a thermally supported dense
core resembling a critical Bonnor—Ebert sphere provide important
hints about the initial condition of dense cores before the formation
of protostars within them.

Recent observational works have revealed that coherent cores are
common in nearby molecular clouds. Pineda et al. (2010) made
the first direct observation of a coherent core in the BS region in
Perseus. Pineda et al. (2010) observed NH3 hyperfine line emission
using the Green Bank Telescope (GBT), and resolved the transition
to coherence across the boundary of the core. Using Very Large
Array (VLA) observations of the interior of the coherent core in
B5, Pineda et al. (2015) found substructures within the B5 coherent
core that will likely form protostars in a freefall time of ~40 000 yr.
Chen et al. (2019a) identified a population of at least 18 coherent
structures' in Ophiuchus and Taurus using data from the GBT
Ammonia Survey (GAS; Friesen et al. 2017). These include droplets,
a population of coherent cores that are not bound by self-gravity
but are predominantly confined by the pressure provided by the
turbulent motions of the ambient gas (Chen et al. 2019a). The non-
self-gravitating droplets have density structures shallower than a
critical Bonnor—Ebert sphere (Chen et al. 2019a), and sometimes
show signs of internal velocity gradients that are likely the result
of a combination of turbulent and rotational motions (Chen et al.
2019b). It was conjectured that these coherent structures, not bound
by self-gravity, are either i) at an early stage of core formation, ii) an
extension of the more massive coherent core population, or iii) tran-
sient. Together, Pineda et al. (2010) and Chen et al. (2019a) revealed
an entire population of coherent cores, ranging from self-gravitating
and sometimes star-forming ones, including the B5 coherent core, to
non-self-gravitating and predominantly pressure-confined droplets.
If coherent cores do indeed provide the necessary low-turbulence
environment for star formation as hypothesized by Goodman et al.
(1998), then an important question concerns whether there is an
evolutionary relation between different flavours of coherent cores
and between coherent cores and the better known pre-/protostellar
cores. Unfortunately, no coherent cores defined by a transition to
coherence have been identified in simulations to date, although cores
with subsonic velocity dispersions have been identified in simulations
(e.g. Klessen et al. 2005; Offner et al. 2008).

In this work, we develop a method to identify, track, and charac-
terize the evolution of dynamic gas structures in simulations, which
may be applied to other numerical models of star formation. We aim
to provide a complete picture of core formation and evolution that
links turbulent molecular clouds to star-forming cores. In particular,
we aim to answer the following questions: i) how do cores form
in a turbulent environment, ii) what role do coherent cores play
in the star formation process, and iii) is there an evolutionary
connection between coherent cores and pre-/protostellar cores? To
answer these questions, we carry out a comprehensive analysis of
density structures in a magnetohydrodynamic (MHD) simulation

!n this work, coherent cores and coherent structures are used interchangeably
to refer to dense cores defined by a transition to coherence. The non-self-
gravitating and pressure confined population of droplets identified by Chen
et al. (2019a) is a subset of coherent cores by this definition. This slightly
differs from the convention adopted by Chen et al. (2019a), where the term
coherent cores specifically means self-gravitating coherent cores. See §3 in
Chen et al. (2019a).
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of a turbulent molecular cloud. We examine these structures as they
evolve and move across the simulation without any prior assumptions
regarding their internal structures. We achieve this by utilizing
unsupervized machine learning techniques, including Neural Gas
prototype learning and Fuzzy c-means clustering. We then compare
our results to cores identified in NHj3 in the Orion, Perseus, Taurus,
Ophiuchus, and Cepheus star-forming regions (Keown et al. 2017;
Kirk et al. 2017; Chen et al. 2019a; Kerr et al. 2019), including the
known sample of coherent cores.

In Section 2, we describe the MHD simulation and the set of
observations that we compare to. We then introduce our method
to identify and track density structures in Section 3.1 and describe
how we calculate core properties in Section 3.2. In Section 3.3, we
present our approach to cluster cores using prototype learning and
then describe the Uniform Manifold Approximation and Projection
(UMAP) approach to visualize the result in Section 3.4. We examine
the properties of the core clusters (phases), investigate core evolution,
and compare to observations in Section 4. We discuss the implication
of the phases for an evolutionary sequence in Section 5.1 and compare
with star formation models in Sections 5.2-5.3. We discuss the
implications for core observations in Section 5.4 and caveats to our
approach in Section 5.5. We summarize our work in Section 6.

2 DATA

2.1 Magnetohydrodynamic simulation of star formation

We analyse the magnetohydrodynamic (MHD) simulation of a turbu-
lent star-forming cloud previously presented in Smullen et al. (2020).
The simulation models a box of 5 pc on a side with periodic boundary
conditions. We focus on the data in the basegrid and first adaptive
mesh refinement (AMR) level, which corresponds to a voxel size of
~0.004 pc and is consistent with a Nyquist sampling of the beam size
of observations used by Chen et al. (2019a). The initial conditions of
this simulation are identical to those of run W2T2 in Offner & Arce
(2015), where these conditions are chosen to model a typical nearby
molecular cloud like the Perseus molecular cloud. The simulation is
run using the ORION2 code and includes ideal MHD, self-gravity,
and Lagrangian accreting sink particles (Krumholz, McKee & Klein
2004; Lietal. 2012, 2021). The mean gas density of the simulation is
po=2.04 x 1072 gecm ™3, or n ~430 cm~3, where 7 is the molecular
hydrogen number density assuming a mean molecular weight per H,
molecule of 2.8 a.m.u. (Kauffmann et al. 2008). The simulation
begins with a uniform density, a uniform temperature of 10K, and
a uniform magnetic field in the z-direction, B, = 13.5 uG. The gas
is then perturbed for two Mach crossing times by a random velocity
distribution with dispersion o3, = 2.0 km s~! that corresponds to a
flat power spectrum in Fourier space with 1 < kL/2w < 2, where k is
the wavenumber and L is the domain size. At the end of the driving
phase, the gas reaches a turbulent steady state with a turbulent power
spectrum P (k) o k=2, plasma parameter (ratio of thermal pressure
to magnetic pressure) 8 = 8w poc?/B2 = 0.02, and virial parameter
Ayir = SUIZdL /(2G M joua) = 1.0, where ¢, is the sonic speed and
Moua == 3800 M. See Smullen et al. (2020) for details. We follow
the cloud evolution for 6 x 10° yr and use simulation snapshots with
time spacing Az ~ 1.5 x 10*yr for the analysis.

2.2 Source catalogues

We compare the cores identified in the MHD simulation to cores
observed using the NH; emission from the GBT Ammonia Survey
(GAS, Friesen et al. 2017). These data were combined with different
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ancillary data sets to identify cores and derive their properties in
several different star-forming regions. Note that each of the studies
adopts a slightly different approach to core identification as we
describe below.

2.2.1 Coherent cores

Chen et al. (2019a) identified a population of 23 candidate coherent
structures in two star-forming regions in nearby molecular clouds,
L1688 in Ophiuchus and B18 in Taurus, using observations of NH3
emission from the GBT Ammonia Survey (Friesen et al. 2017)
and column density maps derived from Herschel observations of
dust emission (André et al. 2010). These cores are identified by
a sharp transition from supersonic to subsonic line widths, which
determines their boundaries, and a coherent, subsonic non-thermal
velocity dispersion in their interiors. To identify coherent cores,
Chen et al. (2019a) adopt a five-step process, similar to Pineda
et al. (2010). First, they define the structure boundary as the contour
where the thermal and non-thermal components are equal, and each is
required to contain a column density peak and local minimum in dust
temperature as defined by Herschel. Any region containing multiple
NHj peaks is subdivided using the emission saddle point. The cores
are required to have a signal-to-noise ratio greater than 10 and pixels
that produce a large local high-velocity gradient are excluded. 18
of the 23 structures identified by Chen et al. (2019a) satisty all five
criteria and are considered droplets. The remaining five do not satisfy
all the criteria and are therefore considered droplet candidates. The
median mass of all 23 cores is 0.21)7M, and the median radius is
0.033%900¢ pc. Chen et al. (2019a) found that the cores have a typical
total velocity dispersion, oy, = 0.23700) km s~!, where

— 2 2
Otot = \/ Ot T Ffherm> @)

owrb 18 the turbulent velocity dispersion and o e i8S the thermal
velocity dispersion. These cores have density profiles shallower
than a critical Bonnor-Ebert sphere, and they are not bound by
self-gravity but are instead bound by pressure provided by the
ambient gas motion, i.e. the turbulent pressure.

2.2.2 Pressure-confined cores

Kirk et al. (2017) survey dense cores in the Orion A star-forming
region. They use gas temperature and velocity dispersion data from
GAS (Friesen et al. 2017) and derive core masses and sizes from
the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS
Ward-Thompson et al. 2007). The JCMT GBS observed 6.2 square
degrees around the Orion A molecular cloud at 850 and 450 pm with
SCUBA-2 with resolutions of 14.6 and 9.8 arcsec. Kirk et al. (2017)
adopt the dense core catalogue presented in Lane et al. (2016). Lane
et al. (2016) use getsources, a multiscale, multi-wavelength source
extraction algorithm to compute the sizes, total fluxes, and peak
positions of the cores. Getsources decomposes the dust emission at
each wavelength into a variety of scales and then creates a Gaussian
model for the sources, separating them from the surrounding larger-
scale emission features (Men’shchikov et al. 2012). Kirk et al. (2017)
approximate the core radii as the geometric mean of the major and
minor axis full-width half-max (FWHM) of the getsources fit and
apply a correction for the telescope beam.

The Kirk et al. (2017) sample contains 237 cores, of which 26 are
cross-matched with Spitzer sources and classified as protostellar.
Kirk et al. (2017) find that in fact very few of these cores are
sufficiently massive to be bound when considering only the balance
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between self-gravity and thermal plus internal turbulent motions.
This would naively imply that these cores are in the process of dis-
persing or are non-star-forming. However, the cores are considered
bound when the additional pressure imposed by the weight of the
ambient molecular cloud is included, suggesting that most of the
cores are in fact pressure confined.

In addition to being a more clustered, higher pressure high-mass
star-forming region, gas in Orion is warmer. For the purpose of
comparing more directly with our simulated cores, we exclude
all observed cores with gas temperatures >15K, since they have
a significantly larger thermal line width then the cores in our
simulation. The median mass and radius of the 43 cold dense cores
are 0~8J:8:43;M® and 0.026f8:8(1)5 pc, respectively. They have a median
total velocity dispersion, oy, = 0.32700 km s~

2.2.3 Starless cores in low-mass star-forming regions

Kerretal. (2019) present an analysis of starless dense cores identified
in three nearby low-mass star-forming regions: Ophiuchus, NGC
1333 in Perseus, and B18 in Taurus. They adopt the same procedure
followed by Kirk et al. (2017) to identify cores in the JCMT GBS
data, combine the footprints with the GAS NHj3 data to compute core
properties and then estimate the ambient cloud weight from Planck
and Herschel-based column density maps.

The combined sample totals 132 cores, all starless by construction.
Ophiuchus and Perseus also include regions with warmer gas, so as
above we exclude all cores in these regions with 7 > 15K in the
comparison with the simulation data. This leaves a total of 30 cores
in Ophiuchus, 33 cores in Perseus, and all 8 cores in Taurus. The
median mass and radius of the 71 cold dense cores are 0.4705Mg
and 0.02375:9% pc, respectively. They have a median total velocity

. . _ —+0.09
dispersion, oot = 0.377 .

2.2.4 Virialized cores in cepheus

Keown etal. (2017) analyse the GAS observations of Cepheus-L1251
to identify hierarchical gas structures. To circumvent the complex
hyperfine structure of NHj, they construct a simulated Gaussian
emission data cube, in which the NHj structure is represented by
Gaussians (the hyperfine structure is effectively removed). They
apply astrodendro to the simulated data to identify 22 high-level
structures or leaves, which are equivalent to cores for our purposes.
The effective radius of each structure is the geometric mean of the
major and minor axes returned by the dendrogram analysis. Keown
etal. (2017) estimate the masses of the ammonia-identified structures
using the H, column density measured by Herschel dust continuum
observations (Di Francesco et al. 2020).

In contrast to the analyses above, Keown et al. (2017) find that
all the cores are roughly virialized, i.e. have comparable kinetic
and gravitational energies, without accounting for the contribution
of the cloud weight. All of the cores have temperatures below
15K, so we include all cores in our simulation comparison. The
median mass and radius of the Cepheus-L1251 core sample are
2.5 18Mg and 0.02273:9% pe, respectively. They have a median total
velocity dispersion, oy = 0.23*0.07. While the measured sizes and
velocity dispersions are similar to those above, the core masses are
significantly higher.

3 ANALYSIS

To carry out a comprehensive analysis of independent density
structures in the MHD simulation, we first identify structures using a
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Figure 1. Schematic summary of the analyses carried out in this work. (a) Density structure identification using dendrograms. (b) Prototype UMAP analysis
and Fuzzy c-means clustering analysis on the density profiles, velocity dispersion profiles, and core properties. (¢) Tracking each density structure as it moves
and evolves across the simulation. Note that the clustering analysis and tracking are done independently from each other.

source extraction algorithm like the one implemented by Rosolowsky
etal. (2008b), which places structures into a hierarchy as described by
a tree-like dendrogram.? This algorithm is functionally a watershed
decomposition algorithm. We next classify and visualize the struc-
tures using a UMAP and a Fuzzy c-means analysis of their properties.
Finally, we track each independent structure in the dendrogram as it
evolves and moves across both the simulation and the UMAP space.
Fig. 1 is a schematic summary of our analysis procedure.

3.1 Core identification and tracking

We identify cores in each snapshot of the MHD simulation described
in Section 2.1 using the dendrogram algorithm (hierarchical structure
extraction algorithm; Rosolowsky et al. 2008b; Goodman et al. 2009).
Dendrogram-based extraction algorithms (hereafter the dendrogram,
for simplicity) efficiently identify density structures in star-forming
regions in both simulations (e.g. Hopkins 2012; Burkhart et al. 2013;
Koch et al. 2017) and observations (e.g. Goodman et al. 2009;
Lee et al. 2014; Seo et al. 2015). For each snapshot, we apply the
dendrogram on the density distribution in the 3-d space. We construct
the dendrogram to find structures with densities above 10*cm—3,
which is characteristic of the densities traced by NH;3. To guarantee
enough sampling points for the analysis of density and velocity
distributions, a structure must have a volume of at least 100 voxels
(~0.02 pc in linear size) to be included in the dendrogram. To avoid
the inclusion of insignificant local density fluctuations, a structure
must also have a difference of 10* cm~2 in density between its peak
and the node where it merges on to the tree.> We identify a total of
3538 structures over a time span of 6.0 x 10° yr with a nominal time
resolution of ~1.5 x 10* yr. Note that we use the dendrogram only

2We use astrodendro, a Python package to extract extended sources in
astronomical data (http://dendrograms.org).

3These set-up parameters translate to min_value of 10* cm=3, min_delta of
10* cm ™3, and min_npix of 100 in astrodendro A tree is a full dendrogram
representation of hierarchical structures.

3
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to identify independent density structures and locate their peaks. We
do not limit our following analysis of the density distribution to only
the density range above 10* cm™ (see Section 3.2 for details), and
we only use the dendrogram boundary to avoid confusion with a
neighbouring core. See Fig. 2 for an example of the independent
structures identified using the dendrogram algorithm.

To follow the identified cores as they move and evolve in the
simulated box, we devise a tracking procedure by first identifying
the density peaks within independent structures, leaves, in the
dendrogram of each snapshot. The tracking procedure then uses
the velocity at the position of the density peak to predict where
the density peak is expected to be in the previous and following
snapshots. If the expected position falls within the boundary of a
dendrogram leaf, the tracking procedure links the original structure
with the leaf in the previous or following snapshot. This tracking
procedure is similar to but less detailed than the one deployed and
analysed by Smullen et al. (2020), in which the overlap in various
physical quantities and statistical measurements are examined when
dendrogram structures in different snapshots are compared. Our
tracking procedure then repeats the process by going through the
total of 3627 independent structures of the dendrograms derived for
the snapshots used in this study.

We find that 3538 out of 3627 structures (~97 per cent) are
connected to 450 tracks, which link cores identified in two or
more snapshots. As Smullen et al. (2020) have pointed out, the
robustness of the identification using the dendrogram algorithm
is subject to uncertainties due to the stochastic fluctuation in the
density distribution over time, even when the dendrograms are
derived using the same set of input parameters. We try to avoid the
issue of density fluctuations affecting the robustness of dendrogram
tracking by excluding structures that are not connected to any of the
tracks. This is equivalent to removing structures that are captured
by a dendrogram only in a certain snapshot but not the preceding
nor the subsequent ones (separated by Az ~ 1.5 x 10*yr; see
above).

Of the 450 tracks, 146 (32 per cent) end after merging with
another track such that they no longer have a unique, distinct
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(a) Dendrogram Leaves

(b) Dendrogram
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Figure 2. Cores identified as dendrogram leaves. (a) Dendrogram structures plotted on top of the density field integrated over the x-axis. The contours are
colour coded according to the ID number the astrodendro package assigns, and each corresponds to the structure in the dendrogram with the same colour. (b)
Dendrogram with the leaves colour coded by the ID number the astrodendro package assigns. This snapshot is at £ = 4.7 x 10° yr. Note that since neighbouring
structures in the dendrogram are usually assigned consecutive ID numbers, structures that share the same branch may have a difference in colour too subtle to

be recognized by eye.

peak that can be identified. Since we are particularly interested in
the evolution of cores from formation to either star formation or
dispersal, we limit our evolutionary study to consider only the 304
main tracks, i.e. we exclude short-lived over-densities that merge
with larger ones. We exclude only the minor structure in the merger
for the following reasons. If the peak of a structure disappears
due to a merger, its track terminates abruptly after a significant
jump in the core properties (because the track is matched to a new
peak/object). Neglecting these histories allows a cleaner analysis and
clearer visualization of evolutionary trends. We, however, include
the dominant structure in the analysis since the merger does not
abruptly affect the inner profiles near the peak or the bulk properties,
which are generally derived from a compact region around the
peak.

The average lifetime of the 304 tracks is 2.15 x 10° yr. 21 tracks
span the entire simulation calculation of ~6 x 10° yr. 15 out of the
remaining 304 tracks (~5 per cent) are connected to at least one
structure with a sink particle of a mass >0.1Mg; several of these
are matched to two or three sink particles. 167 of 304 (~55 or
~37 per cent of 450) cores disperse, i.e. their track ends before
forming a sink particle, merging with another track or reaching
the last snapshot. Generally, this occurs if the core size or density
maximum falls below the dendrogram structure requirement.

3.2 Constructing physical properties of identified cores

In order to analyse the core evolution and compare with observations,
we must define a set of fundamental core properties that represent es-
sential characteristics of each core. This step serves as an initial layer
of dimensionality reduction, where we reduce the high-dimensional
simulation phase space of gas position (x;), velocity (v;), and density
(p(x;)) to a smaller set of parameters that more directly represents
each core and can readily be compared with observations.

We first describe each core as a vector of d = 106 physical
properties that contains the radial density and velocity dispersion
profiles (50 radial measurements for each), exponent of a power-
law fit to the density profile, and bulk core properties, including
radius, mass, velocity dispersion, and ratio of kinetic energy to
gravitational energy. We adopt this particular set of bulk properties
because they correspond to the set of physical properties previously

Density PDF of a snapshot

100,

[
[==]
@

Number of Voxels
=

[
o
[

¥ The density range
| and bins (n;) used for
102 L LI | derivation of density &
i i # velocity dispersion profiles
10! 102 103 104
Density [cm-3]

Figure 3. Probability density function (PDF) of density of a snapshot taken
at t = 5 x 10° yr (solid black line). The shaded area and bins correspond
to the range of density and the series of n; used for deriving the density and
velocity dispersion profiles (see Section 4.1).

derived from the observed dense cores in our observational samples
(see Section 2.2). Here, we describe how we derive each of these
parameters.

We take the following steps to derive radial profiles. First, we draw
a series of constant density isosurfaces, each at a number density
n;. Since the isosurfaces may take any shape as dictated by the gas
distribution, we make no assumption about the geometry of the cores.
We use 51 density values uniformly spaced on a logarithmic scale
from n = 10>°-103° cm~3. As Fig. 3 shows, these densities sample
the underlying probability density function (PDF) of gas density well.
Each isosurface is then converted to an equivalent radius by finding
the radius that would construct a sphere that has the same volume
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as the volume enclosed by the isosurface, ie. Vi, = 471R2q/3.4
The radial density profile, n(r), is then constructed from the series
of densities, n;, that define the isosurfaces and the corresponding
equivalentradii, R.q ;. For the velocity dispersion profile, we calculate
the velocity dispersion of material enclosed within each isosurface,
o, and similarly construct the profile of velocity dispersion, o (r),
from o; and R,y ;. Note that the profile represents the 3-d turbulent
velocity dispersion and does not include the thermal sound speed.
The structure boundaries defined by the dendrogram are only used
to avoid confusion with another core. We stop the construction of
profiles when the volume enclosed by the isosurface overlaps with
the dendrogram boundary of another core. This occurs mostly when
the core has a sibling, i.e. a nearby leaf that has the same density
minimum and shares the same parent branch in the dendrogram. For
a core that does not have a sibling (the trunk-leaves — independent
structures at the bottom level; Rosolowsky et al. 2008b), the extent of
the radial profile is not limited by the dendrogram structure boundary
(see Section 3.1). This method does not involve spherical averaging
and can produce radial profiles for structures with different shapes
in a reliable and consistent way.

We use the 1-d profiles to derive the rest of the core properties.
In order to better compare with the observations described in
Section 2.2, we define the boundary such that the core radius,
R., is the FWHM of the density profile. This definition is similar
to that adopted by the getsources algorithm, which is commonly
used to define observed structures. While this does not allow a true
apples-to-apples comparison, using the FWHM as the core boundary
produces simulated core with masses, sizes, and velocity dispersions
comparable to the those of observed cores (see Section 4.5). We
derive the core mass, M., by integrating the density profile to
obtain the mass enclosed by R,. Since observations do not include
protostellar information in core estimates, we exclude the sink mass
in the calculation of M, and all the other core properties. For the
total velocity dispersion of the core, we adopt the observational
definition in equation (1). Here, oym = O'(R(j)/«/g and c; is the
sound speed for a 10K molecular gas. We define the radius of
coherence, Rcon, as the radius where the velocity dispersion falls
below the sound speed: o (r)/ /3 < ¢. We obtain the density power-
law index by performing a least squares fit on the density profile for
r < 0.1pc.

Using the mass, the size, and the velocity dispersion, we derive the
kinetic energy and the gravitational potential energy. For the purpose
of later observational comparison (see Section 4.5), we adopt the
expressions from Chen et al. (2019a), where the kinetic energy is

3

Q = S Mo &)
and the gravitational energy is
3GM,
Qg =—— . 3
75 R ©)

The latter expression assumes the cores have a uniform density
distribution. Cores with a density profile p o r~2 will have an actual
gravitational energy a factor of ~1.7 times larger than that expressed
in equation (3) (Pattle et al. 2015).

To evaluate the impact of the choice of core definition on our
analysis, we also adopt a fixed density contour to define core
boundaries. We present this analysis in Appendix D. There we

4We note this definition is the 3-d equivalent of the effective radius that
is often derived in observations of clouds and cores (Rosolowsky & Leroy
2006).
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demonstrate that while the quantitative distribution of core prop-
erties depends on core definition, the qualitative determination of
phases, and our conclusions are reasonably robust to the core
definition.

After deriving the properties for each core, we remove duplicate
information by reducing the number of profile data points that
contribute to the final data vector. We describe our procedure in
Appendix A. This effectively reduces the weight of the profiles in the
later analysis, so that the bulk and profile information is considered
more equally. This process reduces the 100 profile values to 22.

Finally, we assemble a data matrix composed of d = 28 physical
property measurements for each of the N = 3538 structures identified
by the method of Section 3.1.

3.3 Core clustering methodologies

Our goal is to identify groupings of the 3538 cores in order to
differentiate evolutionary behaviour based on physical properties.
Because our data arise from discrete snapshots of the continuous
process of an MHD simulation (Section 2.1), we have reason to
suspect the boundaries separating (defining) each phase are less crisp
than those arising from a truly discrete process. This complicates the
clustering task, whose goal is delineation of such boundaries. To aid
cluster saliency while still acknowledging the fuzziness of our data
groupings, we employ two approaches from unsupervized machine
learning: (1) we learn prototype representations of our data and then
(2) create a soft partitioning of these prototypes based on the Fuzzy
c-means algorithm. The benefits of this two-pronged approach are
discussed in the next two sections.

3.3.1 Learning prototypes of core properties

Prototype-based methods in machine learning (Biehl, Hammer &
Villmann 2016) apply common machine learning tasks (e.g. clus-
tering or classification) to intelligently formed representations of
the data called prototypes (instead of the data themselves). That is
from N data observations X = {x; € R?}"|, we learn M prototypes
W=A{w, € R4 y: - The prototypes arise from the codebook of a
vector quantizer (Gray 1984) trained on X and benefit the learning
task by simultaneously reducing sample size (typically M < N),
and decreasing noise (the process of quantizing an x; by its best
representative w; separates the signal and noise components of x;).
While classical k-means (MacQueen et al. 1967) with a large number
of centroids is a common method for obtaining prototypes; in this
work we obtain M = 249 prototypes of our N = 3538 cores from
the Batch Neural Gas algorithm (Cottrell et al. 2006, extended from
Martinetz & Schulten 1991) trained on the core properties. Neural
vector quantizers (Neural Gas, as well as the Self-Organizing Map,
see Kohonen, Schroeder & Huang 2001) benefit from a cooperative
element during their training process, rendering them less sensitive
to the initialization issues common for k-means (Cottrell et al.
2006). No theory currently exists for selecting an optimal number
of prototypes: there should be enough to fully capture intricacies
of the data distribution, but not so many that the vector quantizer
approaches an identity mapping. Often, analyses adopt empirical
rules of thumb from related areas such as kernel density estimation
that suggest M = O(+/N). Here we select the optimal number via an
iterative process: we start with M = 100 and learn. If all prototypes
are utilized, i.e. there are no dead prototypes with empty receptive
fields, we increase M by 50 and repeat, stopping once the set contains
at least one dead prototype. This process yielded M = 249 prototypes
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(1 dead prototype was removed after the last iteration) for the 3538
cores; because we find a similar number of clusters and set of
cluster properties for M = 150, we conclude that our analysis does
not strongly depend on the number of prototypes within a factor
of 2.

Beyond sample size and noise reduction, vector quantization
provides a unique prototype similarity measure, which we consult for
intelligent parameterization of part of our analysis (see Appendix C
for details). For completeness we also compared our results with
those derived from a more basic principle component analysis
(PCA), and from a self-organizing map (SOM) of the core data. We
find that both these approaches return qualitatively similar cluster
organization and cluster assignments. We present the Neural Gas
prototype analysis here, since it provides the best combination of
group separation and simplicity.

3.3.2 Fuzzy c-means clustering

Once learned, the core prototypes are clustered by a user-selected
method and the cores themselves inherit the cluster label of their
best representative. The continuous nature of our data (Section 3.3)
suggests we should expect some cluster overlap; to account for this,
we choose a soft partitioning of the core prototypes by the Fuzzy
c-means algorithm (or FCM, Bezdek, Ehrlich & Full 1984). Typical
hard partitioning schemes assume well separated data clusters and,
consequently, assign data to a single cluster. Soft partitionings instead
report a membership strength Uy, representing the degree to which
datum x; belongs to cluster k. By convention, 0 < Uy, < 1, Uy =
1, where Uy, > 0.5 denotes a datum’s strong membership in cluster
k. Importantly, the graded information contained in U influences
the formation of cluster centres in soft partitioning algorithms. For
completeness, we note that hard partitionings are a special case of soft
partitionings, where the Uy, are constrained to the set {0, 1}. From
the analysis of Appendix B, FCM applied to our core prototypes
suggests ¢ = 3 clusters (evolutionary phases) exist in the simulated
core sample. To mitigate initialization issues, the clusterings reported
in this work are optimal, i.e. have lowest within-group error over 1000
different randomly initialized runs of FCM.

3.4 Visualization with UMAP

Note that the evolutionary tracks described in Section 3.1 were
not used by FCM during the clustering procedure; therefore, the
resulting partitioning produces clusters of cores with similar physical
properties. Our goal is to uncover a relationship between these
groupings and a core’s evolution. To this end, we employ a 2-d
visualization of core prototypes via the UMAP algorithm (Mclnnes,
Healy & Melville 2018), which serves two purposes: 1) it allows
inspection of the integrity of the three FCM-identified clusters,
and 2) provides an organized space upon which to view the core
tracks. Fig. 4 shows the UMAP visualization of the prototype
data and the resulting three clusters identified as described in
Section 3.3.2. UMAP has gained popularity relative to other common
approaches for dimensionality reduction, such as t-SNE, due to
its visualization quality, ability to retain high-d structure in the
lower-d projection and calculation speed. The data visualizations
(e.g. Figs 4 and 6), along with associated group-wise statistics of
Fig. 7 and Table 1 underpin the evolutionary interpretation of our
clustering, as discussed in Section 4.2. An overview of UMAP and
an explanation of the parameters used in this work can be found in
Appendix C.
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Figure 4. A two-dimensional UMAP Embedding (using 36 neighbours, see
Appendix C) of the 3538 cores identified from the simulation (points), and
249 neural gas prototypes learned from them (diamonds). Colours indicate
cluster (phase) membership, while their transparency represents their cluster
membership strength U (fainter points belong less confidently to their reported
cluster); both are determined by the FCM algorithm applied to the high-
dimensional core profiles. Prototype sizes are mapped to the number of cores
each represents, which is determined during a recall of the entire training
dataset through the neural gas network. Shading indicates a 75 per cent
highest density region of a phase-conditional kernel density estimate fit to the
embedded points, which is shown to facilitate cluster boundaries in UMAP
space. Stars indicate sink particles identified from simulation.

4 RESULTS

4.1 Properties of core phases

Table 1 summarizes the simulation core properties for all 3538
cores and for cores classified in each of the phases. While the core
masses are similar across all phases, clear differences appear in the
other median properties. Phase I and Phase II cores have similar
masses, sizes, and density indices, however Phase II cores contain
a large subregion with a subsonic non-thermal velocity dispersion,
i.e. a region of coherence (Pineda et al. 2015; Chen et al. 2019a).
Consequently, we term Phase II the coherent phase. Phase Il cores
also have a slightly lower overall non-thermal dispersion and a
lower bulk velocity. Phase III cores have the steepest density index
(p = —1.2%2,), and the lowest ratio of kinetic to gravitational energy
(/19| = 2.91’}:8). Since our calculation for the gravitational
potential assumes a uniform potential, these virial parameters are
likely over-estimated by a factor of 1.7, which means that most of the
Phase III cores are gravitationally bound. We also find ~23 per cent
of these contain sink particles (compared to 0.8 and O per cent of
Phase I and II cores, respectively). Therefore, we term Phase III
the prestellar/protostellar phase. Of the three phases, Phase I has
the highest ratio of kinetic to gravitational energy. Consequently, we
refer to Phase I as the turbulent phase. In order for cores in this phase
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Table 1. Physical properties of cores in each phase. We assign those that have partial membership in two different clusters to the one with the highest
membership. The physical properties are measured using the density and velocity profiles derived from the dendrogram structure. The columns are number of
cores and median core mass, radius, size of the coherent region, density index, total velocity dispersion, bulk velocity, ratio between the kinetic energy, and
the absolute value of the gravitational potential energy, fraction of members containing protostars, and nearest neighbour separation. The density index is the
power-law index of the function, n = ng (r/r)?, fitted to the density profile of each core. The spreads are calculated using the 0.25 and 0.75 quantiles of the

distribution.

Core classification N M. (Mp) R. (pc) Reon (pc)

p O tot (km S_l)

Voul, 1a (kms™)  Qk/IQa| fi (%) d (pc)

Phase I (turbulent) 1221 0.31'8:%
Phase II (coherent) 1317 0.4f8:%
Phase III (protostellar) 1000 0.3f8:%
All 3538 03102
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Figure 5. Structures at 4.7 x 10° yr overlaid on the gas column density and
coloured by their assigned phase. White dots indicate the location of sink
particles. The time and view are the same as in Fig. 2.

to form stars, they must either gain significant mass or reduce their
gas velocity dispersion (possibly by passing through Phase II).

Cores almost always belong to Phase III after forming protostars
(see Fig. 4), so it can be loosely considered the last phase. However,
there is no one evolutionary order between I, II, and III and not all
cores that belong to Phase III at a given time go on to form protostars
(see Section 4.2 for more discussion). Cores may form in any phase
and take a variety of different routes to evolve through the parameter
space until they become protostellar or disperse, as we discuss in
detail in Section 4.2.

Fig. 5 shows a column density map with the identified structures
coloured by their phase. Most of the Phase III cores are located
within large filaments, which is also where most of the protostars
reside. Many of the Phase I and II structures are associated with
shocks and/or more isolated filamentary features. They also tend to
be larger and have lower column densities, which is consistent with
being gravitationally unbound.

Fig. 6 shows the distributions of core radii, masses, velocity
dispersion, virial ratio (ratio of kinetic to gravitational energy),
density index, and size of the coherent region. The clusters do not
divide cleanly across any of these properties, but there is evidence of
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property gradients. For example, Fig. 6a shows core sizes transition
from large to small from bottom to top. The core mass distribution
exhibits similar structure as shown in Fig. 6b with the lowest mass
cores appearing at the top of Phase I and Phase III. Similarly, Fig. 6¢
shows a strong vertical gradient in velocity dispersion, which is
echoed in the distribution of virial ratios shown in Fig. 6f. There are
two distinct regions of high-virial ratio: one appears in Phase I, where
cores seem to be genuinely unbound due to high levels of turbulence,
and the other occurs in the topmost corner of Phase III, where the
high dispersion is produced by infall. The prototypes within the lower
region of Phase III have the lowest virial ratios, suggesting that cores
are becoming bound as they approach the stage of gravitational
collapse. Unlike the others, the density index exhibits stronger
horizontal gradients with steeper profiles on the very right and left,
while flatter profiles appear in the centre. Fig. 6d shows the cleanest
and most monotonic trend across phases of all six properties: there is
a strong vertical gradient in the size of the coherent region with the
most coherent cores located at the bottom left of the UMAP (Phase
II), and cores with no coherent region at the top right (Phase III).

Fig. 7 displays the density and non-thermal velocity dispersion
profiles for each of the clusters (left-hand panels) and the distributions
for radius, total velocity dispersion, mass, and virial ratio (centre and
right-hand panels). With the exception of mass, the profiles, and
properties exhibit distinct differences for the three phases. Phase I
and II have significant overlap in several of the properties but are
distinguished by the velocity dispersion: Phase I cores are more
turbulent at all radii, while Phase II cores have velocity dispersion
profiles that dip to subsonic values near the core centre, i.e. they have
an internal coherent region. This difference in velocity dispersion is
also reflected by the virial ratio, which tends to be higher for Phase I
cores. Phase III cores exhibit noticeably steeper density profiles with
a higher central density. Meanwhile, the velocity dispersion of Phase
III cores is typically supersonic for all radii with velocity dispersion
flattening or increasing near the centre. This feature, together with
the steeper density profile is consistent with gravitational infall
dominating the internal kinematics of the core and the incipient
formation of protostars. For this reason, Phase III cores are also
more compact on average because the FWHM corresponds to a
smaller region (see Appendix D).

4.2 Core evolution

In this section, we use the core histories and cluster assignments to
explore how cores evolve through the cluster phase space.

We first calculate how long cores typically spend in each of
the three phases. By averaging over the time, cores spend visiting
each phase, we derive an effective phase lifetime; cores that never
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Figure 6. Projection of six different core properties ((a) radius, (b) mass, (c) velocity dispersion, (d) radius of coherence, (e) density index, (e) virial ratio) to

the embedded core locations in UMAP space.

visit a phase are not included in its time average. We estimate
typical lifetimes of 1.0 £ 0.1 x 10°yr, 1.3 £ 0.2 x 10°yr, and
1.8 £ 0.3 x 10’ yr for Phase I, II, and III, respectively. We find
that a core evolving into Phase III spends significantly longer
there. For example, cores that eventually form protostars spend
0.6 & 0.3 x 10° yr visiting Phase I and/or I and 5.0 & 0.4 x 10° yr
in Phase III. This is because star-forming cores remain in Phase III
after becoming protostellar and also because the lifetimes of cores
that visit Phase III tend to be systematically longer. The lifetime of
Phase I is the shortest, which is consistent with most of the cores
being unbound.

Next we investigate the trajectories of cores through the phase
space. Fig. 8 shows tracks for three different sets of core histo-
ries: short-lived tracks, which connect cores that appear only in
two snapshots, long-lived tracks, in which the cores persist for
all simulation snapshots, but do not form stars and sink tracks,
which represent the evolution of cores that eventually become
protostellar. Arrows represent the aggregate direction of movement
for all cores passing through the associated prototype, constructed
as a quadratic Bézier curve with control points set by the median
incoming direction (arrow tail), the prototype itself, and the median
outgoing direction (arrow head). The unit vectors describing the
incoming/outgoing control points are further scaled by the proportion
of incoming/outgoing tracks transiting through each prototype. Thus,

higher arrow curvature indicates more misalignment between the
median incoming and outgoing track directions, and an asymmetry
in arrow length (relative to the arrow’s middle elbow) indicates areas
of core birth (longer outgoing head) or dissipation (longer incoming
tail).

As UMAP is a highly non-linear manifold projection, some of the
strong curvature observed in Fig. 8 is to be expected. For example,
prototypes representing sink particles appear in a circular region
in the top right as shown by Fig. 8c, and the arrows connecting
neighbouring prototypes naturally possess curvature to follow the
circular structure in an organized manner. However, in more linear
regions of the embedding, curvature indicates track reversal of the
incoming/outgoing movement of a prototype’s typical core. The
strongest examples of such core meandering occur in the long
lived tracks of Fig. 8b, indicating that these tracks bounce from
one prototype to another (i.e. they migrate between different set of
physical characteristics), continuously due to small changes in their
properties. One fundamental implication of this figure is that there is
no one evolutionary path for cores.

The short-lived tracks represent relatively transient cores that
quickly disperse. These tracks inhabit the top left part of the phase
space, lying almost entirely within Phase I and II. Many of the
arrows point along the edge or outwards as if they are exiting the
UMAP boundaries. These cores disappear because their densities
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Figure 7. Summary of cluster statistics. Radial profiles of density (a) and 3-d velocity dispersion (d) for each of the three clusters, where thick lines represent
the median profile and the spread is the interquartile range. The horizontal grey line in (d) denotes the value at which the turbulent velocity dispersion equals
the sonic speed at 10K. The violin plots show the distributions of intra-cluster (b) radius, (c) mass, (e) velocity dispersion, and (f) virial ratio. The interquartile
range (thick black lines), median (white point), and Tukey’s fences (thin black lines) have been added to the violin plots to aid cluster comparison.
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Figure 8. Directional evolution of cores following short-lived (a), long-lived (b), and sink tracks (c). Short-lived tracks exist in only 2 of the 26 time snapshots
of the MHD simulation, long-lived tracks persist throughout, and sink tracks contain cores that form protostars at some point during their duration. Arrows
were constructed by a Bézier fit using the following control points in UMAP space: median direction from which cores transition to each prototype (arrow
tail), the prototype itself (middle), and the median direction fo which cores transit after visiting each prototype (arrow head). (Shorter) arrow length indicates
(mis-)alignment of the incoming/outgoing directions. Short-lived cores are predominantly mapped to Phase I and II, and star-forming cores migrate into Phase
111, while long-lived tracks inhabit the middle of the diagram and cross through all three phases. 75 per cent highest density regions of the clusters are outlined
by colour, and arrow transparency represents the number of tracks forming their direction.

and/or sizes fall below the threshold of detection by our dendrogram
algorithm, which is consistent with the small masses and sizes of
cores in this region of the parameter space (e.g. compare Fig. 8a and
Fig. 6ab).

The long-lived tracks inhabit the middle of the UMAP, spanning
parts of Phase I, II, and III. They appear to complement the short-
lived tracks, since their motion is concentrated in the right half of
Phase I and the bottom of Phase II. Their longevity suggests that they
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have achieved some degree of equilibrium, and inspection of many of
these cores indicates that they become coherent, moving into Phase
II, and remain there for much of their lifetime. This is illustrated by
the shortness of the arrows, which indicate that many cores mapped
to prototypes in the middle of Phase I and II do not undergo rapid
or significant changes in their properties between snapshots. The
general impression is that this subset of cores evolve more gradually
between phases. Since there is no preferred phase where cores start,
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Figure 9. Core evolutionary labels projected to UMAP space. (a) Cores are coloured by their evolutionary status, as observed at the end of simulation. From
left to right, UMAP organizes evolution into dissipating, quiescent, and pre/protostellar regions. Note that the evolutionary organization bleeds across the cluster
footprints identified by FCM in Fig. 4, indicating that no single association exists between properties and evolutionary status. For comparison, point transparency
represents the strength U of corresponding cluster membership from Section 3.3.2. (b) 10-50 per cent highest density regions of a 2-d kernel density estimate
of cores in UMAP space, conditioned on evolutionary status. A visualization such as this could provide probabilistic prediction of the evolutionary fate of any
observed cores (e.g. those presented in Fig. 14), although we have yet to formally classify such. (c) Pie charts placed at the neural gas prototype locations
in UMAP space display the distribution of evolutionary labels in each prototype’s receptive field (or RF, which is the set of points mapped to them). Size
corresponds to the cardinality of each prototype’s RF, while transparency indicates the prototype’s cluster membership strength U.

the initial position is not predictive of the longevity or the direction
of evolution.

The behaviour of the cores following sink tracks is potentially
the most interesting, since these cores are the subset that eventually
form stars. The arrow directions generally point towards the upper
right, suggesting that these cores move rightwards and upwards in
the parameter space as they evolve. Cores with sink particles lie
almost exclusively in the top right corner of Phase III, which is
consistent with the apparent trajectory of these cores. Prestellar
cores, i.e. those that later go on to form stars, mostly (9 of 15)
start in Phase II. These cores become protostellar while in Phase
IIT in a region of the parameter space in which the virial ratio is
small, and remain in Phase III for the remainder of their evolution.
Despite spending most of their evolution in Phase III, 73 per cent
of cores that eventually become protostellar spend time in another
Phase: on average 0.6 = 0.3 x 10° yr visiting Phase I and/or II and
5.0 = 0.4 x 10° yr in Phase III. Note that prototype locations in
Phase III can also host some short and long-lived cores, and thus
the initial core properties and phase space location are not entirely
predictive of the eventual evolution.

Finally in Fig. 9, we synthesize the evolutionary information by
colouring the UMAP not by cluster membership but by the outcome
of the evolution of the cores passing through each prototype. Here
we denote four states: cores that are protostellar (red), cores that are
prestellar, and will eventually become protostellar (orange), cores
that disperse (blue), and cores that neither disperse nor form proto-
stars by the end of the simulation (green). Many cores comprising
the last class have reached a quasi-equilibrium state due to magnetic,
turbulent, and thermal pressure support, and they are represented
by the long-lived tracks. Fig. 9c shows that prototypes on the
left represent predominantly dispersing cores, while pre/protostellar
cores are almost exclusively mapped to prototypes on the right.

Note that the core histories are not included in the information used
to perform the clustering, and thus represent an independent view of
how the clusters relate to one another. In many cases, the clustering

appears to intuit some of the evolutionary movement, since related
prototypes, e.g. those representing star-forming cores, are confined
to specific regions of the visualization. However, Fig. 9 shows the
evolution is not cleanly represented by particular properties, which
show a vertical separation. While cores assigned to Phase I and
Phase II have distinct properties, these properties only partially
predict whether the cores will disperse, persist, or form stars (see
Section 4.3 for further discussion of evolutionary rates). Disorder in
the UMAP is produced by the stochastic nature of star formation:
core properties vary as a function of the environment, formation, and
accretion history.

4.3 Survival rates and lifetimes

In Section 4.2, we show that evolutionary tracks exist that connect
three populations of cores with different physical properties. A closer
examination of the survival rates, defined as the fraction of cores
remaining in a given phase, reveals that cores classified in the same
phase can follow distinctly different evolutionary paths. Fig. 10
shows the percentages of cores in a given phase that stay in that phase,
eventually move to another phase and/or disperse. For example, if
a core starts in Phase I, moves into Phase II, and then moves to
Phase III before finally dispersing, it will be counted in the statistics
of cores that are born in Phase I (54 per cent), move from I to II
(41 per cent), move from II to III (13 per cent), and then disperse
from III (15 per cent). If that core belongs to the subset of cores that
persist or eventually form stars, Fig. 10b shows that for this path only
22 per cent are born in Phase I, 43 per cent move from I to II, and
47 per cent move from II to III. Stated another way, this figure shows
the transition probabilities for a core observed in a given phase. For
example, if a core is currently observed in Phase III, the probabilities
of either transitioning next to I or II or to dispersing from Phase III
are shown in the figure. We include 95 per cent confidence intervals
to give a sense of the uncertainties based on the core statistics.
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Figure 10. A summary of the transition probabilities among the three phases, as estimated empirically from the track histories, visualized in the organized
UMAP space (with axes removed for readability). The percentage (£95 per cent multinomial confidence intervals, Glaz & Sison 1999) of core transitions from
one cluster to another is shown at the start of directed paths connecting each cluster (larger boxed text), while the percentage of stationary cores is displayed
immediately below the cluster name. The dashed paths leaving each cluster represent core dispersal, which we consider to be another state space for transition.
Pink text indicates the percentage of cores which first appear (are born) in each cluster. All point estimates of the same colour add to 100 per cent. Panel (a)
computes these percentages relative to all tracks, while panel (b) considers only long-lived (appearing in every snapshot of our simulation) and protostellar

tracks.

We find that all cores have a relatively high probability of phase
transition: 85 & 4 per cent either move to another phase, disperse, or
both, during the simulation, while 55 & 6 per cent of cores belong
to two or more phases during their evolution. Phase I cores are most
transient with only 12/® per cent chance that a core in that phase
remains there for the remainder of its life. Approximately a quarter
of the cores disperse from each phase with cores in Phase II having
the lowest survival rate and Phase III cores having the highest (only
152 per cent cores disperse from this phase).

Fig. 10 a shows there is a lot of movement between Phase I and
I1. While it is most likely that a Phase I core transitions into Phase
I1 41%] per cent, there is a nearly equal probability, 383 per cent of
a Phase II core transitioning to Phase I (see also Fig. 8). Phase III
cores are most likely to remain in their current phase in part, because
23 per cent of Phase III cores are protostellar. Phase III cores that do
leave are more likely to move into Phase T (3139 per cent) than into
Phase II (2432 per cent). This core subset has a 51gmﬁcant amount of
initial turbulence: they can’t immediately collapse because they are
not bound by gravity. Fig. 10 shows that while most cores are born
into Phase I (54 per cent), the majority of cores that persist or form
stars, i.e. the ones that don’t disperse, begin in Phase II (64 per cent).
In either case very few cores start in Phase III.

Note that while the phases can be described by average properties,
there is a range of properties within each phase. This is also illustrated
by Fig. 11, which shows the distribution of prototype visiting times,
i.e. how long a typical core is matched to a given prototype. For
example, cores in the upper right of Phase III are not likely to
change phase or disperse because most already host stars. This is also
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reflected in the longer time periods a core matches a given prototype
in this region. Interestingly, Fig. 11 shows there is another grouping
of long-lived prototypes towards the bottom of Phase II. Inspection
of Fig. 7 indicates that these are moderately-sized cores that are
marginally bound and quiescent, i.e. these are coherent cores that
have reached a quasi-equilibrium state. In contrast, the prototypes
in Phase I tend to have the shortest lifetimes (3.8 £ 0.5 x 10*yr
versus 5.2 & 0.6 x 10* yrin Phase Il and 5.9 & 0.7 x 10* yr in Phase
III), indicating that the properties of Phase I cores change relatively
quickly.

4.4 Core properties

In this section, we present an analysis of the physical properties
derived using the core profiles constructed from the dendrogram-
identified hierarchy.

Fig. 12a shows mass as a function of size for cores in each of the
three phases. The phases generally fall along a power-law relation
where the Phase III cores, which are often protostellar, are offset
to a higher mass at a given radius. The protostellar cores are more
centrally peaked such that the FWHM core definition returns more
compact structures. A power law fit to the mass-size distribution
of cores belonging in all three phases gives a power-law index of
~1.5; fit to only the Phase I and Phase II cores returns a power-law
index of ~2.0, as expected from Larson’s relations (Larson 1981).
Appendix D shows that the power-law index is sensitive to the core
definition, however.
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Figure 11. Median time (log (years)) that cores spend visiting (being
represented by) each prototype along their evolutionary track, represented in
UMAP space. The marker size also corresponds to time. Inset: Distribution
of visiting times by evolutionary phase, which can also be considered the
prototype ‘lifetime’. Prototypes with longer visiting times, such as those in
Phase III, indicate that the core properties are stable and change relatively
slowly.

Fig. 12b shows non-thermal velocity dispersion, oy, as a function
of size for structures in each of the three phases. As expected from
the velocity dispersion profiles examined in Section 4.2, Phase I and
Phase III cores generally have larger velocity dispersions than Phase
II structures, which generally have subsonic dispersions. Protostellar
cores have the largest velocity dispersions due to gravitational infall.
Since the simulations neglect mass-loss due to protostellar outflows,
the sink particles are overmassive (Smullen et al. 2020) and the
degree of infall, and hence the non-thermal component, is likely
overestimated.

Fig. 13 shows gravitational energy versus kinetic energy for cores
in the three phases. Such a comparison, conventionally known as
a virial analysis, provides a first-order estimate of the gravitational
boundedness of a structure. A virial analysis may sometimes include
other terms such as the magnetic energy and the surface pressure
term (see Ward-Thompson et al. 2006; Pattle et al. 2015; Chen
et al. 2019a). Since the core mass does not include the sink mass,
we note the gravitational binding energy of the protostellar core
is underestimated. We find that there is no clear separation in the
distribution of kinetic and gravitational energies between Phases.
In contrast, see the analysis in Appendix D, which also shows
that these properties are sensitive to the core definition. However,
there appear to be more Phase III cores with high gravitational and
kinetic energy that are more gravitationally bound, consistent with
the star-forming activities found within many of them. Phase I and
II cores are almost all below the equilibrium line and are unbound
when considering only thermal, gravitational, and kinetic energy.
Recall that our definition for the gravitational energy in equation (3)
assumed a uniform density; we see here this description is more
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accurate for Phase I and Phase II cores, which have a relatively flat
density profile.

4.5 Classification of observations

In this section, we compare the observed cores with the simulated
cores by using their properties to match them to prototypes and
project them into the UM AP parameter space. Each observed core in-
herits coordinates in the UMAP plane from their most representative
prototype among those trained on our simulated cores according to
Section 3.3.1. Recall (Section 3.2) that each prototype represents 28
different physical core properties with the radial density and velocity
dispersion profiles comprising 22 of the 28. As this information is
missing from the observed cores, we have mapped observations to
prototypes based solely on their radius, mass, velocity dispersion,
and virial ratio by excluding the radial profiles learned by the neural
gas prototypes during quantization. The size of the cores identified
by Chen et al. (2019a) is defined by construction to be the size of
the coherent region, so we use the coherent radius instead of the
radius to project this sample into the UMAP. We acknowledge that
the neural gas algorithm may well have learned to represent this
reduced four-dimensional space differently (i.e. produced a different
set of prototypes), but any re-training would necessitate a separate
clustering (Section 3.3.2) and produce a different UMAP embedding
(Section 3.4).

We note that 33 (of 159) observed cores have a property that
falls slightly outside the range of the properties of the simulated
cores. The Cepheus cores, which adopt a different core definition
and appear the most bound of all the core catalogues, have the most
discrepancy. However, since these differences are within the obser-
vational uncertainties, we do not exclude them from our comparison.
Inspection of their phases and location in UMAP space indicates that
their classification is still consistent with the expectation given their
general properties.

Fig. 14 shows the observed cores are mapped to locations across
the UMAP space. In some cases, multiple cores in different regions
are mapped to the same prototype, as in the top right, while other
prototypes have no observational match. The droplets identified by
Chen et al. (2019a) are mostly mapped to prototypes in Phase II.
This is consistent with droplets being quiescent, coherent structures
by definition. The cores observed in Taurus (Kerr et al. 2019) are
likewise mostly mapped to prototypes that are classified as Phase II.

In contrast, few cores in Perseus, Ophiuchus, and Orion (Kirk et al.
2017; Kerr et al. 2019) match prototypes in Phase II. These cores
predominantly belong to Phase I or III, and they are instead located
in regions of the parameter space characterized by high-velocity
dispersions and high-virial ratios (top of the UMAP), as shown in
Fig. 6. The Perseus and Ophiuchus cores were selected to be starless
by construction, and their correspondence with prototypes in the top
right, where the simulated protostellar cores lie, may either mean
they are prestellar and close to forming stars or that their properties
are similar because they belong to more clustered environments,
which is also true of the simulated protostellar cores (see Table 1).
The Cepheus cores from Keown et al. (2017) are all mapped to a few
prototypes in the top right of Phase III, aregion of the parameter space
containing mostly prestellar, bound simulated cores (see Fig. 6).

To be more quantitative, we employ the simulated core distribution
to predict the evolution of the observed cores. Table 2 lists the
predicted probabilities of future evolution for cores observed in each
star-forming region. To obtain these predictions, we mapped the
observations to their most similar simulated core using the available
subset of bulk properties (radius, velocity dispersion, mass, and
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Figure 12. (a) Mass-size distribution of all 3538 independent structures. The green, purple, and orange circles correspond to structures in Phase I, II, and III,
respectively. The symbol transparency is set by the weight of the core cluster assignment. Black filled circles indicate cores with sink particles. The grey line
shows a fit to the Phase I and Phase II core populations. (b) Non-thermal velocity dispersion-size distribution of all 3538 independent structures with a colour
coding scheme, same as (a). The horizontal black lines denotes the velocity dispersion values when the non-thermal velocity dispersion is equal to the sonic
speed (thicker line) and half the sonic speed (thinner line) at 10K. Nearly all protostellar cores are members of Phase III. They tend to be more compact and

have higher velocity dispersions compared to other cores.
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Figure 13. Gravitational potential energy, |Qg|, versus kinetic energy, Qx,
for all 3538 structures. The green, purple, and orange circles correspond to
structures in Phase I, II, and III, respectively. The red band from the lower left
to the top right marks equilibrium between the gravitational potential energy,
and the internal kinetic energy (grey line) within a factor of two (grey shaded
region).

virial ratio). UMAP coordinates for each observation were inherited
from its nearest simulated neighbour, and a Bayesian classification
probability was obtained using the kernel density estimates of
each evolutionary stage visible in Fig. 9b. In most regions, about
~20 per cent of cores are expected to disperse while =50 per cent are
expected to eventually form stars. The droplets have the highest rate
of expected dispersal (54 per cent), while the Cepheus cores have the
lowest (7 per cent). 65 per cent of the cores in Taurus are expected to
‘persist’, i.e. they are likely long-lived quasi-equilibrium structures.
This is consistent with Taurus being a quiescent region where the
star-formation is most distributed. Overall, at least ~20 per cent of
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Figure 14. Observed cores (Section 2.2) embedded in UMAP space accord-
ing to the procedure outlined in Section 4.5. Some prototypes represent mul-
tiple observations from our data catalogue, but many have no observational
match. Conclusions from the analysis relating cluster-wise physical properties
to evolutionary phase (Section 4.1) apply most confidently to observations
located inside the outlined 75 per cent cluster highest density regions.

the observed cores are expected to disperse, while at least half are
likely to form stars in the near term.

Figs 15 and 16 compare the properties of the individual observed
cores to the simulated cores. As shown by the prototype comparison
in Fig. 14, there is good agreement between properties of observed
and simulated cores. In the 2-d parameter spaces of physical
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Table 2. Predicted future evolution for cores observed in each star-forming region. The table reports the number of
observations from each region predicted to be in each evolutionary state along with the mean £95 per cent confidence

interval of the class-wise predictive probabilities.

Disperse Persist Pre/Protostellar
Region N(total) N per cent N per cent N per cent
Ophiuchus 30 6 21 £9 4 21 £9 20 58 + 14
Orion 43 3 19 £5 14 26 £ 8 26 55 £ 12
Cepheus 22 0 7+2 2 13 £ 10 20 80 + 10
Perseus 33 2 17+ 6 12 31 £ 11 19 52 £ 13
Droplets 23 18 54 £ 12 4 39 £ 11 1 77
Taurus 8 2 21 £ 27 6 65 + 24 0 14 £ 8
All 159 31 22 £ 4 42 28 + 4 86 50 £6
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Figure 15. (a) Total velocity dispersion versus size with colours indicating their assigned phase as discussed in Section 4.1. The distribution of simulated
cores in each phase is shown as contours of constant posterior probability in a Gaussian kernel density estimation (KDE) analysis that estimates the underlying
probability density function in this parameter space. Cores observed in different star-forming regions are indicated by the symbols. (b) Same as (a) for the kinetic

and gravitational potential energies.

Mass vs. Size of Coherent Region
1!

¢ Droplets o
175 -
150 - \ Phase Il
125 - Phase | o

Mass [Msun]
B
o
(=]

] ] 1} 1
000 001 002 003 004 005 006 007
Coherent Radius [pc]

Figure 16. Core mass versus size of the coherent regions. Contours show
lines of constant probability from a KDE analysis for each of the phases.
Diamonds indicate droplet properties, where the droplet size is the size of the
coherent region by definition. Most droplets appear to be Phase II members.

properties there is significant overlap between the phases, so it is not
always clear which phase an observed core belongs to, for example,
on the basis of velocity dispersion and radius, alone. However, we
can still infer some general trends by inspecting the distribution of
observed core properties.

Fig. 15 a displays total velocity dispersion versus effective radius
for the three phases and the observed cores. Most of the droplets lie
in the Phase II region, which has a lower total velocity dispersion
and where the total is dominated by the thermal component. The
cores in the warmer and more clustered regions — Orion, Perseus
and Ophiuchus — lie predominantly in the Phase I and Phase III
regions, where the velocity dispersions are higher. By construction,
most of these cores are starless and relatively few fall into the high-
dispersion, compact size region (upper-right Phase III quadrant),
where the simulated protostellar cores lie. The Taurus and Cepheus
cores generally fall within the Phase [ and I regions. As we discussed
in Section 4.3, the simulations predict a high level of core dispersal,
and the location of the observed starless cores in phase space is not
predictive of whether a core will definitively go on to form stars
(although cores found in the middle part of Phase III are more likely
to be or become star-forming).

Fig. 15b shows gravitational energy versus kinetic energy for the
three phases and the observed cores. There is likewise a high degree
of overlap between the phases, which suggests that the virial ratio
cannot uniquely determine the core phase. In this space, there is also
good agreement between the simulated and observed cores with most
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of both appearing to be unbound. However, a subset of the observed
cores have high-gravitational energies and these extend outside the
simulation parameter space. Nearly all of these are cores in Cepheus,
which were defined using the dendrogram leaf boundary and thus are
systematically larger than cores in the other clouds. Our analysis in
Appendix D suggests that in fact the low-virial ratios may be partially
due to the core definition.

Fig. 16 shows core mass versus coherent region size for the three
phases and cores from Chen et al. (2019a). This data is only available
for the droplet population, which are explicitly identified and defined
by the extent of the coherent region. The droplets fall almost
entirely within the simulated Phase II region; two have significantly
higher masses and sizes. While there is some overlap between the
three phases, the resolution of the observations appears to limit the
minimum detected size of the internal coherent subregion, such that
any detected sizable coherent region uniquely identifies cores as
belonging to Phase II. The simulation phase distributions suggest
that other observed cores likely contain coherent regions with sizes
below the observational resolution (~0.02-0.05 pc).

5 DISCUSSION

5.1 Predicting core evolution

Based on the results presented in Section 4, we propose an evolution-
ary scenario where cores inhabit three distinct phases. Cores in these
three phases bear characteristically different physical properties.
In summary, cores are born as turbulent density structures that
depending on their initial size and virial ratio may belong to any
of the three phases. A subset of the smallest and most unbound
cores quickly disperse (e.g. as Fig. 8a). Cores that are initially bound
and classified as Phase III may begin collapse and form protostars
without passing through other phases (see Fig. 8c). In contrast, cores
that are marginally bound and/or pressure confined (depending on
core definition, see Appendix D), but not sufficiently massive to
collapse likely undergo a phase of turbulent decay, developing a
significant central coherent region, and evolving into Phase II. Such
cores may transition between Phases I, II, and III depending on their
local environments and how they accrete material (e.g. as described
by Burkert & Bodenheimer 2000; Hennebelle & Chabrier 2009;
Hopkins 2013; Padoan et al. 2020).

Due to the turbulent nature of the core environment, we find that
core characteristics are non-deterministic. Cores in all three phases
may disperse (Fig. 10, see also Smullen et al. 2020). This suggests
that the location of an observed core in the parameter space does not
uniquely determine whether it will survive or become protostellar.
Cores with significant coherent regions are more likely to live longer
but are also not guaranteed to form stars at a later time (e.g. Table 2).
This suggests that many observed starless cores may not in fact go
on to form stars. For example, our results suggest that low-mass
cores with initially high-virial ratios, such as a subset of Orion and
Ophiuchus cores that appear towards the top of Phase I (see Fig. 15)
have a high likelihood of dissipation within ~2 x 10° yr.

The exact percentages for the survival rates likely depend on the
degree of clustering and cloud physical conditions (e.g. Guszejnov
et al. 2022). However, the fact that some cores not bound by self-
gravity continue to evolve and may eventually become prestel-
lar/protostellar is consistent with the substantial number of observed
unbound cores. Chen et al. (2019a) found that (Phase II) coherent
cores, not bound by self-gravity, are instead confined by turbulent
motions of the ambient gas. Similarly, Orion and Ophiuchus contain
a large number of unbound cores, which can be explained by a
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significant confining pressure (Kirk et al. 2017; Kerr et al. 2019). This
confinement, provided by the turbulent pressure of the ambient gas,
helps explain why many apparently unbound cores persist and some
eventually become protostellar (e.g. Fig 8 bc). Our analysis suggests
that the degree of unboundedness may be due in part to the fiducial
core definition, which focuses on an inner compact portion of the
core and misses a substantial part of the core mass (see Appendix D).
However, we caution that even if confining pressure helps to explain
the existence of the large number of such structures, our results imply
that many of these will not go on to form stars.

Cores inhabiting Phase III have the highest likelihood, both of
persisting (30 per cent) and of being protostellar (23 per cent). This
suggests the subset of observed starless cores in Ophiuchus, Orion,
and Perseus mapped to Phase III prototypes will become protostellar.
Based on our tracks this may occur within ~1-2 x 10° yr, although
the time-scale for the evolution is difficult to constrain from the
placement within the UMAP alone.

Overall, cores appear to transition smoothly between phases as
evinced by the significant amount of time cores often spend in one
prototype and one phase before moving to another (e.g. Fig 11),
and the concentration of tracks in limited parts of the parameter
space (e.g. Fig 8). As discussed above, the appearance and growth of
coherent regions appears to be gradual, and a core remains not bound
by self-gravity in parts of Phase II. On the other hand, the transition
between Phase II and Phase I1I or Phase I and Phase III corresponds to
a shrinking or complete disappearance of the central coherent region
(Fig. 6). However, we note that there is a certain degree of overlap and
that some of the Phase III cores still contain coherent regions (Figs 6
and 15). An observational example is the star-forming coherent core
in the BS5 region in Perseus identified by Pineda et al. (2010). This
coherent core is associated with a known protostar and contains at
least three other starless substructures (Pineda et al. 2015). Pineda
et al. (2010) observed an increase in velocity dispersion near the
protostar in BS, which is also exhibited in some of the star-forming
Phase III cores (Fig. 7). This elevated dispersion could either be due
to gravitational infall or the protostellar outflow. One of the starless
substructures, B5-Condensationl, also exhibits a larger central line
width at higher resolution, which is likely due to infall (Schmiedeke
et al. 2021).

Gravitational boundedness is often used to distinguish between
conventionally identified starless cores, i.e. those with no protostar
which are considered unlikely to form stars, and prestellar cores,
which likewise contain no protostar but are expected to become star-
forming. As shown in Fig. 6f, there is no sharp boundary between
gravitationally bound and unbound cores. There are Phase II cores
that are gravitationally bound according to the virial analysis, and
there are Phase III cores that are not gravitationally bound. Both
the disappearance of the coherent region and the emergence of
gravitational boundedness are related to the onset of gravitational
infall in our evolutionary picture. In this dynamic picture, one should
not rely on a conventional virial analysis to predict whether a core
will eventually form stars or not.

5.2 Comparison with low-mass star and core formation models

To date, a great deal of theoretical work has been directed towards
the question: how does a core form in a molecular cloud, and
how does core formation lead to the formation of stars? In this
section, we discuss three representative models of low-mass core
and star formation and compare our results with these models.
Starting with Padoan, Nordlund & Jones (1997) a series of works
have proposed turbulent fragmentation as the dominant mechanism
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in forming cores (see Lee et al. 2020, and references therein). In
this model, structures develop in a top-down sense. Structures at
smaller scales form when turbulent fluctuations in the parent larger-
scale structure cause subregions to become gravitationally unstable.
Hopkins (2013) suggests that the physical properties of cores formed
via this mechanism are set at the time of fragmentation and are
only weakly modified by the collapse process. In the Hennebelle
& Chabrier (2008) model, the decay of turbulence does not affect
the selection process, which adopts gravitational instability as the
criterion to select structures that continue evolving and eventually
become prestellar/protostellar. In contrast, we find that the evolution
of turbulence within the core plays an important role. As discussed
in Section 5.1, turbulence dissipation in the first ~1-2 x 10° yr is
necessary to reduce turbulent support before gravitational collapse
starts. Although we do find that some Phase I cores are close to being
gravitationally unstable and evolve directly into Phase III, we find
that focusing only on density structures that are above the collapse
threshold would bias the analysis by excluding cores that eventually
become star-forming. However, based on our analysis, we agree that
turbulent fluctuations are important in creating the initial distribution
of density structures, although unlike in the theoretical framework
of turbulent fragmentation, these density structures do not need to
be initially gravitationally unstable to continue evolving to become
prestellar cores.

Chen & Ostriker (2014, 2015, 2018) examine the formation of
cores in the post-shock layers of supersonic converging flows. In their
model, the converging flows collide in a plane-parallel fashion. Chen
& Ostriker (2015) find that cores and filaments form simultaneously
in these post-shock layers. The cores have subsonic velocity fields
not unlike the Phase II coherent cores, as a result of the assumption
that the turbulence has already been dispersed on small scales due
to the initial conditions (e.g. see Fig. 5 in Chen, King & Li 2016).
They find that although the subsonic cores are initially not bound by
self-gravity, anisotropic flows (referred to as anisotropic contraction
in Chen & Ostriker 2014) along directions parallel to the post-shock
layers help the subsonic cores collect mass. The anisotropic flows
continue to add mass to the cores, even after the cores become
gravitationally unstable and collapse starts. Generally speaking, the
process examined by Chen & Ostriker (2015) corresponds to the
evolution of a subset of our Phase II cores toward Phase III. They
find that the time-scale of the anisotropic phase, which starts when
the anisotropic flows emerge and ends when the cores become
gravitationally unstable, is 2 x 10 to 3 x 103 yr, comparable to
our Phase I/II 4+ Phase III mean lifetimes. These works by Chen &
Ostriker (2015) demonstrate that converging flows can be an efficient
way to dissipate turbulence, although in reality, the idealized set-up
of cloud-scale plane-parallel converging flows is unlikely in turbulent
clouds. A similar process involving converging flows may explain the
formation of the dense filaments and the cores within them that we
also observe here. However, their set-up alone cannot fully explain
the formation and evolution of isolated Phase I and Phase II cores
outside the filaments, which appear to be correlated with mild and
local shock-induced features in our model (see Fig. 5). These isolated
cores collect mass as they move across the turbulent cloud without
need for converging flows. Future studies of cloud-scale converging
flows in more realistic settings within turbulent clouds are needed to
understand their effects on core evolution and turbulence dissipation.

Viazquez-Semadeni, Gonzélez-Samaniego & Colin (2017) and
Ballesteros-Paredes et al. (2018) propose a gravity-regulated model
of core formation, where dense cores form via hierarchical grav-
itational fragmentation. In the analytical model put forward by
Ballesteros-Paredes et al. (2018), a star-forming core starts its
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evolution in a state of gravitational instability and remains gravita-
tionally unstable throughout the evolution. Thus, a core in this model
undergoes gravitational collapse at all times. Ballesteros-Paredes
et al. (2018) propose that outside-in gravitational collapse generates
the distribution of velocity dispersions observed in coherent cores
with larger velocity dispersions at larger radii and smaller velocity
dispersions in the core centres. The simulated core in this model
develops a density profiles similar to the critical Bonnor-Ebert
sphere with p oc =2, Based on our analysis, we conclude this model
lacks the ability to explain the turbulence in Phase I cores and the
dissipation of turbulence during Phase I and Phase II. In our analysis,
when a core evolves from Phase II to Phase III, gravitational collapse
starts at the centre of the core (an inside-out collapse as proposed
by Shu 1977), raising the velocity dispersion at the centre above the
thermal sonic speed first before increasing the gas dispersion towards
the core edges. This can be seen in Fig. 7, where many of the Phase
III cores have centrally enhanced velocity dispersions. As discussed
above, most Phase I cores and Phase II cores have density profiles
that are shallower than a critical Bonnor-Ebert sphere, although at
later times, the profiles do approach Bonnor—Ebert-like profiles with
o o< r~2. On the other hand, Vizquez-Semadeni et al. (2017) show
that hierarchical gravitational fragmentation is capable of creating
star-forming cores that have physical properties similar to those of
the observed cores in a study of core formation in a molecular cloud
undergoing global gravitational collapse in simulations. However,
similar to the analytical model presented by Ballesteros-Paredes et al.
(2018), the cores in the simulations studied by Vazquez-Semadeni
et al. (2017) appear to be gravitationally supercritical at all times,
while in our model, most cores form as subcritical structures, whose
evolution is driven by the details of their formation from the turbulent
cloud environment. The gravity-regulated model cannot fully explain
the evolution of cores seen in our analysis.

In summary, the underlying difference between the picture pre-
sented in this paper and previous theoretical models is the inclusion
of gravitationally subcritical structures in the core evolution theory.
In previous models, subcritical density structures are excluded in
the analysis under the conventional assumption that such structures
disperse before they can become prestellar/protostellar. Our model
shows otherwise. As discussed in Section 4.2, we find that a portion
of cores that are not bound by self-gravity continue to evolve
and eventually become prestellar/protostellar. Critically, turbulence
dissipation appears to constitute an important separate stage of core
evolution. Future studies that examine gravitationally subcritical
cores along with supercritical ones are needed to understand the
process of turbulence dissipation and how it sets the initial conditions
for the later phase of gravitational collapse and star formation.

5.3 Comparison with high-mass star formation models

Our simulation represents typical nearby low-mass star-forming
regions, like Perseus, Ophiuchus, and Taurus with similar gas
temperatures, column densities, and velocity dispersions. Likewise,
the simulated core properties, including masses and sizes are similar
to those of cores identified in these regions. This reinforces that
our proposed core evolution model is applicable in the context of
low-mass star formation as defined by stars with masses below a
few solar masses. High-mass star formation, which is characterized
by higher gas temperatures, velocity dispersions, column densities,
and stellar densities may proceed very differently and not pass
through the phases we propose here. However, observations suggest
star formation exists on a continuum, low- and high-mass star
formation occurs co-spatially and contemporaneously, and there is
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not necessarily a clear dichotomy between them. To date, no coherent
cores with high masses that could be progenitors of massive stars
have been observed. This may be because such cores are distant and
rare or because few, if any, massive starless cores exist (Tan et al.
2014). However, our evolutionary model shares some characteristics
with several models for high-mass star formation, as we discuss
here. During Phase I, cores are trans-to-supersonically turbulent and
appear to be supported by turbulent pressure characteristics that are
adopted as the initial conditions of massive cores in the Turbulent
Core (TC) model for high-mass star formation (McKee & Tan 2002,
2003). In this model, turbulence provides internal pressure support
and mediates gravitational collapse. Later work notes that strong
magnetic fields may also contribute to the stability of massive cores
(Tan et al. 2013). However, the TC model does not address in detail
how such cores form. The challenge of identifying truly massive,
starless cores, and the apparent rarity of such objects suggest that
some degree of collapse and star formation proceeds before a large
reservoir of gas accumulates (Padoan et al. 2020; Grudié et al.
2022). In other words, massive star formation is contemporaneous
with massive core formation. In our model, a significant portion
of the core mass accumulates before the internal turbulence decays
and collapse proceeds. However, the mass becomes more centrally
concentrated during Phase III, suggesting that some degree of core
growth continues during the collapse phase but may not be included
within the FWHM boundary (see Appendix D).

In the opposite extreme, the competitive accretion (CA) model
predicts that cores as discrete objects are relatively unimportant
to the final outcome of star formation (Zinnecker 1982; Bonnell
et al. 2001a, b). Instead, massive stars form at the centre of clouds
within the largest gravitational potential well, which funnels material
inwards and facilitates high-stellar accretion rates. In this case, core
masses are independent of the final masses of the stars that form
within them, and massive starless cores never exist (Smith, Longmore
& Bonnell 2009; Mairs et al. 2014). The CA model stresses the
importance of the local environment and role of neighbouring stars.
In our model, cores form both outside and inside filamentary regions,
where the latter has the greatest ability for cores (and protostars)
to grow due to inflowing gas. We find that Phase III cores tend to
have closer near-neighbours, d = 0. 13f8:8§’ versus d = 0.177, and
d = 0.1803 (see Table 1) for Phase I and II cores. This suggests
that environment has some influence on the progression of core
evolution. The difference in clustering between Phase I/II cores and
Phase I1I cores may be in part because some fraction of cores disperse
before reaching Phase III, which could be more likely to occur if the
local environment does not allow sufficient mass accretion to trigger
collapse.

Recently, Padoan et al. (2020) proposed the inertial-inflow model,
in which massive stars form in turbulent regions characterized by
large-scale converging flows. The inertial-inflow model is formulated
by analysing magnetized driven turbulent simulations, not too dis-
similar from the one we analyse here, although Padoan et al. (2020)
follow a larger spatial volume and do not resolve the formation of
low-mass stars (M, < 2Mg). Turbulent fragmentation produces the
initial core properties and sets their growth time-scale; massive stars
form in cores that continue to grow through accretion. This model
predicts that truly massive starless cores do not exist, since collapse
begins before a significant amount of mass accumulates. Similarly,
Grudi¢ et al. (2022) find a very dynamic picture for high-mass star
formation, in which massive stars require a long time (21 Myr)
to reach their high masses and these stars accrete at increasingly
high rates. Of the high-mass models, we discuss here, these two
models are the most similar to the one we propose for low-mass star
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formation, namely, in that it emphasizes the dynamic nature of core
evolution. However, it does not explicitly address the early stages
of core formation, and the cores identified in the simulation are
gravitationally bound by construction, so they are most analogous to
our Phase III cores. It seems possible that turbulent decay and the
formation of coherent regions play an important role in low-mass star
formation as we propose here (e.g. Fig. 16), and the inertial-inflow
model represents a natural extension of core evolution for higher
mass stars. Future work is required to determine how the Phases we
identify here relate to high-mass core formation and evolution.

5.4 Observational identification of core phases

Intriguingly, coherent cores have only been directly observed and
resolved using observations of NH3 hyperfine line emission. Mean-
while, there are observations of C'80 and N,H™ molecular line
emission that either did not resolve the transition to coherence
and/or probed only the interior of a coherent core (Goodman et al.
1998; Caselli et al. 2002). Our models suggest that many starless
cores contain compact coherent regions that are below the current
observational resolution. By comparing the profiles in Fig. 7, we see
that the transition to coherence generally corresponds to a density
threshold of >2 x 10* cm™3, and that most such cores have peak
densities below 10° cm ™3, which may make them difficult to detect.
In addition, extended coherent regions may be hidden in observations
due to the embedding turbulent gas (Choudhury et al. 2021).

Phase I cores have similarly low-peak densities and properties;
without sufficiently high resolution (e.g. <0.01pc), it would be
observationally difficult to distinguish between Phase I and Phase 11
cores. Molecular line tracers that are also sensitive to lower densities
would make the observed line widths appear broader due to the
turbulent motions of the lower-density materials along the line of
sight. Consequently, it would be difficult to identify and resolve
an internal coherent region. Molecular line tracers tracing higher
densities would resolve the interior of the coherent region but not
the transition to coherence occurring >2 x 10*cm™3, at the same
time (this may be the case for the NyH observations performed by
Caselli et al. 2002).

In contrast, Phase III cores are relatively easier to detect. They
are expected to be denser and more chemically evolved, providing a
larger selection of possible molecular line tracers. These properties
likely account for the larger number of observed gravitationally
bound prestellar and protostellar cores compared to coherent cores.
Probing the internal velocity structures of Phase III cores is usually
limited by the saturation threshold, and choosing the right molecular
line tracer becomes critical. Numerous examples of prestellar and
protostellar cores that likely correspond to this phase in the simula-
tions have been identified in observations (Tafalla et al. 2004; Enoch
etal. 2008; Kauffmann et al. 2008; Rosolowsky et al. 2008a; Belloche
et al. 2011). At an even later stage, the formation of protostars
within cores provides an extra observational hint that they belong to
Phase III such as excess infrared emission and/or molecular outflows
(Bontemps et al. 1996; Arce et al. 2007).

The starting time of a core is subject to uncertainty in the definition
of a core. In our analysis, cores are defined by the parameters of
the dendrogram identification algorithm and FWHM criterion, and
we expect that choosing slightly different parameters would yield
slightly different core properties. As described in Section 3.1, we
require a density structure to have a size larger than ~0.028 pc above
a density threshold of 10* cm™ to be identified as a core. In reality,
the growth of a density structure in the molecular cloud starts before
gas reaches these densities. The growth time before we identify the
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core may be estimated with the free-fall time, ty = /37/32Gp,
which is 3.1 x 103 yr for a density of 10* cm™3. Processes such as
the formation of complex molecular species likely start during the
initial growth of the density structures and before the core is classified
into one of the three Phases we define here, but the formation time of
different species varies and abundances may not reach a detectable
level until the core remains above 10* cm =3 for ~10° yr (Suzuki et al.
1992; Friesen et al. 2017).

5.5 Comparison caveats

In this section, we discuss several caveats to our analysis and
comparison to observations.

First, our simulation does not include stellar feedback. Feedback,
particularly in the form of protostellar outflows, appears to be
critical in setting both the local core-to-star and global cloud-to-
star efficiencies (Federrath 2015; Offner & Chaban 2017; Grudié
et al. 2022). Feedback is also responsible for driving turbulence
over a range of scales within molecular clouds (e.g. Offner & Arce
2014; Offner & Liu 2018). The star-forming regions we compare
with in this work appear to have ubiquitous feedback in the form of
outflows and winds (e.g. Xu et al. 2020a, b, 2022). Consequently,
we expect the presence of feedback to alter the simulation core
properties and their cloud environment to some degree. In comparing
with observations, we mitigate the lack of feedback in the simulation
in two main ways. First, we compare to NH; observations, which
trace denser gas, where the imprint of feedback is small. Protostellar
cores observed with dense-gas tracers have relatively low (sub or
trans-sonic) velocity dispersions (Kirk, Johnstone & Tafalla 2007;
Rosolowsky et al. 2008a). The signature of feedback in NHj; line
widths at higher resolution is also usually small as in the case of
BS5, which hosts a Class I protostar (Pineda et al. 2015). Second,
the large majority of the observed cores that we compare with are
thought to be starless. Thus, while stellar feedback will likely alter
the details of the prototype learning and UMAP visualization, we
expect it will have little effect on the resulting classification and our
general conclusions.

Protostellar outflows also regulate core lifetimes by entraining
and expelling dense material. Simulations with feedback find that
the lifetime of protostellar cores, as defined by when most accretion
occurs, is ~2 x 10° yr (Offner & Chaban 2017), albeit with a large
amount of scatter (Grudic¢ et al. 2022). Only one of the protostellar
cores in the simulation disperses by the end of the calculation
(from Phase III). Without feedback, the protostellar core lifetime
and more generally the time star-forming cores spend in Phase III
(5.0 £ 0.4 x 103 yr, see Section 4.2) is overestimated, since there
is no mechanism to halt additional gas accretion on to a core and
protostar.

We also caution that the simulation models core evolution under
one set of initial conditions. These conditions represent the gas
temperatures, densities, and velocity dispersions typical of conditions
in nearby low-mass star-forming clouds. Although we find these
conditions produce cores with properties in good agreement with
those of observations (e.g. Fig. 15 and 16), further work is required
to determine the impact of variations in mean magnetic field, density,
velocity dispersion, and cloud geometry on core formation and
evolution (e.g. Guszejnov et al. 2021, 2022).

In addition, we do not carry out synthetic observations of the sim-
ulations, which are required for true ‘apples to apples’ comparisons
between models and observations (Haworth et al. 2018; Rosen et al.
2020). This would require calculating the NH3 abundances using
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chemical networks or adopting an abundance model (e.g. Oftner et al.
2013; Gaches et al. 2015; Friesen et al. 2017), performing radiative
transfer calculations to model the emission (e.g. Beaumont et al.
2013; Gaches et al. 2015) and accounting for observational resolution
(e.g. Bradshaw, Offner & Arce 2015; Betti et al. 2021). We mitigate
the impact of these uncertainties by focusing on cores observed
in NHj3, which has a low volume filling factor within local clouds
and thus suffers less from projection effects that otherwise produce
chance alignments of overdensities along the line-of-sight. We also
calculate the properties of the simulated cores using a grid resolution
comparable to the GAS pixel resolution of the observed star-forming
regions. Despite this, our approach does not fully encapsulate the
uncertainties in the observational data. Future work analysing the
evolution of cores in the space of synthetic NH; observations is
required to more securely map the observations to the simulated
data.

Finally, as discussed in Section 4.5, we project the observations
into the simulation space using a subset of the core properties. A more
complete comparison requires including the radial profiles of the
observed cores in the prototype matching. However, these data have
not been derived for cores in most of the catalogues we compare with.
This additional information would help disentangle high-velocity
dispersions produced by infall motions from those produced by
core turbulence. Our prototype learning makes this distinction easily,
cleanly separating protostellar cores, which are experiencing infall
(Phase III) from cores that are simply very turbulent (Phase I; see
Fig. 7). However, the set of observed bulk core properties may be
insufficient to identify this distinction. For example, in Fig. 14, a
number of cores in Ophiuchus, Perseus, and Orion are mapped into
the upper part of Phase III, where the simulated protostellar cores
reside. Most of these observed cores are not (currently) associated
with any identified infrared source, so we cannot determine whether
their placement there indicates incipient star-formation or whether it
indicates only that they have a high degree of turbulence. The latter
scenario would suggest some of these are more analogous to our
Phase I cores, which are less likely to become star-forming. Future
catalogues of core properties that include velocity dispersion and
column density profiles will enable methods like this one to better
distinguish between these two possibilities.

6 CONCLUSIONS

We present a method to identify, track, and characterize the evolution
of dynamic gas structures in simulations. Our method is general and
is applicable to other numerical models of star formation. Unlike
many previous core identification and analysis methods, we do not
make a priori assumptions about the physical properties of the cores
or their density and velocity dispersion distributions.

To provide a complete picture of core formation and evolution
that links turbulent molecular clouds to star-forming cores, we study
the formation, evolution, and collapse of dense cores identified in
an MHD simulation. We identify all independent density structures
above 10* cm~? in the simulation using the dendrogram algorithm.
For each core, we construct a data vector comprised of the density
and velocity dispersion profiles, core mass, radius, coherent region
radius, total velocity dispersion, density exponent, kinetic energy, and
gravitational energy. We utilize prototype learning to characterize the
core data features, FCM to cluster the data, and UMAP to project the
information into a two-dimensional space. We then track the cores as
they evolve and move across both the simulation and the learned
prototype space. As a result, we find three distinct evolutionary
phases. Phase I represents unbound turbulent structures; we refer
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to this phase as the turbulent phase. Since these cores are unbound,
they must gain mass or become quiescent in order to form stars.
Phase I cores have turbulent internal velocity dispersions and shallow
density profiles. Phase II corresponds to the dissipation of turbulence
and the formation of an extended coherent region, which is defined
as a region with subsonic and nearly uniform velocity dispersion.
Phase II cores resemble observed coherent cores, including ones that
are not bound by self-gravity like the droplets observed by Chen
et al. (2019a). We refer to this phase as the coherent phase. Phase II1
cores are characterized by gravitational infall, which often dominates
the internal dynamics. Phase III cores include both gravitationally
bound prestellar and protostellar cores. They also tend to be more
compact and lie in more clustered regions. About 23 per cent of these
cores contain protostars, such that this group contains 96 per cent
of the protostellar cores. Consequently, we refer to Phase III as the
prestellar/protostellar phase. We estimate typical lifetimes of

1.0£0.1 x 10°yr, 1.340.2 x 10° yr, and 1.8 £0.3 x 10° yr,

respectively, for Phase I, II, and III.

We track the evolution of cores through prototype space and
examine how they evolve through the Phases over time. Overall,
we find that core evolution is dynamic with 85 =+ 4 per cent of cores
changing phase at least once or dispersing during their lifetimes.
In addition, the instantaneous properties of a given core are not
predictive of its eventual evolution; cores do not follow one single
evolutionary path through the three identified phases. We attribute
this to a combination of truly stochastic processes, such as ongoing
gas accretion and interactions with the turbulent cloud environment
as well as with other cores and ambiguity about the core boundary
location, which does not always capture all the associated gas.
Of the cores we identify and track, 37 per cent disperse before
becoming self-gravitating and 32 per cent merge with another core.
This suggests that most observed starless cores have highly uncertain
futures and many will not go on to form stars.

However, we are able to identify some general trends for different
core populations. We find that cores that are short-lived and exist
for only two snapshots before dispersing primarily belong to Phase
I or II. The subset of long-lived cores that exist for all snapshots
appear to cycle through adjacent regions of Phase I, II, and III space,
spending a significant fraction of their lives as quiescent Phase II
coherent cores. Finally, cores that form protostars can begin in any
of the three phases but spend most of their lives in Phase III, where
they remain once they become protostellar. As prestellar cores these
structures evolve upwards and to the right in the UMAP space, until
they reach the region of Phase III parameter space where nearly all
protostellar cores reside.

We compare our simulated cores to observed cores detected in NH3
emission in the Taurus, Cepheus, Orion, Perseus, and Ophiuchus star-
forming regions by the Green Bank Ammonia Survey (GAS Friesen
etal. 2017; Keown et al. 2017; Kirk et al. 2017; Kerr et al. 2019; Chen
et al. 2019a). After excluding cores with gas temperatures > 15K, we
demonstrate that the simulated and observed cores have similar core
masses, sizes, velocity dispersions, and virial ratios. We map the
observed cores into the prototype space and project them on to the
two-dimensional UMAP visualization derived from the simulated
cores. We show the observed cores are matched to core prototypes
in all three phases. We estimate that at least 20 per cent of these will
disperse, while ~50 per cent will go on to form stars. The remaining
30 per cent map to long-lived quasi-equilibrium structures whose
final evolution is ambiguous.

We find that the coherent cores observed by Chen et al. (2019a) are
primarily classified as Phase II. The core evolution paths we identify
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indicate that coherent cores represent an important, earlier stage of
evolution for many prestellar, and protostellar (Phase III) cores. We
demonstrate that the observations of NH3 hyperfine line emission
with a physical resolution of ~0.2 pc or finer, like the ones carried
out by Friesen et al. (2017), are ideal for detecting Phase II cores.
However, the simulations suggest that many observed cores mapped
to Phase I and some in Phase III likely host a compact coherent region,
Reon < 0.02 pe, that remains unresolved. We find a number of cores
in Taurus, which is a relatively quiescent region, are also classified
as Phase II cores. Follow-up examination of the velocity profiles of
these cores may find evidence of a coherent subregion. In contrast,
cores detected in Orion, Perseus (specifically in NGC 1333), and
Ophiuchus have higher velocity dispersions and are predominantly
classified as Phase I or III.

Future work is needed that examines simulations with more diverse
initial conditions and additional physics to evaluate the impact of
cloud properties and stellar feedback on core evolution.
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APPENDIX A: DOWN-SELECTING THE CORE
PROPERTY VECTOR

To remove duplicate information from the core profiles we use the
Least Absolute Shrinkage & Selection Operator (LASSO, Tibshirani
1996), which employs penalized linear regression to fit a model ¥ ~
X according to the following:

ngn SSE = ||Y — XBl|r (Al)

subject to [[B[|; < A, (A2)

where SSE is the Sum of Squared Errors of the regression, and || -
|| is the Frobenius norm. In our case, X is the 100-d concatenated
density and dispersion profiles while Y contains the six bulk prop-
erties for each core, meaning our §; are 6-dimensional vectors of
regression coefficients.

For a given value of A optimization of the above forces some
set of {B8;} — 0, indicating removal of variable(s) {i} has minimal
impact on model SSE. The optimal value of A is typically selected
from a grid of candidate values via cross-validation, using SSE or
mean squared error as a guide. From Fig. Al[a], our model MSE
is minimized at log (A) &~ —7.8, which corresponds to retaining 78
of the 100 concatenated profiles in the model (model sparsity as a
function of X is given in Fig. A1[b]).

The lack of a sharp minimum in the MSE curve in Fig. Al[a]
indicates the LASSO regression is relatively stable over a wide range
of A or, equivalently, that only a small subset of the concatenated
density + dispersion profiles possess significant linear predictive
power for the bulk properties, collectively. Because, we include
the bulk properties in our analysis, we are more interested in the
complement of the set of LASSO-selected profiles, i.e. variables
that contain information other than what can be found in the bulk
properties. Thus, we retain only 12 density 4+ 10 dispersion = 22
profile variables for analysis. We note that a more sparse LASSO
model, which Fig. Al[a] suggests is statistically equivalent, has a
larger set complement. As our goal with this preliminary analysis
is to reduce the number of profiles used for prototype learning and
clustering, we have chosen the optimal model sparsity corresponding
to the recommended argmin M S E to produce the largest impact for
subsequent analysis.

Literature on dimensionality reduction (DR) algorithms often eval-
uate their performance via measures of topology preservation, which
report how well local data neighbourhoods in high-dimensional space
are preserved when represented in a lower-dimensional space. As
our LASSO-based variable selection is essentially a statistical DR
technique, we borrow a measure known as Rescaled Neighbourhood
Area Under the Curve (RNX AUC, detailed in Lee et al. (2015),
equation 17) to assess the impact of removing parts of the density
and dispersion profiles. RNX AUC reports a chance-corrected pro-
portion of K-nearest high(100)-dimensional neighbourhoods that are
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Figure Al. (a) LASSO mean squared error (as a function of penalty
parameter A) of regressing bulk properties ~ density + dispersion profiles.
Minimum MSE occurs at log (1) ~ —7.8, which corresponds to keeping
78 profiles in the regression model that are most associated with the bulk
properties, as shown in (b). The complement of this set (22/100 profiles)
contains information with less association with the bulk properties, which we
include in our analysis. (c¢) The RNX AUC topology-preservation measure
(red point, from Lee, Peluffo-Ordéfiez & Verleysen 2015) of the LASSO-
selected set of 22 profiles, compared to a confidence interval for RNX AUC
(black point range) obtained via a permutation test of selecting 22 profiles at
random. LASSO RNX is statistically larger than chance selection, indicating
our selection procedure has kept information relevant for inferring structure
from the dimensionally-reduced dataset.

preserved in low(22)-dimensional, averaged over all possible values
of K. A value = 1 indicates the ideal case, where all neighbour-
hood relationships are preserved at all scales in a low-dimensional
representation, and values <1 signal neighbourhood misalignment.
Representing the 100 core profiles with the 22 selected via LASSO
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results in an RNX value ~0.81. To test whether 0.81 is significant, we
performed a permutation test by randomly selecting 22/100 profiles,
computing RNX, and repeating 100 times. A 95 per cent confidence
interval from this non-parametric test is shown in Fig. Al[c] (black
point range), alongside the LASSO-selected RNX value (red point).
There is a small but statistically significant improvement in RNX
when using the LASSO-selected profile subset.

APPENDIX B: SELECTING THE NUMBER OF
CLUSTERS

The c-means algorithm partitions data into k clusters (k is a user-
specified parameter) regardless of whether k well-defined clusters are
actually present in the data. Thus, the success of c-means depends
upon proper specification of k. As there is no universally superior
method for determining the most appropriate value of k a number of
cluster validity indices (CVIs) reporting the degrees of compactness
and separation of clusters in a partitioning have been developed
(Arbelaitz et al. 2013). Typically an analyst selects k as the argmax
(or argmin, as appropriate) of a CVI computed for each clustering
resulting from a range of k. The weakness of such an approach is that
there is, again, no universally superior CVI (the problem of choosing
k has been replaced with that of choosing the correct CVI for the
data at hand). Consultation of several CVIs computed for a range of
k is an intuitive way to make this process more robust to (potentially)
user-biased CVI selection, but the range and optimality conditions of
each CVI vary which prohibits direct and simultaneous comparisons.
Additionally, some CVIs possess an inherent bias toward a small or
large k, e.g. the average within-cluster variance is a monotonically
decreasing function of & for c-means.

Recent work by Akhanli & Hennig (2020) proposes a method
based on resampling techniques to build an empirical sampling
distribution ﬁ,(k) of CVI (k). This sampling distribution represents
values of a particular CVI: which could result from clustering
multiple data sets similar to the one originally observed for a fixed
value of k. The mean and standard deviation of F,y, are used to
create a standardized Z-Score of each resampled ((k); repeating
this process B times for a collection of CVIs I(k) = {¢;(k), ta(k),
... } yields a collection of Z-Scores {zf’](k), zf’z(k), ...}B_,, which are
directly comparable (i.e. have a similarly standardized scale), both
amongst themselves and over a range of k. Further, the observed
value of CVI *(k) (resulting from the original clustering, before
any resampling occurs) is also standardized according to I:"l(k) and
averaged to create an aggregate index *(k) bearing influence from
all members of I(k). The r*(k) can now be compared across k,
and the best clustering according to this aggregation is selected as
argmax,, " (k).

We have applied the aggregation method of Akhanli & Hennig
(2020) to build sampling distributions and associated Z-Scores of
the observed values of three different CVIs for c-means clusterings
of the core prototypes with k ranging from 2 through 6:

(i) SILhouette Index (Rousseeuw & Kaufman 1990; Campello &
Hruschka 2006)

(i) Generalized Dunn Index with set distance 8¢ and diameter A3,
or GDI63, as defined in Bezdek & Pal (1995)

(iii) Davies-Bouldin Index (Davies & Bouldin 1979).

These CVIs are commonly used in practice. Higher values of SIL
and GDI63 are preferable, while DBI is optimal at its minimum.

The sampling distributions of (i)—(iii) and their aggregated Z-Score
are shown in Fig. B1. Because lower values of DBI are preferable,
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Figure B1. Bootstrapped sampling distributions (violin plots) and mean
confidence intervals of each cluster validity index computed as the number
of c-means clusters k ranges from 2 through 6. Red points indicate the CVI
evaluated on our original (non-bootstrapped) sample. k = 3 attained the
highest aggregate score among all CVIs (panel [b]), and the highest among
two of the three measures considered here (panel [a]). Since lower values of
DBI are preferable, DBI is negated before its Z-Score transformation to make
it comparable to GDI63 and SIL.

its scores were negated prior to aggregation. The k = 3 clustering
achieved the highest aggregate Z-Score of 1.15, while k = 2 achieved
the next highest (0.88). Because a 95 per cent confidence interval
around the difference in these means is strictly positive ([0.22, 0.32]),
we have selected the k = 3 clustering for the analysis in this work.
We note for completeness that the £ = 1 case is not addressed by
most CVIs; because our simulated data possesses at least two natural
groupings (whether or not a core is identified as containing a stellar
object), any k = 1 considerations are not applicable here.

APPENDIX C: UMAP DIMENSIONALITY
REDUCTION

UMAP is a non-linear dimensionality reduction technique (Lee &
Verleysen 2007) to embed high-dimensional point clouds X C R¢
in a lower-dimensional space U C R?. In this work, d = 28 (the 22
profiles identified in Appendix A + 6 bulk properties) and we specify
d = 2 to facilitate visualization. The low-dimensional points u; are
formed by minimizing the cross-entropy between distributions of
pair-wise similarities in high- and low-dimensional space. The high-
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dimensional point similarities are constructed from an exponentially
decaying kernel while the low-dimensional similarities are governed
by a parametric generalization of student’s t-distribution. The most
influential user-specified parameter 7 controls the number of nearest-
neighbour similarities that UMAP’s cross-entropy minimization
attempts to preserve and can greatly influence the quality of the
resulting embedding. 1 is typically selected via trial and error
over a grid of candidate values as the parameterization whose
resulting embedding looks best, and is assumed to grow with sample
size.

In lieu of an ad-hoc grid search under such subjective criteria,
we appeal to a more data-driven specification for »n utilizing in-
formation about data topology gleaned from Neural Gas learning
(Section 3.3.1). A recall of data through any vector quantizer (not
just Neural Gas) gives rise to the connectivity (CONN) graph
of its prototypes (Tasdemir & Merényi 2009), whose weighted
edges convey topological adjacencies of, and local distributions
surrounding, the prototypes in high-dimensional space. Thus, the
data inside a prototype’s receptive field (the set of data it represents)
combined with the receptive fields of CONN-adjacent prototypes
yields a subset of data whose pair-wise similarities are topologically
relevant. We set 1 equal to the average cardinalities of these sets for
each prototype, which is 36 for these data.

APPENDIX D: SENSITIVITY TO CORE
DEFINITION

In this appendix, we examine the effect of the choice of the core
definition on the clustering and core properties. Instead of using the
FWHM to set the core size as above, we define the core boundary as
the radius where the density profile equals 10* cm™~3, which is a more
physically motivated core definition. This is effectively the average
radius for a core enclosed by an isosurface with n = 10*cm™3,
which has the benefit of making the core size independent of the
peak density. Given the very different core definitions applied to
observational data, we view this analysis as a strong test of the
robustness of our analysis approach.

Table D1 summarizes the core properties. We find that the
distinguishing features of each phase are preserved: cores in Phase
IT are still coherent, nearly all of the protostellar cores are mapped
into one phase (Phase III), and Phase I cores are more turbulent and
unbound. However, we find that the cores overall, especially those
with protostars, are more extended and more massive. The median
radius, 0.07 pc, is also significantly higher than the median sizes of
the observed cores, while the median mass, 2.1Mg, is comparable
to that of the cores identified by Keown et al. (2017) (see Section
22.4).

As in the previous Phase assignments, cores in Phase I and II have
significant overlap in their properties with similar masses, radii, and
virial ratios. However, cores belonging to Phase III, which contains
96 per cent of the protostellar cores, are now systematically larger,
0.1 pc, and more massive, 6.3 M. They are now ~4—6 times more
massive than Phase I and II cores, such that mass becomes a key
characteristic distinguishing Phase I/Il and Phase III. The FHWM
definition appears to significantly underestimate the mass associated
with Phase III cores and thus misses the growth of prestellar and
protostellar cores. Unfortunately, it is not possible to define cores
in observations using a number density based criterion; this is one
reason we adopt the FWHM boundary as the fiducial core definition.

Despite the change in core definition and properties 97 per cent of
the cores are classified into the same phase as before. The largest
change occurs for Phase I cores, which increase in number by
~4 per cent. Most of the cores that are reclassified swap between
Phase I and II with 21 cores moving from Phase I to II and
37 moving from Phase II to I. This gives confidence that our
core classifications are robust and largely insensitive to differences
between core definitions.

Figs D1 and D2 show the distributions of the core properties. In
all cases, the phases show clearer separation than those identified
using the FWHM definition (see the analogous Figs 12 and 13
for comparison). This suggests that a core definition encompassing
more of the core envelope leads to more distinct clusters. While this
core definition appears superior for clustering and classification, we
instead adopt the FHWM definition in the body of the paper for the
purpose of comparing more directly with the GAS data. Our analysis
here suggests that the observed cores defined using getsources may
miss additional material in the core envelope that would help their
classification and produce more physically accurate core properties.
Recovering this mass is non-trivial, since the observations are limited
by the resolution, signal-to-noise and chemical characteristics of the
tracers observed as discussed in Section 5.4.

In Fig. D1, a the mass-size relation is steeper with M, o RS‘I,
rather than M. o« R? as expected from the observed line-width
size relation. In addition, the choice of boundary leads to better
continuity in the properties with the Phase III cores falling on the
same, considerably tighter mass-size relation. This suggests that
underestimating the core size, or in other words adopting a core
size that varies with the density peak, produces scatter in the mass-
size relation. This may partially explain the very flat, high-scatter
mass-size relationship of the GAS data (see fig. 5 in Kirk et al. 2017,
for example).

In Figs D1 and D2, we overlay the droplet data from Chen et al.
(2019a), which are the core sample defined in the most similar way.
The droplets are again matched predominantly with Phase II proto-

Table D1. Physical properties of cores in each phase. We assign those that have partial membership in two different clusters to the one with the highest
membership. The physical properties are measured using the density and velocity profiles derived from the dendrogram structure. The columns are number of
cores and median core mass, radius, size of the coherent region, density index, total velocity dispersion, bulk velocity, ratio between the kinetic energy and
the absolute value of the gravitational potential energy, fraction of members containing protostars and nearest neighbour separation. The density index is the
power-law index of the function, n = ng(r/ro)?, fitted to the density profile of each core. The spreads are calculated using the 0.25 and 0.75 quantiles of the

distribution.
Core classification N  M.Mp)  Re(pe) Reon (pc) p oot (kms™!) Vo 1a (kms™h)  Q/|Q] fi (%) d (pc)
Phase I (turbulent) 1266 11799 0067001 00127059 —0.87798 033700 0.6%92 3500 11 0175
+1.3 +0.01 +0.008 +0.15 —+0.03 +0.3 —+0.7 +0.15
Phase II (coherent) 1274 L7703 0.07%y 01 0.0297 5006 —0.857(, 0277503 0.4755 1.9705 0.0 0.18% 7
2.3 0.01 0.007 0.22 0.06 0.2 0.5 0.06
Phase III (protostellar) 998 63775 010700 0.009%)000  —1.22753%  0.38%00 0.6793 L4t 227 013758
2.7 0.02 0.01 0.2 0.06 0.3 1.1 0.1
All 3538 2.177] 0 0.07r0; 0016100  —0.95T05c  0.32700 0543 2143 6.8 0.16%5 06
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Figure D1. (a) Mass-size distribution of all 3538 independent structures. The green, purple, and orange circles correspond to structures in Phase I, II, and
111, respectively. The symbol transparency is set by the weight of the core cluster assignment. Black filled circles indicate cores with sink particles. The grey
line shows a fit to all cores. The grey diamonds represent the droplets from Chen et al. (2019a). (b) 1-d non-thermal velocity dispersion-size distribution of all
3538 independent structures with a colour coding scheme the same as (a). The non-thermal velocity dispersion is derived for the droplets (grey diamonds) by
assuming a gas temperature of 10K. The horizontal black lines denote the velocity dispersion values when the non-thermal velocity dispersion is equal to the
sonic speed (thicker line) and half the sonic speed (thinner line) for 10K molecular gas. Nearly all protostellar cores are members of Phase III, which tends to

contain more massive and larger cores than Phase I and II.

types. Like Phase II cores they have small masses, sizes, and velocity
dispersions. While they overlap in all areas of the parameter space
their sizes are systematically smaller than the median simulated core
size. However, they appear to follow a similar steep mass-size relation
to the simulation data.’ In a virial analysis, the droplets appear to
follow a narrow track that hugs the distribution of simulated Phase
II cores, which here are slightly offset from the Phase I distribution
and closer to virial equilibrium. Nearly all of the other samples of
observed cores have masses and sizes that fall outside the simulated
parameter space and performing the comparison presented in Sec-
tion 4.5 is no longer a statistically rigorous or meaningful exercise.

SNote that Chen et al. (2019a) found a mass-radius power-law index of 2.4 by
combining the droplet data with updated observations of dense cores taken
from Goodman et al. (1998), which are larger and more massive than the
droplets

Virial Equillibrium

10% 1

10:::_. bound by self-gravity 8

not bound by
| self-gravity

Gravitational Energy [erg]

100 e T

Kinetic Energy [erg]

Figure D2. Distribution of the gravitational potential energy and the kinetic
energy of all 3538 structures where the core boundary is defined using the n =
10* cm™3 density contour. The green, purple, and orange circles correspond
to structures in Phase I, II, and III, respectively. The band from the lower
left to the top right marks equilibrium between the gravitational potential
energy and the internal kinetic energy (grey line) within a factor of two
(grey shaded region). The droplets from Chen et al. (2019a) are overlaid for
comparison.
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