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A B S T R A C T 

We study the formation, evolution, and collapse of dense cores by tracking structures in a magnetohydrodynamic simulation of a 
star-forming cloud. We identify cores using the dendrogram algorithm and utilize machine learning techniques, including Neural 
Gas prototype learning and Fuzzy c -means clustering to analyse the density and velocity dispersion profiles of cores together with 

six bulk properties. We produce a 2-d visualization using a Uniform Manifold Approximation and Projection (UMAP), which 

facilitates the connection between physical properties and three partially-o v erlapping phases: i) unbound turbulent structures 
(Phase I), ii) coherent cores that have low turbulence (Phase II), and iii) bound cores, many of which become protostellar 
(Phase III). Within Phase II, we identify a population of long-lived coherent cores that reach a quasi-equilibrium state. Most 
prestellar cores form in Phase II and become protostellar after evolving into Phase III. Due to the turbulent cloud environment, 
the initial core properties do not uniquely predict the eventual evolution, i.e. core evolution is stochastic, and cores follow no one 
evolutionary path. The phase lifetimes are 1.0 ± 0.1 × 10 

5 yr, 1.3 ± 0.2 × 10 
5 yr, and 1.8 ± 0.3 × 10 

5 yr for Phase I, II, and III, 
respectively. We compare our results to NH 3 observations of dense cores. Known coherent cores predominantly map into Phase 
II, while most turbulent pressure-confined cores map to Phase I or III. We predict that a significant fraction of observed starless 
cores have unresolved coherent regions and that � 20 per cent of observed starless cores will not form stars. Measurements of 
core radial profiles in addition to the usual bulk properties will enable more accurate predictions of core evolution. 
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1  I N T RO D U C T I O N  

Since the first identification of dense cores in molecular line observa- 
tions made by Myers, Linke & Benson ( 1983 ), astronomers have used 
the term core to describe the small ( ∼0.1 pc; Jijina, Myers & Adams 
1999 ), roundish (aspect ratio ≤ 2; Myers et al. 1991 ), and quiescent 
(velocity dispersion nearly thermal; Fuller & Myers 1992 ) blobs 
of gas that are likely progenitors of low-mass stars (Pineda et al. 
2022 ). Later observations further characterized most star-forming 
cores as gravitationally bound, if not collapsing (Caselli et al. 2002 ; 
Enoch et al. 2008 ; Seo et al. 2015 ). On the other hand, Shu, Adams 
& Lizano ( 1987 ) formulated analytical star formation models and 
proposed an evolutionary sequence that describes the formation of 
protostars within cores through continuous accretion initiated by 
gravitational collapse and regulated by thermal pressure. Efforts 
using both observations and numerical simulations to understand 
the evolution of dense cores have since been largely focused on 
how dense cores evolve from the point of time when they become 
self-gravitating ( pr estellar cor es ) to when protostars form within 
them ( protostellar cores ; Li et al. 2004 ; Tafalla et al. 2004 ; McKee & 

⋆ E-mail: soffner@astro.as.utexas.edu 

Ostriker 2007 ; Kauffmann et al. 2008 ; Lada et al. 2008 ; Offner, Klein 
& McKee 2008 ; Rosolowsky et al. 2008a ; Dib et al. 2010 ; Heigl, 
Burkert & Hacar 2016 ; Chen & Ostriker 2018 ; Grudi ́c et al. 2022 ). 

Barranco & Goodman ( 1998 ) used observations of NH 3 hyperfine 
line emission to show that the line widths in the interiors of some 
dense cores are roughly constant at a value slightly higher than a 
purely thermal line width. Goodman et al. ( 1998 ) made observations 
of OH and C 

18 O line emission of dense cores and proposed that 
a characteristic radius exists where the scaling law between the 
line width and the core size changes from a power law to a 
virtually constant relationship. Goodman et al. ( 1998 ) found this 
characteristic radius to be ∼0.1 pc and called this change in the 
line width–size relation the transition to coherence. A coherent core 

defined by the transition to coherence is hypothesized to provide the 
ideal low-turbulence environment for further star formation through 
gravitational collapse (Goodman et al. 1998 ; Caselli et al. 2002 ). 
At around the same time, by measuring the near-infrared extinction, 
Alves, Lada & Lada ( 2001 ) found that the internal density structures 
of the dark cloud Barnard 68 are well described by a pressure- 
confined, self-gravitating isothermal sphere that is critically stable 
according to the Bonnor–Ebert criteria (Ebert 1955 ; Bonnor 1956 ). 
Later observations of C 

18 O molecular line emission confirmed that 
Barnard 68 is a thermally supported dense core (although a later 
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study found evidence that Barnard 68 is possibly merging with a 
smaller structure, which would lead to destabilization and collapse; 
Lada et al. 2003 ; Burkert & Alves 2009 ). Both the observation of 
coherent cores and the identification of a thermally supported dense 
core resembling a critical Bonnor–Ebert sphere provide important 
hints about the initial condition of dense cores before the formation 
of protostars within them. 

Recent observational works have revealed that coherent cores are 
common in nearby molecular clouds. Pineda et al. ( 2010 ) made 
the first direct observation of a coherent core in the B5 region in 
Perseus. Pineda et al. ( 2010 ) observed NH 3 hyperfine line emission 
using the Green Bank Telescope (GBT), and resolved the transition 
to coherence across the boundary of the core. Using Very Large 
Array (VLA) observations of the interior of the coherent core in 
B5, Pineda et al. ( 2015 ) found substructures within the B5 coherent 
core that will likely form protostars in a freefall time of ∼40 000 yr. 
Chen et al. ( 2019a ) identified a population of at least 18 coherent 
structures 1 in Ophiuchus and Taurus using data from the GBT 

Ammonia Surv e y (GAS; Friesen et al. 2017 ). These include droplets, 
a population of coherent cores that are not bound by self-gravity 
but are predominantly confined by the pressure provided by the 
turbulent motions of the ambient gas (Chen et al. 2019a ). The non- 
self-gra vitating droplets ha ve density structures shallower than a 
critical Bonnor–Ebert sphere (Chen et al. 2019a ), and sometimes 
show signs of internal velocity gradients that are likely the result 
of a combination of turbulent and rotational motions (Chen et al. 
2019b ). It was conjectured that these coherent structures, not bound 
by self-gravity, are either i) at an early stage of core formation, ii) an 
extension of the more massive coherent core population, or iii) tran- 
sient. Together, Pineda et al. ( 2010 ) and Chen et al. ( 2019a ) revealed 
an entire population of coherent cores, ranging from self-gravitating 
and sometimes star-forming ones, including the B5 coherent core, to 
non-self-gravitating and predominantly pressure-confined droplets. 
If coherent cores do indeed provide the necessary low-turbulence 
environment for star formation as hypothesized by Goodman et al. 
( 1998 ), then an important question concerns whether there is an 
evolutionary relation between different fla v ours of coherent cores 
and between coherent cores and the better known pre-/protostellar 
cores. Unfortunately, no coherent cores defined by a transition to 
coherence have been identified in simulations to date, although cores 
with subsonic velocity dispersions have been identified in simulations 
(e.g. Klessen et al. 2005 ; Offner et al. 2008 ). 

In this work, we develop a method to identify, track, and charac- 
terize the evolution of dynamic gas structures in simulations, which 
may be applied to other numerical models of star formation. We aim 

to provide a complete picture of core formation and evolution that 
links turbulent molecular clouds to star-forming cores. In particular, 
we aim to answer the following questions: i) how do cores form 

in a turbulent environment, ii) what role do coherent cores play 
in the star formation process, and iii) is there an evolutionary 
connection between coherent cores and pre-/protostellar cores? To 
answer these questions, we carry out a comprehensive analysis of 
density structures in a magnetohydrodynamic (MHD) simulation 

1 In this work, coherent cores and coherent structures are used interchangeably 
to refer to dense cores defined by a transition to coherence. The non-self- 
gravitating and pressure confined population of droplets identified by Chen 
et al. ( 2019a ) is a subset of coherent cores by this definition. This slightly 
differs from the convention adopted by Chen et al. ( 2019a ), where the term 

coher ent cor es specifically means self-gravitating coherent cores. See §3 in 
Chen et al. ( 2019a ). 

of a turbulent molecular cloud. We examine these structures as they 
evolv e and mo v e across the simulation without any prior assumptions 
regarding their internal structures. We achieve this by utilizing 
unsupervized machine learning techniques, including Neural Gas 
prototype learning and Fuzzy c -means clustering. We then compare 
our results to cores identified in NH 3 in the Orion, Perseus, Taurus, 
Ophiuchus, and Cepheus star-forming regions (K eo wn et al. 2017 ; 
Kirk et al. 2017 ; Chen et al. 2019a ; Kerr et al. 2019 ), including the 
known sample of coherent cores. 

In Section 2 , we describe the MHD simulation and the set of 
observations that we compare to. We then introduce our method 
to identify and track density structures in Section 3.1 and describe 
how we calculate core properties in Section 3.2 . In Section 3.3 , we 
present our approach to cluster cores using prototype learning and 
then describe the Uniform Manifold Approximation and Projection 
(UMAP) approach to visualize the result in Section 3.4 . We examine 
the properties of the core clusters ( phases ), investigate core evolution, 
and compare to observations in Section 4 . We discuss the implication 
of the phases for an evolutionary sequence in Section 5.1 and compare 
with star formation models in Sections 5.2 –5.3 . We discuss the 
implications for core observations in Section 5.4 and caveats to our 
approach in Section 5.5 . We summarize our work in Section 6 . 

2  DATA  

2.1 Magnetohydrodynamic simulation of star formation 

We analyse the magnetohydrodynamic (MHD) simulation of a turbu- 
lent star-forming cloud previously presented in Smullen et al. ( 2020 ). 
The simulation models a box of 5 pc on a side with periodic boundary 
conditions. We focus on the data in the basegrid and first adaptive 
mesh refinement (AMR) level, which corresponds to a voxel size of 
∼0.004 pc and is consistent with a Nyquist sampling of the beam size 
of observations used by Chen et al. ( 2019a ). The initial conditions of 
this simulation are identical to those of run W2T2 in Offner & Arce 
( 2015 ), where these conditions are chosen to model a typical nearby 
molecular cloud like the Perseus molecular cloud. The simulation is 
run using the ORION2 code and includes ideal MHD, self-gravity, 
and Lagrangian accreting sink particles (Krumholz, McKee & Klein 
2004 ; Li et al. 2012 , 2021 ). The mean gas density of the simulation is 
ρ0 = 2.04 × 10 −21 g cm 

−3 , or n ∼430 cm 
−3 , where n is the molecular 

hydrogen number density assuming a mean molecular weight per H 2 

molecule of 2.8 a.m.u. (Kauffmann et al. 2008 ). The simulation 
begins with a uniform density, a uniform temperature of 10K, and 
a uniform magnetic field in the z-direction, B z = 13.5 µG. The gas 
is then perturbed for two Mach crossing times by a random velocity 
distribution with dispersion σ3 d = 2 . 0 km s −1 that corresponds to a 
flat power spectrum in Fourier space with 1 ≤ kL /2 π ≤ 2, where k is 
the wavenumber and L is the domain size. At the end of the driving 
phase, the gas reaches a turbulent steady state with a turbulent power 
spectrum P ( k) ∝ k −2 , plasma parameter (ratio of thermal pressure 
to magnetic pressure) β = 8 πρ0 c 

2 
s /B 

2 
z = 0.02, and virial parameter 

αvir = 5 σ 2 
1d L/ (2 GM cloud ) = 1 . 0, where c s is the sonic speed and 

M cloud ≃ 3800 M ⊙. See Smullen et al. ( 2020 ) for details. We follow 

the cloud evolution for 6 × 10 5 yr and use simulation snapshots with 
time spacing � t ∼ 1.5 × 10 4 yr for the analysis. 

2.2 Source catalogues 

We compare the cores identified in the MHD simulation to cores 
observed using the NH 3 emission from the GBT Ammonia Survey 
(GAS, Friesen et al. 2017 ). These data were combined with different 
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ancillary data sets to identify cores and derive their properties in 
se veral dif ferent star-forming regions. Note that each of the studies 
adopts a slightly different approach to core identification as we 
describe below. 

2.2.1 Coher ent cor es 

Chen et al. ( 2019a ) identified a population of 23 candidate coherent 
structures in two star-forming regions in nearby molecular clouds, 
L1688 in Ophiuchus and B18 in Taurus, using observations of NH 3 

emission from the GBT Ammonia Surv e y (Friesen et al. 2017 ) 
and column density maps derived from Herschel observations of 
dust emission (Andr ́e et al. 2010 ). These cores are identified by 
a sharp transition from supersonic to subsonic line widths, which 
determines their boundaries, and a coherent, subsonic non-thermal 
velocity dispersion in their interiors. To identify coherent cores, 
Chen et al. ( 2019a ) adopt a five-step process, similar to Pineda 
et al. ( 2010 ). First, they define the structure boundary as the contour 
where the thermal and non-thermal components are equal, and each is 
required to contain a column density peak and local minimum in dust 
temperature as defined by Herschel. An y re gion containing multiple 
NH 3 peaks is subdivided using the emission saddle point. The cores 
are required to have a signal-to-noise ratio greater than 10 and pixels 
that produce a large local high-velocity gradient are excluded. 18 
of the 23 structures identified by Chen et al. ( 2019a ) satisfy all five 
criteria and are considered droplets. The remaining five do not satisfy 
all the criteria and are therefore considered droplet candidates. The 
median mass of all 23 cores is 0 . 2 + 0 . 3 

−0 . 1 M ⊙, and the median radius is 
0 . 033 + 0 . 01 

−0 . 008 pc. Chen et al. ( 2019a ) found that the cores have a typical 
total velocity dispersion, σtot = 0 . 23 + 0 . 01 

−0 . 02 km s −1 , where 

σtot = 

√ 

σ 2 
turb + σ 2 

therm , (1) 

σ turb is the turbulent velocity dispersion and σ therm is the thermal 
velocity dispersion. These cores have density profiles shallower 
than a critical Bonnor–Ebert sphere, and they are not bound by 
self-gra vity b ut are instead bound by pressure provided by the 
ambient gas motion, i.e. the turbulent pressure. 

2.2.2 Pr essur e-confined cor es 

Kirk et al. ( 2017 ) surv e y dense cores in the Orion A star-forming 
re gion. The y use gas temperature and velocity dispersion data from 

GAS (Friesen et al. 2017 ) and derive core masses and sizes from 

the James Clerk Maxwell Telescope Gould Belt Surv e y (JCMT GBS 

Ward-Thompson et al. 2007 ). The JCMT GBS observed 6.2 square 
degrees around the Orion A molecular cloud at 850 and 450 µm with 
SCUBA-2 with resolutions of 14.6 and 9.8 arcsec. Kirk et al. ( 2017 ) 
adopt the dense core catalogue presented in Lane et al. ( 2016 ). Lane 
et al. ( 2016 ) use getsources , a multiscale, multi-wavelength source 
extraction algorithm to compute the sizes, total fluxes, and peak 
positions of the cores. Getsources decomposes the dust emission at 
each wavelength into a variety of scales and then creates a Gaussian 
model for the sources, separating them from the surrounding larger- 
scale emission features (Men’shchikov et al. 2012 ). Kirk et al. ( 2017 ) 
approximate the core radii as the geometric mean of the major and 
minor axis full-width half-max (FWHM) of the getsources fit and 
apply a correction for the telescope beam. 

The Kirk et al. ( 2017 ) sample contains 237 cores, of which 26 are 
cross-matched with Spitzer sources and classified as protostellar. 
Kirk et al. ( 2017 ) find that in fact very few of these cores are 
suf ficiently massi ve to be bound when considering only the balance 

between self-gravity and thermal plus internal turbulent motions. 
This would naively imply that these cores are in the process of dis- 
persing or are non-star-forming. Ho we ver, the cores are considered 
bound when the additional pressure imposed by the weight of the 
ambient molecular cloud is included, suggesting that most of the 
cores are in fact pressure confined. 

In addition to being a more clustered, higher pressure high-mass 
star-forming region, gas in Orion is warmer. For the purpose of 
comparing more directly with our simulated cores, we exclude 
all observed cores with gas temperatures ≥15K, since they have 
a significantly larger thermal line width then the cores in our 
simulation. The median mass and radius of the 43 cold dense cores 
are 0 . 8 + 0 . 3 

−0 . 4 M ⊙ and 0 . 026 + 0 . 01 
−0 . 005 pc, respectiv ely. The y hav e a median 

total velocity dispersion, σtot = 0 . 32 + 0 . 02 
−0 . 04 km s −1 . 

2.2.3 Starless cores in low-mass star-forming regions 

Kerr et al. ( 2019 ) present an analysis of starless dense cores identified 
in three nearby low-mass star-forming regions: Ophiuchus, NGC 

1333 in Perseus, and B18 in Taurus. They adopt the same procedure 
followed by Kirk et al. ( 2017 ) to identify cores in the JCMT GBS 

data, combine the footprints with the GAS NH 3 data to compute core 
properties and then estimate the ambient cloud weight from Planck 

and Herschel -based column density maps. 
The combined sample totals 132 cores, all starless by construction. 

Ophiuchus and Perseus also include regions with warmer gas, so as 
abo v e we exclude all cores in these regions with T ≥ 15K in the 
comparison with the simulation data. This leaves a total of 30 cores 
in Ophiuchus, 33 cores in Perseus, and all 8 cores in Taurus. The 
median mass and radius of the 71 cold dense cores are 0 . 4 + 0 . 4 

−0 . 3 M ⊙
and 0 . 023 + 0 . 008 

−0 . 003 pc, respectiv ely. The y hav e a median total v elocity 
dispersion, σ tot = 0 . 37 + 0 . 09 

−0 . 05 . 

2.2.4 Virialized cores in cepheus 

K eo wn et al. ( 2017 ) analyse the GAS observations of Cepheus-L1251 
to identify hierarchical gas structures. To circumvent the complex 
hyperfine structure of NH 3 , they construct a simulated Gaussian 
emission data cube, in which the NH 3 structure is represented by 
Gaussians (the hyperfine structure is ef fecti v ely remo v ed). The y 
apply astr odendr o to the simulated data to identify 22 high-level 
structures or leaves, which are equi v alent to cores for our purposes. 
The ef fecti ve radius of each structure is the geometric mean of the 
major and minor axes returned by the dendrogram analysis. K eo wn 
et al. ( 2017 ) estimate the masses of the ammonia-identified structures 
using the H 2 column density measured by Herschel dust continuum 

observations (Di Francesco et al. 2020 ). 
In contrast to the analyses abo v e, K eo wn et al. ( 2017 ) find that 

all the cores are roughly virialized, i.e. have comparable kinetic 
and gravitational energies, without accounting for the contribution 
of the cloud weight. All of the cores have temperatures below 

15K, so we include all cores in our simulation comparison. The 
median mass and radius of the Cepheus-L1251 core sample are 
2 . 5 + 1 . 9 

−0 . 8 M ⊙ and 0 . 022 + 0 . 005 
−0 . 007 pc, respectiv ely. The y hav e a median total 

velocity dispersion, σtot = 0 . 23 + 0 . 05 
−0 . 01 . While the measured sizes and 

velocity dispersions are similar to those abo v e, the core masses are 
significantly higher. 

3  ANALYSI S  

To carry out a comprehensive analysis of independent density 
structures in the MHD simulation, we first identify structures using a 
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Figure 1. Schematic summary of the analyses carried out in this work. (a) Density structure identification using dendrograms. (b) Prototype UMAP analysis 
and Fuzzy c -means clustering analysis on the density profiles, velocity dispersion profiles, and core properties. (c) Tracking each density structure as it mo v es 
and evolves across the simulation. Note that the clustering analysis and tracking are done independently from each other. 

source extraction algorithm like the one implemented by Rosolowsky 
et al. ( 2008b ), which places structures into a hierarchy as described by 
a tree-like dendrogram. 2 This algorithm is functionally a watershed 
decomposition algorithm. We next classify and visualize the struc- 
tures using a UMAP and a Fuzzy c -means analysis of their properties. 
Finally, we track each independent structure in the dendrogram as it 
evolves and moves across both the simulation and the UMAP space. 
Fig. 1 is a schematic summary of our analysis procedure. 

3.1 Core identification and tracking 

We identify cores in each snapshot of the MHD simulation described 
in Section 2.1 using the dendrogram algorithm (hierarchical structure 
e xtraction algorithm; Rosolowsk y et al. 2008b ; Goodman et al. 2009 ). 
Dendrogram-based extraction algorithms (hereafter the dendrogram, 
for simplicity) efficiently identify density structures in star-forming 
regions in both simulations (e.g. Hopkins 2012 ; Burkhart et al. 2013 ; 
Koch et al. 2017 ) and observations (e.g. Goodman et al. 2009 ; 
Lee et al. 2014 ; Seo et al. 2015 ). For each snapshot, we apply the 
dendrogram on the density distribution in the 3-d space. We construct 
the dendrogram to find structures with densities abo v e 10 4 cm 

−3 , 
which is characteristic of the densities traced by NH 3 . To guarantee 
enough sampling points for the analysis of density and velocity 
distributions, a structure must have a volume of at least 100 voxels 
( ∼0.02 pc in linear size) to be included in the dendrogram. To a v oid 
the inclusion of insignificant local density fluctuations, a structure 
must also have a difference of 10 4 cm 

−3 in density between its peak 
and the node where it merges on to the tree. 3 We identify a total of 
3538 structures o v er a time span of 6.0 × 10 5 yr with a nominal time 
resolution of ∼1.5 × 10 4 yr. Note that we use the dendrogram only 

2 We use astr odendr o , a Python package to e xtract e xtended sources in 
astronomical data ( http://dendrogr ams.or g ). 
3 These set-up parameters translate to min value of 10 4 cm −3 , min delta of 
10 4 cm −3 , and min npix of 100 in astr odendr o A tree is a full dendrogram 

representation of hierarchical structures. 

to identify independent density structures and locate their peaks. We 
do not limit our following analysis of the density distribution to only 
the density range abo v e 10 4 cm 

−3 (see Section 3.2 for details), and 
we only use the dendrogram boundary to a v oid confusion with a 
neighbouring core. See Fig. 2 for an example of the independent 
structures identified using the dendrogram algorithm. 

To follow the identified cores as the y mo v e and evolve in the 
simulated box, we devise a tracking procedure by first identifying 
the density peaks within independent structures, leaves , in the 
dendrogram of each snapshot. The tracking procedure then uses 
the velocity at the position of the density peak to predict where 
the density peak is expected to be in the previous and following 
snapshots. If the expected position falls within the boundary of a 
dendrogram leaf, the tracking procedure links the original structure 
with the leaf in the previous or following snapshot. This tracking 
procedure is similar to but less detailed than the one deployed and 
analysed by Smullen et al. ( 2020 ), in which the o v erlap in various 
physical quantities and statistical measurements are examined when 
dendrogram structures in different snapshots are compared. Our 
tracking procedure then repeats the process by going through the 
total of 3627 independent structures of the dendrograms derived for 
the snapshots used in this study. 

We find that 3538 out of 3627 structures ( ∼97 per cent) are 
connected to 450 tracks, which link cores identified in two or 
more snapshots. As Smullen et al. ( 2020 ) have pointed out, the 
robustness of the identification using the dendrogram algorithm 

is subject to uncertainties due to the stochastic fluctuation in the 
density distribution o v er time, ev en when the dendrograms are 
derived using the same set of input parameters. We try to a v oid the 
issue of density fluctuations affecting the robustness of dendrogram 

tracking by excluding structures that are not connected to any of the 
tracks. This is equi v alent to removing structures that are captured 
by a dendrogram only in a certain snapshot but not the preceding 
nor the subsequent ones (separated by � t ∼ 1.5 × 10 4 yr; see 
abo v e). 

Of the 450 tracks, 146 (32 per cent) end after merging with 
another track such that they no longer have a unique, distinct 
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Figure 2. Cores identified as dendrogram leaves. (a) Dendrogram structures plotted on top of the density field inte grated o v er the x -axis. The contours are 
colour coded according to the ID number the astr odendr o package assigns, and each corresponds to the structure in the dendrogram with the same colour. (b) 

Dendrogram with the leaves colour coded by the ID number the astr odendr o package assigns. This snapshot is at t = 4.7 × 10 5 yr. Note that since neighbouring 
structures in the dendrogram are usually assigned consecutive ID numbers, structures that share the same branch may have a difference in colour too subtle to 
be recognized by eye. 

peak that can be identified. Since we are particularly interested in 
the evolution of cores from formation to either star formation or 
dispersal, we limit our evolutionary study to consider only the 304 
main tracks, i.e. we exclude short-lived over-densities that merge 
with larger ones. We exclude only the minor structure in the merger 
for the following reasons. If the peak of a structure disappears 
due to a merger, its track terminates abruptly after a significant 
jump in the core properties (because the track is matched to a new 

peak/object). Neglecting these histories allows a cleaner analysis and 
clearer visualization of evolutionary trends. We, however, include 
the dominant structure in the analysis since the merger does not 
abruptly affect the inner profiles near the peak or the bulk properties, 
which are generally derived from a compact region around the 
peak. 

The average lifetime of the 304 tracks is 2.15 × 10 5 yr. 21 tracks 
span the entire simulation calculation of ∼6 × 10 5 yr. 15 out of the 
remaining 304 tracks ( ∼5 per cent) are connected to at least one 
structure with a sink particle of a mass ≥0.1M ⊙; several of these 
are matched to two or three sink particles. 167 of 304 ( ∼55 or 
∼37 per cent of 450) cores disperse, i.e. their track ends before 
forming a sink particle, merging with another track or reaching 
the last snapshot. Generally, this occurs if the core size or density 
maximum falls below the dendrogram structure requirement. 

3.2 Constructing physical properties of identified cores 

In order to analyse the core evolution and compare with observations, 
we must define a set of fundamental core properties that represent es- 
sential characteristics of each core. This step serves as an initial layer 
of dimensionality reduction, where we reduce the high-dimensional 
simulation phase space of gas position ( x i ), velocity ( v i ), and density 
( ρ( x i )) to a smaller set of parameters that more directly represents 
each core and can readily be compared with observations. 

We first describe each core as a vector of d = 106 physical 
properties that contains the radial density and velocity dispersion 
profiles (50 radial measurements for each), exponent of a power- 
law fit to the density profile, and bulk core properties, including 
radius, mass, velocity dispersion, and ratio of kinetic energy to 
gravitational energy. We adopt this particular set of bulk properties 
because they correspond to the set of physical properties previously 

Figure 3. Probability density function (PDF) of density of a snapshot taken 
at t = 5 × 10 5 yr (solid black line). The shaded area and bins correspond 
to the range of density and the series of n i used for deriving the density and 
velocity dispersion profiles (see Section 4.1 ). 

derived from the observed dense cores in our observational samples 
(see Section 2.2 ). Here, we describe how we derive each of these 
parameters. 

We take the following steps to derive radial profiles. First, we draw 

a series of constant density isosurfaces, each at a number density 
n i . Since the isosurfaces may take any shape as dictated by the gas 
distribution, we make no assumption about the geometry of the cores. 
We use 51 density values uniformly spaced on a logarithmic scale 
from n = 10 2.5 –10 5.5 cm 

−3 . As Fig. 3 shows, these densities sample 
the underlying probability density function (PDF) of gas density well. 
Each isosurface is then converted to an equi v alent radius by finding 
the radius that would construct a sphere that has the same volume 
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as the volume enclosed by the isosurface, i.e. V iso = 4 πR 
3 
eq / 3. 4 

The radial density profile, n ( r ), is then constructed from the series 
of densities, n i , that define the isosurfaces and the corresponding 
equi v alent radii, R eq, i . For the velocity dispersion profile, we calculate 
the velocity dispersion of material enclosed within each isosurface, 
σ i , and similarly construct the profile of velocity dispersion, σ ( r ), 
from σ i and R eq, i . Note that the profile represents the 3-d turbulent 
velocity dispersion and does not include the thermal sound speed. 
The structure boundaries defined by the dendrogram are only used 
to a v oid confusion with another core. We stop the construction of 
profiles when the volume enclosed by the isosurface o v erlaps with 
the dendrogram boundary of another core. This occurs mostly when 
the core has a sibling , i.e. a nearby leaf that has the same density 
minimum and shares the same parent branch in the dendrogram. For 
a core that does not have a sibling (the trunk-leaves – independent 
structures at the bottom le vel; Rosolo wsky et al. 2008b ), the extent of 
the radial profile is not limited by the dendrogram structure boundary 
(see Section 3.1 ). This method does not involve spherical averaging 
and can produce radial profiles for structures with different shapes 
in a reliable and consistent way. 

We use the 1-d profiles to derive the rest of the core properties. 
In order to better compare with the observations described in 
Section 2.2 , we define the boundary such that the core radius, 
R c , is the FWHM of the density profile. This definition is similar 
to that adopted by the getsources algorithm, which is commonly 
used to define observed structures. While this does not allow a true 
apples-to-apples comparison, using the FWHM as the core boundary 
produces simulated core with masses, sizes, and velocity dispersions 
comparable to the those of observed cores (see Section 4.5 ). We 
derive the core mass, M c , by integrating the density profile to 
obtain the mass enclosed by R c . Since observations do not include 
protostellar information in core estimates, we exclude the sink mass 
in the calculation of M c and all the other core properties. For the 
total velocity dispersion of the core, we adopt the observational 
definition in equation ( 1 ). Here, σturb = σ ( R c ) / 

√ 
3 and c s is the 

sound speed for a 10K molecular gas. We define the radius of 
coherence, R coh , as the radius where the velocity dispersion falls 
below the sound speed: σ ( r) / 

√ 
3 < c s . We obtain the density power- 

la w inde x by performing a least squares fit on the density profile for 
r < 0.1 pc. 

Using the mass, the size, and the velocity dispersion, we derive the 
kinetic energy and the gravitational potential energy. For the purpose 
of later observational comparison (see Section 4.5 ), we adopt the 
expressions from Chen et al. ( 2019a ), where the kinetic energy is 

	K = 
3 

2 
M c σ

2 
tot (2) 

and the gravitational energy is 

	G = −
3 

5 

GM c 

R c 
. (3) 

The latter expression assumes the cores have a uniform density 
distribution. Cores with a density profile ρ ∝ r −2 will have an actual 
gravitational energy a factor of ∼1.7 times larger than that expressed 
in equation ( 3 ) (Pattle et al. 2015 ). 

To e v aluate the impact of the choice of core definition on our 
analysis, we also adopt a fixed density contour to define core 
boundaries. We present this analysis in Appendix D . There we 

4 We note this definition is the 3-d equi v alent of the ef fecti ve radius that 
is often derived in observations of clouds and cores (Rosolowsky & Leroy 
2006 ). 

demonstrate that while the quantitative distribution of core prop- 
erties depends on core definition, the qualitative determination of 
phases, and our conclusions are reasonably robust to the core 
definition. 

After deriving the properties for each core, we remo v e duplicate 
information by reducing the number of profile data points that 
contribute to the final data vector. We describe our procedure in 
Appendix A . This ef fecti vely reduces the weight of the profiles in the 
later analysis, so that the bulk and profile information is considered 
more equally. This process reduces the 100 profile values to 22. 

Finally, we assemble a data matrix composed of d = 28 physical 
property measurements for each of the N = 3538 structures identified 
by the method of Section 3.1 . 

3.3 Core clustering methodologies 

Our goal is to identify groupings of the 3538 cores in order to 
dif ferentiate e v olutionary beha viour based on physical properties. 
Because our data arise from discrete snapshots of the continuous 
process of an MHD simulation (Section 2.1 ), we have reason to 
suspect the boundaries separating (defining) each phase are less crisp 
than those arising from a truly discrete process. This complicates the 
clustering task, whose goal is delineation of such boundaries. To aid 
cluster saliency while still acknowledging the fuzziness of our data 
groupings, we employ two approaches from unsupervized machine 
learning: (1) we learn prototype representations of our data and then 
(2) create a soft partitioning of these prototypes based on the Fuzzy 
c -means algorithm. The benefits of this two-pronged approach are 
discussed in the next two sections. 

3.3.1 Learning prototypes of core properties 

Prototype-based methods in machine learning (Biehl, Hammer & 

Villmann 2016 ) apply common machine learning tasks (e.g. clus- 
tering or classification) to intelligently formed representations of 
the data called prototypes (instead of the data themselves). That is 
from N data observations X = { x i ∈ R 

d } N i= 1 , we learn M prototypes 
W = { w j ∈ R 

d } M 
j= 1 . The prototypes arise from the codebook of a 

vector quantizer (Gray 1984 ) trained on X and benefit the learning 
task by simultaneously reducing sample size (typically M ≪ N ), 
and decreasing noise (the process of quantizing an x i by its best 
representative w j separates the signal and noise components of x i ). 
While classical k -means (MacQueen et al. 1967 ) with a large number 
of centroids is a common method for obtaining prototypes; in this 
work we obtain M = 249 prototypes of our N = 3538 cores from 

the Batch Neural Gas algorithm (Cottrell et al. 2006 , extended from 

Martinetz & Schulten 1991 ) trained on the core properties. Neural 
vector quantizers (Neural Gas, as well as the Self-Organizing Map, 
see Kohonen, Schroeder & Huang 2001 ) benefit from a cooperative 
element during their training process, rendering them less sensitive 
to the initialization issues common for k -means (Cottrell et al. 
2006 ). No theory currently exists for selecting an optimal number 
of prototypes: there should be enough to fully capture intricacies 
of the data distrib ution, b ut not so many that the vector quantizer 
approaches an identity mapping. Often, analyses adopt empirical 
rules of thumb from related areas such as kernel density estimation 
that suggest M = O( 

√ 
N ). Here we select the optimal number via an 

iterative process: we start with M = 100 and learn. If all prototypes 
are utilized, i.e. there are no dead prototypes with empty receptive 
fields, we increase M by 50 and repeat, stopping once the set contains 
at least one dead prototype. This process yielded M = 249 prototypes 
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(1 dead prototype was remo v ed after the last iteration) for the 3538 
cores; because we find a similar number of clusters and set of 
cluster properties for M = 150, we conclude that our analysis does 
not strongly depend on the number of prototypes within a factor 
of 2. 

Beyond sample size and noise reduction, vector quantization 
provides a unique prototype similarity measure, which we consult for 
intelligent parameterization of part of our analysis (see Appendix C 

for details). For completeness we also compared our results with 
those derived from a more basic principle component analysis 
(PCA), and from a self-organizing map (SOM) of the core data. We 
find that both these approaches return qualitatively similar cluster 
organization and cluster assignments. We present the Neural Gas 
prototype analysis here, since it provides the best combination of 
group separation and simplicity. 

3.3.2 Fuzzy c-means clustering 

Once learned, the core prototypes are clustered by a user-selected 
method and the cores themselves inherit the cluster label of their 
best representative. The continuous nature of our data (Section 3.3 ) 
suggests we should expect some cluster o v erlap; to account for this, 
we choose a soft partitioning of the core prototypes by the Fuzzy 
c -means algorithm (or FCM, Bezdek, Ehrlich & Full 1984 ). Typical 
hard partitioning schemes assume well separated data clusters and, 
consequently, assign data to a single cluster. Soft partitionings instead 
report a membership strength U ik , representing the degree to which 
datum x i belongs to cluster k . By convention, 0 ≤ U ik ≤ 1, 

∑ 

k U ik = 

1, where U ik > 0.5 denotes a datum’s strong membership in cluster 
k . Importantly, the graded information contained in U influences 
the formation of cluster centres in soft partitioning algorithms. For 
completeness, we note that hard partitionings are a special case of soft 
partitionings, where the U ik are constrained to the set { 0, 1 } . From 

the analysis of Appendix B , FCM applied to our core prototypes 
suggests c = 3 clusters (evolutionary phases) exist in the simulated 
core sample. To mitigate initialization issues, the clusterings reported 
in this work are optimal, i.e. have lowest within-group error o v er 1000 
different randomly initialized runs of FCM. 

3.4 Visualization with UMAP 

Note that the evolutionary tracks described in Section 3.1 were 
not used by FCM during the clustering procedure; therefore, the 
resulting partitioning produces clusters of cores with similar physical 
properties. Our goal is to unco v er a relationship between these 
groupings and a core’s evolution. To this end, we employ a 2-d 
visualization of core prototypes via the UMAP algorithm (McInnes, 
Healy & Melville 2018 ), which serves two purposes: 1) it allows 
inspection of the integrity of the three FCM-identified clusters, 
and 2) provides an organized space upon which to view the core 
tracks. Fig. 4 shows the UMAP visualization of the prototype 
data and the resulting three clusters identified as described in 
Section 3.3.2 . UMAP has gained popularity relative to other common 
approaches for dimensionality reduction, such as t-SNE, due to 
its visualization quality, ability to retain high-d structure in the 
lower-d projection and calculation speed. The data visualizations 
(e.g. Figs 4 and 6 ), along with associated group-wise statistics of 
Fig. 7 and Table 1 underpin the evolutionary interpretation of our 
clustering, as discussed in Section 4.2 . An o v erview of UMAP and 
an explanation of the parameters used in this work can be found in 
Appendix C . 

Figure 4. A two-dimensional UMAP Embedding (using 36 neighbours, see 
Appendix C ) of the 3538 cores identified from the simulation (points), and 
249 neural gas prototypes learned from them (diamonds). Colours indicate 
cluster (phase) membership, while their transparency represents their cluster 
membership strength U (fainter points belong less confidently to their reported 
cluster); both are determined by the FCM algorithm applied to the high- 
dimensional core profiles. Prototype sizes are mapped to the number of cores 
each represents, which is determined during a recall of the entire training 
dataset through the neural gas network. Shading indicates a 75 per cent 
highest density region of a phase-conditional kernel density estimate fit to the 
embedded points, which is shown to facilitate cluster boundaries in UMAP 
space. Stars indicate sink particles identified from simulation. 

4  RESULTS  

4.1 Properties of core phases 

Table 1 summarizes the simulation core properties for all 3538 
cores and for cores classified in each of the phases. While the core 
masses are similar across all phases, clear differences appear in the 
other median properties. Phase I and Phase II cores have similar 
masses, sizes, and density indices, ho we ver Phase II cores contain 
a large subregion with a subsonic non-thermal velocity dispersion, 
i.e. a region of coherence (Pineda et al. 2015 ; Chen et al. 2019a ). 
Consequently, we term Phase II the coherent phase. Phase II cores 
also have a slightly lower o v erall non-thermal dispersion and a 
lower bulk velocity. Phase III cores have the steepest density index 
( p = −1 . 2 0 . 2 −0 . 3 ), and the lowest ratio of kinetic to gravitational energy 
( 	K / | 	G | = 2 . 9 + 1 . 6 

−1 . 0 ). Since our calculation for the gravitational 
potential assumes a uniform potential, these virial parameters are 
likely o v er-estimated by a factor of 1.7, which means that most of the 
Phase III cores are gravitationally bound. We also find ∼23 per cent 
of these contain sink particles (compared to 0.8 and 0 per cent of 
Phase I and II cores, respectively). Therefore, we term Phase III 
the prestellar/protostellar phase. Of the three phases, Phase I has 
the highest ratio of kinetic to gravitational energy . Consequently , we 
refer to Phase I as the turbulent phase. In order for cores in this phase 
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Table 1. Physical properties of cores in each phase. We assign those that have partial membership in two different clusters to the one with the highest 
membership. The physical properties are measured using the density and velocity profiles derived from the dendrogram structure. The columns are number of 
cores and median core mass, radius, size of the coherent region, density index, total velocity dispersion, bulk velocity, ratio between the kinetic energy, and 
the absolute value of the gravitational potential energy, fraction of members containing protostars, and nearest neighbour separation. The density index is the 
power-la w inde x of the function, n = n 0 ( r / r 0 ) p , fitted to the density profile of each core. The spreads are calculated using the 0.25 and 0.75 quantiles of the 
distribution. 

Core classification N M c (M ⊙) R c (pc) R coh (pc) p σ tot (km s −1 ) V bulk, 1d (km s −1 ) 	K / | 	G | f ∗ (%) d̄ (pc) 

Phase I (turbulent) 1221 0.3 + 0 . 2 −0 . 1 0.034 + 0 . 008 
−0 . 008 0.012 + 0 . 004 

−0 . 004 −0.9 + 0 . 2 −0 . 2 0.27 + 0 . 03 
−0 . 02 0.6 + 0 . 2 −0 . 2 6.3 + 3 . 1 −1 . 6 0.82 0.17 + 0 . 11 

−0 . 07 

Phase II (coherent) 1317 0.4 + 0 . 2 −0 . 1 0.040 + 0 . 007 
−0 . 008 0.029 + 0 . 009 

−0 . 006 −0.9 + 0 . 1 −0 . 2 0.23 + 0 . 02 
−0 . 01 0.4 + 0 . 3 −0 . 2 3.2 + 0 . 9 −0 . 6 0.0 0.18 + 0 . 13 

−0 . 07 

Phase III (protostellar) 1000 0.3 + 0 . 2 −0 . 2 0.023 + 0 . 006 
−0 . 004 0.008 + 0 . 007 

−0 . 008 −1.2 + 0 . 2 −0 . 3 0.26 + 0 . 04 
−0 . 02 0.6 + 0 . 2 −0 . 2 2.9 + 1 . 6 −1 . 0 22.9 0.13 + 0 . 06 

−0 . 05 

All 3538 0.3 + 0 . 2 −0 . 1 0.032 + 0 . 01 
−0 . 008 0.016 + 0 . 01 

−0 . 007 −0.9 + 0 . 2 −0 . 3 0.25 + 0 . 03 
−0 . 02 0.5 + 0 . 3 −0 . 2 3.9 + 2 . 1 −1 . 1 6.8 0.16 + 0 . 10 

−0 . 06 

Figure 5. Structures at 4.7 × 10 5 yr o v erlaid on the gas column density and 
coloured by their assigned phase. White dots indicate the location of sink 
particles. The time and view are the same as in Fig. 2 . 

to form stars, they must either gain significant mass or reduce their 
gas velocity dispersion (possibly by passing through Phase II). 

Cores almost al w ays belong to Phase III after forming protostars 
(see Fig. 4 ), so it can be loosely considered the last phase. Ho we ver, 
there is no one evolutionary order between I, II, and III and not all 
cores that belong to Phase III at a given time go on to form protostars 
(see Section 4.2 for more discussion). Cores may form in any phase 
and take a variety of different routes to evolve through the parameter 
space until they become protostellar or disperse, as we discuss in 
detail in Section 4.2 . 

Fig. 5 shows a column density map with the identified structures 
coloured by their phase. Most of the Phase III cores are located 
within large filaments, which is also where most of the protostars 
reside. Many of the Phase I and II structures are associated with 
shocks and/or more isolated filamentary features. They also tend to 
be larger and have lower column densities, which is consistent with 
being gravitationally unbound. 

Fig. 6 shows the distributions of core radii, masses, velocity 
dispersion, virial ratio (ratio of kinetic to gravitational energy), 
density index, and size of the coherent region. The clusters do not 
divide cleanly across any of these properties, but there is evidence of 

property gradients. F or e xample, Fig. 6 a shows core sizes transition 
from large to small from bottom to top. The core mass distribution 
exhibits similar structure as shown in Fig. 6 b with the lowest mass 
cores appearing at the top of Phase I and Phase III. Similarly, Fig. 6 c 
shows a strong vertical gradient in velocity dispersion, which is 
echoed in the distribution of virial ratios shown in Fig. 6 f. There are 
two distinct regions of high-virial ratio: one appears in Phase I, where 
cores seem to be genuinely unbound due to high levels of turbulence, 
and the other occurs in the topmost corner of Phase III, where the 
high dispersion is produced by infall. The prototypes within the lower 
region of Phase III have the lowest virial ratios, suggesting that cores 
are becoming bound as they approach the stage of gravitational 
collapse. Unlike the others, the density index exhibits stronger 
horizontal gradients with steeper profiles on the very right and left, 
while flatter profiles appear in the centre. Fig. 6 d shows the cleanest 
and most monotonic trend across phases of all six properties: there is 
a strong vertical gradient in the size of the coherent region with the 
most coherent cores located at the bottom left of the UMAP (Phase 
II), and cores with no coherent region at the top right (Phase III). 

Fig. 7 displays the density and non-thermal velocity dispersion 
profiles for each of the clusters (left-hand panels) and the distributions 
for radius, total velocity dispersion, mass, and virial ratio (centre and 
right-hand panels). With the exception of mass, the profiles, and 
properties exhibit distinct differences for the three phases. Phase I 
and II have significant overlap in several of the properties but are 
distinguished by the velocity dispersion: Phase I cores are more 
turbulent at all radii, while Phase II cores hav e v elocity dispersion 
profiles that dip to subsonic values near the core centre, i.e. they have 
an internal coherent region. This difference in velocity dispersion is 
also reflected by the virial ratio, which tends to be higher for Phase I 
cores. Phase III cores exhibit noticeably steeper density profiles with 
a higher central density. Meanwhile, the velocity dispersion of Phase 
III cores is typically supersonic for all radii with velocity dispersion 
flattening or increasing near the centre. This feature, together with 
the steeper density profile is consistent with gravitational infall 
dominating the internal kinematics of the core and the incipient 
formation of protostars. For this reason, Phase III cores are also 
more compact on average because the FWHM corresponds to a 
smaller region (see Appendix D ). 

4.2 Core evolution 

In this section, we use the core histories and cluster assignments to 
explore how cores evolve through the cluster phase space. 

We first calculate how long cores typically spend in each of 
the three phases. By averaging over the time, cores spend visiting 
each phase, we derive an effective phase lifetime; cores that never 
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Figure 6. Projection of six different core properties ((a) radius, (b) mass, (c) velocity dispersion, (d) radius of coherence, (e) density index, (e) virial ratio) to 
the embedded core locations in UMAP space. 

visit a phase are not included in its time average. We estimate 
typical lifetimes of 1.0 ± 0.1 × 10 5 yr, 1.3 ± 0.2 × 10 5 yr, and 
1.8 ± 0.3 × 10 5 yr for Phase I, II, and III, respectively. We find 
that a core evolving into Phase III spends significantly longer 
there. F or e xample, cores that ev entually form protostars spend 
0.6 ± 0.3 × 10 5 yr visiting Phase I and/or II and 5.0 ± 0.4 × 10 5 yr 
in Phase III. This is because star-forming cores remain in Phase III 
after becoming protostellar and also because the lifetimes of cores 
that visit Phase III tend to be systematically longer. The lifetime of 
Phase I is the shortest, which is consistent with most of the cores 
being unbound. 

Next we investigate the trajectories of cores through the phase 
space. Fig. 8 shows tracks for three different sets of core histo- 
ries: short-lived tracks , which connect cores that appear only in 
two snapshots, long-lived tracks , in which the cores persist for 
all simulation snapshots, but do not form stars and sink tracks , 
which represent the evolution of cores that eventually become 
protostellar. Arrows represent the aggregate direction of mo v ement 
for all cores passing through the associated prototype, constructed 
as a quadratic B ́ezier curve with control points set by the median 
incoming direction (arrow tail), the prototype itself, and the median 
outgoing direction (arrow head). The unit vectors describing the 
incoming/outgoing control points are further scaled by the proportion 
of incoming/outgoing tracks transiting through each prototype. Thus, 

higher arro w curv ature indicates more misalignment between the 
median incoming and outgoing track directions, and an asymmetry 
in arrow length (relative to the arrow’s middle elbow) indicates areas 
of core birth (longer outgoing head) or dissipation (longer incoming 
tail). 

As UMAP is a highly non-linear manifold projection, some of the 
strong curvature observed in Fig. 8 is to be expected. For example, 
prototypes representing sink particles appear in a circular region 
in the top right as shown by Fig. 8 c, and the arrows connecting 
neighbouring prototypes naturally possess curvature to follow the 
circular structure in an organized manner. Ho we ver, in more linear 
regions of the embedding, curvature indicates track reversal of the 
incoming/outgoing mo v ement of a prototype’s typical core. The 
strongest examples of such core meandering occur in the long 
lived tracks of Fig. 8 b, indicating that these tracks bounce from 

one prototype to another (i.e. they migrate between different set of 
physical characteristics), continuously due to small changes in their 
properties. One fundamental implication of this figure is that there is 
no one evolutionary path for cores. 

The short-lived tracks represent relatively transient cores that 
quickly disperse. These tracks inhabit the top left part of the phase 
space, lying almost entirely within Phase I and II. Many of the 
arrows point along the edge or outwards as if they are exiting the 
UMAP boundaries. These cores disappear because their densities 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
7
/1

/8
8
5
/6

7
2
4
2
5
2
 b

y
 U

n
iv

e
rs

ity
 o

f F
lo

rid
a
 u

s
e
r o

n
 1

3
 F

e
b
ru

a
ry

 2
0
2
3



894 S. S. R. Offner et al. 

MNRAS 517, 885–909 (2022) 

(a)

(d) (e) (f)

(b) (c)

Figure 7. Summary of cluster statistics. Radial profiles of density (a) and 3-d velocity dispersion (d) for each of the three clusters, where thick lines represent 
the median profile and the spread is the interquartile range. The horizontal grey line in (d) denotes the value at which the turbulent velocity dispersion equals 
the sonic speed at 10K. The violin plots show the distributions of intra-cluster (b) radius, (c) mass, (e) velocity dispersion, and (f) virial ratio. The interquartile 
range (thick black lines), median (white point), and Tukey’s fences (thin black lines) have been added to the violin plots to aid cluster comparison. 

(a) (b) (c) 

Figure 8. Directional evolution of cores follo wing short-li ved (a), long-li ved (b), and sink tracks (c). Short-lived tracks exist in only 2 of the 26 time snapshots 
of the MHD simulation, long-lived tracks persist throughout, and sink tracks contain cores that form protostars at some point during their duration. Arrows 
were constructed by a B ́ezier fit using the following control points in UMAP space: median direction from which cores transition to each prototype (arrow 

tail), the prototype itself (middle), and the median direction to which cores transit after visiting each prototype (arrow head). (Shorter) arrow length indicates 
(mis-)alignment of the incoming/outgoing directions. Short-lived cores are predominantly mapped to Phase I and II, and star-forming cores migrate into Phase 
III, while long-lived tracks inhabit the middle of the diagram and cross through all three phases. 75 per cent highest density regions of the clusters are outlined 
by colour, and arrow transparency represents the number of tracks forming their direction. 

and/or sizes fall below the threshold of detection by our dendrogram 

algorithm, which is consistent with the small masses and sizes of 
cores in this region of the parameter space (e.g. compare Fig. 8 a and 
Fig. 6 ab). 

The long-lived tracks inhabit the middle of the UMAP, spanning 
parts of Phase I, II, and III. They appear to complement the short- 
lived tracks, since their motion is concentrated in the right half of 
Phase I and the bottom of Phase II. Their longevity suggests that they 

hav e achiev ed some de gree of equilibrium, and inspection of man y of 
these cores indicates that they become coherent, moving into Phase 
II, and remain there for much of their lifetime. This is illustrated by 
the shortness of the arrows, which indicate that many cores mapped 
to prototypes in the middle of Phase I and II do not undergo rapid 
or significant changes in their properties between snapshots. The 
general impression is that this subset of cores evolve more gradually 
between phases. Since there is no preferred phase where cores start, 
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(a) (b) (c) 

Figure 9. Core evolutionary labels projected to UMAP space. (a) Cores are coloured by their evolutionary status, as observed at the end of simulation. From 

left to right, UMAP organizes evolution into dissipating, quiescent, and pre/protostellar regions. Note that the evolutionary organization bleeds across the cluster 
footprints identified by FCM in Fig. 4 , indicating that no single association exists between properties and evolutionary status. For comparison, point transparency 
represents the strength U of corresponding cluster membership from Section 3.3.2 . (b) 10–50 per cent highest density regions of a 2-d kernel density estimate 
of cores in UMAP space, conditioned on evolutionary status. A visualization such as this could provide probabilistic prediction of the evolutionary fate of any 
observed cores (e.g. those presented in Fig. 14 ), although we have yet to formally classify such. (c) Pie charts placed at the neural gas prototype locations 
in UMAP space display the distribution of evolutionary labels in each prototype’s receptive field (or RF, which is the set of points mapped to them). Size 
corresponds to the cardinality of each prototype’s RF, while transparency indicates the prototype’s cluster membership strength U . 

the initial position is not predictive of the longevity or the direction 
of evolution. 

The behaviour of the cores following sink tracks is potentially 
the most interesting, since these cores are the subset that eventually 
form stars. The arrow directions generally point towards the upper 
right, suggesting that these cores mo v e rightwards and upwards in 
the parameter space as they evolve. Cores with sink particles lie 
almost e xclusiv ely in the top right corner of Phase III, which is 
consistent with the apparent trajectory of these cores. Prestellar 
cores, i.e. those that later go on to form stars, mostly (9 of 15) 
start in Phase II. These cores become protostellar while in Phase 
III in a region of the parameter space in which the virial ratio is 
small, and remain in Phase III for the remainder of their evolution. 
Despite spending most of their evolution in Phase III, 73 per cent 
of cores that eventually become protostellar spend time in another 
Phase: on average 0.6 ± 0.3 × 10 5 yr visiting Phase I and/or II and 
5.0 ± 0.4 × 10 5 yr in Phase III. Note that prototype locations in 
Phase III can also host some short and long-lived cores, and thus 
the initial core properties and phase space location are not entirely 
predictive of the eventual evolution. 

Finally in Fig. 9 , we synthesize the evolutionary information by 
colouring the UMAP not by cluster membership but by the outcome 
of the evolution of the cores passing through each prototype. Here 
we denote four states: cores that are protostellar (red), cores that are 
prestellar, and will eventually become protostellar (orange), cores 
that disperse (blue), and cores that neither disperse nor form proto- 
stars by the end of the simulation (green). Many cores comprising 
the last class have reached a quasi-equilibrium state due to magnetic, 
turbulent, and thermal pressure support, and they are represented 
by the long-lived tracks. Fig. 9 c shows that prototypes on the 
left represent predominantly dispersing cores, while pre/protostellar 
cores are almost e xclusiv ely mapped to prototypes on the right. 

Note that the core histories are not included in the information used 
to perform the clustering, and thus represent an independent view of 
how the clusters relate to one another. In many cases, the clustering 

appears to intuit some of the evolutionary mo v ement, since related 
prototypes, e.g. those representing star-forming cores, are confined 
to specific regions of the visualization. Ho we ver, Fig. 9 sho ws the 
evolution is not cleanly represented by particular properties, which 
show a vertical separation. While cores assigned to Phase I and 
Phase II have distinct properties, these properties only partially 
predict whether the cores will disperse, persist, or form stars (see 
Section 4.3 for further discussion of evolutionary rates). Disorder in 
the UMAP is produced by the stochastic nature of star formation: 
core properties vary as a function of the environment, formation, and 
accretion history. 

4.3 Sur vi v al rates and lifetimes 

In Section 4.2 , we show that evolutionary tracks exist that connect 
three populations of cores with different physical properties. A closer 
examination of the survi v al rates, defined as the fraction of cores 
remaining in a given phase, reveals that cores classified in the same 
phase can follow distinctly different evolutionary paths. Fig. 10 
shows the percentages of cores in a given phase that stay in that phase, 
ev entually mo v e to another phase and/or disperse. For example, if 
a core starts in Phase I, mo v es into Phase II, and then mo v es to 
Phase III before finally dispersing, it will be counted in the statistics 
of cores that are born in Phase I (54 per cent), mo v e from I to II 
(41 per cent), mo v e from II to III (13 per cent), and then disperse 
from III (15 per cent). If that core belongs to the subset of cores that 
persist or eventually form stars, Fig. 10 b shows that for this path only 
22 per cent are born in Phase I, 43 per cent mo v e from I to II, and 
47 per cent mo v e from II to III. Stated another way, this figure shows 
the transition probabilities for a core observed in a giv en phase. F or 
example, if a core is currently observed in Phase III, the probabilities 
of either transitioning next to I or II or to dispersing from Phase III 
are shown in the figure. We include 95 per cent confidence intervals 
to give a sense of the uncertainties based on the core statistics. 
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(a) (b) 

Figure 10. A summary of the transition probabilities among the three phases, as estimated empirically from the track histories, visualized in the organized 
UMAP space (with axes removed for readability). The percentage ( ±95 per cent multinomial confidence intervals, Glaz & Sison 1999 ) of core transitions from 

one cluster to another is shown at the start of directed paths connecting each cluster (larger boxed text), while the percentage of stationary cores is displayed 
immediately below the cluster name. The dashed paths leaving each cluster represent core dispersal, which we consider to be another state space for transition. 
Pink text indicates the percentage of cores which first appear ( are born ) in each cluster. All point estimates of the same colour add to 100 per cent. Panel (a) 
computes these percentages relative to all tracks, while panel (b) considers only long-lived (appearing in every snapshot of our simulation) and protostellar 
tracks. 

We find that all cores have a relatively high probability of phase 
transition: 85 ± 4 per cent either mo v e to another phase, disperse, or 
both, during the simulation, while 55 ± 6 per cent of cores belong 
to two or more phases during their evolution. Phase I cores are most 
transient with only 12 18 

6 per cent chance that a core in that phase 
remains there for the remainder of its life. Approximately a quarter 
of the cores disperse from each phase with cores in Phase II having 
the lo west survi v al rate and Phase III cores having the highest (only 
15 25 

7 per cent cores disperse from this phase). 
Fig. 10 a shows there is a lot of mo v ement between Phase I and 

II. While it is most likely that a Phase I core transitions into Phase 
II 41 47 

36 per cent, there is a nearly equal probability, 38 45 
32 per cent of 

a Phase II core transitioning to Phase I (see also Fig. 8 ). Phase III 
cores are most likely to remain in their current phase in part, because 
23 per cent of Phase III cores are protostellar. Phase III cores that do 
leave are more likely to mo v e into Phase I (31 40 

23 per cent) than into 
Phase II (24 33 

15 per cent). This core subset has a significant amount of 
initial turbulence: they can’t immediately collapse because they are 
not bound by gravity. Fig. 10 shows that while most cores are born 
into Phase I (54 per cent), the majority of cores that persist or form 

stars, i.e. the ones that don’t disperse, begin in Phase II (64 per cent). 
In either case very few cores start in Phase III. 

Note that while the phases can be described by average properties, 
there is a range of properties within each phase. This is also illustrated 
by Fig. 11 , which shows the distribution of prototype visiting times, 

i.e. how long a typical core is matched to a given prototype. For 
example, cores in the upper right of Phase III are not likely to 
change phase or disperse because most already host stars. This is also 

reflected in the longer time periods a core matches a given prototype 
in this region. Interestingly, Fig. 11 shows there is another grouping 
of long-lived prototypes towards the bottom of Phase II. Inspection 
of Fig. 7 indicates that these are moderately-sized cores that are 
marginally bound and quiescent, i.e. these are coherent cores that 
have reached a quasi-equilibrium state. In contrast, the prototypes 
in Phase I tend to have the shortest lifetimes (3.8 ± 0.5 × 10 4 yr 
versus 5.2 ± 0.6 × 10 4 yr in Phase II and 5.9 ± 0.7 × 10 4 yr in Phase 
III), indicating that the properties of Phase I cores change relatively 
quickly. 

4.4 Cor e pr operties 

In this section, we present an analysis of the physical properties 
derived using the core profiles constructed from the dendrogram- 
identified hierarchy. 

Fig. 12 a shows mass as a function of size for cores in each of the 
three phases. The phases generally fall along a power-law relation 
where the Phase III cores, which are often protostellar, are offset 
to a higher mass at a given radius. The protostellar cores are more 
centrally peaked such that the FWHM core definition returns more 
compact structures. A power law fit to the mass-size distribution 
of cores belonging in all three phases gives a power-la w inde x of 
∼1.5; fit to only the Phase I and Phase II cores returns a power-law 

index of ∼2.0, as expected from Larson’s relations (Larson 1981 ). 
Appendix D shows that the power-la w inde x is sensitiv e to the core 
definition, ho we ver. 
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Figure 11. Median time (log (years)) that cores spend visiting (being 
represented by) each prototype along their evolutionary track, represented in 
UMAP space. The marker size also corresponds to time. Inset: Distribution 
of visiting times by evolutionary phase, which can also be considered the 
prototype ‘lifetime’. Prototypes with longer visiting times, such as those in 
Phase III, indicate that the core properties are stable and change relatively 
slowly. 

Fig. 12 b shows non-thermal velocity dispersion, σ turb , as a function 
of size for structures in each of the three phases. As expected from 

the velocity dispersion profiles examined in Section 4.2 , Phase I and 
Phase III cores generally have larger velocity dispersions than Phase 
II structures, which generally have subsonic dispersions. Protostellar 
cores have the largest velocity dispersions due to gravitational infall. 
Since the simulations neglect mass-loss due to protostellar outflows, 
the sink particles are o v ermassiv e (Smullen et al. 2020 ) and the 
degree of infall, and hence the non-thermal component, is likely 
o v erestimated. 

Fig. 13 shows gravitational energy versus kinetic energy for cores 
in the three phases. Such a comparison, conventionally known as 
a virial analysis , provides a first-order estimate of the gravitational 
boundedness of a structure. A virial analysis may sometimes include 
other terms such as the magnetic energy and the surface pressure 
term (see Ward-Thompson et al. 2006 ; Pattle et al. 2015 ; Chen 
et al. 2019a ). Since the core mass does not include the sink mass, 
we note the gravitational binding energy of the protostellar core 
is underestimated. We find that there is no clear separation in the 
distribution of kinetic and gravitational energies between Phases. 
In contrast, see the analysis in Appendix D , which also shows 
that these properties are sensitive to the core definition. Ho we ver, 
there appear to be more Phase III cores with high gravitational and 
kinetic energy that are more gravitationally bound, consistent with 
the star-forming activities found within many of them. Phase I and 
II cores are almost all below the equilibrium line and are unbound 
when considering only thermal, gravitational, and kinetic energy. 
Recall that our definition for the gravitational energy in equation ( 3 ) 
assumed a uniform density; we see here this description is more 

accurate for Phase I and Phase II cores, which have a relatively flat 
density profile. 

4.5 Classification of obser v ations 

In this section, we compare the observed cores with the simulated 
cores by using their properties to match them to prototypes and 
project them into the UMAP parameter space. Each observed core in- 
herits coordinates in the UMAP plane from their most representative 
prototype among those trained on our simulated cores according to 
Section 3.3.1 . Recall (Section 3.2 ) that each prototype represents 28 
different physical core properties with the radial density and velocity 
dispersion profiles comprising 22 of the 28. As this information is 
missing from the observed cores, we have mapped observations to 
prototypes based solely on their radius, mass, velocity dispersion, 
and virial ratio by excluding the radial profiles learned by the neural 
gas prototypes during quantization. The size of the cores identified 
by Chen et al. ( 2019a ) is defined by construction to be the size of 
the coherent region, so we use the coherent radius instead of the 
radius to project this sample into the UMAP. We acknowledge that 
the neural gas algorithm may well have learned to represent this 
reduced four-dimensional space differently (i.e. produced a different 
set of prototypes), but any re-training would necessitate a separate 
clustering (Section 3.3.2 ) and produce a different UMAP embedding 
(Section 3.4 ). 

We note that 33 (of 159) observed cores have a property that 
falls slightly outside the range of the properties of the simulated 
cores. The Cepheus cores, which adopt a different core definition 
and appear the most bound of all the core catalogues, have the most 
discrepancy. Ho we ver, since these dif ferences are within the obser- 
vational uncertainties, we do not exclude them from our comparison. 
Inspection of their phases and location in UMAP space indicates that 
their classification is still consistent with the expectation given their 
general properties. 

Fig. 14 shows the observed cores are mapped to locations across 
the UMAP space. In some cases, multiple cores in different regions 
are mapped to the same prototype, as in the top right, while other 
prototypes have no observational match. The droplets identified by 
Chen et al. ( 2019a ) are mostly mapped to prototypes in Phase II. 
This is consistent with droplets being quiescent, coherent structures 
by definition. The cores observed in Taurus (Kerr et al. 2019 ) are 
likewise mostly mapped to prototypes that are classified as Phase II. 

In contrast, few cores in Perseus, Ophiuchus, and Orion (Kirk et al. 
2017 ; Kerr et al. 2019 ) match prototypes in Phase II. These cores 
predominantly belong to Phase I or III, and they are instead located 
in regions of the parameter space characterized by high-velocity 
dispersions and high-virial ratios (top of the UMAP), as shown in 
Fig. 6 . The Perseus and Ophiuchus cores were selected to be starless 
by construction, and their correspondence with prototypes in the top 
right, where the simulated protostellar cores lie, may either mean 
they are prestellar and close to forming stars or that their properties 
are similar because they belong to more clustered environments, 
which is also true of the simulated protostellar cores (see Table 1 ). 
The Cepheus cores from K eo wn et al. ( 2017 ) are all mapped to a few 

prototypes in the top right of Phase III, a region of the parameter space 
containing mostly prestellar, bound simulated cores (see Fig. 6 ). 

To be more quantitative, we employ the simulated core distribution 
to predict the evolution of the observed cores. Table 2 lists the 
predicted probabilities of future evolution for cores observed in each 
star-forming region. To obtain these predictions, we mapped the 
observations to their most similar simulated core using the available 
subset of bulk properties (radius, velocity dispersion, mass, and 
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Figure 12. (a) Mass-size distribution of all 3538 independent structures. The green, purple, and orange circles correspond to structures in Phase I, II, and III, 
respectiv ely. The symbol transparenc y is set by the weight of the core cluster assignment. Black filled circles indicate cores with sink particles. The grey line 
shows a fit to the Phase I and Phase II core populations. (b) Non-thermal velocity dispersion-size distribution of all 3538 independent structures with a colour 
coding scheme, same as (a). The horizontal black lines denotes the velocity dispersion values when the non-thermal velocity dispersion is equal to the sonic 
speed (thicker line) and half the sonic speed (thinner line) at 10K. Nearly all protostellar cores are members of Phase III. They tend to be more compact and 
have higher velocity dispersions compared to other cores. 

Figure 13. Gravitational potential energy, | 	G | , versus kinetic energy, 	K , 
for all 3538 structures. The green, purple, and orange circles correspond to 
structures in Phase I, II, and III, respectively. The red band from the lower left 
to the top right marks equilibrium between the gravitational potential energy, 
and the internal kinetic energy (grey line) within a factor of two (grey shaded 
region). 

virial ratio). UMAP coordinates for each observation were inherited 
from its nearest simulated neighbour, and a Bayesian classification 
probability was obtained using the kernel density estimates of 
each evolutionary stage visible in Fig. 9 b. In most regions, about 
∼20 per cent of cores are expected to disperse while � 50 per cent are 
e xpected to ev entually form stars. The droplets have the highest rate 
of expected dispersal (54 per cent), while the Cepheus cores have the 
lowest (7 per cent). 65 per cent of the cores in Taurus are expected to 
‘persist’, i.e. they are likely long-lived quasi-equilibrium structures. 
This is consistent with Taurus being a quiescent region where the 
star-formation is most distributed. Overall, at least ∼20 per cent of 

Figure 14. Observed cores (Section 2.2 ) embedded in UMAP space accord- 
ing to the procedure outlined in Section 4.5 . Some prototypes represent mul- 
tiple observations from our data catalogue, but many have no observational 
match. Conclusions from the analysis relating cluster-wise physical properties 
to evolutionary phase (Section 4.1 ) apply most confidently to observations 
located inside the outlined 75 per cent cluster highest density regions. 

the observed cores are expected to disperse, while at least half are 
likely to form stars in the near term. 

Figs 15 and 16 compare the properties of the individual observed 
cores to the simulated cores. As shown by the prototype comparison 
in Fig. 14 , there is good agreement between properties of observed 
and simulated cores. In the 2-d parameter spaces of physical 
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Table 2. Predicted future evolution for cores observed in each star-forming region. The table reports the number of 
observations from each region predicted to be in each evolutionary state along with the mean ±95 per cent confidence 
interval of the class-wise predictive probabilities. 

Disperse Persist Pre/Protostellar 
Region N (total) N per cent N per cent N per cent 

Ophiuchus 30 6 21 ± 9 4 21 ± 9 20 58 ± 14 
Orion 43 3 19 ± 5 14 26 ± 8 26 55 ± 12 
Cepheus 22 0 7 ± 2 2 13 ± 10 20 80 ± 10 
Perseus 33 2 17 ± 6 12 31 ± 11 19 52 ± 13 
Droplets 23 18 54 ± 12 4 39 ± 11 1 7 ± 7 
Taurus 8 2 21 ± 27 6 65 ± 24 0 14 ± 8 
All 159 31 22 ± 4 42 28 ± 4 86 50 ± 6 

Figure 15. (a) Total velocity dispersion versus size with colours indicating their assigned phase as discussed in Section 4.1 . The distribution of simulated 
cores in each phase is shown as contours of constant posterior probability in a Gaussian kernel density estimation (KDE) analysis that estimates the underlying 
probability density function in this parameter space. Cores observed in different star-forming regions are indicated by the symbols. (b) Same as (a) for the kinetic 
and gravitational potential energies. 

Figure 16. Core mass versus size of the coherent regions. Contours show 

lines of constant probability from a KDE analysis for each of the phases. 
Diamonds indicate droplet properties, where the droplet size is the size of the 
coherent region by definition. Most droplets appear to be Phase II members. 

properties there is significant o v erlap between the phases, so it is not 
al w ays clear which phase an observed core belongs to, for example, 
on the basis of velocity dispersion and radius, alone. Ho we ver, we 
can still infer some general trends by inspecting the distribution of 
observed core properties. 

Fig. 15 a displays total velocity dispersion versus ef fecti ve radius 
for the three phases and the observed cores. Most of the droplets lie 
in the Phase II region, which has a lower total velocity dispersion 
and where the total is dominated by the thermal component. The 
cores in the warmer and more clustered regions – Orion, Perseus 
and Ophiuchus – lie predominantly in the Phase I and Phase III 
re gions, where the v elocity dispersions are higher. By construction, 
most of these cores are starless and relatively few fall into the high- 
dispersion, compact size region (upper-right Phase III quadrant), 
where the simulated protostellar cores lie. The Taurus and Cepheus 
cores generally fall within the Phase I and II regions. As we discussed 
in Section 4.3, the simulations predict a high level of core dispersal, 
and the location of the observed starless cores in phase space is not 
predictive of whether a core will definitively go on to form stars 
(although cores found in the middle part of Phase III are more likely 
to be or become star-forming). 

Fig. 15 b shows gravitational energy versus kinetic energy for the 
three phases and the observed cores. There is likewise a high degree 
of o v erlap between the phases, which suggests that the virial ratio 
cannot uniquely determine the core phase. In this space, there is also 
good agreement between the simulated and observed cores with most 
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of both appearing to be unbound. Ho we ver, a subset of the observed 
cores ha ve high-gra vitational energies and these extend outside the 
simulation parameter space. Nearly all of these are cores in Cepheus, 
which were defined using the dendrogram leaf boundary and thus are 
systematically larger than cores in the other clouds. Our analysis in 
Appendix D suggests that in fact the low-virial ratios may be partially 
due to the core definition. 

Fig. 16 shows core mass versus coherent region size for the three 
phases and cores from Chen et al. ( 2019a ). This data is only available 
for the droplet population, which are explicitly identified and defined 
by the extent of the coherent region. The droplets fall almost 
entirely within the simulated Phase II region; two have significantly 
higher masses and sizes. While there is some o v erlap between the 
three phases, the resolution of the observations appears to limit the 
minimum detected size of the internal coherent subregion, such that 
any detected sizable coherent region uniquely identifies cores as 
belonging to Phase II. The simulation phase distributions suggest 
that other observed cores likely contain coherent regions with sizes 
below the observational resolution ( ∼0.02–0.05 pc). 

5  DISCUSSION  

5.1 Pr edicting cor e evolution 

Based on the results presented in Section 4 , we propose an evolution- 
ary scenario where cores inhabit three distinct phases. Cores in these 
three phases bear characteristically different physical properties. 
In summary, cores are born as turbulent density structures that 
depending on their initial size and virial ratio may belong to any 
of the three phases. A subset of the smallest and most unbound 
cores quickly disperse (e.g. as Fig. 8 a). Cores that are initially bound 
and classified as Phase III may begin collapse and form protostars 
without passing through other phases (see Fig. 8 c). In contrast, cores 
that are marginally bound and/or pressure confined (depending on 
core definition, see Appendix D ), but not sufficiently massive to 
collapse likely undergo a phase of turbulent decay, developing a 
significant central coherent region, and evolving into Phase II. Such 
cores may transition between Phases I, II, and III depending on their 
local environments and how they accrete material (e.g. as described 
by Burkert & Bodenheimer 2000 ; Hennebelle & Chabrier 2009 ; 
Hopkins 2013 ; Padoan et al. 2020 ). 

Due to the turbulent nature of the core environment, we find that 
core characteristics are non-deterministic. Cores in all three phases 
may disperse (Fig. 10 , see also Smullen et al. 2020 ). This suggests 
that the location of an observed core in the parameter space does not 
uniquely determine whether it will survive or become protostellar. 
Cores with significant coherent regions are more likely to live longer 
but are also not guaranteed to form stars at a later time (e.g. Table 2 ). 
This suggests that many observed starless cores may not in fact go 
on to form stars. For example, our results suggest that low-mass 
cores with initially high-virial ratios, such as a subset of Orion and 
Ophiuchus cores that appear towards the top of Phase I (see Fig. 15 ) 
have a high likelihood of dissipation within ∼2 × 10 5 yr. 

The exact percentages for the survi v al rates likely depend on the 
degree of clustering and cloud physical conditions (e.g. Guszejnov 
et al. 2022 ). Ho we ver, the fact that some cores not bound by self- 
gravity continue to evolve and may eventually become prestel- 
lar/protostellar is consistent with the substantial number of observed 
unbound cores. Chen et al. ( 2019a ) found that (Phase II) coherent 
cores, not bound by self-gravity, are instead confined by turbulent 
motions of the ambient gas. Similarly, Orion and Ophiuchus contain 
a large number of unbound cores, which can be explained by a 

significant confining pressure (Kirk et al. 2017 ; Kerr et al. 2019 ). This 
confinement, provided by the turbulent pressure of the ambient gas, 
helps explain why many apparently unbound cores persist and some 
eventually become protostellar (e.g. Fig 8 bc). Our analysis suggests 
that the degree of unboundedness may be due in part to the fiducial 
core definition, which focuses on an inner compact portion of the 
core and misses a substantial part of the core mass (see Appendix D ). 
Ho we ver, we caution that even if confining pressure helps to explain 
the existence of the large number of such structures, our results imply 
that many of these will not go on to form stars. 

Cores inhabiting Phase III have the highest likelihood, both of 
persisting (30 per cent) and of being protostellar (23 per cent). This 
suggests the subset of observed starless cores in Ophiuchus, Orion, 
and Perseus mapped to Phase III prototypes will become protostellar. 
Based on our tracks this may occur within ∼1–2 × 10 5 yr, although 
the time-scale for the evolution is difficult to constrain from the 
placement within the UMAP alone. 

Overall, cores appear to transition smoothly between phases as 
evinced by the significant amount of time cores often spend in one 
prototype and one phase before moving to another (e.g. Fig 11 ), 
and the concentration of tracks in limited parts of the parameter 
space (e.g. Fig 8 ). As discussed abo v e, the appearance and growth of 
coherent regions appears to be gradual, and a core remains not bound 
by self-gravity in parts of Phase II. On the other hand, the transition 
between Phase II and Phase III or Phase I and Phase III corresponds to 
a shrinking or complete disappearance of the central coherent region 
(Fig. 6 ). Ho we ver, we note that there is a certain degree of o v erlap and 
that some of the Phase III cores still contain coherent regions (Figs 6 
and 15 ). An observational example is the star-forming coherent core 
in the B5 region in Perseus identified by Pineda et al. ( 2010 ). This 
coherent core is associated with a known protostar and contains at 
least three other starless substructures (Pineda et al. 2015 ). Pineda 
et al. ( 2010 ) observed an increase in velocity dispersion near the 
protostar in B5, which is also exhibited in some of the star-forming 
Phase III cores (Fig. 7 ). This ele v ated dispersion could either be due 
to gravitational infall or the protostellar outflow. One of the starless 
substructures, B5-Condensation1, also exhibits a larger central line 
width at higher resolution, which is likely due to infall (Schmiedeke 
et al. 2021 ). 

Gravitational boundedness is often used to distinguish between 
conventionally identified starless cores, i.e. those with no protostar 
which are considered unlikely to form stars, and prestellar cores, 
which likewise contain no protostar but are expected to become star- 
forming. As shown in Fig. 6 f, there is no sharp boundary between 
gravitationally bound and unbound cores. There are Phase II cores 
that are gravitationally bound according to the virial analysis, and 
there are Phase III cores that are not gravitationally bound. Both 
the disappearance of the coherent region and the emergence of 
gravitational boundedness are related to the onset of gravitational 
infall in our evolutionary picture. In this dynamic picture, one should 
not rely on a conventional virial analysis to predict whether a core 
will eventually form stars or not. 

5.2 Comparison with low-mass star and core formation models 

To date, a great deal of theoretical work has been directed towards 
the question: how does a core form in a molecular cloud, and 
how does core formation lead to the formation of stars? In this 
section, we discuss three representative models of low-mass core 
and star formation and compare our results with these models. 

Starting with Padoan, Nordlund & Jones ( 1997 ) a series of works 
have proposed turbulent fragmentation as the dominant mechanism 
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in forming cores (see Lee et al. 2020 , and references therein). In 
this model, structures develop in a top-down sense. Structures at 
smaller scales form when turbulent fluctuations in the parent larger- 
scale structure cause subregions to become gravitationally unstable. 
Hopkins ( 2013 ) suggests that the physical properties of cores formed 
via this mechanism are set at the time of fragmentation and are 
only weakly modified by the collapse process. In the Hennebelle 
& Chabrier ( 2008 ) model, the decay of turbulence does not affect 
the selection process, which adopts gravitational instability as the 
criterion to select structures that continue evolving and eventually 
become prestellar/protostellar. In contrast, we find that the evolution 
of turbulence within the core plays an important role. As discussed 
in Section 5.1 , turbulence dissipation in the first ∼1–2 × 10 5 yr is 
necessary to reduce turbulent support before gravitational collapse 
starts. Although we do find that some Phase I cores are close to being 
gravitationally unstable and evolve directly into Phase III, we find 
that focusing only on density structures that are abo v e the collapse 
threshold would bias the analysis by excluding cores that eventually 
become star-forming. Ho we ver, based on our analysis, we agree that 
turbulent fluctuations are important in creating the initial distribution 
of density structures, although unlike in the theoretical framework 
of turbulent fragmentation, these density structures do not need to 
be initially gravitationally unstable to continue evolving to become 
prestellar cores. 

Chen & Ostriker ( 2014 , 2015 , 2018 ) examine the formation of 
cores in the post-shock layers of supersonic converging flows. In their 
model, the converging flows collide in a plane-parallel fashion. Chen 
& Ostriker ( 2015 ) find that cores and filaments form simultaneously 
in these post-shock layers. The cores have subsonic velocity fields 
not unlike the Phase II coherent cores, as a result of the assumption 
that the turbulence has already been dispersed on small scales due 
to the initial conditions (e.g. see Fig. 5 in Chen, King & Li 2016 ). 
They find that although the subsonic cores are initially not bound by 
self-gravity, anisotropic flows (referred to as anisotropic contraction 
in Chen & Ostriker 2014 ) along directions parallel to the post-shock 
layers help the subsonic cores collect mass. The anisotropic flows 
continue to add mass to the cores, even after the cores become 
gravitationally unstable and collapse starts. Generally speaking, the 
process examined by Chen & Ostriker ( 2015 ) corresponds to the 
evolution of a subset of our Phase II cores toward Phase III. They 
find that the time-scale of the anisotropic phase, which starts when 
the anisotropic flows emerge and ends when the cores become 
gravitationally unstable, is 2 × 10 5 to 3 × 10 5 yr, comparable to 
our Phase I/II + Phase III mean lifetimes. These works by Chen & 

Ostriker ( 2015 ) demonstrate that converging flows can be an efficient 
way to dissipate turbulence, although in reality, the idealized set-up 
of cloud-scale plane-parallel converging flows is unlikely in turbulent 
clouds. A similar process involving converging flows may explain the 
formation of the dense filaments and the cores within them that we 
also observe here. Ho we ver, their set-up alone cannot fully explain 
the formation and evolution of isolated Phase I and Phase II cores 
outside the filaments, which appear to be correlated with mild and 
local shock-induced features in our model (see Fig. 5 ). These isolated 
cores collect mass as the y mo v e across the turbulent cloud without 
need for converging flows. Future studies of cloud-scale converging 
flows in more realistic settings within turbulent clouds are needed to 
understand their effects on core evolution and turbulence dissipation. 

V ́azquez-Semadeni, Gonz ́alez-Samaniego & Col ́ın ( 2017 ) and 
Ballesteros-Paredes et al. ( 2018 ) propose a gravity-regulated model 
of core formation, where dense cores form via hierarchical grav- 
itational fragmentation. In the analytical model put forward by 
Ballesteros-Paredes et al. ( 2018 ), a star-forming core starts its 

evolution in a state of gravitational instability and remains gravita- 
tionally unstable throughout the evolution. Thus, a core in this model 
undergoes gravitational collapse at all times. Ballesteros-Paredes 
et al. ( 2018 ) propose that outside-in gravitational collapse generates 
the distribution of velocity dispersions observed in coherent cores 
with larger velocity dispersions at larger radii and smaller velocity 
dispersions in the core centres. The simulated core in this model 
develops a density profiles similar to the critical Bonnor–Ebert 
sphere with ρ ∝ r −2 . Based on our analysis, we conclude this model 
lacks the ability to explain the turbulence in Phase I cores and the 
dissipation of turbulence during Phase I and Phase II. In our analysis, 
when a core evolves from Phase II to Phase III, gravitational collapse 
starts at the centre of the core (an inside-out collapse as proposed 
by Shu 1977 ), raising the velocity dispersion at the centre above the 
thermal sonic speed first before increasing the gas dispersion towards 
the core edges. This can be seen in Fig. 7 , where many of the Phase 
III cores have centrally enhanced velocity dispersions. As discussed 
abo v e, most Phase I cores and Phase II cores have density profiles 
that are shallower than a critical Bonnor–Ebert sphere, although at 
later times, the profiles do approach Bonnor–Ebert-like profiles with 
ρ ∝ r −2 . On the other hand, V ́azquez-Semadeni et al. ( 2017 ) show 

that hierarchical gravitational fragmentation is capable of creating 
star-forming cores that have physical properties similar to those of 
the observed cores in a study of core formation in a molecular cloud 
undergoing global gravitational collapse in simulations. Ho we ver, 
similar to the analytical model presented by Ballesteros-Paredes et al. 
( 2018 ), the cores in the simulations studied by V ́azquez-Semadeni 
et al. ( 2017 ) appear to be gravitationally supercritical at all times, 
while in our model, most cores form as subcritical structures, whose 
evolution is driven by the details of their formation from the turbulent 
cloud environment. The gravity-regulated model cannot fully explain 
the evolution of cores seen in our analysis. 

In summary, the underlying difference between the picture pre- 
sented in this paper and previous theoretical models is the inclusion 
of gravitationally subcritical structures in the core evolution theory. 
In previous models, subcritical density structures are excluded in 
the analysis under the conventional assumption that such structures 
disperse before they can become prestellar/protostellar. Our model 
shows otherwise. As discussed in Section 4.2 , we find that a portion 
of cores that are not bound by self-gravity continue to evolve 
and eventually become prestellar/protostellar. Critically, turbulence 
dissipation appears to constitute an important separate stage of core 
evolution. Future studies that examine gravitationally subcritical 
cores along with supercritical ones are needed to understand the 
process of turbulence dissipation and how it sets the initial conditions 
for the later phase of gravitational collapse and star formation. 

5.3 Comparison with high-mass star formation models 

Our simulation represents typical nearby low-mass star-forming 
regions, like Perseus, Ophiuchus, and Taurus with similar gas 
temperatures, column densities, and velocity dispersions. Likewise, 
the simulated core properties, including masses and sizes are similar 
to those of cores identified in these regions. This reinforces that 
our proposed core evolution model is applicable in the context of 
low-mass star formation as defined by stars with masses below a 
few solar masses. High-mass star formation, which is characterized 
by higher gas temperatures, velocity dispersions, column densities, 
and stellar densities may proceed very differently and not pass 
through the phases we propose here. Ho we ver, observ ations suggest 
star formation exists on a continuum, low- and high-mass star 
formation occurs co-spatially and contemporaneously, and there is 
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not necessarily a clear dichotomy between them. To date, no coherent 
cores with high masses that could be progenitors of massive stars 
hav e been observ ed. This may be because such cores are distant and 
rare or because few, if an y, massiv e starless cores exist (Tan et al. 
2014 ). Ho we ver, our e volutionary model shares some characteristics 
with several models for high-mass star formation, as we discuss 
here. During Phase I, cores are trans-to-supersonically turbulent and 
appear to be supported by turbulent pressure characteristics that are 
adopted as the initial conditions of massive cores in the Turbulent 
Core (TC) model for high-mass star formation (McKee & Tan 2002 , 
2003 ). In this model, turbulence provides internal pressure support 
and mediates gravitational collapse. Later work notes that strong 
magnetic fields may also contribute to the stability of massive cores 
(Tan et al. 2013 ). Ho we ver, the TC model does not address in detail 
how such cores form. The challenge of identifying truly massive, 
starless cores, and the apparent rarity of such objects suggest that 
some degree of collapse and star formation proceeds before a large 
reservoir of gas accumulates (Padoan et al. 2020 ; Grudi ́c et al. 
2022 ). In other words, massive star formation is contemporaneous 
with massive core formation. In our model, a significant portion 
of the core mass accumulates before the internal turbulence decays 
and collapse proceeds. Ho we ver, the mass becomes more centrally 
concentrated during Phase III, suggesting that some degree of core 
growth continues during the collapse phase but may not be included 
within the FWHM boundary (see Appendix D ). 

In the opposite extreme, the competitive accretion (CA) model 
predicts that cores as discrete objects are relatively unimportant 
to the final outcome of star formation (Zinnecker 1982 ; Bonnell 
et al. 2001a , b ). Instead, massive stars form at the centre of clouds 
within the largest gravitational potential well, which funnels material 
inw ards and f acilitates high-stellar accretion rates. In this case, core 
masses are independent of the final masses of the stars that form 

within them, and massive starless cores nev er e xist (Smith, Longmore 
& Bonnell 2009 ; Mairs et al. 2014 ). The CA model stresses the 
importance of the local environment and role of neighbouring stars. 
In our model, cores form both outside and inside filamentary regions, 
where the latter has the greatest ability for cores (and protostars) 
to grow due to inflowing gas. We find that Phase III cores tend to 
ha ve closer near -neighbours, d̄ = 0 . 13 + 0 . 06 

−0 . 05 versus d̄ = 0 . 17 + 0 . 1 
−0 . 07 and 

d̄ = 0 . 18 + 0 . 13 
−0 . 07 (see Table 1 ) for Phase I and II cores. This suggests 

that environment has some influence on the progression of core 
e volution. The dif ference in clustering between Phase I/II cores and 
Phase III cores may be in part because some fraction of cores disperse 
before reaching Phase III, which could be more likely to occur if the 
local environment does not allo w suf ficient mass accretion to trigger 
collapse. 

Recently, Padoan et al. ( 2020 ) proposed the inertial-inflow model, 
in which massive stars form in turbulent regions characterized by 
lar ge-scale conver ging flows. The inertial-inflow model is formulated 
by analysing magnetized driven turbulent simulations, not too dis- 
similar from the one we analyse here, although Padoan et al. ( 2020 ) 
follow a larger spatial volume and do not resolve the formation of 
low-mass stars (M ∗ � 2M ⊙). Turbulent fragmentation produces the 
initial core properties and sets their growth time-scale; massive stars 
form in cores that continue to grow through accretion. This model 
predicts that truly massive starless cores do not exist, since collapse 
begins before a significant amount of mass accumulates. Similarly, 
Grudi ́c et al. ( 2022 ) find a very dynamic picture for high-mass star 
formation, in which massive stars require a long time ( � 1 Myr) 
to reach their high masses and these stars accrete at increasingly 
high rates. Of the high-mass models, we discuss here, these two 
models are the most similar to the one we propose for low-mass star 

formation, namely, in that it emphasizes the dynamic nature of core 
e volution. Ho we ver, it does not explicitly address the early stages 
of core formation, and the cores identified in the simulation are 
gravitationally bound by construction, so they are most analogous to 
our Phase III cores. It seems possible that turbulent decay and the 
formation of coherent regions play an important role in low-mass star 
formation as we propose here (e.g. Fig. 16 ), and the inertial-inflow 

model represents a natural extension of core evolution for higher 
mass stars. Future work is required to determine how the Phases we 
identify here relate to high-mass core formation and evolution. 

5.4 Obser v ational identification of core phases 

Intriguingly, coherent cores have only been directly observed and 
resolved using observations of NH 3 hyperfine line emission. Mean- 
while, there are observations of C 

18 O and N 2 H 
+ molecular line 

emission that either did not resolve the transition to coherence 
and/or probed only the interior of a coherent core (Goodman et al. 
1998 ; Caselli et al. 2002 ). Our models suggest that many starless 
cores contain compact coherent regions that are below the current 
observational resolution. By comparing the profiles in Fig. 7 , we see 
that the transition to coherence generally corresponds to a density 
threshold of ≥2 × 10 4 cm 

−3 , and that most such cores have peak 
densities below 10 5 cm 

−3 , which may make them difficult to detect. 
In addition, extended coherent regions may be hidden in observations 
due to the embedding turbulent gas (Choudhury et al. 2021 ). 

Phase I cores have similarly low-peak densities and properties; 
without sufficiently high resolution (e.g. � 0.01 pc), it would be 
observ ationally dif ficult to distinguish between Phase I and Phase II 
cores. Molecular line tracers that are also sensitive to lower densities 
w ould mak e the observed line widths appear broader due to the 
turbulent motions of the lower-density materials along the line of 
sight. Consequently, it would be difficult to identify and resolve 
an internal coherent region. Molecular line tracers tracing higher 
densities would resolve the interior of the coherent region but not 
the transition to coherence occurring ≥2 × 10 4 cm 

−3 , at the same 
time (this may be the case for the N 2 H 

+ observations performed by 
Caselli et al. 2002 ). 

In contrast, Phase III cores are relatively easier to detect. They 
are expected to be denser and more chemically evolv ed, pro viding a 
larger selection of possible molecular line tracers. These properties 
likely account for the larger number of observed gravitationally 
bound prestellar and protostellar cores compared to coherent cores. 
Probing the internal velocity structures of Phase III cores is usually 
limited by the saturation threshold, and choosing the right molecular 
line tracer becomes critical. Numerous examples of prestellar and 
protostellar cores that likely correspond to this phase in the simula- 
tions have been identified in observations (Tafalla et al. 2004 ; Enoch 
et al. 2008 ; Kauffmann et al. 2008 ; Rosolowsky et al. 2008a ; Belloche 
et al. 2011 ). At an even later stage, the formation of protostars 
within cores provides an extra observational hint that they belong to 
Phase III such as excess infrared emission and/or molecular outflows 
(Bontemps et al. 1996 ; Arce et al. 2007 ). 

The starting time of a core is subject to uncertainty in the definition 
of a core. In our analysis, cores are defined by the parameters of 
the dendrogram identification algorithm and FWHM criterion, and 
we expect that choosing slightly different parameters would yield 
slightly different core properties. As described in Section 3.1 , we 
require a density structure to have a size larger than ∼0.028 pc abo v e 
a density threshold of 10 4 cm 

−3 to be identified as a core. In reality, 
the growth of a density structure in the molecular cloud starts before 
gas reaches these densities. The growth time before we identify the 
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core may be estimated with the free-fall time, t ff = 
√ 

3 π/ 32 Gρ, 
which is 3.1 × 10 5 yr for a density of 10 4 cm 

−3 . Processes such as 
the formation of complex molecular species likely start during the 
initial growth of the density structures and before the core is classified 
into one of the three Phases we define here, but the formation time of 
dif ferent species v aries and abundances may not reach a detectable 
level until the core remains abo v e 10 4 cm 

−3 for ∼10 5 yr (Suzuki et al. 
1992 ; Friesen et al. 2017 ). 

5.5 Comparison caveats 

In this section, we discuss several caveats to our analysis and 
comparison to observations. 

First, our simulation does not include stellar feedback. Feedback, 
particularly in the form of protostellar outflows, appears to be 
critical in setting both the local core-to-star and global cloud-to- 
star efficiencies (Federrath 2015 ; Offner & Chaban 2017 ; Grudi ́c 
et al. 2022 ). Feedback is also responsible for driving turbulence 
o v er a range of scales within molecular clouds (e.g. Offner & Arce 
2014 ; Offner & Liu 2018 ). The star-forming regions we compare 
with in this work appear to have ubiquitous feedback in the form of 
outflows and winds (e.g. Xu et al. 2020a , b , 2022 ). Consequently, 
we expect the presence of feedback to alter the simulation core 
properties and their cloud environment to some degree. In comparing 
with observations, we mitigate the lack of feedback in the simulation 
in two main ways. First, we compare to NH 3 observations, which 
trace denser gas, where the imprint of feedback is small. Protostellar 
cores observed with dense-gas tracers have relatively low (sub or 
trans-sonic) velocity dispersions (Kirk, Johnstone & Tafalla 2007 ; 
Rosolowsky et al. 2008a ). The signature of feedback in NH 3 line 
widths at higher resolution is also usually small as in the case of 
B5, which hosts a Class I protostar (Pineda et al. 2015 ). Second, 
the large majority of the observed cores that we compare with are 
thought to be starless. Thus, while stellar feedback will likely alter 
the details of the prototype learning and UMAP visualization, we 
expect it will have little effect on the resulting classification and our 
general conclusions. 

Protostellar outflows also regulate core lifetimes by entraining 
and expelling dense material. Simulations with feedback find that 
the lifetime of protostellar cores, as defined by when most accretion 
occurs, is ∼2 × 10 5 yr (Offner & Chaban 2017 ), albeit with a large 
amount of scatter (Grudi ́c et al. 2022 ). Only one of the protostellar 
cores in the simulation disperses by the end of the calculation 
(from Phase III). Without feedback, the protostellar core lifetime 
and more generally the time star-forming cores spend in Phase III 
(5.0 ± 0.4 × 10 5 yr, see Section 4.2 ) is o v erestimated, since there 
is no mechanism to halt additional gas accretion on to a core and 
protostar. 

We also caution that the simulation models core evolution under 
one set of initial conditions. These conditions represent the gas 
temperatures, densities, and velocity dispersions typical of conditions 
in nearby low-mass star-forming clouds. Although we find these 
conditions produce cores with properties in good agreement with 
those of observations (e.g. Fig. 15 and 16 ), further work is required 
to determine the impact of variations in mean magnetic field, density, 
velocity dispersion, and cloud geometry on core formation and 
evolution (e.g. Guszejnov et al. 2021 , 2022 ). 

In addition, we do not carry out synthetic observations of the sim- 
ulations, which are required for true ‘apples to apples’ comparisons 
between models and observations (Haworth et al. 2018 ; Rosen et al. 
2020 ). This would require calculating the NH 3 abundances using 

chemical networks or adopting an abundance model (e.g. Offner et al. 
2013 ; Gaches et al. 2015 ; Friesen et al. 2017 ), performing radiative 
transfer calculations to model the emission (e.g. Beaumont et al. 
2013 ; Gaches et al. 2015 ) and accounting for observational resolution 
(e.g. Bradshaw, Offner & Arce 2015 ; Betti et al. 2021 ). We mitigate 
the impact of these uncertainties by focusing on cores observed 
in NH 3 , which has a low volume filling factor within local clouds 
and thus suffers less from projection effects that otherwise produce 
chance alignments of o v erdensities along the line-of-sight. We also 
calculate the properties of the simulated cores using a grid resolution 
comparable to the GAS pixel resolution of the observed star-forming 
regions. Despite this, our approach does not fully encapsulate the 
uncertainties in the observational data. Future work analysing the 
evolution of cores in the space of synthetic NH 3 observations is 
required to more securely map the observations to the simulated 
data. 

Finally, as discussed in Section 4.5 , we project the observations 
into the simulation space using a subset of the core properties. A more 
complete comparison requires including the radial profiles of the 
observed cores in the prototype matching. Ho we v er, these data hav e 
not been derived for cores in most of the catalogues we compare with. 
This additional information would help disentangle high-velocity 
dispersions produced by infall motions from those produced by 
core turbulence. Our prototype learning makes this distinction easily, 
cleanly separating protostellar cores, which are experiencing infall 
(Phase III) from cores that are simply very turbulent (Phase I; see 
Fig. 7 ). Ho we v er, the set of observ ed bulk core properties may be 
insufficient to identify this distinction. F or e xample, in Fig. 14 , a 
number of cores in Ophiuchus, Perseus, and Orion are mapped into 
the upper part of Phase III, where the simulated protostellar cores 
reside. Most of these observed cores are not (currently) associated 
with any identified infrared source, so we cannot determine whether 
their placement there indicates incipient star-formation or whether it 
indicates only that they have a high degree of turbulence. The latter 
scenario would suggest some of these are more analogous to our 
Phase I cores, which are less likely to become star-forming. Future 
catalogues of core properties that include velocity dispersion and 
column density profiles will enable methods like this one to better 
distinguish between these two possibilities. 

6  C O N C L U S I O N S  

We present a method to identify, track, and characterize the evolution 
of dynamic gas structures in simulations. Our method is general and 
is applicable to other numerical models of star formation. Unlike 
many previous core identification and analysis methods, we do not 
make a priori assumptions about the physical properties of the cores 
or their density and velocity dispersion distributions. 

To provide a complete picture of core formation and evolution 
that links turbulent molecular clouds to star-forming cores, we study 
the formation, evolution, and collapse of dense cores identified in 
an MHD simulation. We identify all independent density structures 
abo v e 10 4 cm 

−3 in the simulation using the dendrogram algorithm. 
For each core, we construct a data vector comprised of the density 
and velocity dispersion profiles, core mass, radius, coherent region 
radius, total velocity dispersion, density exponent, kinetic energy, and 
gravitational energy. We utilize prototype learning to characterize the 
core data features, FCM to cluster the data, and UMAP to project the 
information into a two-dimensional space. We then track the cores as 
the y evolv e and mo v e across both the simulation and the learned 
prototype space. As a result, we find three distinct evolutionary 
phases. Phase I represents unbound turbulent structures; we refer 
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to this phase as the turbulent phase. Since these cores are unbound, 
they must gain mass or become quiescent in order to form stars. 
Phase I cores have turbulent internal velocity dispersions and shallow 

density profiles. Phase II corresponds to the dissipation of turbulence 
and the formation of an extended coherent region, which is defined 
as a region with subsonic and nearly uniform velocity dispersion. 
Phase II cores resemble observed coherent cores, including ones that 
are not bound by self-gravity like the droplets observed by Chen 
et al. ( 2019a ). We refer to this phase as the coherent phase. Phase III 
cores are characterized by gravitational infall, which often dominates 
the internal dynamics. Phase III cores include both gravitationally 
bound prestellar and protostellar cores. They also tend to be more 
compact and lie in more clustered regions. About 23 per cent of these 
cores contain protostars, such that this group contains 96 per cent 
of the protostellar cores. Consequently, we refer to Phase III as the 
prestellar/protostellar phase. We estimate typical lifetimes of 

1 . 0 ± 0 . 1 × 10 5 yr , 1 . 3 ± 0 . 2 × 10 5 yr , and 1 . 8 ± 0 . 3 × 10 5 yr , 

respectively, for Phase I, II, and III. 
We track the evolution of cores through prototype space and 

examine how they evolve through the Phases over time. Overall, 
we find that core evolution is dynamic with 85 ± 4 per cent of cores 
changing phase at least once or dispersing during their lifetimes. 
In addition, the instantaneous properties of a given core are not 
predictive of its eventual evolution; cores do not follow one single 
evolutionary path through the three identified phases. We attribute 
this to a combination of truly stochastic processes, such as ongoing 
gas accretion and interactions with the turbulent cloud environment 
as well as with other cores and ambiguity about the core boundary 
location, which does not al w ays capture all the associated gas. 
Of the cores we identify and track, 37 per cent disperse before 
becoming self-gravitating and 32 per cent merge with another core. 
This suggests that most observed starless cores have highly uncertain 
futures and many will not go on to form stars. 

Ho we ver, we are able to identify some general trends for different 
core populations. We find that cores that are short-lived and exist 
for only two snapshots before dispersing primarily belong to Phase 
I or II. The subset of long-lived cores that exist for all snapshots 
appear to cycle through adjacent regions of Phase I, II, and III space, 
spending a significant fraction of their lives as quiescent Phase II 
coherent cores. Finally, cores that form protostars can begin in any 
of the three phases but spend most of their lives in Phase III, where 
they remain once they become protostellar. As prestellar cores these 
structures evolve upwards and to the right in the UMAP space, until 
they reach the region of Phase III parameter space where nearly all 
protostellar cores reside. 

We compare our simulated cores to observed cores detected in NH 3 

emission in the Taurus, Cepheus, Orion, Perseus, and Ophiuchus star- 
forming regions by the Green Bank Ammonia Surv e y (GAS Friesen 
et al. 2017 ; K eo wn et al. 2017 ; Kirk et al. 2017 ; Kerr et al. 2019 ; Chen 
et al. 2019a ). After excluding cores with gas temperatures ≥15K, we 
demonstrate that the simulated and observed cores have similar core 
masses, sizes, velocity dispersions, and virial ratios. We map the 
observed cores into the prototype space and project them on to the 
two-dimensional UMAP visualization derived from the simulated 
cores. We show the observed cores are matched to core prototypes 
in all three phases. We estimate that at least 20 per cent of these will 
disperse, while ∼50 per cent will go on to form stars. The remaining 
30 per cent map to long-lived quasi-equilibrium structures whose 
final evolution is ambiguous. 

We find that the coherent cores observed by Chen et al. ( 2019a ) are 
primarily classified as Phase II. The core evolution paths we identify 

indicate that coherent cores represent an important, earlier stage of 
evolution for many prestellar, and protostellar (Phase III) cores. We 
demonstrate that the observations of NH 3 hyperfine line emission 
with a physical resolution of ∼0.2 pc or finer, like the ones carried 
out by Friesen et al. ( 2017 ), are ideal for detecting Phase II cores. 
Ho we ver, the simulations suggest that many observed cores mapped 
to Phase I and some in Phase III likely host a compact coherent region, 
R coh � 0.02 pc, that remains unresolved. We find a number of cores 
in Taurus, which is a relatively quiescent region, are also classified 
as Phase II cores. Follow-up examination of the velocity profiles of 
these cores may find evidence of a coherent subregion. In contrast, 
cores detected in Orion, Perseus (specifically in NGC 1333), and 
Ophiuchus have higher velocity dispersions and are predominantly 
classified as Phase I or III. 

Future work is needed that examines simulations with more diverse 
initial conditions and additional physics to e v aluate the impact of 
cloud properties and stellar feedback on core evolution. 
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APPENDIX  A :  DOWN-SELECTING  T H E  C O R E  

PROPERTY  V E C TO R  

To remo v e duplicate information from the core profiles we use the 
Least Absolute Shrinkage & Selection Operator (LASSO, Tibshirani 
1996 ), which employs penalized linear regression to fit a model Y ∼
X β according to the following: 

min 
β

S S E = || Y − Xβ|| F (A1) 

subject to || β|| 1 ≤ λ, (A2) 

where SSE is the Sum of Squared Errors of the regression, and || ·
|| F is the Frobenius norm. In our case, X is the 100-d concatenated 
density and dispersion profiles while Y contains the six bulk prop- 
erties for each core, meaning our β i are 6-dimensional vectors of 
regression coefficients. 

F or a giv en value of λ optimization of the abo v e forces some 
set of { β i } → 0, indicating removal of variable(s) { i } has minimal 
impact on model SSE. The optimal value of λ is typically selected 
from a grid of candidate values via cross-validation, using SSE or 
mean squared error as a guide. From Fig. A1 [a], our model MSE 

is minimized at log ( λ) ≈ −7.8, which corresponds to retaining 78 
of the 100 concatenated profiles in the model (model sparsity as a 
function of λ is given in Fig. A1 [b]). 

The lack of a sharp minimum in the MSE curve in Fig. A1 [a] 
indicates the LASSO regression is relatively stable o v er a wide range 
of λ or, equi v alently, that only a small subset of the concatenated 
density + dispersion profiles possess significant linear predictive 
power for the bulk properties, collectively. Because, we include 
the bulk properties in our analysis, we are more interested in the 
complement of the set of LASSO-selected profiles, i.e. variables 
that contain information other than what can be found in the bulk 
properties. Thus, we retain only 12 density + 10 dispersion = 22 
profile variables for analysis. We note that a more sparse LASSO 

model, which Fig. A1 [a] suggests is statistically equi v alent, has a 
larger set complement. As our goal with this preliminary analysis 
is to reduce the number of profiles used for prototype learning and 
clustering, we have chosen the optimal model sparsity corresponding 
to the recommended argmin MSE to produce the largest impact for 
subsequent analysis. 

Literature on dimensionality reduction (DR) algorithms often e v al- 
uate their performance via measures of topology preservation, which 
report how well local data neighbourhoods in high-dimensional space 
are preserved when represented in a lower-dimensional space. As 
our LASSO-based variable selection is essentially a statistical DR 

technique, we borrow a measure known as Rescaled Neighbourhood 
Area Under the Curve (RNX AUC, detailed in Lee et al. ( 2015 ), 
equation 17) to assess the impact of removing parts of the density 
and dispersion profiles. RNX AUC reports a chance-corrected pro- 
portion of K -nearest high(100)-dimensional neighbourhoods that are 

(a) 

(b) 

(c) 

Figure A1. (a) LASSO mean squared error (as a function of penalty 
parameter λ) of regressing bulk properties ∼ density + dispersion profiles. 
Minimum MSE occurs at log ( λ) ≈ −7.8, which corresponds to keeping 
78 profiles in the regression model that are most associated with the bulk 
properties, as shown in (b). The complement of this set (22/100 profiles) 
contains information with less association with the bulk properties, which we 
include in our analysis. (c) The RNX AUC topology-preservation measure 
(red point, from Lee, Peluffo-Ord ́o ̃ nez & Verleysen 2015 ) of the LASSO- 
selected set of 22 profiles, compared to a confidence interval for RNX AUC 

(black point range) obtained via a permutation test of selecting 22 profiles at 
random. LASSO RNX is statistically larger than chance selection, indicating 
our selection procedure has kept information rele v ant for inferring structure 
from the dimensionally-reduced dataset. 

preserved in low(22)-dimensional, averaged over all possible values 
of K . A value = 1 indicates the ideal case, where all neighbour- 
hood relationships are preserved at all scales in a low-dimensional 
representation, and values <1 signal neighbourhood misalignment. 
Representing the 100 core profiles with the 22 selected via LASSO 
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results in an RNX value ≈0.81. To test whether 0.81 is significant, we 
performed a permutation test by randomly selecting 22/100 profiles, 
computing RNX, and repeating 100 times. A 95 per cent confidence 
interval from this non-parametric test is shown in Fig. A1 [c] (black 
point range), alongside the LASSO-selected RNX value (red point). 
There is a small but statistically significant impro v ement in RNX 

when using the LASSO-selected profile subset. 

APPENDIX  B:  SELECTING  T H E  NUMBER  O F  

CL USTERS  

The c -means algorithm partitions data into k clusters ( k is a user- 
specified parameter) regardless of whether k well-defined clusters are 
actually present in the data. Thus, the success of c -means depends 
upon proper specification of k . As there is no universally superior 
method for determining the most appropriate value of k a number of 
cluster validity indices (CVIs) reporting the degrees of compactness 
and separation of clusters in a partitioning have been developed 
(Arbelaitz et al. 2013 ). Typically an analyst selects k as the argmax 
(or argmin , as appropriate) of a CVI computed for each clustering 
resulting from a range of k . The weakness of such an approach is that 
there is, again, no universally superior CVI (the problem of choosing 
k has been replaced with that of choosing the correct CVI for the 
data at hand). Consultation of several CVIs computed for a range of 
k is an intuitive way to make this process more robust to (potentially) 
user -biased CVI selection, b ut the range and optimality conditions of 
each CVI vary which prohibits direct and simultaneous comparisons. 
Additionally, some CVIs possess an inherent bias toward a small or 
large k , e.g. the average within-cluster variance is a monotonically 
decreasing function of k for c -means. 

Recent work by Akhanli & Hennig ( 2020 ) proposes a method 
based on resampling techniques to build an empirical sampling 
distribution ˆ F ι( k) of CVI ι( k ). This sampling distribution represents 
values of a particular CVI ι which could result from clustering 
multiple data sets similar to the one originally observed for a fixed 
value of k . The mean and standard deviation of ˆ F ι( k) are used to 
create a standardized Z-Score of each resampled ι( k ); repeating 
this process B times for a collection of CVIs I ( k ) = { ι1 ( k ), ι2 ( k ), 
. . . } yields a collection of Z-Scores { z b ι1 ( k) , z 

b 
ι2 ( k) , . . . } B b= 1 , which are 

directly comparable (i.e. have a similarly standardized scale), both 
amongst themselves and over a range of k . Further, the observed 
value of CVI ι∗( k ) (resulting from the original clustering, before 
any resampling occurs) is also standardized according to ˆ F ι( k) and 
averaged to create an aggregate index ῑ∗( k) bearing influence from 

all members of I ( k ). The ῑ∗( k) can now be compared across k , 
and the best clustering according to this aggregation is selected as 
argmax k ̄ι

∗( k). 
We have applied the aggregation method of Akhanli & Hennig 

( 2020 ) to build sampling distributions and associated Z-Scores of 
the observed values of three different CVIs for c -means clusterings 
of the core prototypes with k ranging from 2 through 6: 

(i) SIL houette Index (Rousseeuw & Kaufman 1990 ; Campello & 

Hruschka 2006 ) 
(ii) Generalized Dunn Index with set distance δ6 and diameter � 3 , 

or GDI63 , as defined in Bezdek & Pal ( 1995 ) 
(iii) D avies- B ouldin Index (Davies & Bouldin 1979 ). 

These CVIs are commonly used in practice. Higher values of SIL 

and GDI63 are preferable, while DBI is optimal at its minimum. 
The sampling distributions of (i)–(iii) and their aggregated Z-Score 

are shown in Fig. B1 . Because lo wer v alues of DBI are preferable, 

(a) 

(b) 

Figure B1. Bootstrapped sampling distributions (violin plots) and mean 
confidence intervals of each cluster validity index computed as the number 
of c -means clusters k ranges from 2 through 6. Red points indicate the CVI 
e v aluated on our original (non-bootstrapped) sample. k = 3 attained the 
highest aggregate score among all CVIs (panel [b]), and the highest among 
two of the three measures considered here (panel [a]). Since lower values of 
DBI are preferable, DBI is negated before its Z-Score transformation to make 
it comparable to GDI63 and SIL. 

its scores were negated prior to aggregation. The k = 3 clustering 
achieved the highest aggregate Z-Score of 1.15, while k = 2 achieved 
the next highest (0.88). Because a 95 per cent confidence interval 
around the difference in these means is strictly positive ([0.22, 0.32]), 
we have selected the k = 3 clustering for the analysis in this work. 
We note for completeness that the k = 1 case is not addressed by 
most CVIs; because our simulated data possesses at least two natural 
groupings (whether or not a core is identified as containing a stellar 
object), any k = 1 considerations are not applicable here. 

APPENDI X  C :  U M A P  DI MENSI ONALI TY  

R E D U C T I O N  

UMAP is a non-linear dimensionality reduction technique (Lee & 

Verleysen 2007 ) to embed high-dimensional point clouds X ⊂ R 
d 

in a lower-dimensional space U ⊂ R 
d ′ . In this work, d = 28 (the 22 

profiles identified in Appendix A + 6 bulk properties) and we specify 
d 

′ = 2 to facilitate visualization. The low-dimensional points u i are 
formed by minimizing the cross-entropy between distributions of 
pair-wise similarities in high- and low-dimensional space. The high- 
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dimensional point similarities are constructed from an exponentially 
decaying kernel while the low-dimensional similarities are go v erned 
by a parametric generalization of student’s t-distribution. The most 
influential user-specified parameter η controls the number of nearest- 
neighbour similarities that UMAP’s cross-entropy minimization 
attempts to preserve and can greatly influence the quality of the 
resulting embedding. η is typically selected via trial and error 
o v er a grid of candidate values as the parameterization whose 
resulting embedding looks best, and is assumed to grow with sample 
size. 

In lieu of an ad-hoc grid search under such subjective criteria, 
we appeal to a more data-driven specification for η utilizing in- 
formation about data topology gleaned from Neural Gas learning 
(Section 3.3.1 ). A recall of data through any vector quantizer (not 
just Neural Gas) gives rise to the connectivity (CONN) graph 
of its prototypes (Ta s ¸demir & Mer ́enyi 2009 ), whose weighted 
edges conv e y topological adjacencies of, and local distributions 
surrounding, the prototypes in high-dimensional space. Thus, the 
data inside a prototype’s receptive field (the set of data it represents) 
combined with the receptive fields of CONN-adjacent prototypes 
yields a subset of data whose pair-wise similarities are topologically 
rele v ant. We set η equal to the average cardinalities of these sets for 
each prototype, which is 36 for these data. 

APPENDIX  D :  SENSITIVITY  TO  C O R E  

DE FINITION  

In this appendix, we examine the effect of the choice of the core 
definition on the clustering and core properties. Instead of using the 
FWHM to set the core size as abo v e, we define the core boundary as 
the radius where the density profile equals 10 4 cm 

−3 , which is a more 
physically moti v ated core definition. This is ef fecti v ely the av erage 
radius for a core enclosed by an isosurface with n = 10 4 cm 

−3 , 
which has the benefit of making the core size independent of the 
peak density. Given the very different core definitions applied to 
observational data, we view this analysis as a strong test of the 
robustness of our analysis approach. 

Table D1 summarizes the core properties. We find that the 
distinguishing features of each phase are preserved: cores in Phase 
II are still coherent, nearly all of the protostellar cores are mapped 
into one phase (Phase III), and Phase I cores are more turbulent and 
unbound. Ho we ver, we find that the cores o v erall, especially those 
with protostars, are more extended and more massive. The median 
radius, 0.07 pc, is also significantly higher than the median sizes of 
the observed cores, while the median mass, 2.1M ⊙, is comparable 
to that of the cores identified by K eo wn et al. ( 2017 ) (see Section 
2.2.4 ). 

As in the previous Phase assignments, cores in Phase I and II have 
significant o v erlap in their properties with similar masses, radii, and 
virial ratios. Ho we ver, cores belonging to Phase III, which contains 
96 per cent of the protostellar cores, are now systematically larger, 
0.1 pc, and more massive, 6.3 M ⊙. They are now ∼4–6 times more 
massive than Phase I and II cores, such that mass becomes a key 
characteristic distinguishing Phase I/II and Phase III. The FHWM 

definition appears to significantly underestimate the mass associated 
with Phase III cores and thus misses the growth of prestellar and 
protostellar cores. Unfortunately, it is not possible to define cores 
in observations using a number density based criterion; this is one 
reason we adopt the FWHM boundary as the fiducial core definition. 

Despite the change in core definition and properties 97 per cent of 
the cores are classified into the same phase as before. The largest 
change occurs for Phase I cores, which increase in number by 
∼4 per cent. Most of the cores that are reclassified swap between 
Phase I and II with 21 cores moving from Phase I to II and 
37 moving from Phase II to I. This gives confidence that our 
core classifications are robust and largely insensitive to differences 
between core definitions. 

Figs D1 and D2 show the distributions of the core properties. In 
all cases, the phases show clearer separation than those identified 
using the FWHM definition (see the analogous Figs 12 and 13 
for comparison). This suggests that a core definition encompassing 
more of the core envelope leads to more distinct clusters. While this 
core definition appears superior for clustering and classification, we 
instead adopt the FHWM definition in the body of the paper for the 
purpose of comparing more directly with the GAS data. Our analysis 
here suggests that the observed cores defined using getsources may 
miss additional material in the core envelope that would help their 
classification and produce more physically accurate core properties. 
Reco v ering this mass is non-trivial, since the observations are limited 
by the resolution, signal-to-noise and chemical characteristics of the 
tracers observed as discussed in Section 5.4 . 

In Fig. D1, a the mass-size relation is steeper with M c ∝ R 
3 . 1 
c , 

rather than M c ∝ R 
2 
c as expected from the observed line-width 

size relation. In addition, the choice of boundary leads to better 
continuity in the properties with the Phase III cores falling on the 
same, considerably tighter mass-size relation. This suggests that 
underestimating the core size, or in other words adopting a core 
size that varies with the density peak, produces scatter in the mass- 
size relation. This may partially explain the very flat, high-scatter 
mass-size relationship of the GAS data (see fig. 5 in Kirk et al. 2017 , 
for example). 

In Figs D1 and D2 , we o v erlay the droplet data from Chen et al. 
( 2019a ), which are the core sample defined in the most similar way. 
The droplets are again matched predominantly with Phase II proto- 

Table D1. Physical properties of cores in each phase. We assign those that have partial membership in two different clusters to the one with the highest 
membership. The physical properties are measured using the density and velocity profiles derived from the dendrogram structure. The columns are number of 
cores and median core mass, radius, size of the coherent re gion, density inde x, total v elocity dispersion, bulk v elocity, ratio between the kinetic energy and 
the absolute value of the gravitational potential energy, fraction of members containing protostars and nearest neighbour separation. The density index is the 
power-la w inde x of the function, n = n 0 ( r / r 0 ) p , fitted to the density profile of each core. The spreads are calculated using the 0.25 and 0.75 quantiles of the 
distribution. 

Core classification N M c (M ⊙) R c (pc) R coh (pc) p σ tot (km s −1 ) V bulk, 1d (km s −1 ) 	K / | 	G | f ∗ (%) d̄ (pc) 

Phase I (turbulent) 1266 1.1 + 0 . 9 −0 . 6 0.06 + 0 . 01 
−0 . 01 0.012 + 0 . 004 

−0 . 004 −0.87 + 0 . 18 
−0 . 22 0.33 + 0 . 05 

−0 . 03 0.6 + 0 . 2 −0 . 2 3.5 + 1 . 9 −1 1.1 0.17 + 0 . 10 
−0 . 07 

Phase II (coherent) 1274 1.7 + 1 . 3 −0 . 8 0.07 + 0 . 01 
−0 . 01 0.029 + 0 . 008 

−0 . 006 −0.85 + 0 . 15 
−0 . 2 0.27 + 0 . 03 

−0 . 03 0.4 + 0 . 3 −0 . 2 1.9 + 0 . 7 −0 . 5 0.0 0.18 + 0 . 15 
−0 . 07 

Phase III (protostellar) 998 6.3 + 2 . 3 −1 . 9 0.10 + 0 . 01 
−0 . 01 0.009 + 0 . 007 

−0 . 009 −1.22 + 0 . 22 
−0 . 3 0.38 + 0 . 06 

−0 . 04 0.6 + 0 . 2 −0 . 2 1.4 + 0 . 5 −0 . 4 22.7 0.13 + 0 . 06 
−0 . 05 

All 3538 2.1 + 2 . 7 −1 . 2 0.07 + 0 . 02 
−0 . 02 0.016 + 0 . 01 

−0 . 007 −0.95 + 0 . 2 −0 . 25 0.32 + 0 . 06 
−0 . 04 0.5 + 0 . 3 −0 . 2 2.1 + 1 . 1 −0 . 7 6.8 0.16 + 0 . 1 −0 . 06 
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Figure D1. (a) Mass-size distribution of all 3538 independent structures. The green, purple, and orange circles correspond to structures in Phase I, II, and 
III, respectively. The symbol transparency is set by the weight of the core cluster assignment. Black filled circles indicate cores with sink particles. The grey 
line shows a fit to all cores. The grey diamonds represent the droplets from Chen et al. ( 2019a ). (b) 1-d non-thermal velocity dispersion-size distribution of all 
3538 independent structures with a colour coding scheme the same as (a). The non-thermal velocity dispersion is derived for the droplets (grey diamonds) by 
assuming a gas temperature of 10K. The horizontal black lines denote the velocity dispersion values when the non-thermal velocity dispersion is equal to the 
sonic speed (thicker line) and half the sonic speed (thinner line) for 10K molecular gas. Nearly all protostellar cores are members of Phase III, which tends to 
contain more massive and larger cores than Phase I and II. 

types. Like Phase II cores the y hav e small masses, sizes, and velocity 
dispersions. While the y o v erlap in all areas of the parameter space 
their sizes are systematically smaller than the median simulated core 
size. Ho we v er, the y appear to follow a similar steep mass-size relation 
to the simulation data. 5 In a virial analysis, the droplets appear to 
follow a narrow track that hugs the distribution of simulated Phase 
II cores, which here are slightly offset from the Phase I distribution 
and closer to virial equilibrium. Nearly all of the other samples of 
observed cores have masses and sizes that fall outside the simulated 
parameter space and performing the comparison presented in Sec- 
tion 4.5 is no longer a statistically rigorous or meaningful e x ercise. 

5 Note that Chen et al. ( 2019a ) found a mass-radius power-law index of 2.4 by 
combining the droplet data with updated observations of dense cores taken 
from Goodman et al. ( 1998 ), which are larger and more massive than the 
droplets 

Figure D2. Distribution of the gravitational potential energy and the kinetic 
energy of all 3538 structures where the core boundary is defined using the n = 

10 4 cm −3 density contour. The green, purple, and orange circles correspond 
to structures in Phase I, II, and III, respectively. The band from the lower 
left to the top right marks equilibrium between the gravitational potential 
energy and the internal kinetic energy (grey line) within a factor of two 
(grey shaded region). The droplets from Chen et al. ( 2019a ) are o v erlaid for 
comparison. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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