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Abstract

We propose the Neurally-Guided Shape Parser (NGSP),
a method that learns how to assign fine-grained semantic
labels to regions of a 3D shape. NGSP solves this problem
via MAP inference, modeling the posterior probability of
a label assignment conditioned on an input shape with a
learned likelihood function. To make this search tractable,
NGSP employs a neural guide network that learns to ap-
proximate the posterior. NGSP finds high-probability la-
bel assignments by first sampling proposals with the guide
network and then evaluating each proposal under the full
likelihood. We evaluate NGSP on the task of fine-grained
semantic segmentation of manufactured 3D shapes from Part-
Net, where shapes have been decomposed into regions that
correspond to part instance over-segmentations. We find that
NGSP delivers significant performance improvements over
comparison methods that (i) use regions to group per-point
predictions, (ii) use regions as a self-supervisory signal or
(iii) assign labels to regions under alternative formulations.
Further, we show that NGSP maintains strong performance
even with limited labeled data or noisy input shape regions.
Finally, we demonstrate that NGSP can be directly applied
to CAD shapes found in online repositories and validate its
effectiveness with a perceptual study.

1. Introduction

The ability to semantically segment 3D shapes is im-
portant for numerous applications in vision, graphics, and
robotics: reverse-engineering the part structure of an object
to support editing and manipulation; producing training data
for structure-aware generative shape models [10, 14, 24];
helping autonomous agents understand how to interact with
objects in their environment [1]; and more. These appli-
cations often demand that the parts detected be fine-scale
(e.g. wheels of an office chair) and hierarchically-organized
(e.g. a cabinet door decomposes into a handle, door, and
frame). Producing such segmentations has proved to be a
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challenging task, as it is expensive to gather large amounts
of data at this granularity; PartNet [25] is the only existing
large-scale dataset of this type.

Recent work on 3D shape semantic segmentation has
mainly focused on end-to-end approaches that operate on
shape atoms (e.g. mesh faces, point cloud points, occupancy
grid voxels), i.e. the lowest-level geometric entity in the
input representation [12,28,29,38]. While these methods
achieve impressive performance on many tasks, they do not
often transfer well to domains with fine-grained labels or
when access to labeled data is limited. We postulate that one
reason for this phenomenon is that attempting to label shape
atoms directly results in a massive search space, allowing
learning-based methods to overfit unless the ratio of labeled
shape instances to the label set complexity is high.

One way to address this issue is to design systems that
make use of shape regions. When the number of shape
regions becomes significantly smaller than the number of
shape atoms, the label assignment problem becomes easier.
Such a framing may allow methods to learn fine-grained
semantic segmentation when access to labeled data is limited.
When shape regions are provided, they can be used in various
ways: (i) as a post-process aggregation on top of shape
atom predictions, (ii) to formulate auxiliary self-supervised
objectives, or (iii) as the object to be labeled. Methods that
operate within this last paradigm can more directly reason
about relationships between regions, which can help improve
fine-grained segmentation performance by better considering
the context of a region within the entire shape.

The problem of decomposing a shape into regions useful
for semantic segmentation is application-dependent. For
CAD shapes and scenes found in online repositories, this
type of region decomposition is often produced as a by-
product of the modeling process, e.g. each part instance
will be made out of one or more connected mesh compo-
nents [22,34,43]. Discovering region decompositions for
shapes that do not already provide them is a well-studied
problem within computer vision and graphics. There has
been considerable recent effort on unsupervised techniques
that approximate 3D shapes with primitives [6,17,27,32,33],



and there is a long history of research on shape segmentation
through purely geometric analysis [3, 15, 36]. There is even
reason to believe that region decomposition solutions can
generalize across shape categories, i.e. the way that shapes
(especially manufactured objects) decompose into parts is
largely category-independent [ 1 1,44].

In this paper, we propose the Neurally-Guided Shape
Parser (NGSP), a method that learns to assign fine-grained
labels from a semantic grammar to regions of a 3D shape.
Our approach is based on maximum a posteriori (MAP) in-
ference in a model of the probability that a label assignment
to the shape’s regions is correct. Our likelihood consists of
a mixture of modules that each operate on some regions of
the shape. One set of modules evaluates the validity of the
implied geometry and spatial layout for each label in the
semantic grammar. Another module evaluates groups of re-
gions formed by the label assignment. As this combinatorial
search problem is too complex to solve with exhaustive enu-
meration, we employ a neural guide network to approximate
the posterior. The guide network reasons locally, predicting
the label probability for each region independently. Using
the per-region probabilities produced by the guide network,
NGSP importance samples a set of proposed label assign-
ments. To choose the best proposal out of this set, each label
assignment is evaluated under the full likelihood, and the
sample with highest posterior probability is chosen.

We compare NGSP against methods that use shape re-
gions as a post-process, a self-supervisory signal, or assign
labels to regions with different search strategies and likeli-
hood formulations. We evaluate each method on the task
of fine-grained semantic segmentation of manufactured 3D
shapes from PartNet, where each method has access to re-
gions from the annotated part instance over-segmentations
(e.g. each semantic part instance may consist of multiple
regions). NGSP achieves the best semantic segmentation
performance, even in paradigms where access to labeled
data is limited or when the input shape regions are noisy.
To validate our design decisions, we run an ablation study
measuring the effect of each likelihood term and the neural
guide network. Finally, we show that NGSP can find good
semantic segmentations on ‘in the wild” CAD shapes found
from online repositories, and evaluate its performance with a
forced choice perceptual study against comparison methods.
Code for our method and experiments can be found at found
at https://github.com/rkjones4/NGSP .

In summary, our contributions are:

(1) We present the Neurally-Guided Shape Parser (NGSP),
a method that learns how to assign labels from a seman-
tic grammar to regions of a 3D shape. NGSP performs
approximate MAP inference, using a guide network to
find high-probability label assignments under a learned
posterior probability of a label assignment conditioned
on an input shape.

(ii) We demonstrate that NGSP finds better fine-grained
semantic segmentations for manufactured shapes com-
pared with methods that use shape regions in alterna-
tive learning paradigms.

2. Related Work

Semantic Segmentation with 3D Shape Atoms Most
learning-based methods for 3D shape semantic segmenta-
tion have used shape atoms (points, faces, edges, voxels)
as their fundamental unit to label. This practice dates back
to pre-deep-learning work using conditional random fields
on mesh faces [16] and extends to present-day, neural net-
work methods including PointNet [28], PointNet++ [29],
MeshCNN [12], and DGCNN [35]. Some methods have
been designed for settings where labeled data is limited, ei-
ther in terms of the number of labels provided for each shape
[23,40] or the number of shapes that contain any labels at
all [5,8,30]. While approaches within this paradigm achieve
state-of-the-art performance for coarse, non-hierarchical seg-
mentation, we show experimentally that they do not work
as well in hierarchical, fine-grained settings where more
inter-part relational reasoning is helpful.

Region-based Semantic Segmentation of Images and
Scenes Our approach of decomposing a 3D shape into re-
gions is conceptually similar to decomposing a 2D image
into superpixels; there exist some prior work leveraging su-
perpixels to improve image semantic segmentation. Some of
these methods use superpixels or other larger image regions
to increase the computational efficiency of semantic segmen-
tation [26] or to produce segmentation masks with crisper
edges [9,41]. A few of these methods, like ours, focus on
achieving high accuracy with less training data [2, 19,42].

Similar ideas have also been proposed for segmenting 3D
scenes. For large-scale scenes, points have been grouped
into super-points to make learning approaches computation-
ally tractable [13,20]. Some 3D scene segmentation ap-
proaches explicitly compute labels per shape region. One
approach over-segments an indoor scene point cloud then
uses a recursive denoising autoencoder to infer a hierarchi-
cal organization of those segments [31]. Another converts
over-segmented indoor scenes into consistent hierarchies
via dynamic-programming-based, bottom-up grammar pars-
ing [22]. The latter approach is similar to ours in that it also
learns likelihoods from data; however, the scenes considered
are more simplistic and easier to decompose into manageable
sub-sections than the shapes we consider. In general, while
scenes can be represented with point clouds, they have dif-
ferent characteristics from 3D shapes: scenes contain much
fewer regular substructures and are more sparsely populated.

3D Shape Semantic Hierarchies There is a long tradi-
tion of organizing 3D shapes and scenes into hierarchies.
Such hierarchies can be based on spatial locality or other
metrics relating to convenience of editing and rendering, as
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Figure 1. The Neurally-Guided Shape Parser (NGSP) learns to assign fine-grained semantic labels (rightmost) to shape regions (leftmost). A
guide network generates a set of proposed label assignments. The label assignments are sent through likelihood modules that evaluate the
global coherence of each proposal. These terms are combined into a posterior probability which determines the final label assignment.

in classical computer graphics. One can also arrange part-
based shapes into binary hierarchies based on connectivity
and symmetry relationships between their parts [37]; such
a hierarchy can be a useful organization of shape data for
training structure-aware generative models [21]. A general-
ization of this approach is to consider n-ary hierarchies; this
is the data representation adopted by PartNet [25], which sup-
ports more sophisticated structure-aware generative shape
models [14,24]. Our method for semantic segmentation is
designed with these kinds of hierarchies in mind and can
help produce training data for such generative models.

Semantic Segmentation with 3D Shape Regions There
has been some prior work that learns to assign semantic la-
bels to 3D shape regions. One approach first learns how to
group over-segmented shape regions from stock 3D models
into part hypotheses, and then finds an optimal label assign-
ment to each part hypothesis through a CRF formulation [34].
However, this method is not designed for hierarchical gram-
mars, as it is unable to separate semantic parts that share sim-
ilar bounding boxes, which is necessary for the fine-grained
segmentations we desire (e.g. distinguishing a seat frame
from a seat surface). Another approach proposes an MRF
formulation where unary potentials capture per-region label
probabilities and paired potentials encourage a smoothness
term in relation to the grammar hierarchy [43]. We will show
experimentally that NGSP outperforms this formulation on
the task of fine-grained semantic segmentation.

Relatedly, some approaches have made use of a shape
region decomposition to formulate self-supervised learning
objectives. One such method trains a PointNet++ to perform
semantic segmentation, but also enforces a contrastive loss
on per-point embeddings, encouraging points from the same
shape region to share similar embeddings [8]. This tech-
nique achieves impressive performance on few-shot coarse
segmentation tasks when a large collection of unsupervised

shapes augments the labeled data set. We compare NGSP
against this approach, and find that NGSP makes better use
of shape regions for fine-grained segmentations, even with
limited labeled data.

3. Method

The input to our method is a shape & which has been
decomposed into a set of regions R, i.e. S = {R;}.
Our method also receives as input a label grammar G =
(L,w, P), where L is a set of possible semantic labels, w is
the root label (the axiom of the grammar), and P C L x L* is
the set of production rules for the grammar (specifying which
labels can be the children of other labels). The label set L
can be divided into ferminal labels L (those with no chil-
dren) and non-terminal labels Ly, such that L = Lt U L~/
We assume that there exists a unique path from the root to
each terminal label [T € L, i.e. every label has at most one
parent. This is a reasonable assumption for shape labeling;
all PartNet [25] label grammars have this property.

Given these inputs, our goal is to find the maximum a
posteriori (MAP) label assignment A = {a; }, where a; =
A(R;) is the label assigned to region R; € S. We assume a
uniform prior distribution over labels and model the posterior
p(S|A) with a data-driven likelihood function:
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L and Ly, reason about properties of the semantic labels of
G, while Ly reasons about properties of groups of regions
implied by a given assignment.

As the search space of label assignments to shape regions
is large, especially with fine-grained label sets, we guide our
search with a network that learns to locally approximated
the posterior: g(a|S). Figure 1 outlines our approach. Using
this guide network, we importance sample a set of complete
label assignments, which we call proposals. These proposals
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Figure 2. Design of NGSP’s modules. The geometry and layout likelihoods consume a (shape, label assignment) pair, and are computed for
each semantic label in the grammar (left). Each geometry network sees which regions of the input shape have been assigned to its label
(e.g. chair back). Each layout network sees which regions of the input shape have been assigned to its child labels (e.g. chair back surface
and chair back frame). The region group likelihood term also takes a (shape, label assignment) pair as input (fop-right). For each group of
regions implied by the label assignment, it creates a fully-connected graph, where nodes correspond to shape regions in the group. The
neural guide network operates over individual shape regions, predicting the label for each region independently (bottom-right)

are then evaluated under Equation 1, and the proposal that
returns the highest likelihood is chosen as the final output
label assignment.

In the remainder of this section, we describe the different
components of this pipeline in more detail: the semantic
label likelihood terms (Section 3.1), the region group likeli-
hood term (Section 3.2), and details of our neurally-guided
search procedure (Section 3.3).

3.1. Semantic Label Likelihood Terms

For each label in the grammar, the semantic label likeli-
hood terms reason about different properties of shape regions
that were assigned to that label. Specifically, for each [ € G,
we learn to identify geometric properties of [ with a geome-
try likelihood L and semantic layout properties of | with
a layout likelihood £1,. Lg aims to capture information
about the typical geometric properties of regions assigned to
a given label (e.g. chair seats usually have a flat top surface);
L1, aims to capture typical spatial relationships between a
label’s children (e.g. within a chair base, a rocker is usually
positioned underneath the legs). Both of these likelihoods
are modeled with the same structure:

Lg(S,A) = (HPG(Sz:AU)

leL

Ly( (HPL Si:all) )

leL
Si.A = {R € S st A(R) = l}

)1/(2161, 1llcA])

/(XCier Li€A])

where S.a is the subset of regions in the shape S which
are assigned to label [ in assignment A. The exponents

normalize these probabilities by the number of labels which
occur in the label assignment A, e.g. the number of non-
unity product terms.

We model the geometry network pg (S;.a|l) and layout
network pr,(S;.a |l) with PointNet++ architectures, where
each input point cloud contains surface samples from S;. s
(Figure 2, left). Conditioning on [ is implemented by training
separate pg and py, networks for each label [ € L.

Each network is trained in a binary classification
paradigm, tasked with assessing whether the regions in S;. s
are a valid instance of a semantic part with label [. Pos-
itive examples are sourced from the training dataset: the
networks for label [ receive one positive example of S;.a
from each shape where [ appears. Negative examples come
from synthetically-generated corruptions of each positive
example (i.e. changing region labels). To encourage the ge-
ometry and layout networks to focus on the properties after
which they are named, we introduce the following inductive
biases (details in the supplemental):

Geometry Network: The geometry network should learn
to reason about whether the shape of the union of regions
in §;. o is consistent with the label [. Thus, each negative
example is derived by adding or removing regions from a
positive example.

Layout Network: The layout network should focus on
whether the relationships between the child labels of regions
assigned to [ are consistent with that label. To enable this
reasoning, the network receives the child label as an addi-
tional one-hot attribute concatenated to every point. Each
negative example is derived by modifying the child label
assignment of at least one region from a positive example.



3.2. Region Group Likelihood Term

The region group likelihood term reasons about proper-
ties of region groups implicitly formed when a labeling is
assigned to an input shape. Specifically, it models the proba-
bility that (S, A) pairs are valid with respect to region groups
R of S formed under A. For each IT € A, the region group
R, is defined tobe {R; € S | a; = IT}.

Ly reasons over two properties of each R;: if [ is the best
label for R; and what percentage of area within R; belongs
to [. We model these properties with a region network pg.
It consumes a region group R;, and predicts the probability
that R; has [ as its majority label, pia®!, and the percentage
of the area within R that has [ as its true label, pi®. These
predictions are then combined and normalized across all
region groupings:

Lr(S.A) = ([Tr= R0 - p (Rl
leL

We model pr with a region-based graph convolutional net-
work (Figure 2, top-right). We convert each R; into a fully-
connected graph where the nodes correspond to the regions
of R;. We initialize node and edge features with embeddings
predicted by a pretrained point cloud auto-encoder; details
are provided in the supplemental. pg performs 4 rounds of
gated graph convolution, then creates a single latent repre-
sentation for the entire graph with a max-pooling layer [4,7].
piel is modeled with a linear layer that predicts a probability
distribution over the terminal label set. p§™ is conditioned
on [ and modeled with a linear layer that predicts a scalar
value in [0, 1], where 0 implies none of the area within R;
belongs to [ and 1 implies all of the area within R; belongs
to .

)1/|73\

3.3. Neurally-Guided Search

While the search space over regions is much smaller than
the search space over atoms, it is still computationally infea-
sible to exhaustively evaluate £ on all possible label assign-
ments to regions. To guide our search procedure towards
good areas of the search space, we learn a guide network
q(a|S) to locally approximate the posterior.

We model ¢(a|S) with a neural network trained to predict
the probability of each possible label assignment a; for each
region R; of the shape S. ¢(a|S) uses a PointNet++ architec-
ture [29], where the input point cloud contains samples from
the entire shape, but each point has an extra one-hot dimen-
sion indicating whether it belongs to the region of interest
(Figure 2, bottom-right). We train ¢(a|S) in a classification
paradigm, where each shape S in the dataset produces |S]|
training examples (one for each region), and the classifica-
tion target for each example is the ground truth semantic
label of that region. We can then calculate the approximate
posterior guide probability, Lq, of a (S,A) pair with the
following equation:

S|

Lq(S,A) = HQ(ai)

At inference time, our goal is to find high likelihood label
assignments A for a given shape S. To achieve this, our pro-
cedure creates a set of proposed label assignments by using
g(alS) to importance sample the top k label assignments to
S under Lg. We then evaluate each proposed assignment
under £ and select the label assignment within this set which
maximizes Equation 1.

4. Experiments

In this section, we evaluate NGSP’s ability to assign se-
mantic labels to regions of 3D shapes. Our experiments use
CAD manufactured objects from the PartNet dataset [25]
(Section 4.1). We describe the details of our training pro-
cedure in Section 4.2. In Section 4.3, we compare NGSP
against region-aware comparison methods on the task of se-
mantic segmentation under varying amounts of labeled train-
ing data. We provide an ablation study on the components
of NGSP in Section 4.4. We examine how NGSP is affected
when input shape regions are artificially corrupted (Section
4.5) or are produced by an ACD method (Section 4.6). Fi-
nally, in Section 4.7 we run NGSP on ‘in the wild’ CAD
shapes, and compare its predicted segmentations against
alternative methods with a forced choice perceptual study.

4.1. Data

We consider six categories of manufactured shapes from
PartNet [25]: chairs, lamps, tables, storage furniture, vases,
and knives. We use PartNet’s hierarchical labelings as our
ground truth: on average, each label grammar contains 34
total labels and 21 leaf labels. The dataset for each category
contains between 300 and 1200 shapes, split between train,
validation and test sets. We over-segment each shape using
the mesh components for each part instance in PartNet (a
part instance may consist of multiple components). For
training and inference, we convert each mesh into point
clouds with a surface sampling. Full details are provided in
the supplemental material.

4.2. Training Details

The layout, geometry, and region label networks are
trained with binary cross entropy. The region area network is
trained with L1 loss. The guide network is trained with focal
cross entropy loss [39]. We use the Adam optimizer [18]
with a learning rate of 10~ for the guide network and 10~4
for all other networks. All networks perform early stopping
using the validation set. Models were trained sequentially on
a machine with a GeForce RTX 2080 Ti GPU with an Intel
i9-9900K CPU, consuming up to 10GB of GPU memory
and taking between 1-2 days to train for the categories with



# Train Method Mean Chair Lamp Table Vase Knife Storage

PartNet (R) 18.1 253 102 32 126 332 242
BAE-NET (R) 20.7 233 107 11.0 357 222 218

10 LEL (R) 20.1 31.1 143 86 12.6 274 268
LHSS 243 247 167 13.0 333 341 239
NGSP 33.6 366 247 163 588 293 359

PartNet (R) 316 394 245 19.1 449 255 360
BAE-NET (R) 26.5 305 19.0 13.1 424 279 259

40 LEL (R) 386 454 264 261 48.0 453 403
LHSS 354 357 233 20.1 50.0 443 39.1
NGSP 509 536 428 304 762 49.7 529

PartNet (R) 412 49.0 246 378 539 4211 399
BAE-NET (R) 304 347 29.6 166 443 287 283

400 LEL (R) 419 48.0 38.0 382 464 412 394
LHSS 363 437 290 312 450 331 360
NGSP 579 63.6 446 453 84.6 559 532

Table 1. Fine-grained semantic segmentation results across dif-
ferent PartNet categories. The metric is mIoU (higher values are
better). NGSP significantly outperforms other methods that make
alternative use of shape regions. This trend remains consistent even
in limited labeled data regimes (# Train column).

more semantic labels. See the supplemental material for full
details about network architectures.

4.3. Fine-Grained Semantic Segmentation

We compare NGSP against alternative region labeling
methods on the task of semantic segmentation. All evalua-
tions are performed on a held-out test set. Unless otherwise
stated, the number of sampled proposals from the guide net-
work, k, is set to 10000. Following PartNet, we use mloU as
our evaluation metric: the intersection over union between
predicted and ground-truth per-point labels, averaged over
labels in the grammar.

We compare NGSP to the following methods. Methods
appended by (R) make per-point predictions which are aggre-
gated with an average operation into per-region predictions
to form a full label assignment.

* PartNet (R): De-facto approach for fine-grained se-

mantic segmentation that uses a PointNet++ to predict
into the terminal label set [25].

* BAE-NET (R): Implicit field network that jointly learns
to semantically segment and reconstruct shapes; de-
signed for limited labeled data [5].

¢ LEL (R): PointNet++ back-bone where shape region
decompositions formulate a self-supervised training
objective augmenting the classification loss; designed
for limited labeled data [8].

¢ LHSS: Constructs an MRF where nodes correspond to
shape regions. Finds low-cost label assignments over
learned unary and grammar-based pairwise potentials
with an alpha-expansion algorithm [43].

Each method is trained with access to the same labeled shape
instances. BAE-NET and LEL are additionally provided

Model 10 Train 40 Train 400 Train
No Lg 30.7 47.2 57.3
No Ly, 29.0 46.1 56.3
No Lr 32.7 48.0 54.0
No L 29.3 43.0 51.6
No g(alS) 11.7 13.3 13.0
NGSP 33.6 50.9 57.9

Table 2. Semantic segmentation performance of NGSP under differ-
ent ablation conditions (metric is mloU, averaged across categories).
Each component of NGSP helps it find good label assignments.

with up to 1000 shape instances per class that lack semantic
label annotations but contain region decompositions. Full
details are provided in the supplemental.

Results: Quantitative results of this experiment are
shown in Table 1. When labeled data is plentiful (400 max
training shapes, bottom rows), NGSP outperforms the com-
parison methods by a significant margin. Looking at the
mean result across categories, NGSP offers a 38% improve-
ment over the next best method (LEL). When access to
labeled data is limited, NGSP also outperforms alternatives
with a 31% improvement when 10% of the training data is
used and a 38% improvement when 2.5% of the training data
is used. In fact, NGSP’s mean category performance with
10% of the labeled data outperforms any comparison method
that has access to all of the labeled data by almost 10 absolute
percentage points. This result suggests that NGSP could be
useful for semantic segmentation of 3D shapes from uncom-
mon categories for which datasets of semantically annotated
instances are not readily available.

We present some qualitative comparisons from the same
experiment in Figure 3, and provide additional examples in
the supplemental. NGSP is able to find label assignments
that are more coherent, and better reflect the ground-truth
labels, compared with the alternative methods. Methods that
rely on regions to group per-atom predictions often produce
segmentations that lack global consistency. LHSS attempts
to reason about global consistency with its pairwise poten-
tials, but these encourage the output segmentation to become
overly smooth, missing fine-grained part distinctions.

4.4. Ablation Study

To evaluate the design of NGSP, we conduct a series of
ablations, where each formulation has one component of
NGSP removed:

¢ No Lg: Geometry likelihood is removed from L.

¢ No Ly,: Layout likelihood is removed from L.

¢ No Lgr: Region group likelihood is removed from L.

* No L: The best proposal under Lq is chosen.

No ¢(a|S): L evaluates proposals from a uniform prior.

We present results of this experiment in Table 2. As
we show across multiple training set sizes, removing any



Input Regions

PartNet (R)

-
i~
m

BAE-NET (R)
4 -
-8 18

i)

m

LEL (R)

- = 0

LHSS

&

NGSP GT

3 % 9
= 0
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Method 1XReg 2XReg 4XReg
PartNet (R) 412 40.7 40.7
BAE-NET(R) 30.4 30.3 29.9
LEL(R) 419 41.7 413
LHSS 36.3 359 354
NGSP 57.9 49.0 453

Table 3. We evaluate the semantic segmentation performance of
different methods in regimes where shape regions have undergone
artificial corruption (metric is mloU, averaged across categories).
NGSP’s performance declines gradually as the corruption increases,
but in all cases remains better than alternative methods.

component of £ (top 3 rows) leads to a worse mloU. The
“No ¢(a|S)” row demonstrates the importance of the neural
guide network: the search space is too large to effectively
explore in a naive manner. However, as seen in the “No £”
row, the predictions of ¢(a|S) can be furthered improved by
evaluating its proposals under a better estimate of the poste-
rior. As ¢(a|S) only evaluates regions locally, it is unable to
benefit by reasoning about part-to-part relationships implied
by the global label assignment in the same way as L.

4.5. Sensitivity to Region Corruption

We analyze how sensitive NGSP is to corruptions of the
part instance over-segmented regions of the input shapes. For
this analysis, we construct datasets of shapes whose regions
have been artificially split into smaller sub-regions. In the 2X
(4X) paradigm, each region is split into 2 (4) regions; details
of how these splits are produced are provided in the sup-

plemental. For each corruption paradigm, the neural guide
network is retrained on training shapes whose regions have
undergone similar corruption. Results of this experiment
are shown in Table 3, where we track semantic segmenta-
tion performance against baselines which receive the same
corrupted regions. As the amount of region corruption in-
creases, the performance of NGSP declines, but in every
condition it continues to offer performance improvements
over all comparison methods.

4.6. Applications to Unstructured Data

As NGSP requires a region decomposition as input, it
can’t be directly applied to some types of unstructured data
without the help of auxiliary methods. While there are many
methods that aim to convert unstructured shape data into
a reasonable region decomposition, all existing methods
have limitations, and this remains a hard, unsolved problem.
However, even though these region decompositions may
contain errors, NGSP can still use them to improve semantic
segmentation performance when access to labeled data is
limited. We run an experiment comparing NGSP against
alternative region labeling methods over unstructured input
data, with regions created by the ACD method from [8]. We
report the mean category mloU that each method achieves
with ACD produced regions while training over 10 training
shapes (Table 4). In this paradigm, NGSP makes the best
use of the ACD regions, but all methods perform worse
compared with using the PartNet provided regions (Table 1).



Method Mean mloU
PartNet + NR 0.155
PartNet + ACD 0.161
BAE-NET + ACD 0.180
LEL + ACD 0.206
LHSS + ACD 0.202
NGSP + ACD 0.244

Table 4. Semantic segmentation performance over unstructured
input data with ACD generated regions and 10 labeled training
shapes (NR is no regions).

NGSP vs. Mean 95% CI
PartNet R)  79.1  [66.1,92.1]
LHSS 79.6  [68.1,91.1]

Table 5. Quantitative results of our perceptual study comparing
semantic segmentations produced by different methods on ‘in the
wild” CAD shapes. NGSP’s label assignments were significantly
preferred over those predicted by Partnet (R) or LHSS.

4.7. Applications to ‘in the wild’ CAD Shapes

As a byproduct of CAD modeling procedures, many
‘in the wild” 3D shapes come with part instance over-
segmentations. NGSP can segment such objects by treating
each mesh connected component as a shape region. To
demonstrate this application, we compile a small dataset of
26 meshes from the chair category of ShapeNet, where each
shape’s connected components form a reasonable approxima-
tion to a part instance over-segmentation. We run NGSP and
two comparison methods (PartNet (R) and LHSS) on each
shape and record each method’s predicted label assignment.
As we lack ground-truth label annotations for these shapes,
we evaluate NGSP with a two-alternative forced choice per-
ceptual study. Each participant was shown a sequence of
examples, where each example visualized two ways that
parts of a chair could be labeled, and was asked to select the
part labeling that better matched the given shape. Further
details provided in the supplemental.

Results We present the results of this perceptual study
in Table 5. Participants had a strong preference for the
part labelings generated by NGSP. In comparisons against
PartNet, NGSP was preferred 79.1% on average, with a 95%
confidence interval lower-bound of 66.1%. In comparisons
against LHSS, NGSP was preferred 79.6% on average, with
a 95% confidence interval lower-bound of 68.1%.

5. Conclusion

We presented the Neurally-Guided Shape Parser (NGSP),
a method that performs semantic segmentation on region-
decomposed 3D shapes. NGSP assigns labels to shape re-
gions via MAP inference in a learned model of the proba-
bility that a label assignment is correct conditioned on the

shape’s regions. Search is made tractable through an ap-
proximate inference scheme, where the exploration of label
assignments is constrained by a neural guide network. We ex-
perimentally demonstrated that NGSP outperforms methods
that (i) use regions to aggregate point predictions (ii) incor-
porate regions into self-supervised training objectives or (iii)
assign labels to regions in alternative search-based formula-
tions. We observed that these trends remain consistent with
limited labeled data and with noisy shape regions. Finally,
we applied NGSP to a set of ‘in the wild” CAD shapes and
validated that it produced better semantic decompositions
than alternative approaches with a perceptual study.

When presented with an unstructured shape that lacks a
region decomposition, NGSP must rely on other methods
to produce suitable regions. Many methods that decompose
shapes represented as raw sensor input (e.g. point clouds)
into primitive parts do so at too coarse a granularity for
fine-grained segmentation [0, 17,27,32,33]. However, the
input region requirements for NGSP may actually be weaker
than what most of these approaches aim to produce: as
shown in Sections 4.5 and 4.6, NGSP offers advantages even
when the input regions poorly approximate the target part
instances. Developing unsupervised methods for producing
such ‘instance over-segmentations’ is a good direction for
future work.

Looking forward, we believe that NGSP’s framing of 3D
shape semantic segmentation as approximate inference in
a probabilistic model suggests a vision for how this task
could be scaled beyond carefully-curated research datasets
to ‘in-the-wild’ scenarios. In the future, we plan to design
likelihood terms that cannot be easily accommodated by end-
to-end approaches; these could include hard-to-differentiate
terms that consider functional part relationships such as ad-
jacency, symmetry, or physical support (e.g. the chair base
should physically support the chair seat). These terms could
potentially be provided by a person via explicit rules, either
in advance or with a human-in-the-loop system. Paradigms
that allow integration of such symbolic rules with data-driven
models could be a key step towards producing high-quality
semantic segmentations in few-shot or zero-shot scenarios.
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