Unsupervised Kinematic Motion Detection for
Part-segmented 3D Shape Collections

Xianghao Xu
xianghao_xu@brown.edu
Brown University
USA

Srinath Sridhar
srinath_sridhar@brown.edu
Brown University
USA

[
I

+
> .
>

»

Yifan Ruan
yifan_ruan@brown.edu
Brown University
USA

Daniel Ritchie
daniel_ritchie@brown.edu
Brown University
USA

v

Figure 1: Our method discovered these kinematic motion axes (and their ranges of motion) without any human supervision.
It works by finding motion parameters such that one shape can transform into another from the same category. Moving parts
are orange; static parts are blue; translation axes are green; rotation axes are red.

ABSTRACT

3D models of manufactured objects are important for populating
virtual worlds and for synthetic data generation for vision and ro-
botics. To be most useful, such objects should be articulated: their
parts should move when interacted with. While articulated object
datasets exist, creating them is labor-intensive. Learning-based pre-
diction of part motions can help, but all existing methods require
annotated training data. In this paper, we present an unsupervised
approach for discovering articulated motions in a part-segmented
3D shape collection. Our approach is based on a concept we call cat-
egory closure: any valid articulation of an object’s parts should keep
the object in the same semantic category (e.g. a chair stays a chair).
We operationalize this concept with an algorithm that optimizes
a shape’s part motion parameters such that it can transform into
other shapes in the collection. We evaluate our approach by using
it to re-discover part motions from the PartNet-Mobility dataset.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGGRAPH °22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9337-9/22/08...$15.00
https://doi.org/10.1145/3528233.3530742

For almost all shape categories, our method’s predicted motion pa-
rameters have low error with respect to ground truth annotations,
outperforming two supervised motion prediction methods.

CCS CONCEPTS

+ Computing methodologies — Shape analysis; Unsuper-
vised learning.

KEYWORDS

kinematic motion prediction, articulation, 3D shape databases

ACM Reference Format:

Xianghao Xu, Yifan Ruan, Srinath Sridhar, and Daniel Ritchie. 2022. Unsu-
pervised Kinematic Motion Detection for Part-segmented 3D Shape Col-
lections. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Proceedings (SSGGRAPH °22 Conference Proceedings),
August 7-11, 2022, Vancouver, BC, Canada. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3528233.3530742

1 INTRODUCTION

3D models of manufactured objects are important for many appli-
cations: populating virtual worlds for games, AR/VR experiences,
animation, interior design, and architectural visualization; creat-
ing synthetic training data for data-hungry computer vision mod-
els [Richter et al. 2016; Zhang et al. 2017]; simulated training for

https://doi.org/10.1145/3528233.3530742
https://doi.org/10.1145/3528233.3530742

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

robots to learn to navigate or to detect and manipulate objects

before being deployed in the real world [Das et al. 2018; Kolve

et al. 2017; Manolis Savva® et al. 2019; Savva et al. 2017; Xiang et al.

2020; Yan et al. 2018]. Ideally, such 3D objects should be articulated:

each part should specify how it moves (e.g. cabinet drawers slide

open). Recognizing the value of such data, researchers have created
datasets of articulated 3D object models [Hu et al. 2017a; Wang
et al. 2019; Xiang et al. 2020]. However, annotating 3D objects with
kinematic motions requires human time and effort. One alterna-
tive approach is to use machine learning to predict kinematic part
motions for a shape, automating some manual annotation effort.

While such methods have been proposed, all rely on supervised

learning with 3D shapes that already have motion annotations.

In this paper, we present an unsupervised method that discov-
ers kinematic motions in a consistently part-segmented 3D shape
collection. What makes our method possible is an insight we call
category closure: given an object of category C (e.g. chairs), all valid
articulations of its parts will produce a shape that is still in category
C. While appealing in theory, this insight is challenging to apply
in practice, as it is non-trivial to determine without supervision
whether an articulated shape belongs to a category. We address this
challenge via the following observation: given a collection of shapes
of the same category, an articulation of one shape’s parts definitely
remains in the same category if that articulation can transform
the shape into other shapes from the collection. Implicit in this
observation is the assumption that the shape collection contains
some degree of part pose variation.

Based on these insights, we design an alternating optimization
scheme for discovering part articulations in a collection of shapes.
In one optimization phase, the system learns an embedding space in
which shapes which can transform to one another via articulation
are close. The learning signal is based on feedback from another
phase, in which groups of nearby shapes in the embedding space are
selected and articulation parameters are optimized to try to trans-
form one shape in the group into the others. As this optimization
problem is underconstrained, the system uses commonsense and
physically-inspired priors to avoid finding implausible part motions.
Our approach predicts the type of motion (rotational, translation,
or static) as well as the motion parameters (axes of motion, centers
of rotation, ranges of motion).

We evaluate our approach by predicting articulations for shapes
in PartNet-Mobility, a dataset of consistently part-segmented ob-
jects which have ground-truth kinematic motion annotations with
which we can compare [Xiang et al. 2020]. Our approach discov-
ers motion parameters which exhibit low error with respect to
the ground truth, outperforming two supervised motion predic-
tion approaches on almost all shape categories. In summary, our
contributions are:

o The concept of category closure as self-supervision for discover-
ing valid kinematic part motions.

e An alternating optimization scheme which implements this con-
cept by finding motion parameters which transform objects into
other objects of the same category.

Code and data for this paper are at https://github.com/xxh43/UKMD

Xianghao Xu, Yifan Ruan, Srinath Sridhar, and Daniel Ritchie

2 RELATED WORK

Articulated object datasets. Researchers have built datasets of
part-segmented shapes with kinematic motions. One includes an
unreleased dataset of 368 moving joints [Hu et al. 2017a], manually
annotated from ShapeNet [Chang et al. 2015]. The Shape2Motion
dataset [Wang et al. 2019] (no longer available) contained 2,240
3D objects from 45 categories, sourced from ShapeNet and the 3D
Warehouse [Inc. 2021] and manually annotated with kinematic
motions. PartNet-Mobility [Xiang et al. 2020] consists of over 2,000
objects in 47 categories, also from ShapeNet. All these datasets were
manually annotated, which is labor intensive. Other prior work
proposes a machine-learning-assisted interface for rapidly writing
simple programs to annotate shapes with kinematic motions [Xu
et al. 2020]. This system reduces human labeling effort but does not
eliminate it. We seek a method that require no human labeling.

Predicting part mobilities. Early work on automatic mobility
prediction includes illustrating the motions of mechanical assem-
blies [Mitra et al. 2010], analyzing multiple instances of an object
in a scene [Sharf et al. 2014], slippage analysis for deformable mesh
models [Xu et al. 2009], and inferring kinematic chains based on
motion trajectories [Yan and Pollefeys 2006]. These methods rely on
having high-fidelity, physically accurate joint geometry or access
to multiple observations of the same shape in different poses; in
contrast, large shape collections have widely varying geometric
quality and only contain a single observation of each shape. The
problem has also been studied in robotics for manipulating un-
known articulating objects [Hausman et al. 2015; Pillai et al. 2015;
Sturm et al. 2011]. In computer vision, machine learning has been
applied to unstructured point clouds to jointly segment them into
parts and predict their motions [Hu et al. 2017b; Wang et al. 2019;
Yan et al. 2019; Yi et al. 2019]. Closet to our work is the system
of Hu et al. [2017a], which also assumes consistently-segmented
manufactured object meshes. Given a new object, it retrieves the
best-matching example and transfers its motion to the input. These
methods require labeled examples; in contrast, our approach lever-
ages the principle of category closure as form of self-supervision.
In concurrent work, Kawana et al. [2021] jointly predict part seg-
mentation and part articulations via a neural network trained with
adversarial self-supervision. Training this network requires many
pose variations of each training shape. In contrast, our method
works with only one observation of each unique training object and
requires fewer unique training objects.

Estimating articulation from images. Estimating 3D articulation
from images and depth maps has been widely studied for hu-
mans [Alldieck et al. 2018; Ballan et al. 2012; Huang et al. 2020;
Joo et al. 2018; Kanazawa et al. 2018; Mehta et al. 2017; Mueller
et al. 2018; Shotton et al. 2011] and more recently for articulat-
ing objects [Abbatematteo et al. 2019; Li et al. 2020; Zhang et al.
2021], assuming a known kinematic structure. When the structure
is unknown, a recent method [Mu et al. 2021] has proposed to dis-
entangle shape and appearance using a neural network to estimate
parts, joints, and joint angles. Unlike these methods, ours requires
no kinematic structure or other supervision..

https://github.com/xxh43/UKMD

Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

For each candidate joint & motion type

*3
—¢
*? ¢

update

xS

Candidate Joints Select Motion Type
1
Input Shape Collection ; :
4 - 7 Joint Embedding Space 1 4
-7 1
.. , ’ : Motion
initial ! 1 Params
preprocess embedeing (@) ‘ i ﬁ&\,
90 i
]
1
» |
1
1
1
1

embedding

Figure 2: Given a collection of consistently part-segmented shapes from the same semantlc category, our system first extracts a
set of candidate joints consisting of connected parts, one of which may move about the other. It then initializes an embedding
space in which two joints should be nearby if one can be transformed into the other through a valid hinge or prismatic motion.
For each candidate joint js, it samples nearby joints j; and optimize for motion parameters which approximately transform
js to each j; (producing js_,;). The reconstruction error is used as feedback to improve the embedding space, and the process
repeats. This results in multiple possible motions for each joint, so we heuristically select which motion (if any) is best. Best

viewed zoomed.

3 APPROACH

Figure 2 shows an overview of our system, which takes as input a set
of part-segmented shapes. We assume the segmentations are con-
sistent (i.e. shapes are segmented at the same granularity, though
some shapes may have parts that others do not) but do not require
part labels. Such data can be scalably produced from online 3D
model repositories [CGTrader 2020; Inc. 2020; Turbosquid 2020]
using e.g. machine-learning-assisted segmentation tools [Yi et al.
2016]. We also assume that input shapes exhibit some part pose
variations (i.e. parts are not modeled in exactly the same pose across
every shape in the dataset). We examine the impact of input pose
variation on our method’s performance in Section 7.

From the input shapes, we create a set of candidate joints: each
joint j consists of a moving part j and a base part jb, ie. the
fundamental unit of kinematic motion. For each part in each shape,
we create one joint in which that part is j and the largest other
part to which it is connected is j°. Part connectivity is automatically
inferred from geometry; see supplemental. For each joint, our goal
is to determine what type of motion (if any) applies to it, and what
its motion parameters are. We consider two types of joints: hinge
(rotational) joints, parameterized by an axis, a center of rotation, and
arange of angles; and prismatic (translational) joints, parameterized
by an axis and a range of displacements [Murray et al. 2017].

To solve this problem, we observe that a valid joint motion is
one that can transform the joint into other joints from the same
collection (assuming parts occur in different poses throughout the
collection); this is the concept of category closure. Our solution
is a two phase, alternating optimization scheme. The first phase,
for a given joint, identifies ‘target joints’ to which it should be
transformed. Not all joints are good targets, e.g. we do not want
to transform a cabinet door into a cabinet drawer. Our system
identifies good targets by building an embedding space in which
joints are nearby if they are good transformation targets for one

another. The more other joints into which we can transform one
joint through a motion, the more confident we can be that this
motion is correct.

To learn this embedding space, the system relies on feedback
from the second phase. Here, given a source joint, a set of target
joints, and a candidate motion type, the system optimizes for motion
parameters that transform the source into the target. This problem
is underconstrained and can produce implausible motions; thus, we
introduce commonsense and physically-inspired priors to steer the
system toward good solutions.

These two phases are iterated: feedback about how well a source
joint can be transformed to its targets is used to improve the em-
bedding space; the improved embedding space leads to new target
joints which help the system optimize for better motions. This it-
erative process produces multiple possible motions for each part.
Thus, the system uses a heuristic final phase to determine which
type of motion (or no motion) is most plausible.

4 IDENTIFYING TRANSFORMATION TARGET
JOINTS

Given a candidate joint, the goal of this phase is to construct a
set of ‘target joints’ to which that joint should be transformed
via a kinematic motion. The more other joints into which we can
transform one joint through a motion, the more confident we can be
in that motion. To solve this problem, we construct an embedding
space in which two joints are close by if one is a good target for
the other.

Initial embedding. Initially, the system has no information about
which joints can transform into other joints via valid motions.
Thus, we construct an initial embedding based on which joints can
transform into others through any affine transformation. For every
pair of joints (j1,j2), we optimize for a rotation, translation, and
scale (where we penalize the anistropy of the scale) for both ji” and

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

ji’ to bring them as close as possible to j;' and jg by minimizing
bidirectional chamfer distance (assuming all objects are consistently
upright-oriented, j; s rotation reduces to a single rotation about
the up axis).

We then use the optimization residuals to produce a N X N
similarity matrix for a collection of N joints (N € [100, 200], in our
experiments). We set the similarities between joints that have a
different number of connected components in either their moving
part or base part to zero, to prevent these structurally-different
joints from being grouped as source-target pairs. An embedding
can be constructed from this matrix, but we do not need to do
so—for our purposes, it suffices to select, for a source joint js the
16 most similar joints as its set of potential target joints.

Iterative improvement. On each iteration of the system, for each
source joint and its target joints, we run the motion optimization
procedure described in Section 5. This produces a transformation
reconstruction loss £°G" for each pair of source and target joints
(js»j¢)- The system uses these losses to learn a new embedding
space, where the distance between two joint embeddings should be

proportional to their loss:

N
pembed = 52 D LIS~ allEG) ~EGolll (1)
s=1 " teTs

where N is the total number of joints, k = 5 is the number of target
joints per source joint, 75 is the set of k targets for source joint s,
and E is a PointNet encoder [Qi et al. 2017] whose parameters (and
«) are the variables of optimization. A joint is fed to the encoder as a
point cloud with a per-point one-hot indicator of whether the point
belongs to the moving part or base part. We minimize this loss using
Adam [Kingma and Ba 2014]. We then select k new target joints for
each source joint js by sampling j; ~ exp(—||E(js) — E(jz)||2). The
system then moves to the next iteration.

5 OPTIMIZING FOR JOINT MOTION
PARAMETERS

Given a source joint jg, a set of target joints {j; }, and a motion type
(hinge or prismatic), the goal of this phase is to optimize for motion
parameters that can transform the source joint to each of the targets.
As a pre-process, we first optimize for rotations 8,5 about the up
axis that bring each target joint j; into closest alignment with j
(via bidirectional chamfer distance).

5.1 Parameterized transformation model

We first define the parametric function by which one joint jg is
transformed into another joint j;:

Kinematic motion. We use Tsj to denote a prismatic (translational)
joint transformer for joint s (implicitly parameterized by a transla-
tion direction vector). We use TSJ (7, d) to denote articulating the
source joint js’s moving part j7* with translational displacement
d. Similarly, we use R{ to denote a hinge (rotational) joint trans-
former for joint s (implicitly parameterized by an axis and center of
rotation). We use R{ (&, 6) to denote articulating the source joint
js’s moving part j7* with rotation angle 6.

Xianghao Xu, Yifan Ruan, Srinath Sridhar, and Daniel Ritchie

Figure 3: How our transformation models for hinge and pris-
matic motions transform one joint js to another j;.

Additional pose transformations. In addition to kinematic motion,
we may need additional pose transformations to align the source
and target joint. We use TSGH ; and RSGH ; to denote a translation
and a rotation about world-up that are applied to the entire joint js
to help globally align it with the target joint j;. The moving part
sometimes also needs additional degrees of freedom relative to the
base part. For example, to transform the bottom drawer in a cabinet
into the top drawer, we need an additional upward translation.
For this, we also define a local alignment translation TL .
translational joints, to ensure that this local alignment translation
cannot become redundant with joint motion, it is projected into
the plane perpendicular to the axis of translation.

For

Geometric deformers. To transform a joint to a geometrically
different joint, we must also permit some deformation of joint ge-
ometries, in addition to pose variation. Bs—,; denotes a box deformer,
whose degrees of freedom are the scales of the 6 faces of a part’s
bounding box, which allows adjusting the bulk shape of a part.
This box is aligned with the part’s local coordinate frame, so its
deformations are independent of the part’s pose.

Final transformation model. Given the functions defined above,
we can now define the complete, optimizable transformation func-
tion that takes the moving part of a joint s to that of another joint ¢
via a prismatic motion:

3 = B ATO RO Ty TG ds) (@)
Similarly, for a hinge motion:
3T = BIL(TO RO T - RIGE.650))
For both types of motion, the base part transforms as:
300 = B (T8 - ROYemr - 30) @)

Figure 3 illustrates these transformation sequences.

5.2 Loss functions

To produce plausible transformations from a source joint js to a
target j;, we optimize the parameters of the above transformation
model with respect to several loss functions:

Reconstruction loss. First and foremost, the transformed source
joint must approximately reconstruct the target joint:

Dchamfer(jg_)t ’Jlt))
diag(y_,,)

recon _ Dchamfer (J;n_> t j ;n)

sot dlag(}gn—ﬁ)

®)

Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections

where D¢pamfer denotes bidirectional chamfer distance between
two point-sampled parts, and diag(-) is the diagonal length of a part
(to normalize these distances).

Many settings of the transformation model parameters will give
low reconstruction loss, most of which do not correspond to valid
kinematic motions. Thus, we design priors to encourage the opti-
mization to find plausible motions:

Small joint motion penalty. The optimization can find spurious
motions by setting the amount of motion (i.e. the displacement d
or rotation angle 0) to a small value. Thus, we propose to penalizes
motions smaller than a threshold 7. For prismatic joints,

joint
L% = Wioint - max(rg ~ |ds—¢1.0) ©)
and for hinge joints,
joint
L% = Wioint + max(zg — 0s—¢.0))
This term is particularly important for finding correct motions
for parts whose geometry does not visibly change over the course
of articulation (e.g. a spinning wheel).

Large alignment transform penalties. While the global alignment
transforms TSG PR R?_) , and local alignment transform TE |, are
often necessary, the optimization should try to perform as much of
the transformation as possible using the joint motion. To this end,
we introduce loss terms to penalize the magnitude of the alignment

transforms:
align _ G |5G L L
'£3—>t - Walign|Rs—>t| + Walign|Ts—>t| (8)
Large deformation penalty. Similarly, we must also restrict the
box deformers Bs—,; from being responsible for more of the trans-
formation than is necessary:

defc b
Lse_:)trm = Wdeform(|B;n—>t| + |Bs—>t|) (9)
where |B| is the sum of all box face absolute displacements.

Collision penalty. For a joint motion to be physically valid, the
moving part must not collide with the base part. We define a colli-
sion penalty loss Lg‘ﬂ}itde which enforces this property. We sample
n equally-spaced values along the interval [0, ds—] for prismatic
joints ([0, 85— ;] for hinge joints) and transform the moving part
to that pose. The collision penalty for each pose is the mean pen-
etration distance of each point in the base part point cloud to the
moving part. The overall collision penalty is then the mean of these
per-timestep penalties.

For a hinge joint:

n
. Wonlls
reollide &‘blde Z Z max(0, do — sdf(x, RLG™. i - 0s_1)))
nlisl = xeib
Js
(10)
where sdf(x,j™) is the signed distance from the point x to the
minimum volume bounding box of the moving part j (negative
signed distance — the point is inside the box) and dy is the largest
penetration distance of any point x € jf ati = 0 (i.e. some joints
may initially have a small degree of interpenetration, which we
should not penalize). The loss for a prismatic joint is defined analo-

gously (replace R{(jg”, i-0s—y) with TSJ(jgn, i-ds—p)).

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Detachment penalty. In addition to not colliding with the base
part, a moving part should also not detach from its base part over
the course of its motion. For hinge joints, we minimize the distance
between the nearest 10 original contact points in the rotated moving
part R{g;" i 0s5—t) (denoted as Sjm) and the nearest 10 original

contact points in j? (denoted as Sjb):

n
detach _ Wdetach
L{" = TNR Y max(0,) x—ylk-r) ()

i=1 x,yeSj;n,Sjb
S

where r = 0.01 is a distance penalty threshold. In addition to
the above term, we also add a term which penalizes the center of
rotation from non-physically falling outside of the moving part’s
bounding box.

For prismatic joints, we penalize the distance between the mov-
ing part j7 and the 50 points on the base part j° which are closest
to it (denoted as NVj,):

n
w, h .m
LI = % > max(0, sdf(x, LG, i - 0s-1)) (12)
Ist =1 x€Njg

Hyperparameters. We empirically define two sets of values for
the various loss weights w: one set for optimizing hinge joints; one
set for optimizing prismatic joints. These weights are kept constant
across all shape categories in all of our experiments. Values for
weights and other hyperparameters can be found in supplemental.

5.3 Optimization procedure

To optimize the parameters of the transformation model, we com-
bine all the above losses together into one:

Loy = Lrecon +£101nt +£ahgn +£deform +£collide +Ldetach

st s—t s—t st st s—t
1 N
.E = W Z Z Lsat (13)
s=1teTs

We minimize £ using the Adam optimizer.

Multiple initializations. As this optimization problem is non-
convex, we solve it multiple times with different initializations to
avoid local minima. For hinge joints, we use the 3 axes of the mini-
mum volume bounding box of the moving part as the initial rotation
axes. We use the centroid of the moving part and the centers of 4/6
of its bounding box faces as the initial rotation centers (the four
with the largest distance to the part centroid). For prismatic joints,
we use the longest 2 axes of the minimum volume bounding box of
the moving part as the initial axes. This results in 2 initializations
for prismatic joints and 15 (3 X 5) initializations for hinge joints;
we choose the one which gives the smallest Ls_;.

Axis post-processing. The optimization often gives motion axes
that noisily oscillate around a good solution. Thus, we use a post-
processing step to ‘snap’ the axes. We check if the axis is close
to any of the three world axes or the three principal axes of the
moving part or base part. If the dot product of the optimized axis
and any of these axes is > 0.975, we snap the axis to it.

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Determining range of motion. Finally, given optimized motion
parameters for a joint js, we estimate its range of motion. For this,
we sample 16 nearby target joints from the embedding space (using
the sampling procedure from Section 4) and optimize for a transfor-
mation from js to each of these targets, holding motion parameters
fixed and only optimizing pose, deformation, and alignment trans-
forms. We estimate the joint’s motion range as the range of poses
for all of these target joints whose post-optimization L™ is less
than a threshold (see supplemental). We call these joints the ‘valid’
targets for a motion. This results in a motion range relative to the
initial pose of j7* (i.e. for a hinge joint, § = 0 is the initial pose).

6 DETERMINING JOINT MOTION TYPE

After multiple iterations of optimization, we are left with multiple
potential hinge and prismatic motions m for each candidate joint
j- In this section, we describe our procedure for determining (a)
which of these motions is the best for each joint and (b) whether a
part moves at all or should instead be labeled as static.

Selecting the best candidate motion. We start by considering the
set of ‘valid’ target joints for each potential motion m, as described
above. Intuitively, a motion is more likely to be correct if (a) it
allows the source joint to reach more valid targets, and (b) the
targets exhibit a wider range of poses. Let N\‘gh 4 e the number
of valid target joints for a motion, which addresses (a). For (b), we
discretize the predicted range of motion into a set of equally-sized
bins and let leiln be the number of these bins which contain the
pose of at least one of the valid target joints. We then define our
confidence in this potential motion as:

m _ m m
cm = Alealid + /12Nbin (14)

We select whichever potential motion m has the highest confidence
as the best motion m*. See supplemental for the values of A1, A3.

Distinguishing moving vs. static parts. To identify whether a part
p should be movable or static, we look at the number of candidate
motions m in which it is is used as a base or moving part, as well
as our confidence in those motions. Intuitively, a part used as a
moving part in many high-confidence motions is more likely to
be movable; a part used as a base part in many high-confidence
motions is more likely to be static. Let MP . and Mgase be the
set of candidate motions in which part p is used as a moving or
base part, respectively. Our confidences that this part is movable or
static are:

A3 -
Chov=——p— >, C™+LMbyl
Mhorl o 50
A N
P _ 3 m P
Cstatic - | P | Z (O /14|Mbase| (15)
base' e MP

base
If Cstatic /CP . is greater than a threshold, the part is labeled
static. We also always label the largest part of every shape as static.
See supplemental for A3, A4, and threshold values.

Xianghao Xu, Yifan Ruan, Srinath Sridhar, and Daniel Ritchie

Table 1: Comparing the performance of BaseNet (with and
without pre-alignment) vs. Our method on predicting the
motion attributes of shapes in PartNet-Mobility.

Method Type AccT Axis Err (°)] Center Err (%)] Range IoUT
BaseNet 0.87 30.71 24.28 0.44
BaseNet + align 0.93 13.24 22.18 0.45
Ours 0.84 6.09 9.12 0.46

Table 2: Comparing the performance of Shape2Motion (with
and without pre-alignment) vs. Our method on predicting
the motion attributes of shapes in PartNet-Mobility. S2M
does not handle static motion type and does not predict mo-
tion range.

Method Type(w/o static) AccT Axis Err (°)| Center Err (%)|
S2M 0.91 33.65 25.58
S2M + align 0.92 15.80 16.67
Ours 0.80 6.09 9.12

Here we evaluate our system’s ability to discover accurate kinematic
motions without supervision.

Dataset. We evaluate our method on PartNet-Mobility, a dataset
of part-segmented 3D shapes annotated with ground-truth kine-
matic articulations [Xiang et al. 2020]. We run experiments on 18
categories of objects: Box, Bucket, Clock, Door, Fan, Faucet, Folding
Chair, Knife, Laptop, Pliers, Refrigerator, Scissors, Stapler, Storage-
Furniture, Table, Trash Can, USB, and Window. These categories
were chosen to give good coverage of the different types of motions
which occur in PartNet-Mobility. We perform various filtering steps
on this data: joints with invalid motion ranges, moving parts that
are extremely small relative to the overall shape (which are not
well-represented in point cloud from), etc. See supplemental for
details. Our final evaluation dataset contains 753 shapes with 1939
parts.

Our method assumes that the input shapes exhibit pose varia-
tions. Some shape categories in PartNet-Mobility have this property;
others have all shapes in a neutral pose. We normalize pose varia-
tion across categories by randomly sampling a pose from within
each movable part’s range of motion. In some of our experiments,
we examine the impact that the amount of pose variation has on
our method. Also, all shapes in a PartNet-Mobility category are
aligned to a common coordinate frame, but not all in-the-wild shape
collections exhibit this property. We randomly rotate each shape
about its up vector.

Comparison to baselines. There is no existing prior work which
performs unsupervised kinematic motion detection; thus, we com-
pare to existing supervised approaches. We stress that these ap-
proaches require training data, whereas ours can be applied on
categories of shapes that have never been seen before. We compare
our method to two supervised baselines:

o BaseNet: This network takes in a point cloud of a shape, where
each point carries an extra one-hot dimension indicating whether
it is a member of the part for which motion should be predicted.
This point cloud is passed through a PointNet encoder, the output

Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections

BaseNet L &,/,_y
1 2\

Ours ' 9 7{

Ground Truth '] />{
A

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Figure 4: Qualitative examples of our method vs. BaseNet on predicting motion parameters for PartNet-Mobility.

of which is fed into four separate fully connected branches which
predict motion type (hinge, prismatic, static), axis (R3), center of
rotation (R3), and range ([min, max] € R?). The entire network
is trained jointly, with cross entropy loss for the motion type
branch and MSE loss for the other branches.

o Shape2Motion (52M): A network which jointly predicts part seg-
mentations and part motions for point clouds [Wang et al. 2019].
For fair comparison with our method, we modify the network to
take ground truth part segmentations and only predict motions.

For both supervised methods, we evaluate them with and without a
pre-alignment step, in which objects are rotated above the up axis
to roughly align them via chamfer distance.

See supplemental for more details on these baselines. We split
our filtered collection of joints 60%/40% into train/test sets. The
supervised baselines are trained on the train set, our method is run
on all joints, and all methods are evaluated on the test set.

We evaluate test set motion predictions with these metrics:

e Motion type accuracy (Type Acc): percentage of joints whose
motion type (static, prismatic, hinge) is correctly predicted. Since
Shape2Motion does not handle ‘static’ parts, we omit that label
for its training and evaluation.

o Axis angular error (Axis Err): mean difference (in degrees) be-
tween predicted axis directions and their ground-truth values.

e Rotation center error (Center Err): mean distance (in percentage
of the part’s bounding box diagonal length) between predicted
centers of rotation and ground truth rotation axes.

® Range of motion accuracy (Range IoU): mean intersection over
union between predicted and ground truth ranges of motion.

Table 1 and Table 2 show quantitative results of this comparison; a

breakdown by category is in supplemental. Our method has com-

plementary strengths to BaseNet and Shape2Motion: These two
supervised methods are better at predicting motion type; ours is
better at motion parameters. BaseNet’s and Shape2Motion’s higher
type accuracy is not surprising: ternary motion type is the easiest
quantity for a network to learn to predict (given the limited training
data, it is harder to learn to regress continuous motion parameters).

Motion type is also the easiest information for a human annotator

to provide. A hybrid approach might be best in practice: combin-

ing weakly-supervised motion type labeling with our approach for
predicting motion parameters. Shape2Motion doesn’t outperform

Ours

GT/%

Figure 5: Typical failure cases (USB, Table, Faucet). The Ta-
ble and Faucet examples disagree with ground-truth anno-
tations but are still plausible.

L
G

BaseNet by a large margin, which we hypothesize is due to some
combination of (1) the network being complicated and requiring
more training data, (2) training on ground truth segmentations
rather than jointly inferring them resulting in a weaker learned
representation.

Figure 4 qualitatively compares our method to BaseNet. Our
physically-inspired approach degrades more gracefully than the
learning-based approach, which can produce nonsensical outputs
due to insufficient training data. Figure 5 additionally shows some of
the ways our method gracefully fails. For the table and faucet joints
shown, the motions found are different from PartNet-Mobility’s
ground truth but are nonetheless plausible: the table drawer could
slide side-to-side rather than front-to-back; the faucet handle could
rotate vertically rather than / as well as laterally. The USB failure
may be due to incorrect grouping of joints, not enough similar
joints to group, or suboptimal loss weight hyperparameters.

Sensitivity to amount of pose variation. Table 3 shows how our
method performs on Doors when the amount of pose variation is
increased (see supplemental for details) Results are poor with no
variation, but even a little increases performance dramatically.

Running time. Our method iterates complex optimizations on
multiple joint groups, so it can be time-consuming: one iteration on
a set of 100 joints with target joint number k = 5 takes our PyTorch
implementation about 1 hour on an 8-core Intel i9 machine with 32
GB RAM and a NVIDIA RTX 2080Ti GPU. However, compute time
can be small price to pay to avoid human annotation time.

SIGGRAPH *22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Table 3: Analyzing how the performance of our method on
Doors varies with amount of pose variation in the input
shape collection. The number of target joints k = 3 for this
experiment.

Pose variation level ~ Type AccT AxisErr(°)] Center Err(%)| Range IoUT

0 0.54 39.21 12.70 0.03
1 0.89 0.02 16.33 0.25
2 0.91 0.03 10.09 0.42
3 0.91 0.09 10.48 0.49
4 0.91 0.09 4.59 0.37
5 0.91 0.00 6.34 0.43

Additional results. The supplemental contains additional quali-
tative results, a study on sensitivity to number of target joints, an
ablation study on model components, and a visualization of the
learned joint embedding space.

8 CONCLUSION

In this paper, we presented an unsupervised approach for discover-
ing part motions in part-segmented 3D shape collections. Our ap-
proach is based on category closure: a valid articulation of a shape’s
parts should not change the semantic category of that shape. We
operationalize this insight via an algorithm that finds motion pa-
rameters for a joints that transforms into other joints from the same
category. Our approach successfully rediscovers a large percentage
of motions in the PartNet-Mobility dataset, often outperforming a
supervised motion prediction network.

Our system has some limitations. It cannot handle moving parts
whose size is a small fraction of their base parts, due to point cloud
resolution limits. More fundamentally, our method assumes that
the input shape collection contains similar joints in different poses.
This is often true (e.g. lamp arms, swivel chair bases), but some
shapes are typically modeled in a canonical pose (e.g. cabinet doors
are usually modeled as closed). These shapes may pose a challenge
for our method (or any unsupervised method).

Finally, our method assumes the input part segmentation is fairly
consistent, e.g. it would not perform well on cabinets if each cabi-
net door was broken into a different number of segments. In the
future, we would like to extend our method to handle such data
by developing a system for proposing ways to group different part
fragments. Combined with an automatic shape over-segmentation
method, this would allow our method to discover shape parts as
well as their motions without any supervision.

ACKNOWLEDGMENTS

This work was funded in part by NSF Award #1941808. Daniel
Ritchie is an advisor to Geopipe and owns equity in the company.
Geopipe is a start-up that is developing 3D technology to build
immersive virtual copies of the real world with applications in
various fields, including games and architecture. Srinath Sridhar
was supported by a Google Research Scholar Award.

REFERENCES

Ben Abbatematteo, Stefanie Tellex, and George Konidaris. 2019. Learning to generalize
kinematic models to novel objects. In Proceedings of the 3rd Conference on Robot
Learning.

Xianghao Xu, Yifan Ruan, Srinath Sridhar, and Daniel Ritchie

Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian Theobalt, and Gerard Pons-
Moll. 2018. Detailed human avatars from monocular video. In 2018 International
Conference on 3D Vision (3DV). IEEE, 98-109.

Luca Ballan, Aparna Taneja, Jiirgen Gall, Luc Van Gool, and Marc Pollefeys. 2012.
Motion capture of hands in action using discriminative salient points. In European
Conference on Computer Vision. Springer, 640-653.

CGTrader. 2020. CGTrader - 3D Models for VR / AR and CG Projects. https://www.
cgtrader.com/. Accessed: 2020-05-22.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao,
Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository.
1512.03012 (2015).

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv
Batra. 2018. Embodied Question Answering. In CVPR.

Karol Hausman, Scott Niekum, Sarah Osentoski, and Gaurav S Sukhatme. 2015. Ac-
tive articulation model estimation through interactive perception. In 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 3305-3312.

Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Ariel Shamir, Hao Zhang, and Hui Huang.
2017a. Learning to predict part mobility from a single static snapshot. Proceedings
of SIGGRAPH Asia 36, 6 (2017), 227.

Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Ariel Shamir, Hao Zhang, and Hui Huang.
2017b. Learning to predict part mobility from a single static snapshot. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1-13.

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony Tung. 2020. Arch:
Animatable reconstruction of clothed humans. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3093-3102.

Adobe Systems Inc. 2020. Royalty-free 3D assets to enhance your projects. https:
//stock.adobe.com/3d-assets. Accessed: 2020-10-20.

Trimble Inc. 2021. 3D Warehouse. https://3dwarehouse.sketchup.com/.

Hanbyul Joo, Tomas Simon, and Yaser Sheikh. 2018. Total capture: A 3d deformation
model for tracking faces, hands, and bodies. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 8320-8329.

Angjoo Kanazawa, Michael] Black, David W Jacobs, and Jitendra Malik. 2018. End-to-
end recovery of human shape and pose. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 7122-7131.

Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. 2021. Unsupervised Pose-Aware
Part Decomposition for 3D Articulated Objects. (2021).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2014).

Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali
Farhadi. 2017. AI2-THOR: An Interactive 3D Environment for Visual AI. CoRR
arXiv:1712.05474 (2017).

Xiaolong Li, He Wang, Li Yi, Leonidas J Guibas, A Lynn Abbott, and Shuran Song. 2020.
Category-level articulated object pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3706-3715.

Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao, Erik Wijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and
Dhruv Batra. 2019. Habitat: A Platform for Embodied AI Research. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV).

Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Moham-
mad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt.
2017. Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 1-14.

Niloy J Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh Agrawala.
2010. Illustrating how mechanical assemblies work. ACM Transactions on Graphics-
TOG 29, 4 (2010), 58.

Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, and
Xiaolong Wang. 2021. A-SDF: Learning Disentangled Signed Distance Functions
for Articulated Shape Representation. arXiv preprint arXiv:2104.07645 (2021).

Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath
Sridhar, Dan Casas, and Christian Theobalt. 2018. Ganerated hands for real-time
3d hand tracking from monocular rgb. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 49-59.

Richard M Murray, Zexiang Li, and S Shankar Sastry. 2017. A mathematical introduction
to robotic manipulation. CRC press.

Sudeep Pillai, Matthew R Walter, and Seth Teller. 2015. Learning articulated motions
from visual demonstration. arXiv preprint arXiv:1502.01659 (2015).

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3D classification and segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 652—660.

Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. 2016. Playing for
Data: Ground Truth from Computer Games. In European Conference on Computer
Vision (ECCV) (LNCS, Vol. 9906), Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling (Eds.). Springer International Publishing, 102-118.

Manolis Savva, Angel X. Chang, Alexey Dosovitskiy, Thomas Funkhouser, and Vladlen
Koltun. 2017. MINOS: Multimodal Indoor Simulator for Navigation in Complex
Environments. arXiv:1712.03931 (2017).

https://www.cgtrader.com/
https://www.cgtrader.com/
https://stock.adobe.com/3d-assets
https://stock.adobe.com/3d-assets
https://3dwarehouse.sketchup.com/

Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections

Andrei Sharf, Hui Huang, Cheng Liang, Jiapei Zhang, Baoquan Chen, and Minglun
Gong. 2014. Mobility-trees for indoor scenes manipulation. In Computer Graphics
Forum, Vol. 33. Wiley Online Library, 2-14.

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard
Moore, Alex Kipman, and Andrew Blake. 2011. Real-time human pose recognition
in parts from single depth images. In CVPR 2011. Ieee, 1297-1304.

Jirgen Sturm, Cyrill Stachniss, and Wolfram Burgard. 2011. A probabilistic framework
for learning kinematic models of articulated objects. Journal of Artificial Intelligence
Research 41 (2011), 477-526.

Turbosquid. 2020. 3D Models for Professionals. https://turbosquid.com. Accessed:
2020-10-20.

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. 2019.
Shape2Motion: Joint Analysis of Motion Parts and Attributes from 3D Shapes. In
CVPR. 8876-8884.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua
Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas,
and Hao Su. 2020. SAPIEN: A SimulAted Part-based Interactive ENvironment. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel Van De Panne, Falai Chen,
and Baining Guo. 2009. Joint-aware manipulation of deformable models. ACM
Transactions on Graphics (TOG) 28, 3 (2009), 1-9.

Xianghao Xu, David Charatan, Sonia Raychaudhuri, Hanxiao Jiang, Mae Heitmann,
Vladimir Kim, Siddhartha Chaudhuri, Manolis Savva, Angel X. Chang, and Daniel
Ritchie. 2020. Motion Annotation Programs: A Scalable Approach to Annotating

SIGGRAPH ’22 Conference Proceedings, August 7-11, 2022, Vancouver, BC, Canada

Kinematic Articulations in Large 3D Shape Collections. In 3DV.

Claudia Yan, Dipendra Kumar Misra, Andrew Bennett, Aaron Walsman, Yonatan Bisk,
and Yoav Artzi. 2018. CHALET: Cornell House Agent Learning Environment. CoRR
arXiv:1801.07357 (2018).

Jingyu Yan and Marc Pollefeys. 2006. Automatic kinematic chain building from feature
trajectories of articulated objects. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Vol. 1. IEEE, 712-719.

Zihao Yan, Ruizhen Hu, Xingguang Yan, Luanmin Chen, Oliver Van Kaick, Hao Zhang,
and Hui Huang. 2019. RPM-Net: recurrent prediction of motion and parts from
point cloud. Proceedings of SSGGRAPH Asia 38, 6 (2019), 240.

LiYi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, and Leonidas Guibas Hao S and.
2019. Deep Part Induction from Articulated Object Pairs. Proceedings of SGGRAPH
Asia 37, 6 (2019), 209.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu
Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. 2016. A Scalable Active
Framework for Region Annotation in 3D Shape Collections. SIGGRAPH Asia
(2016).

Ge Zhang, Or Litany, Srinath Sridhar, and Leonidas Guibas. 2021. StrobeNet:
Category-Level Multiview Reconstruction of Articulated Objects. arXiv preprint
arXivi2105.08016 (2021).

Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva, Joon-Young Lee, Hailin Jin,
and Thomas Funkhouser. 2017. Physically-Based Rendering for Indoor Scene
Understanding Using Convolutional Neural Networks. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017).

https://turbosquid.com

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Identifying Transformation Target Joints
	5 Optimizing for Joint Motion Parameters
	5.1 Parameterized transformation model
	5.2 Loss functions
	5.3 Optimization procedure

	6 Determining Joint Motion Type
	7 Results
	8 Conclusion
	Acknowledgments
	References

