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Fig. 1. SHRED decomposes 3D shapes into regions by learning to locally split, fix, and merge segments. A merge-threshold parameter can be adjusted to
change decomposition granularity depending on the target downstream application.

We present SHRED, a method for 3D SHape REgion Decomposition. SHRED
takes a 3D point cloud as input and uses learned local operations to produce
a segmentation that approximates fine-grained part instances. We endow
SHRED with three decomposition operations: splitting regions, fixing the
boundaries between regions, and merging regions together. Modules are
trained independently and locally, allowing SHRED to generate high-quality
segmentations for categories not seen during training. We train and evaluate
SHRED with fine-grained segmentations from PartNet; using its merge-
threshold hyperparameter, we show that SHRED produces segmentations
that better respect ground-truth annotations compared with baseline meth-
ods, at any desired decomposition granularity. Finally, we demonstrate that
SHRED is useful for downstream applications, out-performing all baselines
on zero-shot fine-grained part instance segmentation and few-shot fine-
grained semantic segmentation when combined with methods that learn to
label shape regions.
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1 INTRODUCTION

3D segmentation is a fundamental problem within computer graph-
ics and vision. Many applications in these fields require methods
capable of decomposing 3D shapes and scenes into meaningful re-
gions: establishing correspondences, skeleton extraction, guiding
semantic labeling, and allowing autonomous agents to interact with
objects, to name a few [Abbatematteo et al. 2019; Landrieu and
Simonovsky 2018; Liu and Zhang 2004].

While there is a long history of computer graphics research using
geometric and visual cues to segment 3D shapes into regions, most
recent work has explored the use of data-driven neural methods.
Learning-based approaches have produced impressive results on
coarse decomposition tasks where training annotations are plentiful,
but often struggle when either of these conditions is not met. Most
methods that operate within this paradigm learn to segment shapes
globally, which contributes to both of these limitations. While coarse
decompositions are often fairly globally consistent, fine-grained
decomposition are highly varied, even within the same category (e.g.
chairs almost always have a back, a seat, and a base, but only a small
subset of chairs have wheel casters). Moreover, these methods are
often unable to produce sensible segmentations for shapes outside
of their training distribution, as their networks specialize to the
global patterns of training shapes.

Some recent approaches have aimed to develop learning-based
systems capable of producing fine-grained segmentations in a way
that generalizes across domains. Within this paradigm, the hope is to
train networks on categories of shapes with abundant annotations,
and then show these networks have learned decomposition policies
that can be directly applied to shapes from categories that lack
annotations. Many of these methods use at least one network that
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reasons locally, with the idea that forcing the network to ignore
global context might encourage better generalization on out-domain
shapes [Luo et al. 2020; Wang et al. 2021a].

Following this general framework, SHRED learns a collection of
region decomposition operations that all reason in a local fashion:
splitting a region into sub-regions, fixing the boundaries between
regions, and deciding when neighboring regions should be merged
together. Each of these operations is modeled with a neural module
that operates over regions, represented as point-clouds, and trained
with ground-truth part annotations from a dataset of shapes. The
modules of SHRED are applied sequentially to generate a region
decomposition. An input shape first undergoes a naive decomposi-
tion using farthest-point sampling, then these regions are passed
through the split, fix and merge operators to produce the final seg-
mentation. Of note, the merge operator exposes a merge-threshold
hyperparameter that can be toggled to control the granularity of
the output decomposition.

We train a version of SHRED on three data abundant categories of
PartNet: chairs, lamps and storage furniture (in-domain shapes), and
evaluate its ability to produce region decompositions for test-set in-
domain and out-domain shapes. We compare SHRED against other
shape segmentation methods, including learned and non-learned
approaches, that operate both globally and locally. We find that
SHRED produces better region decompositions than baseline meth-
ods, for both in-domain and out-domain categories. Analyzing the
trade-off between decomposition quality and granularity, we vary
SHRED’s merge-threshold to create a Pareto frontier of solutions
that strictly dominates all comparisons. We then demonstrate that
SHRED’s decompositions can be treated as fine-grained part in-
stance segmentations that outperform comparison methods. Finally,
we evaluate how SHRED can improve fine-grained semantic seg-
mentation, using the output of SHRED as the input to a method
that learns to semantically label shape regions, and find that using
SHRED results in the best performance.

In summary, our contributions are:

(i) SHRED, a method for 3D SHape REgion Decomposition with
learned local split, fix and merge operations.

(ii) Demonstrations on collections of manufactured shapes that
SHRED outperforms baseline methods in terms of fine-grained
segmentation performance and finding better trade-offs be-
tween decomposition quality and granularity, for both in-domain
and out-domain categories.

Code for our method and experiments can be found at found at
https://github.com/rkjones4/SHRED .

2 RELATED WORK

Shape segmentation with geometric cues. There is a long history
of computer graphics research dedicated to segmenting a 3D shape
into meaningful regions according to geometric properties. Most
such methods are not data-driven, but rather analyze heuristic prop-
erties of 3D meshes to produce shape decompositions useful for
various downstream applications. These include approaches such
as: normalized cuts, symmetry cues [Wang et al. 2011], fuzzy clus-
tering [Katz and Tal 2003], spectral methods [Asafi et al. 2013; Liu
and Zhang 2004], and approximate convex decomposition [Kaick

ACM Trans. Graph., Vol. 41, No. 6, Article 186. Publication date: December 2022.

et al. 2014; Lien and Amato 2008]. Please refer to [Shamir 2008] for
a survey on the topic.

Learning to approximate shapes with primitives. A great body of
recent research has been devoted to learning methods that aim to
coarsely approximate 3D shapes with a union of primitive struc-
tures. Methods differ by the type of primitive used, for instance
cuboids [Sun et al. 2019; Tulsiani et al. 2017; Yang and Chen 2021],
superquadrics [Paschalidou et al. 2019], convex solids [Chen et al.
2019a; Deng et al. 2020], and more general local neural functions [Chen
et al. 2019b; Genova et al. 2019; Kawana et al. 2020; Paschalidou et al.
2021]. These methods can train on 3D shapes that lack annotations
and produce segmentations with paired correspondences across dif-
ferent shape instances. Without annotations, these approaches rely
on global reconstruction-based losses, resulting in decompositions
that well-represent coarse structures, but often ignore fine-grained
regions of interest. Relatedly, some methods use primitive decom-
positions to formulate self-supervised losses that augment training
to improve few-shot semantic labeling [Gadelha et al. 2020; Sharma
et al. 2021].

Shape decomposition with supervised learning. Most learning-based
shape decomposition methods operate within a supervised learning
paradigm by consuming a training dataset that contains annotated
regions. Many of these works learn to globally decompose a shape in
a category specific fashion for a particular type of region-annotation
(e.g. part instances) [Qi et al. 2017a,b; Wang et al. 2018, 2019; Yi et al.
2019; Yu et al. 2019]. These approaches achieve state-of-the-art per-
formance when the desired decomposition is coarse and training
data is plentiful for the category of interest, but do not perform as
well with fine-grained segmentations or out-of-domain inputs.

Recent work has tried to address these issues by developing
learning-based solutions that work locally. For instance, [Han et al.
2020] propose a pipeline for single-image shape reconstruction via
cuboid proxies that can generalize to out-of-domain shapes. Some
methods have been designed with fine-grained regions in mind.
[Wang et al. 2021a] use a learned clustering approach to perform
local split operations, and then aggregate sub-regions with a global
merge step. [Luo et al. 2020] use policy gradient reinforcement
learning to train a network that takes an over-segmented 3D shape
and merges segments together to approximate a part instance seg-
mentation. SHRED shares similar motivations to these last two
methods: learn local operations on shape categories with abundant
annotations, and then show this promotes strong generalization
capabilities on novel shape categories. We compare SHRED against
these approaches, and find that SHRED’s collection of learned local
operations improves the quality of its region decompositions.

Related to this problem of zero-shot generalization, some methods
frame shape region decomposition as a co-segmentation problem,
such as AdaCoSeg [Zhu et al. 2020]. In this paradigm, a single labeled
exemplar is provided as template to indicate how the rest of the
distribution should be decomposed. The fix operator of SHRED takes
inspiration from the part prior network in AdaCoSeg.

Learning to semantically label. Some applications desire region
decompositions where part instances are grouped by semantic prop-
erties. Learning-based methods that perform global category specific
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Fig. 2. The modules of SHRED. From left to right, input shapes are naively decomposed by farthest-point sampling (FPS), regions are split into sub-regions,

boundaries are fixed , and neighbors are merged together. Bottom-row cut-outs visualize network input-outputs.

segmentations can be used for this task, although they struggle with
fine-grained semantic decompositions or paradigms when labeled
data is limited. Recent approaches have investigated how to address
this latter problem for coarse semantic labels. When the number
of shapes that contain any labels at all is limited, methods have in-
vestigated how to improve few-shot segmentation performance by
incorporating self-supervised training objectives over large amounts
of unlabeled data [Chen et al. 2019b; Gadelha et al. 2020; Sharma
et al. 2019; Sun et al. 2022; Wang et al. 2021b; Xie et al. 2020], learn-
ing to morph shapes into matched templates from a small labeled
collection [Wang et al. 2020], and framing few-shot segmentation
under a meta-leaning paradigm [Hao and Fang 2021; Huang et al.
2021]. Related methods have focused on improving segmentation
performance when the number of labels provided for each shape is
limited [Liu et al. 2021; Xu and Lee 2020].

Another line of investigation has looked into approaches that
learn to assign semantic labels to regions of a 3D shape [Jones et al.
2022; Yi et al. 2017]. When a good region decomposition is provided,
these methods have been shown to outperform global semantic
segmentation approaches, especially for fine-grained semantic la-
bels and when labeled data is limited. We will show that the region
decompositions created by SHRED can be combined with these ap-
proaches to improve few-shot fine-grained semantic segmentation
performance.

3 METHOD

SHRED takes a 3D shape as input and outputs a fine-grained region
decomposition. We define a region decomposition for shape S as a set
of regions R = {ro,r1,....,rn} .t S = Ujen ri- Given a ground-truth

region decomposition R* (e.g. fine-grained part instance annotations
produced by a human), we desire two properties of R. First, each
ri € R should be a subset of some r¥ € R*: r; C r*%. Second, the
number of regions in R should not exceed the number of regions
in R*: |R| < |R*|. The first property states a desire that regions in R
do not cross the part boundaries defined by R*, while the second
property states that the granularity of R’s decomposition should
not exceed the granularity of R*’s decomposition. Notice that these
properties work against each other; decreasing ||R|| increases the
probability that some r; € R is no longer a subset of some region
of R*, while ensuring that r; C r;f Vi € N requires that |R| > |R*|.
These two properties are only simultaneously met when R = R*,
but we can use them to evaluate the goodness of any given R.

We provide a visual overview of our method in Figure 2. SHRED
contains three learned modules that perform region modifications: a
split module that splits a region (Section 3.1, blue box) , a fix module
that fixes part boundaries between regions (Section 3.2, green box),
and a merge module that decides when neighboring regions should
be merged together (Section 3.3, orange box). As we are interested
in using SHRED to generate decompositions for out-of-distribution
shapes, we design each module to operate on only region-local
information. This encourages the operations to learn region-specific
principals that generalize better than category-specific patterns [Luo
et al. 2020]. Following [Wang et al. 2021a], we represent 3D shapes
as high-resolution point-clouds (100k points) sampled from a mesh-
surface, in order to capture fine-grained geometry. SHRED first
applies a naive strategy to decompose the shape into noisy regions,
and then sequentially applies the split, fix, and merge modules to
produce a high-quality part-respecting region decomposition.
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In all experiments, we create the naive region decomposition with
a simple farthest-point sampling (FPS) procedure with K centroids
(default K = 64). The split, fix and merge networks are all variants
of PointNet++’s written in PyTorch [Paszke et al. 2017; Qi et al.
2017b; Wijmans 2018]. Further network training details and hyper-
parameters are provided in the supplemental material.

3.1 Split Module

The split module is tasked with deciding if a region should be fur-
ther decomposed into multiple sub-regions. In SHRED, the split
operation is applied over the naive region decompositions produced
by FPS clustering, as each FPS-produced region might be an under-
segmentation with respect to R+. We model the split operation with
an instance segmentation network that considers each region in-
dividually; it consumes a point cloud representing a region and
predicts an instance label for each point of the region.

Model Details. The split network uses a PointNet++ instance seg-
mentation back-bone, with a per-point MLP head that predicts into
10 maximum part slots. The back-bone uses 4 set abstraction layers
with 1024, 256, 64, 16 grouping points, 0.1, 0.2, 0.4, 0.8 radius size
and 64, 128, 256, 512 feature size respectively. A series of 4 per-point
feature propagation modules converts each 512 feature to size 128.
Batch normalization and ReLU activations are used throughout. A
MLP head for per-point predictions uses a hidden layer with dimen-
sion of 64 to produce a prediction into 10 slots. The MLP uses ReLU
activations and a 0.1 dropout.

The input region point clouds have 6 features (xyz positions and
normals), are sub-sampled to 512 points, and are normalized to the
unit-sphere. The split network is trained with cross-entropy loss,
which requires finding an alignment between predicted instance
slots and the target instance slots. We use a variant of the Hungarian
matching algorithm of Mo et al. [2019] to dynamically find the
best alignment during training. As we want the split network to
remove all under-segmentation, our matching algorithm greedily
encourages over-segmentations that better respect part boundaries,
at the cost of using more prediction slots. We further describe this
matching in the supplemental material.

Data Preparation. Training examples for the split network are
sourced from part instance labeled training shapes. For each shape,
we produce a naive region decomposition using FPS clustering.
Then, each region in the naive decomposition contributes one input
point cloud for training, where ground-truth target instances are
supplied by the fine-grained annotated labels.

3.2 Fix Module

The fix module is responsible for improving region boundaries. It
consumes the region decomposition output by the split module.
This decomposition is fine-grained, but might contain errors on
part boundaries, as the split network has no information about the
shape outside of each region. While the fix module also operates
over regions, unlike the split module, it also receives nearby points
from outside the region to help to contextualize the region within
the shape. The input to the fix network is formed by a concatenation
of two points clouds, one coming from the region of interest, one
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coming from outside the region of interest (colored versus grey
points in Figure 2, bottom-middle). The fix network then makes a
binary prediction for each input point, deciding whether or not it
should be inside or outside the region of interest. SHRED applies
this inside-outside prediction to the local neighborhood of points
around each region, and these per-region decisions are propagated
into a global region decomposition through an argmax operation.

Model Details. The fix network uses a PointNet++ instance seg-
mentation back-bone, with a per-point MLP that predicts a binary
logit. The back-bone is the same as the one for the split network,
except that batch norm is not used. A MLP head for per-point predic-
tions uses 2 hidden layers with dimensions of 64 and 32 to produce
a binary prediction logit. The MLP uses ReLU activations and a 0.1
dropout.

Input point clouds are made up of 2048 inside points and 2048
outside points, where each point has 7 features (xyz positions, nor-
mals, inside-outside flag), and are normalized to the unit-sphere.
The network is trained with Binary Cross Entropy loss, where 1.0
(0.0) indicates the point is inside (outside) the region of interest.

Data Preparation. We employ a synthetic perturbation process to
generate training data for the fix network. To generate a training
example, we first sample a random ground-truth (GT) part instance
from a random training set shape. We then corrupt this region by
randomly adding outside points into the region or removing points
from the region. Inside points from this corrupted region and nearby
outside points (within 0.1 radius) are then combined to create an
input point cloud. Finally, we take the corrupted region, find the GT
region it has the highest overlap with, and use the inside-outside
values of this best-matching GT region to produce the target labels
for the sampled points of the training example.

3.3 Merge Module

The merge module decides when neighboring regions should be
combined together. It consumes the output of the fix module, so typ-
ically the region decomposition contains little under-segmentation
but has |R| >> |R*|. Within our problem formulation, two regions
should be merged if the GT region they share the most overlap with
is the same: merging these regions would decrease |R| without in-
creasing the level of under-segmentation. The merge network learns
to solve this problem by locally operating over pairs of neighboring
regions, r; and rj, and making binary predictions whether or not
the two regions should be merged together. It receives a point cloud
as input, where 1/4 of the points come from r;, 1/4 of the points
come from r;, and 1/2 come from nearby outside points within a 0.1
radius (Figure 2, bottom-right).

Within the merging module, the merge network is applied in an
iterative procedure. Each round of this procedure begins by finding
all neighboring regions (using region-to-region minimum point
distance) and adding them into a queue to be evaluated by the merge
network. The merge network then predicts a merge probability for
each pair of regions and sorts these predictions from most-to-least
confident. SHRED then iterates through these predictions, merging
together neighboring regions if their merge probability is above a
user-defined merge-threshold; once a region has been merged, it



cannot be further merged in the same round. The procedure repeats
until a round ends with no merges.

The merge-threshold, MT, defines the granularity of the output
decomposition. By default, we set MT to 0.5, which encourages
decompositions to match the granularity of R* from the training
distribution. When set to 1, no regions are merged from the output of
the fix module; when set to 0, all regions are combined together. The
merge-threshold can be used to explore tradeoffs between region
granularity and region under-segmentation, as seen in Figure 1.

Model Details. We model the merge network with a PointNet++
classification back-bone, with a MLP head that predicts a binary
logit. The back-bone uses 3 set abstraction layers with 1024, 256,
64 grouping points, 0.1, 0.2, 0.4 radius size and 64, 128, 256 feature
size respectively, with the global pooling step done at a feature
size of 1024. Batch normalization and ReLU activations are used
throughout. A MLP head for per-shape predictions uses 2 hidden
layers with dimensions of 256 and 64.

The input point clouds contain 2048 points, with 8 features (xyz
position, normal, one hot flags for region i and region j), and are
normalized to the unit-sphere. The network is trained with Binary
Cross Entropy loss, where 1.0 (0.0) indicates the regions should
(should not) be merged together.

Data Preparation. Training data for the merge network is pro-
duced with a synthetic perturbation procedure. This procedure
begins by sampling a shape from our training set. It then decom-
poses the shape into regions using our FPS procedure. Each region
in this segmentation then undergoes further decomposition in an
annotation-aware fashion. For every region, each GT part instance in
that region is randomly split into sub-parts. After this split, each sub-
part is then randomly assigned to either its own region or grouped
with other sub-parts in its parent region. We empirically find this
process creates decompositions that broadly cover the distribution
of outputs created by the split and fix modules.

After we have created this region decomposition, we find all
neighboring regions and begin sampling merges between neighbors
at random. We record each sampled merge as a training example.
Points from the two neighboring regions, r; and r;, and nearby
points outside both regions, form the input point cloud. The label
of the merge is determined by checking the parts in R* that have
the best match with the sampled regions: if r; and r; best match
to the same r|. part, then the merge should happen, otherwise the
merge should not happen. While sampling merges, we also update
the region decomposition. If the merge should happen, we execute
the merge with 75% chance, while if the merge should not happen,
we execute the merge with 25% chance. This process repeats until
all remaining neighbors have been considered.

4 EXPERIMENTS

We evaluate SHRED's ability to produce high-quality region de-
compositions using fine-grained part annotations from the PartNet
dataset (Section 4.1). We describe our training procedure in Section
4.2. In Section 4.3, we compare SHRED against related methods,
analyzing the trade-off between decomposition quality and decom-
position granularity. We then examine how SHRED can be used
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Fig. 3. Comparing segmentation granularity (X-axis, lower is better) and
quality (Y-axis, higher is better). In(out)-domain averages are shown with
solid (dotted) lines and circles (stars).

to improve performance on downstream tasks such as zero-shot
fine-grained part instance segmentation (Section 4.4) and few-shot
fine-grained semantic segmentation (Section 4.5). Finally, we an-
alyze the importance of SHRED’s various components through a
series of ablation studies in Section 4.6.

4.1 Dataset Details

We use data from the finest-grained part annotations of PartNet [Mo
et al. 2019] to train and evaluate our method. We train SHRED on a
subset of categories with abundant data (in-domain), and show that
SHRED is able to learn patterns that generalize well to novel cate-
gories (out-domain) at test time. Our in-domain categories are: chair,
lamp, and storage. Our out-domain categories are: bed, display, ear-
phone, faucet, knife, refrigerator and table. We evenly sample shapes
from our in-domain categories to form train/validation/test splits of
6000/600/600 shapes, while each out-domain category contributes
~200 shapes to the test set.

4.2 Training Details

SHRED requires training 3 networks: the split network, the fix net-
work, and the merge network. We use the Adam optimizer [Kingma
and Ba 2014] with learning rates of 1e73, 1674, 1e~* and batch sizes
of 64, 64, 128 for the split, fix, and merge networks respectively. For
the merge network, a learning rate scheduler is employed to drop
the learning by a factor of 0.25 every time the train loss does not
reach a new minimum over a patience of 10000 iterations. Training
is performed on a machine with a GeForce RTX 3090 Ti GPU and
an Intel i7-11700K CPU. The split network trained for 70 epochs (18
hours), the fix network trained for 200 epochs (18 hours), and the
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Table 1. Fine-grained instance segmentation performance on in-domain (left) and out domain (right) test-set shapes (metric is AloU). SHRED outperforms all

R. Kenny Jones, Aalia Habib, and Daniel Ritchie

baseline methods, and can be further improved by setting the merge-threshold to 0.8.

In Domain

Out Domain

Method Avg  Chair Lamp Storage Avg Bed  Display Earphone Faucet Knife Fridge Table
FPS 0.237 0.278 0.245 0.186 0.173  0.199 0.115 0.162 0.202  0.128 0.151  0.255
WOPL 0.178 0.173  0.248 0.114 0.235 0.074 0.234 0.267 0.290 0.461 0.134 0.181
PN Seg 0.377 0.381 0.361 0.389 0.318  0.167 0.427 0.274 0.306 0396 0.253  0.404
L2G 0.425 0.456 0.477 0.342 0.392  0.253 0.466 0.366 0.451 0.504 0.247 0.455
ACD 0.352 0.407 0.471 0.179 0.393  0.186 0.481 0.377 0.469 0.656 0.158 0.425
SHRED (MT =.5) 0.614 0.610 0.633 0.601 0.524 0.426 0.568 0.408 0.584 0.606 0.430 0.644
SHRED (MT =.8) 0.631 0.626 0.647 0.618 0.534 0.455 0.540 0.447 0.592 0.626 0.435 0.645

merge network trained for 700k iterations (~3 days). All networks
perform early stopping on the in-domain validation set.

4.3 Decomposition Quality vs Granularity

We compare SHRED against baseline methods on their ability to
navigate the trade-off between decomposition quality and decompo-
sition granularity. Given shape S with GT decomposition R*, the ob-
jective is to produce a decomposition R such that (i) r; € r;f VieN
and (ii) |R| < |R*|. As these conditions are infeasible to meet in
practice, we evaluate the goodness of a region decomposition R
by analyzing the degree to which it violates these properties. We
capture violations of (i) with a region purity metric, explained below.
Adherence to property (ii) can be easily captured by |R|, where the
goal is to minimize this value.

Region Purity Metric. Given a shape S, region decomposition R
and ground-truth decomposition R*, the region purity metric aims
to capture the quality of R irrespective of R’s granularity. By quality
we refer to the degree of under-segmentation present in R w.r.t R*,
i.e. the degree to which property (i), r; € r;f Vi€ N, is violated .

The region purity metric takes values from 0 to 1: 1 indicates
(i) is not violated, while lower values indicate it has been violated
to a greater degree. Region purity is calculated by the following
procedure. First, we find an optimal assignment A from the regions
of R to the regions of R*. A is a region decomposition that keeps
track of the best r;; € R* for each r; € R. For each r; € R, we
calculate the ground-truth region r; that r; best matches: r;: =
max,: e IoU(rj, r}‘) Then, we find all points in S assigned to r;
under R, and set their label to r* under A. Notice that as R is a valid
region decomposition, we are guaranteed that A will also be a valid
region decomposition. Once A has been computed, we calculate
how well A matches R*. For each ground-truth region, r;f € R*, we
find all points in S assigned to r; and calculate the percentage of
those points assigned to r;f under A. The final region purity metric
for the (S, R, R*) triplet is then the average of this value across all
ground-truth regions of R*.

Comparisons. We evaluate SHRED against a suite of baseline
methods:

o FPS: Farthest-point sampling, the naive region decomposition
that initializes SHRED.
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e ACD: Approximate Convex Decomposition, a popular non-
learning based method [Mamou 2016]

e PN Seg: Learning-based method that predicts global fine-
grained instance segmentations [Mo et al. 2019].

o WOPL: Learning-based method that locally splits and glob-
ally merges regions with clustering [Wang et al. 2021a].

e L2G: Learning-based method that uses a policy gradient
trained network to locally merge regions [Luo et al. 2020].

WOPL and PN Seg use the same training data as SHRED. L2G
is trained on a superset of data that SHRED uses (same in-domain
categories, more shapes per category). Please see the supplemental
for implementation details.

We plot the trade-off that each method makes between region
quality (region purity, Y-axis) and region granularity (number of
regions, X-axis) in Figure 3. The solid line and circles indicate in-
domain averages, while the dotted line and stars indicate out-domain
averages. Methods that produce better region decompositions will
be closer to the top-left corner.

SHRED can vary the granularity of its output decomposition by
modulating the merge-threshold (Section 3.3); we leverage this prop-
erty to plot SHRED decomposition results as a curve, varying the
merge-threshold from 0.01 to 0.99. Notice that this SHRED curve
forms a Pareto frontier, dominating all other comparison methods
in terms of region purity (Y-axis) at any level of decomposition
granularity (X-axis). This demonstrates that, irrespective of the de-
sired granularity, SHRED finds region decompositions that better
respect the GT part regions compared with any baseline methods.
Importantly, this trend holds on both in-domain and out-domain cat-
egories, indicating that SHRED has learned decomposition policies
that generalize well to novel types of shapes. We provide additional
results for different stages of baseline methods in the supplemental
material.

4.4 Fine-grained Part Instance Segmentation

A straightforward application of SHRED is to treat its region decom-
positions as fine-grained part instance segmentations. We evaluate
SHRED against comparison methods on this task, splitting results
for in-domain test-set shapes (generalization) and out-domain test-
set shapes (zero-shot). Following [Wang et al. 2021a], we use AloU
as our part instance segmentation metric. For each GT part, we find
the predicted part with the maximum IoU. The AIoU is then the
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Fig. 4. Left: Qualitative region decomposition outputs, where regions are randomly colored. SHRED’s predictions most closely match ground-truth part
annotations (GT Parts). Right: Using NGSP to label SHRED’s regions creates semantic segmentations that are more similar to ground-truth semantic
annotations (GT Sem) compared with region-agnostic baselines (No Reg), when labeled data is limited.

average of this value across all GT part instances, where higher
AloU values are better.

We present quantitative results of our experiments in Table 1 and
qualitative results in Figure 4, left. We find SHRED outperforms com-
parison methods on fine-grained instance segmentations for both
in-domain and out-domain categories. For in-domain categories
SHRED with a 0.5 merge-threshold achieves a 44% boost over the
next best method (L2G), while for out-domain categories SHRED
provides a 33% boost over the next best method (ACD).

We analyze how the merge-threshold hyperparameter affects
SHRED'’s fine-grained instance segmentation performance. In Figure
5, we plot region decomposition granularity (X-axis) versus instance
segmentation AloU (Y-axis). As in other plots, we are able to repre-
sent SHRED results as a curve by modulating the merge-threshold
from 0.01 to 0.99. When the merge-threshold is set to very-low or
very-high values, the AloU performance deteriorates. We plot the
performance of the default merge-threshold value, 0.5, as a blue
circle (star) for the in-domain (out-domain) average. The default
merge-threshold value achieves close to optimal performance out
of all merge-threshold values, but the AloU performance can be
slightly improved by increasing the merge-threshold to 0.8 (see
Table 1, last row).

4.5 Fine-grained Semantic Segmentation

We examine how SHRED can be used to improve fine-grained se-
mantic segmentation performance when access to semantic label
annotations are limited. The Neurally-Guided Shape Parser (NGSP)

0.6
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=)
O o044
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* ® ACD
03 e FPS
® PNSeg
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%* « *
2G
0.2 A ® SHRED (0.5)
L] % —— SHRED
0 20 a0 60 80

Number of Regions

Fig. 5. We plot fine-grained instance segmentation performance (AloU) as a
function of the number of predicted regions. SHRED with the default merge-
threshold is shown in dark-blue, while we also vary the merge-threshold
from 0.01 to 0.99 to form a curve of SHRED results (blue).

is a method that learns to assign semantic labels to regions of a
3D shape; it has demonstrated advantages over globally learned
semantic segmentation networks when it receives well-structured
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Table 2. Semantic segmentation results in a few-shot paradigm (# Train)
with no regions (No Reg) and combining NGSP with region decomposition
methods. SHRED+NGSP achieves the best mloU performance averaged
across categories.

In Domain Out Domain

# Train Method Avg Chair  Lamp  Storage  Table  Knife
No Reg 0.148 0.188 0.104 0.231 0.068 0.335
PN Seg 0.203 0.190 0.210 0.287 0.123 0.075
10 shapes  L2G 0.240 0.276 0.239 0.263 0.180 0.132
ACD 0.154 0.193 0.187 0.115 0.119 0.151
SHRED 0.277 0.311 0.229 0.365 0.203 0.205
No Reg 0.276 0.345 0.177 0.312 0.268 0.417
PN Seg 0.298 0.305 0.324 0.332 0.232 0.128
40 shapes  L2G 0.328 0.407 0.331 0.316 0.259 0.334

ACD 0.237 0.304 0.302 0.168 0.174 0.254
SHRED 0.375 0.431 0.344 0.415 0.311 0.355

(e.g. human-produced) region decompositions as input [Jones et al.
2022]. We evaluate the performance of NGSP when SHRED is used
to produce the input region decomposition compared with alterna-
tive methods. For each category, NGSP requires training two types
of models: a guide network and likelihood networks. We train a
guide network separately for each region decomposition method.
As likelihood network training is expensive, we train a single likeli-
hood network using ground-truth part instance annotations, and
share this network across experimental conditions. Please see the
supplemental material for additional experiment details.

Combining SHRED and NGSP. We present results of this experi-
ment in Table 2 using the intersection of categories studied by our
method and NGSP. The rows in the top (bottom) half of the table
correspond to training the guide and likelihood networks on 10 (40)
shapes with semantic label annotations. The metric used is semantic
mloU, where higher-values indicate a better semantic segmentation.
As seen, using SHRED produced regions allows NGSP to achieve
the best semantic segmentation (last-rows) compared with using
baseline methods to produce shape regions (middle-rows), or us-
ing no regions (top-row, PartNet semantic segmentation network
[Mo et al. 2019]). This result generally holds for both individual
in-domain and out-of-domain categories. Interestingly, for the knife
category, the no region method outperforms all NGSP variants. We
attribute this result to the fact that the knife grammar from Part-
Net is relatively coarse and contains a top-level binary split into
two sub-categories of cutting instruments (knives versus daggers)
with virtually identical sub-trees. We share qualitative results in
Figure 4, right. As demonstrated, combining SHRED with NGSP
typically produces fine-grained semantic labels that better match GT
annotations. One limitation of NGSP is that it is not able to correct
under-segmentations provided by region decomposition methods.
For instance, the blade (dark-green) and the bolster (light-green)
of the knife in the last row of Figure 4, are grouped into the same
region by SHRED, so NGSP is unable to accurately segment out the
bolster. To improve performance in these cases, it may be useful to
run iterative rounds of SHRED and NGSP, so that SHRED can further
decompose regions that NGSP believes may be under-segmented.
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Combining SHRED and Guide. As NGSP guide network training
is fast, we include additional semantic segmentation results in Table
3, where a partial version of NGSP, with just the guide network and
no likelihood networks, is used to create semantic segmentations.
We include results for additional categories (all in-domain and out-
domain categories studied in Section 4). We also include additional
region decomposition methods: FPS, WOPL (with just the prior net-
work), and SHRED with different merge-threshold values (0.2, 0.5,
0.8). The guide network benefits most from SHRED generated re-
gions for both in-domain and out-domain averages. When semantic
labeling grammars are more coarse, and when more labeled train-
ing shapes are present, the gap between SHRED and alternative
approaches shrinks. The chair, lamp, storage and table categories
all have more than 18 nodes in their semantic grammars, while the
bed, display, earphone, faucet, knife and refrigerator categories all
have less than 11 nodes in their semantic grammars.

4.6 SHRED Ablations

In this section, we consider the performance of SHRED under differ-
ent hyperparameter settings and ablations conditions. We quantita-
tively evaluate each modified version in Table 4, by measuring the
achieved fine-grained instance segmentation AloU over in-domain
and out-domain category averages. In the rest of this section, we
describe the different ablation conditions that populate the rows of
the table.

Removing local operations. SHRED uses three locally learned mod-
ules to perform region splits, fixes and merges. We evaluate ablated
version of SHRED, where only two modules are employed to pro-
duce region decompositions, in the No Split, No Fix, and No Merge
rows. As demonstrated, removing any of SHRED’s local operations
leads to worse region decompositions.

Modified Hungarian Matching Algorithm. As discussed in Sec-
tion 3.1, split network training requires a dynamically computed
matching between predicted and target instance slots. SHRED uses
a variant of the typical Hungarian matching algorithm for this pro-
cedure, where over-segmentation is explicitly encouraged. In the No
Hung OS match row, we ablate this design decision, replacing our
over-segmentation biased Hungarian matching algorithm with the
typical exact instance segmentation formulation. As seen, changing
to the default formulation slightly decreases SHRED's performance.
Please see the supplemental material for a detailed explanation of
our matching algorithm.

Training with less data. By default, the local operators of SHRED
are trained over multiple in-domain shape categories (chairs, lamps,
and storage furniture) with each category contributing 2000 shape
instances. In the Chair only, Lamp only, and Storage only ablation
rows, we evaluate how SHRED is able to generalize when trained
over 2000 instances from a single shape category. In the Limited
data row, we present a version of SHRED that is trained over the
same shape categories (chairs, lamps and storage furniture), but
where each category contributes only 200 shape instances. From
these results, we can observe that SHRED benefits from both (a)
more in-domain shape categories and (b) more shape instances per
category, but (a) should be prioritized over (b). In fact, SHRED with
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Table 3. Semantic segmentation mloU performance using the NGSP guide network (no likelihood networks) to assign semantic labels to shape regions
produced by different decomposition methods. We show how the guide network performs under different settings of SHRED, varying the merge-threshold

from 0.2 t0 0.5t0 0.8 .

In Domain

Out Domain

#Train  Method Avg  Chair Lamp  Storage Avg Bed  Display Earphone Faucet Knife Fridge Table
No Reg 0.174  0.188  0.103 0.230 0.331 0.267 0.666 0.263 0.346 0.335 0373 0.068
FPS 0.221 0.250  0.205 0.207 0336 0.241 0.607 0.274 0.390 0327 0.367  0.147
WOPL Prior 0.207  0.231 0.149 0.241 0336 0.259 0.590 0.265 0.357 0.338 0362  0.180
PN SEG 0.213  0.230  0.180 0.230 0.285  0.232 0.579 0.193 0.263 0.216 0395  0.117
10 shapes  L2G 0.233  0.247  0.205 0.247 0.293  0.256 0.593 0.218 0.262 0.210 0354  0.157
ACD 0.188  0.260  0.188 0.117 0.296  0.219 0.669 0.218 0.348 0.265 0229  0.127
SHRED (MT =.2) 0.259 0.251  0.220 0.307 0.315  0.250 0.623 0.174 0.322 0.227 0471  0.141
SHRED (MT =.5) 0.279 0.287  0.193 0.357 0.356  0.303 0.690 0.190 0.380 0.279  0.494 0.159
SHRED (MT =.8) 0.265 0.297 0.183 0.316 0.360 0.309 0.653 0.242 0.341 0.328  0.466  0.181
No Reg 0.278  0.345  0.177 0.312 0.443  0.452 0.714 0.371 0.390 0.417 0487  0.268
FPS 0.276  0.275  0.292 0.261 0.399  0.326 0.654 0.419 0.436 0.355 0353 0.247
WOPL Prior 0316  0.322  0.312 0.314 0.416  0.355 0.678 0.408 0.415 0.410 0381  0.266
PN SEG 0.299 0314  0.239 0.344 0.367  0.293 0.622 0.331 0.357 0.317 0425 0.226
40 shapes  L2G 0.332  0.380  0.302 0.313 0.383  0.327 0.679 0.372 0.382 0.297 0397  0.229
ACD 0.266  0.328  0.296 0.173 0.361 0.248 0.702 0.356 0.373 0.412  0.248  0.190
SHRED (MT =.2) 0.343 0365  0.298 0.367 0.421 0.395 0.709 0.298 0.390 0.338  0.510  0.304
SHRED (MT =.5) 0.368 0.399 0.325 0.379 0.443  0.409 0.722 0.344 0.418 0.396  0.522  0.287
SHRED (MT =.8) 0.368 0398  0.300 0.407 0.465 0.408 0.736 0.405 0.468 0.400 0.504 0.331

Table 4. SHRED instance segmentation performance under different hyper-
parameter settings and ablation conditions. Metric is AloU, averaged for
both the in-domain and out-domain categories. | Best |, second-best , and

- conditions are highlighted.

Condition In Domain AloU Out Domain AloU
No Split 0.470 0.440
No Fix 0.574 0.492
No Merge 0.324 0.225
No Hung OS match - -
Chair only 0.484 0.485
Lamp only 0.329 0.387
Storage only 0.444 0.414
Limited data (10%) 0.543 0.496
Split with naive SDC 0.490 0.448
Align with naive SDC 0.561 0.503
Merge with naive SDC 0.488 0.425
Cascade training 0.434 0.413
SHRED (K = 32) 0.594 0.512
SHRED (K = 64) 0.614 0.524
SHRED (K = 128) 0.617 0.541

just 10% of the training data still significantly outperforms all of the
baseline methods from Table 1.

Naive Synthetic Data Creation. As described throughout Section 3,
SHRED employs synthetic data creation (SDC) strategies to produce

training data for each local operator. We designed these SDC strate-
gies to roughly match the types of input each operator might expect
during the course of the split-fix-merge sequence. In the Split with
naive SDC, Align with naive SDC, and Merge with naive SDC rows we
ablate our SDC procedure for one operator at a time, by replacing
the default SDC with a naive SDC. Please see the supplemental
material for details on the naive synthetic data creation procedures.
In all cases, replacing the default SDC with the naive SDC leads to
worse AloU. This supports our claim that having a synthetic data
creation strategy that broadly matches the expected input for each
local operator improves SHRED's overall performance.

Cascade Training of Operators. SHRED trains each operator inde-
pendently with synthetic data creation procedures. When a single
operator sequence is desired, it is also possible to train the opera-
tors of SHRED in a cascading fashion: taking the predictions from
previous stages to produce the training data for later stages. We
present a version of SHRED trained within this paradigm in the
Cascade training row. In this paradigm, the fix network is trained on
predictions from the split network, and the merge network is trained
on predictions from the split and fix networks. The performance
of this condition is much worse compared with the default version
of SHRED, likely because in the cascade approach the amount of
operator training data is bottle-necked by the number of training
shapes, whereas the synthetic data creation procedure can generate
infinite amounts of operator training data, even with limited train-
ing shapes. Further note that training over synthetic data allows
operators to be trained in parallel and provides greater flexibility in
how the operators can be applied during an inference procedure.

Initial Region Splits. SHRED applies its learned local operators
over regions produced by a naive decomposition method. By default,
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we use a farthest-point sampling (FPS) procedure to produce the
naive decomposition with K = 64 centroids. In the last rows of Table
4 we evaluate SHRED’s instance segmentation performance under
different values of K. SHRED is not overly sensitive to the initial
decomposition granularity, performing well under all K values. The
best AloU value, for both in-domain and out-domain categories,
is achieved with K = 128. The downside of starting with a finer
initial region decomposition is that SHRED inference is slower;
SHRED inference with K = 64 takes under 6 seconds per shape,
while SHRED inference with K = 128 takes over 10 seconds per
shape.

5 CONCLUSION

We introduced SHRED, a method that performs 3D SHape REgion
Decomposition by learning to locally split, fix and merge. We trained
SHRED on part annotations from three data-abundant PartNet cate-
gories (chairs, lamps, storage) and experimentally validated its abil-
ity to produce high-quality region decompositions for out-domain
categories of manufactured shapes. In comparisons against baseline
methods, we used SHRED’s merge-threshold hyperparameter to
demonstrate that it offers the best trade-off between decomposition
quality and granularity. Finally, we evaluated SHRED on down-
stream applications involving fine-grained parts, zero-shot instance
segmentation and few-shot semantic labeling, finding that SHRED
improves performance over baselines.

Future Work. While SHRED has demonstrated an impressive ca-
pacity to generalize to out-of-distribution instances, all of the shapes
we have experimented with come from the same meta-distribution
(manufactured objects). It would be interesting to investigate how
SHRED generalizes to more diverse domains, including those that
share locally similar properties (partial shape scans, 3D scenes) or
those with hardly any similarities (organic bodies). Along another
direction, while SHRED’s merge-threshold allows some exploration
over a range of decomposition granularities, the segmentations that
SHRED produces are always flat. Developing a procedure to convert
this series of flat decompositions into a shared hierarchical segmen-
tation may prove useful for various downstream applications (e.g.
collision detection or structure-based generative modeling).

Finally, while we find that SHRED’s sequential application of the
split, fix and merge operations results in region decompositions
that outperform previous approaches, it is unlikely that this se-
quence is optimal for every shape instance. It is easy to imagine
that some input shapes might benefit from repeated applications of
a particular operation, by running this iterative procedure multiple
times, or by only applying the operation to certain regions. Wrap-
ping the operations of SHRED with a more advanced outer-loop
search would be one way to accomplish this per-shape tailoring
goal. Moreover, if this search was guided by a global likelihood func-
tion, then application-dependant terms could even be added into
consideration (e.g. encouraging convex regions or respecting bilat-
eral symmetries). Alternatively, a human-in-the-loop could provide
constraints to guide the decomposition process in an interactive
fashion, by for instance, indicating patches to be split or merged, or
boundaries to be fixed, with sketched-based controls. We believe
that these paradigms, where human-specified objectives help guide
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local data-driven modules, are a promising way forward towards
generating human-quality fine-grained region decompositions of
3D objects from distributions that lack abundant annotations.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their helpful
suggestions. This work was funded in parts by NSF award #1941808
and a Brown University Presidential Fellowship. Daniel Ritchie is
an advisor to Geopipe and owns equity in the company. Geopipe
is a start-up that is developing 3D technology to build immersive
virtual copies of the real world with applications in various fields,
including games and architecture

REFERENCES

Ben Abbatematteo, Stefanie Tellex, and George Konidaris. 2019. Learning to Generalize
Kinematic Models to Novel Objects. In Proceedings of the Third Conference on Robot
Learning.

Shmuel Asafi, Avi Goren, and Daniel Cohen-Or. 2013. Weak convex decomposition by
lines-of-sight. In Computer graphics forum, Vol. 32. Wiley Online Library, 23-31.
Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2019a. BSP-Net: Generating Com-

pact Meshes via Binary Space Partitioning. arXiv:1911.06971 [cs.CV]

Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha Chaudhuri, and Hao Zhang.
2019b. BAE-NET: Branched Autoencoder for Shape Co-Segmentation. Proceedings
of International Conference on Computer Vision (ICCV) (2019).

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and
Andrea Tagliasacchi. 2020. CvxNet: Learnable Convex Decomposition. (June 2020).

Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evangelos Kalogerakis, Lian-
gliang Cao, Erik Learned-Miller, Rui Wang, and Subhransu Maji. 2020. Label-Efficient
Learning on Point Clouds using Approximate Convex Decompositions. In European
Conference on Computer Vision (ECCV).

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T Freeman, and
Thomas Funkhouser. 2019. Learning shape templates with structured implicit
functions. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 7154-7164.

Songfang Han, Jiayuan Gu, Kaichun Mo, Li Yi, Siyu Hu, Xuejin Chen, and Hao
Su. 2020. Compositionally Generalizable 3D Structure Prediction.  (2020).
arXiv:arXiv:2012.02493

Yu Hao and Yi Fang. 2021. Meta-Learning 3D Shape Segmentation Functions. https:
//doi.org/10.48550/ARXIV.2110.03854

Hao Huang, Xiang Li, Lingjing Wang, and Yi Fang. 2021. 3D-MetaConNet: Meta-
learning for 3D Shape Classification and Segmentation. In 2021 International Con-
ference on 3D Vision (3DV). 982-991. https://doi.org/10.1109/3DV53792.2021.00106

R. Kenny Jones, Aalia Habib, Rana Hanocka, and Daniel Ritchie. 2022. The Neurally-
Guided Shape Parser: Grammar-based Labeling of 3D Shape Regions with Approxi-
mate Inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Oliver Van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi, and Daniel Cohen-Or. 2014.
Shape segmentation by approximate convexity analysis. ACM Transactions on
Graphics (TOG) 34, 1 (2014), 1-11.

Sagi Katz and Ayellet Tal. 2003. Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM transactions on graphics (TOG) 22, 3 (2003), 954-961.

Yuki Kawana, Yusuke Mukuta, and Tatsuya Harada. 2020. Neural Star Domain as
Primitive Representation. In NeurIPS 2020.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2014).

Loic Landrieu and Martin Simonovsky. 2018. Large-scale point cloud semantic segmen-
tation with superpoint graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4558-4567.

Jyh-Ming Lien and Nancy M Amato. 2008. Approximate convex decomposition of
polyhedra and its applications. Computer Aided Geometric Design 25, 7 (2008),
503-522.

Rong Liu and Hao Zhang. 2004. Segmentation of 3D meshes through spectral clustering.
In 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004.
Proceedings. 298-305.

Zhengzhe Liu, Xiaojuan Qi, and Chi-Wing Fu. 2021. One Thing One Click: A Self-
Training Approach for Weakly Supervised 3D Semantic Segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1726~1736.

Tiange Luo, Kaichun Mo, Zhiao Huang, Jiarui Xu, Siyu Hu, Liwei Wang, and Hao
Su. 2020. Learning to Group: A Bottom-Up Framework for 3D Part Discovery in
Unseen Categories. In International Conference on Learning Representations. https:
//openreview.net/forum?id=rkI8dIHYvB


https://arxiv.org/abs/1911.06971
https://arxiv.org/abs/arXiv:2012.02493
https://doi.org/10.48550/ARXIV.2110.03854
https://doi.org/10.48550/ARXIV.2110.03854
https://doi.org/10.1109/3DV53792.2021.00106
https://openreview.net/forum?id=rkl8dlHYvB
https://openreview.net/forum?id=rkl8dlHYvB

Khaled Mamou. 2016. Volumetric Hierarchical Approximate Convex Decomposition.
In Game Engine Gems 3, Eric Lengyel (Ed.). A K Peters, 141-158.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and
Hao Su. 2019. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3D Object Understanding. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, and Sanja Fidler. 2021.
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural
Networks. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Despoina Paschalidou, Ali Osman Ulusoy, and Andreas Geiger. 2019. Superquadrics
Revisited: Learning 3D Shape Parsing beyond Cuboids. In Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. (2017).

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
learning on point sets for 3D classification and segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 652—660.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems. 5099-5108.

Ariel Shamir. 2008. A survey on mesh segmentation techniques. In Computer graphics
forum, Vol. 27. Wiley Online Library, 1539-1556.

Gopal Sharma, Bidya Dash, Matheus Gadelha, Aruni RoyChowdhury, Marios Loizou,
Evangelos Kalogerakis, Liangliang Cao, Erik Learned-Miller, and Rui Wang and-
Subhransu Maji. 2021. SurFit: Learning to Fit Surfaces Improves Few Shot Learning
on Point Clouds. https://doi.org/10.48550/ARXIV.2112.13942

Gopal Sharma, Evangelos Kalogerakis, and Subhransu Maji. 2019. Learning Point Em-
beddings from Shape Repositories for Few-Shot Segmentation. In 2019 International
Conference on 3D Vision, 3DV 2019, Québec City, QC, Canada, September 16-19, 2019.
IEEE, 67-75. https://doi.org/10.1109/3DV.2019.00017

Chunyu Sun, Yiqi Yang, Haoxiang Guo, pengshuai Wang, Xin Tong, Yang Liu, and
Shum Heung-Yeung. 2022. Semi-Supervised 3D Shape Segmentation with Multilevel
Consistency and Part Substitution. Computational Visual Media (2022).

Chun-Yu Sun, Qian-Fang Zou, Xin Tong, and Yang Liu. 2019. Learning Adaptive
Hierarchical Cuboid Abstractions of 3D Shape Collections. ACM Trans. Graph. 38,
6, Article 241 (Nov. 2019), 13 pages. https://doi.org/10.1145/3355089.3356529

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik.
2017. Learning Shape Abstractions by Assembling Volumetric Primitives. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Lingjing Wang, Xiang Li, and Yi Fang. 2020. Few-Shot Learning of Part-Specific Proba-
bility Space for 3D Shape Segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Peng-Shuai Wang, Yu-Qi Yang, Qian-Fang Zou, Zhirong Wu, Yang Liu, and Xin Tong.
2021b. Unsupervised 3D Learning for Shape Analysis via Multiresolution Instance
Discrimination. Proceedings of the AAAI Conference on Artificial Intelligence 35, 4
(May 2021), 2773-2781. https://ojs.aaai.org/index.php/AAAT/article/view/16382

Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. 2018. SGPN: Similarity
Group Proposal Network for 3D Point Cloud Instance Segmentation. In CVPR.

Xiaogang Wang, Xun Sun, Xinyu Cao, Kai Xu, and Bin Zhou. 2021a. Learning Fine-
Grained Segmentation of 3D Shapes Without Part Labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10276—
10285.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. 2019. Dynamic Graph CNN for Learning on Point Clouds. ACM Transac-
tions on Graphics (TOG) (2019).

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng,
and Yueshan Xiong. 2011. Symmetry hierarchy of man-made objects. In Computer
graphics forum, Vol. 30. Wiley Online Library, 287-296.

Erik Wijmans. 2018. Pointnet++ Pytorch. https://github.com/erikwijmans/Pointnet2_
PyTorch (2018).

Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas Guibas, and Or Litany. 2020.
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding. In
Computer Vision — ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm (Eds.). Springer International Publishing, Cham, 574-591.

Xun Xu and Gim Hee Lee. 2020. Weakly Supervised Semantic Point Cloud Segmentation:
Towards 10x Fewer Labels. In CVPR.

Kaizhi Yang and Xuejin Chen. 2021. Unsupervised Learning for Cuboid Shape Abstrac-
tion via Joint Segmentation from Point Clouds. ACM Trans. Graph. 40, 4, Article
152 (jul 2021), 11 pages. https://doi.org/10.1145/3450626.3459873

Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G. Kim, Hao Su, and Ersin Yumer.
2017. Learning Hierarchical Shape Segmentation and Labeling from Online Reposi-
tories. SIGGRAPH (2017).

Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas ]J. Guibas. 2019. GSPN:
Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud.

SHRED: 3D Shape Region Decomposition with Learned Local Operations « 186:11

In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
3942-3951. https://doi.org/10.1109/CVPR.2019.00407

Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai Xu. 2019. PartNet: A Recursive
Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation.
In CVPR. to appear.

Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Li Yi, Leonidas J. Guibas, and Hao
Zhang. 2020. AdaCoSeg: Adaptive Shape Co-Segmentation With Group Consistency
Loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

ACM Trans. Graph., Vol. 41, No. 6, Article 186. Publication date: December 2022.


https://doi.org/10.48550/ARXIV.2112.13942
https://doi.org/10.1109/3DV.2019.00017
https://doi.org/10.1145/3355089.3356529
https://ojs.aaai.org/index.php/AAAI/article/view/16382
https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch
https://doi.org/10.1145/3450626.3459873
https://doi.org/10.1109/CVPR.2019.00407

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Split Module
	3.2 Fix Module
	3.3 Merge Module

	4 Experiments
	4.1 Dataset Details
	4.2 Training Details
	4.3 Decomposition Quality vs Granularity
	4.4 Fine-grained Part Instance Segmentation
	4.5 Fine-grained Semantic Segmentation
	4.6 SHRED Ablations

	5 Conclusion
	Acknowledgments
	References

